L(s) = 1 | + 22.3·3-s + 90.0i·5-s + 255.·9-s + 729. i·11-s − 874. i·13-s + 2.01e3i·15-s − 1.44e3i·17-s − 2.44e3·19-s + 629. i·23-s − 4.98e3·25-s + 283.·27-s − 5.88e3·29-s − 6.14e3·31-s + 1.62e4i·33-s + 2.88e3·37-s + ⋯ |
L(s) = 1 | + 1.43·3-s + 1.61i·5-s + 1.05·9-s + 1.81i·11-s − 1.43i·13-s + 2.30i·15-s − 1.20i·17-s − 1.55·19-s + 0.248i·23-s − 1.59·25-s + 0.0747·27-s − 1.29·29-s − 1.14·31-s + 2.60i·33-s + 0.346·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.912 + 0.409i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.912 + 0.409i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.9834983515\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9834983515\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 22.3T + 243T^{2} \) |
| 5 | \( 1 - 90.0iT - 3.12e3T^{2} \) |
| 11 | \( 1 - 729. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 874. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.44e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 2.44e3T + 2.47e6T^{2} \) |
| 23 | \( 1 - 629. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 5.88e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 6.14e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 2.88e3T + 6.93e7T^{2} \) |
| 41 | \( 1 - 4.10e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 2.07e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.35e4T + 2.29e8T^{2} \) |
| 53 | \( 1 + 1.20e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 3.47e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.20e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 1.81e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 6.73e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + 6.28e3iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 1.51e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 + 9.03e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 1.01e5iT - 5.58e9T^{2} \) |
| 97 | \( 1 + 9.14e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.933801474322250611665175655499, −9.304774992177100966838255697384, −8.178652421751093170950564533243, −7.28411302361939182022982808310, −7.11901933126427500283183010747, −5.71274404094727183304037088196, −4.31203189324685449946135858247, −3.35836807136190763114581245399, −2.56172624007392236490335977800, −1.98370214722024186452406481520,
0.13754808621665897157481468809, 1.46360619283651079278565038361, 2.22895605450023314964986808046, 3.77198204497089113938567354487, 4.09610257250770462918399215490, 5.46038689868509463932227701636, 6.38250435392378878811807523703, 7.78118616397562689046617268354, 8.547341171240971085223709457380, 8.838628132069474029511879732381