Properties

Label 784.6.f.e.783.14
Level $784$
Weight $6$
Character 784.783
Analytic conductor $125.741$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(783,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.783"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 232 x^{14} + 23092 x^{12} - 1258560 x^{10} + 40996255 x^{8} - 775625040 x^{6} + \cdots + 20552376321 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{34}\cdot 7^{18} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.14
Root \(1.27628 + 0.597902i\) of defining polynomial
Character \(\chi\) \(=\) 784.783
Dual form 784.6.f.e.783.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+22.3313 q^{3} +90.0418i q^{5} +255.687 q^{9} +729.115i q^{11} -874.475i q^{13} +2010.75i q^{15} -1440.53i q^{17} -2448.40 q^{19} +629.236i q^{23} -4982.52 q^{25} +283.307 q^{27} -5885.40 q^{29} -6148.39 q^{31} +16282.1i q^{33} +2888.22 q^{37} -19528.2i q^{39} +4102.36i q^{41} +2070.55i q^{43} +23022.5i q^{45} +13580.5 q^{47} -32168.9i q^{51} -12085.8 q^{53} -65650.8 q^{55} -54675.9 q^{57} +34784.0 q^{59} +12060.1i q^{61} +78739.3 q^{65} -18133.0i q^{67} +14051.7i q^{69} +67372.9i q^{71} -6284.55i q^{73} -111266. q^{75} -15185.8i q^{79} -55805.2 q^{81} -90365.2 q^{83} +129708. q^{85} -131428. q^{87} -101934. i q^{89} -137302. q^{93} -220458. i q^{95} -91420.7i q^{97} +186425. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 1712 q^{9} - 496 q^{25} - 17024 q^{29} + 85664 q^{53} - 95424 q^{57} + 233344 q^{65} - 511216 q^{81} + 697952 q^{85} - 857024 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 22.3313 1.43255 0.716276 0.697817i \(-0.245845\pi\)
0.716276 + 0.697817i \(0.245845\pi\)
\(4\) 0 0
\(5\) 90.0418i 1.61072i 0.592789 + 0.805358i \(0.298027\pi\)
−0.592789 + 0.805358i \(0.701973\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 255.687 1.05221
\(10\) 0 0
\(11\) 729.115i 1.81683i 0.418069 + 0.908415i \(0.362707\pi\)
−0.418069 + 0.908415i \(0.637293\pi\)
\(12\) 0 0
\(13\) − 874.475i − 1.43512i −0.696495 0.717562i \(-0.745258\pi\)
0.696495 0.717562i \(-0.254742\pi\)
\(14\) 0 0
\(15\) 2010.75i 2.30744i
\(16\) 0 0
\(17\) − 1440.53i − 1.20893i −0.796633 0.604463i \(-0.793388\pi\)
0.796633 0.604463i \(-0.206612\pi\)
\(18\) 0 0
\(19\) −2448.40 −1.55596 −0.777979 0.628290i \(-0.783755\pi\)
−0.777979 + 0.628290i \(0.783755\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 629.236i 0.248024i 0.992281 + 0.124012i \(0.0395762\pi\)
−0.992281 + 0.124012i \(0.960424\pi\)
\(24\) 0 0
\(25\) −4982.52 −1.59441
\(26\) 0 0
\(27\) 283.307 0.0747907
\(28\) 0 0
\(29\) −5885.40 −1.29951 −0.649757 0.760142i \(-0.725129\pi\)
−0.649757 + 0.760142i \(0.725129\pi\)
\(30\) 0 0
\(31\) −6148.39 −1.14910 −0.574549 0.818470i \(-0.694823\pi\)
−0.574549 + 0.818470i \(0.694823\pi\)
\(32\) 0 0
\(33\) 16282.1i 2.60271i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2888.22 0.346837 0.173419 0.984848i \(-0.444519\pi\)
0.173419 + 0.984848i \(0.444519\pi\)
\(38\) 0 0
\(39\) − 19528.2i − 2.05589i
\(40\) 0 0
\(41\) 4102.36i 0.381131i 0.981674 + 0.190565i \(0.0610321\pi\)
−0.981674 + 0.190565i \(0.938968\pi\)
\(42\) 0 0
\(43\) 2070.55i 0.170771i 0.996348 + 0.0853854i \(0.0272122\pi\)
−0.996348 + 0.0853854i \(0.972788\pi\)
\(44\) 0 0
\(45\) 23022.5i 1.69481i
\(46\) 0 0
\(47\) 13580.5 0.896748 0.448374 0.893846i \(-0.352003\pi\)
0.448374 + 0.893846i \(0.352003\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) − 32168.9i − 1.73185i
\(52\) 0 0
\(53\) −12085.8 −0.590996 −0.295498 0.955343i \(-0.595486\pi\)
−0.295498 + 0.955343i \(0.595486\pi\)
\(54\) 0 0
\(55\) −65650.8 −2.92640
\(56\) 0 0
\(57\) −54675.9 −2.22899
\(58\) 0 0
\(59\) 34784.0 1.30092 0.650458 0.759542i \(-0.274577\pi\)
0.650458 + 0.759542i \(0.274577\pi\)
\(60\) 0 0
\(61\) 12060.1i 0.414980i 0.978237 + 0.207490i \(0.0665295\pi\)
−0.978237 + 0.207490i \(0.933470\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 78739.3 2.31158
\(66\) 0 0
\(67\) − 18133.0i − 0.493496i −0.969080 0.246748i \(-0.920638\pi\)
0.969080 0.246748i \(-0.0793620\pi\)
\(68\) 0 0
\(69\) 14051.7i 0.355308i
\(70\) 0 0
\(71\) 67372.9i 1.58613i 0.609136 + 0.793066i \(0.291516\pi\)
−0.609136 + 0.793066i \(0.708484\pi\)
\(72\) 0 0
\(73\) − 6284.55i − 0.138028i −0.997616 0.0690139i \(-0.978015\pi\)
