Properties

Label 784.5.c.g.97.2
Level $784$
Weight $5$
Character 784.97
Analytic conductor $81.042$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,5,Mod(97,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.97"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 784.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-352,0,-120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(81.0420510577\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 66x^{6} + 212x^{5} + 2021x^{4} - 4400x^{3} - 25028x^{2} + 27264x + 127778 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 7^{6} \)
Twist minimal: no (minimal twist has level 49)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.2
Root \(-2.71722 - 0.765367i\) of defining polynomial
Character \(\chi\) \(=\) 784.97
Dual form 784.5.c.g.97.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.5695i q^{3} +33.6557i q^{5} -76.9935 q^{9} +149.005 q^{11} -58.8822i q^{13} +423.037 q^{15} +1.70522i q^{17} +169.127i q^{19} -581.203 q^{23} -507.708 q^{25} -50.3595i q^{27} +462.422 q^{29} -15.9075i q^{31} -1872.93i q^{33} -2250.84 q^{37} -740.123 q^{39} +3174.13i q^{41} +3013.25 q^{43} -2591.27i q^{45} -385.894i q^{47} +21.4339 q^{51} +1553.00 q^{53} +5014.87i q^{55} +2125.85 q^{57} +2921.92i q^{59} +5819.53i q^{61} +1981.72 q^{65} -10.5261 q^{67} +7305.46i q^{69} +4064.56 q^{71} +1062.62i q^{73} +6381.66i q^{75} -4268.53 q^{79} -6869.47 q^{81} -4406.56i q^{83} -57.3905 q^{85} -5812.44i q^{87} +7957.72i q^{89} -199.950 q^{93} -5692.10 q^{95} -9842.62i q^{97} -11472.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 352 q^{9} - 120 q^{11} + 632 q^{15} - 1752 q^{23} - 2192 q^{25} + 1248 q^{29} + 2368 q^{37} + 7672 q^{39} + 8552 q^{43} + 11976 q^{51} + 5496 q^{53} - 9200 q^{57} + 30240 q^{65} + 7440 q^{67} - 9984 q^{71}+ \cdots - 30144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 12.5695i − 1.39662i −0.715797 0.698308i \(-0.753937\pi\)
0.715797 0.698308i \(-0.246063\pi\)
\(4\) 0 0
\(5\) 33.6557i 1.34623i 0.739538 + 0.673115i \(0.235044\pi\)
−0.739538 + 0.673115i \(0.764956\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −76.9935 −0.950537
\(10\) 0 0
\(11\) 149.005 1.23145 0.615723 0.787962i \(-0.288864\pi\)
0.615723 + 0.787962i \(0.288864\pi\)
\(12\) 0 0
\(13\) − 58.8822i − 0.348416i −0.984709 0.174208i \(-0.944264\pi\)
0.984709 0.174208i \(-0.0557364\pi\)
\(14\) 0 0
\(15\) 423.037 1.88017
\(16\) 0 0
\(17\) 1.70522i 0.00590042i 0.999996 + 0.00295021i \(0.000939082\pi\)
−0.999996 + 0.00295021i \(0.999061\pi\)
\(18\) 0 0
\(19\) 169.127i 0.468497i 0.972177 + 0.234248i \(0.0752629\pi\)
−0.972177 + 0.234248i \(0.924737\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −581.203 −1.09868 −0.549341 0.835598i \(-0.685121\pi\)
−0.549341 + 0.835598i \(0.685121\pi\)
\(24\) 0 0
\(25\) −507.708 −0.812333
\(26\) 0 0
\(27\) − 50.3595i − 0.0690802i
\(28\) 0 0
\(29\) 462.422 0.549848 0.274924 0.961466i \(-0.411347\pi\)
0.274924 + 0.961466i \(0.411347\pi\)
\(30\) 0 0
\(31\) − 15.9075i − 0.0165530i −0.999966 0.00827651i \(-0.997365\pi\)
0.999966 0.00827651i \(-0.00263453\pi\)
\(32\) 0 0