0.997616 0.0690139i \(-0.0219853\pi\)
\(74\) 0 0
\(75\) −111266. −2.28407
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 15185.8i − 0.273761i −0.990588 0.136880i \(-0.956292\pi\)
0.990588 0.136880i \(-0.0437076\pi\)
\(80\) 0 0
\(81\) −55805.2 −0.945066
\(82\) 0 0
\(83\) −90365.2 −1.43981 −0.719906 0.694071i \(-0.755815\pi\)
−0.719906 + 0.694071i \(0.755815\pi\)
\(84\) 0 0
\(85\) 129708. 1.94724
\(86\) 0 0
\(87\) −131428. −1.86162
\(88\) 0 0
\(89\) − 101934.i − 1.36410i −0.731307 0.682049i \(-0.761089\pi\)
0.731307 0.682049i \(-0.238911\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −137302. −1.64614
\(94\) 0 0
\(95\) − 220458.i − 2.50621i
\(96\) 0 0
\(97\) − 91420.7i − 0.986541i −0.869876 0.493270i \(-0.835801\pi\)
0.869876 0.493270i \(-0.164199\pi\)
\(98\) 0 0
\(99\) 186425.i 1.91168i
\(100\) 0 0
\(101\) 28916.9i 0.282065i 0.990005 + 0.141032i \(0.0450422\pi\)
−0.990005 + 0.141032i \(0.954958\pi\)
\(102\) 0 0
\(103\) 94969.3 0.882044 0.441022 0.897496i \(-0.354616\pi\)
0.441022 + 0.897496i \(0.354616\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 125423.i − 1.05905i −0.848295 0.529525i \(-0.822370\pi\)
0.848295 0.529525i \(-0.177630\pi\)
\(108\) 0 0
\(109\) −9636.18 −0.0776852 −0.0388426 0.999245i \(-0.512367\pi\)
−0.0388426 + 0.999245i \(0.512367\pi\)
\(110\) 0 0
\(111\) 64497.6 0.496863
\(112\) 0 0
\(113\) −127124. −0.936555 −0.468277 0.883582i \(-0.655125\pi\)
−0.468277 + 0.883582i \(0.655125\pi\)
\(114\) 0 0
\(115\) −56657.5 −0.399496
\(116\) 0 0
\(117\) − 223592.i − 1.51005i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −370558. −2.30087
\(122\) 0 0
\(123\) 91611.0i 0.545990i
\(124\) 0 0
\(125\) − 167254.i − 0.957420i
\(126\) 0 0
\(127\) − 131727.i − 0.724712i −0.932040 0.362356i \(-0.881972\pi\)
0.932040 0.362356i \(-0.118028\pi\)
\(128\) 0 0
\(129\) 46238.0i 0.244638i
\(130\) 0 0
\(131\) −7301.55 −0.0371738 −0.0185869 0.999827i \(-0.505917\pi\)
−0.0185869 + 0.999827i \(0.505917\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 25509.4i 0.120467i
\(136\) 0 0
\(137\) 171441. 0.780394 0.390197 0.920731i \(-0.372407\pi\)
0.390197 + 0.920731i \(0.372407\pi\)
\(138\) 0 0
\(139\) −434869. −1.90907 −0.954535 0.298100i \(-0.903647\pi\)
−0.954535 + 0.298100i \(0.903647\pi\)
\(140\) 0 0
\(141\) 303270. 1.28464
\(142\) 0 0
\(143\) 637593. 2.60738
\(144\) 0 0
\(145\) − 529931.i − 2.09315i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 150774. 0.556365 0.278183 0.960528i \(-0.410268\pi\)
0.278183 + 0.960528i \(0.410268\pi\)
\(150\) 0 0
\(151\) 261301.i 0.932607i 0.884625 + 0.466304i \(0.154415\pi\)
−0.884625 + 0.466304i \(0.845585\pi\)
\(152\) 0 0
\(153\) − 368324.i − 1.27204i
\(154\) 0 0
\(155\) − 553612.i − 1.85087i
\(156\) 0 0
\(157\) 442817.i 1.43376i 0.697199 + 0.716878i \(0.254429\pi\)
−0.697199 + 0.716878i \(0.745571\pi\)
\(158\) 0 0
\(159\) −269891. −0.846633
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 365529.i 1.07759i 0.842438 + 0.538794i \(0.181120\pi\)
−0.842438 + 0.538794i \(0.818880\pi\)
\(164\) 0 0
\(165\) −1.46607e6 −4.19222
\(166\) 0 0
\(167\) 706892. 1.96138 0.980690 0.195569i \(-0.0626555\pi\)
0.980690 + 0.195569i \(0.0626555\pi\)
\(168\) 0 0
\(169\) −393414. −1.05958
\(170\) 0 0
\(171\) −626022. −1.63719
\(172\) 0 0
\(173\) 24407.4i 0.0620020i 0.999519 + 0.0310010i \(0.00986950\pi\)
−0.999519 + 0.0310010i \(0.990130\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 776771. 1.86363
\(178\) 0 0
\(179\) 403220.i 0.940609i 0.882504 + 0.470305i \(0.155856\pi\)
−0.882504 + 0.470305i \(0.844144\pi\)
\(180\) 0 0
\(181\) 804214.i 1.82463i 0.409486 + 0.912316i \(0.365708\pi\)
−0.409486 + 0.912316i \(0.634292\pi\)
\(182\) 0 0
\(183\) 269318.i 0.594482i
\(184\) 0 0
\(185\) 260060.i 0.558656i
\(186\) 0 0
\(187\) 1.05031e6 2.19641
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 324997.i 0.644609i 0.946636 + 0.322305i \(0.104458\pi\)
−0.946636 + 0.322305i \(0.895542\pi\)
\(192\) 0 0
\(193\) −229824. −0.444122 −0.222061 0.975033i \(-0.571278\pi\)
−0.222061 + 0.975033i \(0.571278\pi\)
\(194\) 0 0
\(195\) 1.75835e6 3.31146
\(196\) 0 0
\(197\) −862809. −1.58398 −0.791989 0.610535i \(-0.790954\pi\)
−0.791989 + 0.610535i \(0.790954\pi\)
\(198\) 0 0
\(199\) −41015.0 −0.0734193 −0.0367097 0.999326i \(-0.511688\pi\)
−0.0367097 + 0.999326i \(0.511688\pi\)
\(200\) 0 0
\(201\) − 404934.i − 0.706959i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −369384. −0.613894
\(206\) 0 0
\(207\) 160887.i 0.260973i
\(208\) 0 0
\(209\) − 1.78516e6i − 2.82691i
\(210\) 0 0
\(211\) − 478410.i − 0.739765i −0.929079 0.369882i \(-0.879398\pi\)
0.929079 0.369882i \(-0.120602\pi\)
\(212\) 0 0
\(213\) 1.50452e6i 2.27222i
\(214\) 0 0
\(215\) −186436. −0.275063
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 140342.i − 0.197732i
\(220\) 0 0
\(221\) −1.25971e6 −1.73496
\(222\) 0 0
\(223\) −152367. −0.205177 −0.102588 0.994724i \(-0.532712\pi\)
−0.102588 + 0.994724i \(0.532712\pi\)
\(224\) 0 0
\(225\) −1.27396e6 −1.67765
\(226\) 0 0
\(227\) −458558. −0.590649 −0.295324 0.955397i \(-0.595428\pi\)
−0.295324 + 0.955397i \(0.595428\pi\)
\(228\) 0 0
\(229\) 534765.i 0.673868i 0.941528 + 0.336934i \(0.109390\pi\)
−0.941528 + 0.336934i \(0.890610\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6568.36 0.00792624 0.00396312 0.999992i \(-0.498738\pi\)
0.00396312 + 0.999992i \(0.498738\pi\)
\(234\) 0 0
\(235\) 1.22281e6i 1.44441i
\(236\) 0 0
\(237\) − 339119.i − 0.392177i
\(238\) 0 0
\(239\) − 186056.i − 0.210692i −0.994436 0.105346i \(-0.966405\pi\)
0.994436 0.105346i \(-0.0335951\pi\)
\(240\) 0 0
\(241\) 1.52949e6i 1.69631i 0.529750 + 0.848154i \(0.322286\pi\)
−0.529750 + 0.848154i \(0.677714\pi\)
\(242\) 0 0
\(243\) −1.31505e6 −1.42865
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.14106e6i 2.23299i
\(248\) 0 0
\(249\) −2.01797e6 −2.06261
\(250\) 0 0
\(251\) −803905. −0.805416 −0.402708 0.915328i \(-0.631931\pi\)
−0.402708 + 0.915328i \(0.631931\pi\)
\(252\) 0 0
\(253\) −458785. −0.450618
\(254\) 0 0
\(255\) 2.89654e6 2.78952
\(256\) 0 0
\(257\) − 1.03205e6i − 0.974695i −0.873208 0.487347i \(-0.837965\pi\)
0.873208 0.487347i \(-0.162035\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.50482e6 −1.36736
\(262\) 0 0
\(263\) 78896.0i 0.0703340i 0.999381 + 0.0351670i \(0.0111963\pi\)
−0.999381 + 0.0351670i \(0.988804\pi\)
\(264\) 0 0
\(265\) − 1.08822e6i − 0.951926i
\(266\) 0 0
\(267\) − 2.27632e6i − 1.95414i
\(268\) 0 0
\(269\) − 1.62611e6i − 1.37015i −0.728471 0.685077i \(-0.759769\pi\)
0.728471 0.685077i \(-0.240231\pi\)
\(270\) 0 0
\(271\) 1.48721e6 1.23013 0.615064 0.788477i \(-0.289130\pi\)
0.615064 + 0.788477i \(0.289130\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 3.63283e6i − 2.89677i
\(276\) 0 0
\(277\) −664834. −0.520612 −0.260306 0.965526i \(-0.583823\pi\)
−0.260306 + 0.965526i \(0.583823\pi\)
\(278\) 0 0
\(279\) −1.57206e6 −1.20909
\(280\) 0 0
\(281\) 2.15082e6 1.62494 0.812472 0.583000i \(-0.198121\pi\)
0.812472 + 0.583000i \(0.198121\pi\)
\(282\) 0 0
\(283\) −1.24079e6 −0.920944 −0.460472 0.887674i \(-0.652320\pi\)
−0.460472 + 0.887674i \(0.652320\pi\)
\(284\) 0 0
\(285\) − 4.92311e6i − 3.59027i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −655268. −0.461503
\(290\) 0 0
\(291\) − 2.04154e6i − 1.41327i
\(292\) 0 0
\(293\) 410751.i 0.279518i 0.990186 + 0.139759i \(0.0446328\pi\)
−0.990186 + 0.139759i \(0.955367\pi\)
\(294\) 0 0
\(295\) 3.13201e6i 2.09541i
\(296\) 0 0
\(297\) 206563.i 0.135882i
\(298\) 0 0
\(299\) 550251. 0.355945
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 645753.i 0.404073i
\(304\) 0 0
\(305\) −1.08592e6 −0.668416
\(306\) 0 0
\(307\) −394121. −0.238662 −0.119331 0.992855i \(-0.538075\pi\)
−0.119331 + 0.992855i \(0.538075\pi\)
\(308\) 0 0
\(309\) 2.12079e6 1.26357
\(310\) 0 0
\(311\) −2.03583e6 −1.19355 −0.596774 0.802410i \(-0.703551\pi\)
−0.596774 + 0.802410i \(0.703551\pi\)
\(312\) 0 0
\(313\) − 1.03944e6i − 0.599709i −0.953985 0.299854i \(-0.903062\pi\)
0.953985 0.299854i \(-0.0969381\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.29032e6 0.721191 0.360595 0.932722i \(-0.382573\pi\)
0.360595 + 0.932722i \(0.382573\pi\)
\(318\) 0 0
\(319\) − 4.29113e6i − 2.36099i
\(320\) 0 0
\(321\) − 2.80085e6i − 1.51714i
\(322\) 0 0
\(323\) 3.52699e6i 1.88104i
\(324\) 0 0
\(325\) 4.35709e6i 2.28817i
\(326\) 0 0
\(327\) −215188. −0.111288
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 2.06363e6i − 1.03529i −0.855595 0.517645i \(-0.826809\pi\)
0.855595 0.517645i \(-0.173191\pi\)