\(33\) − 1872.93i − 1.71986i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2250.84 −1.64415 −0.822073 0.569383i \(-0.807182\pi\)
−0.822073 + 0.569383i \(0.807182\pi\)
\(38\) 0 0
\(39\) −740.123 −0.486603
\(40\) 0 0
\(41\) 3174.13i 1.88824i 0.329605 + 0.944119i \(0.393084\pi\)
−0.329605 + 0.944119i \(0.606916\pi\)
\(42\) 0 0
\(43\) 3013.25 1.62967 0.814833 0.579696i \(-0.196829\pi\)
0.814833 + 0.579696i \(0.196829\pi\)
\(44\) 0 0
\(45\) − 2591.27i − 1.27964i
\(46\) 0 0
\(47\) − 385.894i − 0.174692i −0.996178 0.0873459i \(-0.972161\pi\)
0.996178 0.0873459i \(-0.0278385\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 21.4339 0.00824062
\(52\) 0 0
\(53\) 1553.00 0.552867 0.276434 0.961033i \(-0.410847\pi\)
0.276434 + 0.961033i \(0.410847\pi\)
\(54\) 0 0
\(55\) 5014.87i 1.65781i
\(56\) 0 0
\(57\) 2125.85 0.654310
\(58\) 0 0
\(59\) 2921.92i 0.839390i 0.907665 + 0.419695i \(0.137863\pi\)
−0.907665 + 0.419695i \(0.862137\pi\)
\(60\) 0 0
\(61\) 5819.53i 1.56397i 0.623297 + 0.781985i \(0.285793\pi\)
−0.623297 + 0.781985i \(0.714207\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1981.72 0.469047
\(66\) 0 0
\(67\) −10.5261 −0.00234486 −0.00117243 0.999999i \(-0.500373\pi\)
−0.00117243 + 0.999999i \(0.500373\pi\)
\(68\) 0 0
\(69\) 7305.46i 1.53444i
\(70\) 0 0
\(71\) 4064.56 0.806300 0.403150 0.915134i \(-0.367915\pi\)
0.403150 + 0.915134i \(0.367915\pi\)
\(72\) 0 0
\(73\) 1062.62i 0.199402i 0.995017 + 0.0997012i \(0.0317887\pi\)
−0.995017 + 0.0997012i \(0.968211\pi\)
\(74\) 0 0
\(75\) 6381.66i 1.13452i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4268.53 −0.683950 −0.341975 0.939709i \(-0.611096\pi\)
−0.341975 + 0.939709i \(0.611096\pi\)
\(80\) 0 0
\(81\) −6869.47 −1.04702
\(82\) 0 0
\(83\) − 4406.56i − 0.639651i −0.947476 0.319826i \(-0.896376\pi\)
0.947476 0.319826i \(-0.103624\pi\)
\(84\) 0 0
\(85\) −57.3905 −0.00794332
\(86\) 0 0
\(87\) − 5812.44i − 0.767927i
\(88\) 0 0
\(89\) 7957.72i 1.00464i 0.864683 + 0.502318i \(0.167519\pi\)
−0.864683 + 0.502318i \(0.832481\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −199.950 −0.0231182
\(94\) 0 0
\(95\) −5692.10 −0.630704
\(96\) 0 0
\(97\) − 9842.62i − 1.04609i −0.852306 0.523043i \(-0.824797\pi\)
0.852306 0.523043i \(-0.175203\pi\)
\(98\) 0 0
\(99\) −11472.4 −1.17054
\(100\) 0 0
\(101\) 7398.19i 0.725242i 0.931937 + 0.362621i \(0.118118\pi\)
−0.931937 + 0.362621i \(0.881882\pi\)
\(102\) 0 0
\(103\) 15168.8i 1.42980i 0.699226 + 0.714900i \(0.253528\pi\)
−0.699226 + 0.714900i \(0.746472\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13665.7 1.19362 0.596809 0.802383i \(-0.296435\pi\)
0.596809 + 0.802383i \(0.296435\pi\)
\(108\) 0 0
\(109\) 13896.0 1.16960 0.584799 0.811178i \(-0.301173\pi\)
0.584799 + 0.811178i \(0.301173\pi\)
\(110\) 0 0
\(111\) 28292.0i 2.29624i
\(112\) 0 0
\(113\) 4570.34 0.357925 0.178962 0.983856i \(-0.442726\pi\)
0.178962 + 0.983856i \(0.442726\pi\)
\(114\) 0 0
\(115\) − 19560.8i − 1.47908i
\(116\) 0 0
\(117\) 4533.55i 0.331182i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7561.50 0.516461
\(122\) 0 0
\(123\) 39897.3 2.63714
\(124\) 0 0
\(125\) 3947.54i 0.252643i
\(126\) 0 0
\(127\) −9273.21 −0.574940 −0.287470 0.957790i \(-0.592814\pi\)