\(332\) 0 0
\(333\) 738478. 0.364945
\(334\) 0 0
\(335\) 1.63273e6 0.794882
\(336\) 0 0
\(337\) −2.94918e6 −1.41458 −0.707289 0.706924i \(-0.750082\pi\)
−0.707289 + 0.706924i \(0.750082\pi\)
\(338\) 0 0
\(339\) −2.83885e6 −1.34166
\(340\) 0 0
\(341\) − 4.48289e6i − 2.08772i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.26524e6 −0.572300
\(346\) 0 0
\(347\) 2.25144e6i 1.00377i 0.864933 + 0.501887i \(0.167361\pi\)
−0.864933 + 0.501887i \(0.832639\pi\)
\(348\) 0 0
\(349\) − 307448.i − 0.135116i −0.997715 0.0675582i \(-0.978479\pi\)
0.997715 0.0675582i \(-0.0215208\pi\)
\(350\) 0 0
\(351\) − 247745.i − 0.107334i
\(352\) 0 0
\(353\) 33430.2i 0.0142792i 0.999975 + 0.00713958i \(0.00227262\pi\)
−0.999975 + 0.00713958i \(0.997727\pi\)
\(354\) 0 0
\(355\) −6.06637e6 −2.55481
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.49877e6i 0.613761i 0.951748 + 0.306881i \(0.0992852\pi\)
−0.951748 + 0.306881i \(0.900715\pi\)
\(360\) 0 0
\(361\) 3.51855e6 1.42101
\(362\) 0 0
\(363\) −8.27503e6 −3.29612
\(364\) 0 0
\(365\) 565872. 0.222324
\(366\) 0 0
\(367\) 2.64339e6 1.02446 0.512232 0.858847i \(-0.328819\pi\)
0.512232 + 0.858847i \(0.328819\pi\)
\(368\) 0 0
\(369\) 1.04892e6i 0.401029i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.24492e6 −1.20762 −0.603812 0.797126i \(-0.706352\pi\)
−0.603812 + 0.797126i \(0.706352\pi\)
\(374\) 0 0
\(375\) − 3.73501e6i − 1.37155i
\(376\) 0 0
\(377\) 5.14663e6i 1.86496i
\(378\) 0 0
\(379\) 2.83313e6i 1.01314i 0.862199 + 0.506570i \(0.169087\pi\)
−0.862199 + 0.506570i \(0.830913\pi\)
\(380\) 0 0
\(381\) − 2.94163e6i − 1.03819i
\(382\) 0 0
\(383\) −1.06238e6 −0.370068 −0.185034 0.982732i \(-0.559240\pi\)
−0.185034 + 0.982732i \(0.559240\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 529411.i 0.179686i
\(388\) 0 0
\(389\) −4.09561e6 −1.37228 −0.686142 0.727468i \(-0.740697\pi\)
−0.686142 + 0.727468i \(0.740697\pi\)
\(390\) 0 0
\(391\) 906433. 0.299843
\(392\) 0 0
\(393\) −163053. −0.0532534
\(394\) 0 0
\(395\) 1.36736e6 0.440951
\(396\) 0 0
\(397\) 5.91148e6i 1.88244i 0.337799 + 0.941218i \(0.390318\pi\)
−0.337799 + 0.941218i \(0.609682\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.14124e6 −0.354419 −0.177209 0.984173i \(-0.556707\pi\)
−0.177209 + 0.984173i \(0.556707\pi\)
\(402\) 0 0
\(403\) 5.37662e6i 1.64910i
\(404\) 0 0
\(405\) − 5.02480e6i − 1.52223i
\(406\) 0 0
\(407\) 2.10584e6i 0.630144i
\(408\) 0 0
\(409\) 3.45697e6i 1.02185i 0.859625 + 0.510925i \(0.170697\pi\)
−0.859625 + 0.510925i \(0.829303\pi\)
\(410\) 0 0
\(411\) 3.82850e6 1.11796
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 8.13664e6i − 2.31913i
\(416\) 0 0
\(417\) −9.71119e6 −2.73484
\(418\) 0 0
\(419\) −2.18354e6 −0.607611 −0.303805 0.952734i \(-0.598257\pi\)
−0.303805 + 0.952734i \(0.598257\pi\)
\(420\) 0 0
\(421\) −5.95861e6 −1.63848 −0.819238 0.573454i \(-0.805603\pi\)
−0.819238 + 0.573454i \(0.805603\pi\)
\(422\) 0 0
\(423\) 3.47235e6 0.943565
\(424\) 0 0
\(425\) 7.17747e6i 1.92752i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.42383e7 3.73520
\(430\) 0 0
\(431\) − 5.01453e6i − 1.30028i −0.759814 0.650140i \(-0.774710\pi\)
0.759814 0.650140i \(-0.225290\pi\)
\(432\) 0 0
\(433\) 647482.i 0.165962i 0.996551 + 0.0829809i \(0.0264440\pi\)
−0.996551 + 0.0829809i \(0.973556\pi\)
\(434\) 0 0
\(435\) − 1.18341e7i − 2.99854i
\(436\) 0 0
\(437\) − 1.54062e6i − 0.385915i
\(438\) 0 0
\(439\) 7.05251e6 1.74655 0.873277 0.487223i \(-0.161990\pi\)
0.873277 + 0.487223i \(0.161990\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.41951e6i 0.827856i 0.910310 + 0.413928i \(0.135843\pi\)
−0.910310 + 0.413928i \(0.864157\pi\)
\(444\) 0 0
\(445\) 9.17835e6 2.19717
\(446\) 0 0
\(447\) 3.36697e6 0.797023
\(448\) 0 0
\(449\) 3.98846e6 0.933662 0.466831 0.884346i \(-0.345396\pi\)
0.466831 + 0.884346i \(0.345396\pi\)
\(450\) 0 0
\(451\) −2.99109e6 −0.692450
\(452\) 0 0
\(453\) 5.83519e6i 1.33601i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.26224e6 −1.62660 −0.813299 0.581847i \(-0.802330\pi\)
−0.813299 + 0.581847i \(0.802330\pi\)
\(458\) 0 0
\(459\) − 408112.i − 0.0904165i
\(460\) 0 0
\(461\) − 678936.i − 0.148791i −0.997229 0.0743955i \(-0.976297\pi\)
0.997229 0.0743955i \(-0.0237027\pi\)
\(462\) 0 0
\(463\) − 1.99460e6i − 0.432418i −0.976347 0.216209i \(-0.930631\pi\)
0.976347 0.216209i \(-0.0693692\pi\)
\(464\) 0 0
\(465\) − 1.23629e7i − 2.65147i
\(466\) 0 0
\(467\) 6.32117e6 1.34124 0.670618 0.741803i \(-0.266029\pi\)
0.670618 + 0.741803i \(0.266029\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 9.88867e6i 2.05393i
\(472\) 0 0
\(473\) −1.50967e6 −0.310262
\(474\) 0 0
\(475\) 1.21992e7 2.48083
\(476\) 0 0
\(477\) −3.09017e6 −0.621851
\(478\) 0 0
\(479\) −781569. −0.155643 −0.0778214 0.996967i \(-0.524796\pi\)
−0.0778214 + 0.996967i \(0.524796\pi\)
\(480\) 0 0
\(481\) − 2.52568e6i − 0.497754i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.23168e6 1.58904
\(486\) 0 0
\(487\) 5.23084e6i 0.999423i 0.866192 + 0.499711i \(0.166561\pi\)
−0.866192 + 0.499711i \(0.833439\pi\)
\(488\) 0 0
\(489\) 8.16273e6i 1.54370i
\(490\) 0 0
\(491\) 2.68974e6i 0.503508i 0.967791 + 0.251754i \(0.0810074\pi\)
−0.967791 + 0.251754i \(0.918993\pi\)
\(492\) 0 0
\(493\) 8.47809e6i 1.57102i
\(494\) 0 0
\(495\) −1.67860e7 −3.07918
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 2.76539e6i − 0.497170i −0.968610 0.248585i \(-0.920034\pi\)
0.968610 0.248585i \(-0.0799656\pi\)
\(500\) 0 0
\(501\) 1.57858e7 2.80978
\(502\) 0 0
\(503\) 865965. 0.152609 0.0763046 0.997085i \(-0.475688\pi\)
0.0763046 + 0.997085i \(0.475688\pi\)
\(504\) 0 0
\(505\) −2.60373e6 −0.454326
\(506\) 0 0
\(507\) −8.78545e6 −1.51790
\(508\) 0 0
\(509\) 1.91520e6i 0.327658i 0.986489 + 0.163829i \(0.0523845\pi\)
−0.986489 + 0.163829i \(0.947615\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −693648. −0.116371
\(514\) 0 0
\(515\) 8.55120e6i 1.42072i
\(516\) 0 0
\(517\) 9.90173e6i 1.62924i
\(518\) 0 0
\(519\) 545048.i 0.0888211i
\(520\) 0 0
\(521\) − 3.45794e6i − 0.558114i −0.960275 0.279057i \(-0.909978\pi\)
0.960275 0.279057i \(-0.0900218\pi\)
\(522\) 0 0
\(523\) −3.02386e6 −0.483400 −0.241700 0.970351i \(-0.577705\pi\)
−0.241700 + 0.970351i \(0.577705\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.85694e6i 1.38918i
\(528\) 0 0
\(529\) 6.04041e6 0.938484
\(530\) 0 0
\(531\) 8.89379e6 1.36883
\(532\) 0 0
\(533\) 3.58741e6 0.546970
\(534\) 0 0
\(535\) 1.12933e7 1.70583
\(536\) 0 0
\(537\) 9.00442e6i 1.34747i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.06347e6 −0.596904 −0.298452 0.954425i \(-0.596470\pi\)
−0.298452 + 0.954425i \(0.596470\pi\)
\(542\) 0 0
\(543\) 1.79591e7i 2.61388i
\(544\) 0 0
\(545\) − 867658.i − 0.125129i
\(546\) 0 0
\(547\) − 1.82099e6i − 0.260219i −0.991500 0.130110i \(-0.958467\pi\)
0.991500 0.130110i \(-0.0415329\pi\)
\(548\) 0 0
\(549\) 3.08361e6i 0.436646i
\(550\) 0 0
\(551\) 1.44098e7 2.02199
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.80748e6i 0.800305i
\(556\) 0 0
\(557\) 2.58038e6 0.352407 0.176204 0.984354i \(-0.443618\pi\)
0.176204 + 0.984354i \(0.443618\pi\)
\(558\) 0 0
\(559\) 1.81064e6 0.245077
\(560\) 0 0
\(561\) 2.34548e7 3.14648
\(562\) 0 0
\(563\) 1.24406e7 1.65414 0.827069 0.562100i \(-0.190006\pi\)
0.827069 + 0.562100i \(0.190006\pi\)
\(564\) 0 0
\(565\) − 1.14465e7i − 1.50852i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.52025e6 −1.23273 −0.616365 0.787461i \(-0.711395\pi\)
−0.616365 + 0.787461i \(0.711395\pi\)
\(570\) 0 0
\(571\) − 4.85113e6i − 0.622662i −0.950302 0.311331i \(-0.899225\pi\)
0.950302 0.311331i \(-0.100775\pi\)
\(572\) 0 0
\(573\) 7.25761e6i 0.923437i
\(574\) 0 0
\(575\) − 3.13518e6i − 0.395451i
\(576\) 0 0
\(577\) − 1.19031e7i − 1.48840i −0.667958 0.744199i \(-0.732831\pi\)
0.667958 0.744199i \(-0.267169\pi\)
\(578\) 0 0
\(579\) −5.13227e6 −0.636228
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 8.81191e6i − 1.07374i
\(584\) 0 0
\(585\) 2.01326e7 2.43226
\(586\) 0 0
\(587\) 4.57010e6 0.547433 0.273716 0.961810i \(-0.411747\pi\)
0.273716 + 0.961810i \(0.411747\pi\)
\(588\) 0 0
\(589\) 1.50537e7 1.78795
\(590\) 0 0
\(591\) −1.92676e7 −2.26913
\(592\) 0 0
\(593\) 3.70366e6i 0.432509i 0.976337 + 0.216254i \(0.0693841\pi\)
−0.976337 + 0.216254i \(0.930616\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −915918. −0.105177
\(598\) 0 0
\(599\) 4.87963e6i 0.555674i 0.960628 + 0.277837i \(0.0896174\pi\)
−0.960628 + 0.277837i \(0.910383\pi\)
\(600\) 0 0
\(601\) − 4.80619e6i − 0.542769i −0.962471 0.271384i \(-0.912519\pi\)