−0.287470 + 0.957790i \(0.592814\pi\)
\(128\) 0 0
\(129\) − 37875.2i − 2.27602i
\(130\) 0 0
\(131\) − 3884.76i − 0.226371i −0.993574 0.113186i \(-0.963895\pi\)
0.993574 0.113186i \(-0.0361055\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1694.89 0.0929978
\(136\) 0 0
\(137\) 26051.7 1.38802 0.694009 0.719966i \(-0.255843\pi\)
0.694009 + 0.719966i \(0.255843\pi\)
\(138\) 0 0
\(139\) − 18399.0i − 0.952278i −0.879370 0.476139i \(-0.842036\pi\)
0.879370 0.476139i \(-0.157964\pi\)
\(140\) 0 0
\(141\) −4850.51 −0.243977
\(142\) 0 0
\(143\) − 8773.75i − 0.429055i
\(144\) 0 0
\(145\) 15563.2i 0.740222i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11049.5 0.497701 0.248851 0.968542i \(-0.419947\pi\)
0.248851 + 0.968542i \(0.419947\pi\)
\(150\) 0 0
\(151\) 16759.4 0.735030 0.367515 0.930018i \(-0.380209\pi\)
0.367515 + 0.930018i \(0.380209\pi\)
\(152\) 0 0
\(153\) − 131.291i − 0.00560857i
\(154\) 0 0
\(155\) 535.377 0.0222842
\(156\) 0 0
\(157\) 36708.4i 1.48924i 0.667487 + 0.744622i \(0.267370\pi\)
−0.667487 + 0.744622i \(0.732630\pi\)
\(158\) 0 0
\(159\) − 19520.6i − 0.772144i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8101.41 −0.304920 −0.152460 0.988310i \(-0.548719\pi\)
−0.152460 + 0.988310i \(0.548719\pi\)
\(164\) 0 0
\(165\) 63034.7 2.31532
\(166\) 0 0
\(167\) − 19103.6i − 0.684985i −0.939521 0.342493i \(-0.888729\pi\)
0.939521 0.342493i \(-0.111271\pi\)
\(168\) 0 0
\(169\) 25093.9 0.878607
\(170\) 0 0
\(171\) − 13021.7i − 0.445324i
\(172\) 0 0
\(173\) − 12558.0i − 0.419594i −0.977745 0.209797i \(-0.932720\pi\)
0.977745 0.209797i \(-0.0672803\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 36727.2 1.17231
\(178\) 0 0
\(179\) 27973.8 0.873061 0.436531 0.899689i \(-0.356207\pi\)
0.436531 + 0.899689i \(0.356207\pi\)
\(180\) 0 0
\(181\) − 10385.6i − 0.317012i −0.987358 0.158506i \(-0.949332\pi\)
0.987358 0.158506i \(-0.0506677\pi\)
\(182\) 0 0
\(183\) 73148.9 2.18427
\(184\) 0 0
\(185\) − 75753.5i − 2.21340i
\(186\) 0 0
\(187\) 254.086i 0.00726605i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17505.5 0.479854 0.239927 0.970791i \(-0.422877\pi\)
0.239927 + 0.970791i \(0.422877\pi\)
\(192\) 0 0
\(193\) 11449.7 0.307382 0.153691 0.988119i \(-0.450884\pi\)
0.153691 + 0.988119i \(0.450884\pi\)
\(194\) 0 0
\(195\) − 24909.4i − 0.655079i
\(196\) 0 0
\(197\) −34525.0 −0.889612 −0.444806 0.895627i \(-0.646727\pi\)
−0.444806 + 0.895627i \(0.646727\pi\)
\(198\) 0 0
\(199\) 24395.1i 0.616022i 0.951383 + 0.308011i \(0.0996633\pi\)
−0.951383 + 0.308011i \(0.900337\pi\)
\(200\) 0 0
\(201\) 132.308i 0.00327487i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −106828. −2.54200
\(206\) 0 0
\(207\) 44748.9 1.04434
\(208\) 0 0
\(209\) 25200.8i 0.576929i
\(210\) 0 0
\(211\) −59793.2 −1.34303 −0.671517 0.740989i \(-0.734357\pi\)
−0.671517 + 0.740989i \(0.734357\pi\)
\(212\) 0 0
\(213\) − 51089.6i − 1.12609i
\(214\) 0 0
\(215\) 101413.i 2.19390i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 13356.6 0.278489
\(220\) 0 0
\(221\) 100.407 0.00205580
\(222\) 0 0
\(223\) 77418.3i 1.55680i 0.627766 + 0.778402i \(0.283969\pi\)
−0.627766 + 0.778402i \(0.716031\pi\)