0.962471 0.271384i \(-0.0874815\pi\)
\(602\) 0 0
\(603\) − 4.63638e6i − 0.519261i
\(604\) 0 0
\(605\) − 3.33657e7i − 3.70605i
\(606\) 0 0
\(607\) 1.29902e7 1.43101 0.715506 0.698607i \(-0.246196\pi\)
0.715506 + 0.698607i \(0.246196\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.18758e7i − 1.28694i
\(612\) 0 0
\(613\) 1.32895e7 1.42843 0.714213 0.699928i \(-0.246785\pi\)
0.714213 + 0.699928i \(0.246785\pi\)
\(614\) 0 0
\(615\) −8.24882e6 −0.879435
\(616\) 0 0
\(617\) −1.40996e7 −1.49106 −0.745528 0.666474i \(-0.767803\pi\)
−0.745528 + 0.666474i \(0.767803\pi\)
\(618\) 0 0
\(619\) 9.01931e6 0.946121 0.473060 0.881030i \(-0.343149\pi\)
0.473060 + 0.881030i \(0.343149\pi\)
\(620\) 0 0
\(621\) 178267.i 0.0185499i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −510496. −0.0522748
\(626\) 0 0
\(627\) − 3.98650e7i − 4.04970i
\(628\) 0 0
\(629\) − 4.16056e6i − 0.419301i
\(630\) 0 0
\(631\) − 1.41945e7i − 1.41921i −0.704599 0.709606i \(-0.748873\pi\)
0.704599 0.709606i \(-0.251127\pi\)
\(632\) 0 0
\(633\) − 1.06835e7i − 1.05975i
\(634\) 0 0
\(635\) 1.18609e7 1.16731
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.72263e7i 1.66894i
\(640\) 0 0
\(641\) −3.48764e6 −0.335264 −0.167632 0.985850i \(-0.553612\pi\)
−0.167632 + 0.985850i \(0.553612\pi\)
\(642\) 0 0
\(643\) −1.28177e7 −1.22259 −0.611296 0.791402i \(-0.709352\pi\)
−0.611296 + 0.791402i \(0.709352\pi\)
\(644\) 0 0
\(645\) −4.16335e6 −0.394043
\(646\) 0 0
\(647\) −94387.8 −0.00886452 −0.00443226 0.999990i \(-0.501411\pi\)
−0.00443226 + 0.999990i \(0.501411\pi\)
\(648\) 0 0
\(649\) 2.53615e7i 2.36354i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.25042e7 1.14755 0.573777 0.819012i \(-0.305478\pi\)
0.573777 + 0.819012i \(0.305478\pi\)
\(654\) 0 0
\(655\) − 657444.i − 0.0598764i
\(656\) 0 0
\(657\) − 1.60687e6i − 0.145234i
\(658\) 0 0
\(659\) 523557.i 0.0469624i 0.999724 + 0.0234812i \(0.00747499\pi\)
−0.999724 + 0.0234812i \(0.992525\pi\)
\(660\) 0 0
\(661\) 1.15819e7i 1.03104i 0.856877 + 0.515521i \(0.172402\pi\)
−0.856877 + 0.515521i \(0.827598\pi\)
\(662\) 0 0
\(663\) −2.81309e7 −2.48542
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 3.70330e6i − 0.322311i
\(668\) 0 0
\(669\) −3.40254e6 −0.293926
\(670\) 0 0
\(671\) −8.79323e6 −0.753949
\(672\) 0 0
\(673\) 7.72861e6 0.657755 0.328877 0.944373i \(-0.393330\pi\)
0.328877 + 0.944373i \(0.393330\pi\)
\(674\) 0 0
\(675\) −1.41158e6 −0.119247
\(676\) 0 0
\(677\) − 7.28721e6i − 0.611068i −0.952181 0.305534i \(-0.901165\pi\)
0.952181 0.305534i \(-0.0988349\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.02402e7 −0.846136
\(682\) 0 0
\(683\) 1.45815e7i 1.19606i 0.801475 + 0.598028i \(0.204049\pi\)
−0.801475 + 0.598028i \(0.795951\pi\)
\(684\) 0 0
\(685\) 1.54369e7i 1.25699i
\(686\) 0 0
\(687\) 1.19420e7i 0.965351i
\(688\) 0 0
\(689\) 1.05687e7i 0.848152i
\(690\) 0 0
\(691\) 468176. 0.0373004 0.0186502 0.999826i \(-0.494063\pi\)
0.0186502 + 0.999826i \(0.494063\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 3.91564e7i − 3.07497i
\(696\) 0 0
\(697\) 5.90957e6 0.460759
\(698\) 0 0
\(699\) 146680. 0.0113548
\(700\) 0 0
\(701\) 6.19052e6 0.475808 0.237904 0.971289i \(-0.423540\pi\)
0.237904 + 0.971289i \(0.423540\pi\)
\(702\) 0 0
\(703\) −7.07151e6 −0.539664
\(704\) 0 0
\(705\) 2.73069e7i 2.06919i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 275001. 0.0205456 0.0102728 0.999947i \(-0.496730\pi\)
0.0102728 + 0.999947i \(0.496730\pi\)
\(710\) 0 0
\(711\) − 3.88281e6i − 0.288053i
\(712\) 0 0
\(713\) − 3.86879e6i − 0.285004i
\(714\) 0 0
\(715\) 5.74100e7i 4.19974i
\(716\) 0 0
\(717\) − 4.15487e6i − 0.301828i
\(718\) 0 0
\(719\) −1.47456e7 −1.06375 −0.531874 0.846823i \(-0.678512\pi\)
−0.531874 + 0.846823i \(0.678512\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.41555e7i 2.43005i
\(724\) 0 0
\(725\) 2.93241e7 2.07195
\(726\) 0 0
\(727\) −1.10507e7 −0.775449 −0.387724 0.921775i \(-0.626739\pi\)
−0.387724 + 0.921775i \(0.626739\pi\)
\(728\) 0 0
\(729\) −1.58060e7 −1.10155
\(730\) 0 0
\(731\) 2.98268e6 0.206449
\(732\) 0 0
\(733\) 1.40998e7i 0.969289i 0.874711 + 0.484645i \(0.161051\pi\)
−0.874711 + 0.484645i \(0.838949\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.32211e7 0.896599
\(738\) 0 0
\(739\) 9.70671e6i 0.653824i 0.945055 + 0.326912i \(0.106008\pi\)
−0.945055 + 0.326912i \(0.893992\pi\)
\(740\) 0 0
\(741\) 4.78127e7i 3.19888i
\(742\) 0 0
\(743\) 2.38861e7i 1.58735i 0.608342 + 0.793675i \(0.291835\pi\)
−0.608342 + 0.793675i \(0.708165\pi\)
\(744\) 0 0
\(745\) 1.35759e7i 0.896146i
\(746\) 0 0
\(747\) −2.31052e7 −1.51498
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 1.59689e7i − 1.03317i −0.856234 0.516587i \(-0.827202\pi\)
0.856234 0.516587i \(-0.172798\pi\)
\(752\) 0 0
\(753\) −1.79522e7 −1.15380
\(754\) 0 0
\(755\) −2.35280e7 −1.50217
\(756\) 0 0
\(757\) −1.59670e7 −1.01271 −0.506353 0.862326i \(-0.669007\pi\)
−0.506353 + 0.862326i \(0.669007\pi\)
\(758\) 0 0
\(759\) −1.02453e7 −0.645534
\(760\) 0 0
\(761\) 994670.i 0.0622612i 0.999515 + 0.0311306i \(0.00991077\pi\)
−0.999515 + 0.0311306i \(0.990089\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.31645e7 2.04890
\(766\) 0 0
\(767\) − 3.04177e7i − 1.86697i
\(768\) 0 0
\(769\) − 1.94076e7i − 1.18346i −0.806135 0.591732i \(-0.798444\pi\)
0.806135 0.591732i \(-0.201556\pi\)
\(770\) 0 0
\(771\) − 2.30470e7i − 1.39630i
\(772\) 0 0
\(773\) 1.91046e7i 1.14997i 0.818162 + 0.574987i \(0.194993\pi\)
−0.818162 + 0.574987i \(0.805007\pi\)
\(774\) 0 0
\(775\) 3.06345e7 1.83213
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 1.00442e7i − 0.593024i
\(780\) 0 0
\(781\) −4.91226e7 −2.88173
\(782\) 0 0
\(783\) −1.66737e6 −0.0971915
\(784\) 0 0
\(785\) −3.98720e7 −2.30937
\(786\) 0 0
\(787\) 2.59070e6 0.149101 0.0745504 0.997217i \(-0.476248\pi\)
0.0745504 + 0.997217i \(0.476248\pi\)
\(788\) 0 0
\(789\) 1.76185e6i 0.100757i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.05463e7 0.595548
\(794\) 0 0
\(795\) − 2.43014e7i − 1.36369i
\(796\) 0 0
\(797\) 2.66061e7i 1.48366i 0.670587 + 0.741831i \(0.266043\pi\)
−0.670587 + 0.741831i \(0.733957\pi\)
\(798\) 0 0
\(799\) − 1.95631e7i − 1.08410i
\(800\) 0 0
\(801\) − 2.60632e7i − 1.43531i
\(802\) 0 0
\(803\) 4.58216e6 0.250773
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 3.63131e7i − 1.96282i
\(808\) 0 0
\(809\) 2.13273e7 1.14568 0.572842 0.819666i \(-0.305841\pi\)
0.572842 + 0.819666i \(0.305841\pi\)
\(810\) 0 0
\(811\) −447782. −0.0239064 −0.0119532 0.999929i \(-0.503805\pi\)
−0.0119532 + 0.999929i \(0.503805\pi\)
\(812\) 0 0
\(813\) 3.32114e7 1.76222
\(814\) 0 0
\(815\) −3.29129e7 −1.73569
\(816\) 0 0
\(817\) − 5.06952e6i − 0.265712i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.30413e6 0.0675246 0.0337623 0.999430i \(-0.489251\pi\)
0.0337623 + 0.999430i \(0.489251\pi\)
\(822\) 0 0
\(823\) − 8.60253e6i − 0.442717i −0.975192 0.221359i \(-0.928951\pi\)
0.975192 0.221359i \(-0.0710492\pi\)
\(824\) 0 0
\(825\) − 8.11258e7i − 4.14977i
\(826\) 0 0
\(827\) − 1.47150e6i − 0.0748162i −0.999300 0.0374081i \(-0.988090\pi\)
0.999300 0.0374081i \(-0.0119101\pi\)
\(828\) 0 0
\(829\) − 2.69544e6i − 0.136221i −0.997678 0.0681103i \(-0.978303\pi\)
0.997678 0.0681103i \(-0.0216970\pi\)
\(830\) 0 0
\(831\) −1.48466e7 −0.745804
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 6.36498e7i 3.15923i
\(836\) 0 0
\(837\) −1.74188e6 −0.0859419
\(838\) 0 0
\(839\) 2.98409e7 1.46355 0.731775 0.681546i \(-0.238692\pi\)
0.731775 + 0.681546i \(0.238692\pi\)
\(840\) 0 0
\(841\) 1.41267e7 0.688735
\(842\) 0 0
\(843\) 4.80306e7 2.32782
\(844\) 0 0
\(845\) − 3.54237e7i − 1.70668i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.77085e7 −1.31930
\(850\) 0 0
\(851\) 1.81737e6i 0.0860240i
\(852\) 0 0
\(853\) − 679437.i − 0.0319725i −0.999872 0.0159863i \(-0.994911\pi\)
0.999872 0.0159863i \(-0.00508880\pi\)
\(854\) 0 0
\(855\) − 5.63682e7i − 2.63705i
\(856\) 0 0
\(857\) − 1.60609e7i − 0.746995i −0.927631 0.373497i \(-0.878159\pi\)
0.927631 0.373497i \(-0.121841\pi\)
\(858\) 0 0
\(859\) 3.51618e7 1.62588 0.812938 0.582350i \(-0.197866\pi\)
0.812938 + 0.582350i \(0.197866\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 4.36890e6i − 0.199685i −0.995003 0.0998424i \(-0.968166\pi\)
0.995003 0.0998424i \(-0.0318339\pi\)
\(864\) 0 0
\(865\) −2.19768e6 −0.0998676
\(866\) 0 0
\(867\) −1.46330e7 −0.661127
\(868\) 0 0
\(869\) 1.10722e7 0.497377
\(870\) 0 0
\(871\) −1.58569e7 −0.708228
\(872\) 0 0
\(873\) − 2.33750e7i − 1.03805i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.61623e6 0.246573 0.123287 0.992371i \(-0.460657\pi\)
0.123287 + 0.992371i \(0.460657\pi\)
\(878\) 0 0
\(879\) 9.17261e6i 0.400424i
\(880\) 0 0
\(881\) − 1.53408e6i − 0.0665898i −0.999446 0.0332949i \(-0.989400\pi\)
0.999446 0.0332949i \(-0.0106001\pi\)
\(882\) 0 0
\(883\) 2.56997e7i 1.10924i 0.832103 + 0.554620i \(0.187137\pi\)
−0.832103 + 0.554620i \(0.812863\pi\)
\(884\) 0 0
\(885\) 6.99418e7i 3.00178i
\(886\) 0 0
\(887\) 9.88941e6 0.422047 0.211024 0.977481i \(-0.432320\pi\)
0.211024 + 0.977481i \(0.432320\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 4.06884e7i − 1.71702i
\(892\) 0 0
\(893\) −3.32504e7 −1.39530
\(894\) 0 0
\(895\) −3.63066e7 −1.51505
\(896\) 0 0
\(897\) 1.22878e7 0.509910
\(898\) 0 0
\(899\) 3.61857e7 1.49327
\(900\) 0 0
\(901\) 1.74099e7i 0.714470i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.24129e7 −2.93897
\(906\) 0 0
\(907\) 4.59501e7i 1.85468i 0.374225 + 0.927338i \(0.377909\pi\)
−0.374225 + 0.927338i \(0.622091\pi\)
\(908\) 0 0
\(909\) 7.39367e6i 0.296791i
\(910\) 0 0
\(911\) 6.43441e6i 0.256870i 0.991718 + 0.128435i \(0.0409953\pi\)
−0.991718 + 0.128435i \(0.959005\pi\)
\(912\) 0 0
\(913\) − 6.58866e7i − 2.61590i
\(914\) 0 0
\(915\) −2.42499e7 −0.957541
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 7.80466e6i 0.304835i 0.988316 + 0.152418i \(0.0487059\pi\)
−0.988316 + 0.152418i \(0.951294\pi\)
\(920\) 0 0
\(921\) −8.80123e6 −0.341896
\(922\) 0 0
\(923\) 5.89159e7 2.27630
\(924\) 0 0
\(925\) −1.43906e7 −0.552999
\(926\) 0 0
\(927\) 2.42824e7 0.928094
\(928\) 0 0
\(929\) − 1.65944e7i − 0.630845i −0.948951 0.315422i \(-0.897854\pi\)
0.948951 0.315422i \(-0.102146\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −4.54626e7 −1.70982
\(934\) 0 0
\(935\) 9.45719e7i 3.53780i
\(936\) 0 0
\(937\) − 1.62143e6i − 0.0603322i −0.999545 0.0301661i \(-0.990396\pi\)
0.999545 0.0301661i \(-0.00960363\pi\)
\(938\) 0 0
\(939\) − 2.32121e7i − 0.859114i
\(940\) 0 0
\(941\) 3.39935e7i 1.25147i 0.780034 + 0.625737i \(0.215202\pi\)
−0.780034 + 0.625737i \(0.784798\pi\)
\(942\) 0 0
\(943\) −2.58135e6 −0.0945297
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.93465e7i 1.42571i 0.701311 + 0.712855i \(0.252598\pi\)
−0.701311 + 0.712855i \(0.747402\pi\)
\(948\) 0 0
\(949\) −5.49568e6 −0.198087
\(950\) 0 0
\(951\) 2.88146e7 1.03314
\(952\) 0 0
\(953\) −2.11074e7 −0.752841 −0.376420 0.926449i \(-0.622845\pi\)
−0.376420 + 0.926449i \(0.622845\pi\)
\(954\) 0 0
\(955\) −2.92633e7 −1.03828
\(956\) 0 0
\(957\) − 9.58265e7i − 3.38225i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.17358e6 0.320428
\(962\) 0 0
\(963\) − 3.20689e7i − 1.11434i
\(964\) 0 0
\(965\) − 2.06938e7i − 0.715355i
\(966\) 0 0
\(967\) 4.54428e7i 1.56278i 0.624040 + 0.781392i \(0.285490\pi\)
−0.624040 + 0.781392i \(0.714510\pi\)
\(968\) 0 0
\(969\) 7.87622e7i 2.69469i
\(970\) 0 0
\(971\) −5.00919e6 −0.170498 −0.0852490 0.996360i \(-0.527169\pi\)
−0.0852490 + 0.996360i \(0.527169\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 9.72995e7i 3.27792i
\(976\) 0 0
\(977\) −2.16804e7 −0.726660 −0.363330 0.931661i \(-0.618360\pi\)
−0.363330 + 0.931661i \(0.618360\pi\)
\(978\) 0 0
\(979\) 7.43218e7 2.47833
\(980\) 0 0
\(981\) −2.46384e6 −0.0817410
\(982\) 0 0
\(983\) −1.56013e7 −0.514963 −0.257481 0.966283i \(-0.582893\pi\)
−0.257481 + 0.966283i \(0.582893\pi\)
\(984\) 0 0
\(985\) − 7.76888e7i − 2.55134i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.30286e6 −0.0423553
\(990\) 0 0
\(991\) 4.03862e7i 1.30632i 0.757222 + 0.653158i \(0.226556\pi\)
−0.757222 + 0.653158i \(0.773444\pi\)
\(992\) 0 0
\(993\) − 4.60836e7i − 1.48311i
\(994\) 0 0
\(995\) − 3.69307e6i − 0.118258i
\(996\) 0 0
\(997\) 2.30603e6i 0.0734730i 0.999325 + 0.0367365i \(0.0116962\pi\)
−0.999325 + 0.0367365i \(0.988304\pi\)
\(998\) 0 0
\(999\) 818252. 0.0259402
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.f.e.783.14 yes 16
4.3 odd 2 inner 784.6.f.e.783.4 yes 16
7.6 odd 2 inner 784.6.f.e.783.3 16
28.27 even 2 inner 784.6.f.e.783.13 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
784.6.f.e.783.3 16 7.6 odd 2 inner
784.6.f.e.783.4 yes 16 4.3 odd 2 inner
784.6.f.e.783.13 yes 16 28.27 even 2 inner
784.6.f.e.783.14 yes 16 1.1 even 1 trivial