\(224\) 0 0
\(225\) 39090.2 0.772153
\(226\) 0 0
\(227\) − 76879.3i − 1.49196i −0.665968 0.745980i \(-0.731981\pi\)
0.665968 0.745980i \(-0.268019\pi\)
\(228\) 0 0
\(229\) 72838.6i 1.38896i 0.719511 + 0.694481i \(0.244366\pi\)
−0.719511 + 0.694481i \(0.755634\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 73744.0 1.35836 0.679180 0.733972i \(-0.262336\pi\)
0.679180 + 0.733972i \(0.262336\pi\)
\(234\) 0 0
\(235\) 12987.5 0.235175
\(236\) 0 0
\(237\) 53653.5i 0.955216i
\(238\) 0 0
\(239\) 28067.7 0.491373 0.245686 0.969349i \(-0.420987\pi\)
0.245686 + 0.969349i \(0.420987\pi\)
\(240\) 0 0
\(241\) − 8504.93i − 0.146432i −0.997316 0.0732161i \(-0.976674\pi\)
0.997316 0.0732161i \(-0.0233263\pi\)
\(242\) 0 0
\(243\) 82267.0i 1.39320i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9958.59 0.163232
\(248\) 0 0
\(249\) −55388.4 −0.893347
\(250\) 0 0
\(251\) 45956.3i 0.729453i 0.931115 + 0.364726i \(0.118837\pi\)
−0.931115 + 0.364726i \(0.881163\pi\)
\(252\) 0 0
\(253\) −86602.2 −1.35297
\(254\) 0 0
\(255\) 721.372i 0.0110938i
\(256\) 0 0
\(257\) − 42262.9i − 0.639871i −0.947439 0.319936i \(-0.896339\pi\)
0.947439 0.319936i \(-0.103661\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −35603.5 −0.522651
\(262\) 0 0
\(263\) −47638.2 −0.688722 −0.344361 0.938837i \(-0.611904\pi\)
−0.344361 + 0.938837i \(0.611904\pi\)
\(264\) 0 0
\(265\) 52267.5i 0.744286i
\(266\) 0 0
\(267\) 100025. 1.40309
\(268\) 0 0
\(269\) 131184.i 1.81291i 0.422303 + 0.906455i \(0.361222\pi\)
−0.422303 + 0.906455i \(0.638778\pi\)
\(270\) 0 0
\(271\) − 60576.0i − 0.824825i −0.910997 0.412412i \(-0.864686\pi\)
0.910997 0.412412i \(-0.135314\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −75651.1 −1.00034
\(276\) 0 0
\(277\) 18431.8 0.240220 0.120110 0.992761i \(-0.461675\pi\)
0.120110 + 0.992761i \(0.461675\pi\)
\(278\) 0 0
\(279\) 1224.77i 0.0157343i
\(280\) 0 0
\(281\) 23061.9 0.292067 0.146033 0.989280i \(-0.453349\pi\)
0.146033 + 0.989280i \(0.453349\pi\)
\(282\) 0 0
\(283\) 92266.8i 1.15205i 0.817431 + 0.576027i \(0.195398\pi\)
−0.817431 + 0.576027i \(0.804602\pi\)
\(284\) 0 0
\(285\) 71547.2i 0.880852i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 83518.1 0.999965
\(290\) 0 0
\(291\) −123717. −1.46098
\(292\) 0 0
\(293\) 104037.i 1.21187i 0.795516 + 0.605933i \(0.207200\pi\)
−0.795516 + 0.605933i \(0.792800\pi\)
\(294\) 0 0
\(295\) −98339.3 −1.13001
\(296\) 0 0
\(297\) − 7503.82i − 0.0850686i
\(298\) 0 0
\(299\) 34222.5i 0.382798i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 92991.9 1.01288
\(304\) 0 0
\(305\) −195861. −2.10546
\(306\) 0 0
\(307\) 99690.4i 1.05773i 0.848705 + 0.528867i \(0.177383\pi\)
−0.848705 + 0.528867i \(0.822617\pi\)
\(308\) 0 0
\(309\) 190664. 1.99688
\(310\) 0 0
\(311\) 11076.9i 0.114524i 0.998359 + 0.0572620i \(0.0182370\pi\)
−0.998359 + 0.0572620i \(0.981763\pi\)
\(312\) 0 0
\(313\) 122237.i 1.24771i 0.781538 + 0.623857i \(0.214435\pi\)
−0.781538 + 0.623857i \(0.785565\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 32265.3 0.321082 0.160541 0.987029i \(-0.448676\pi\)
0.160541 + 0.987029i \(0.448676\pi\)
\(318\) 0 0
\(319\) 68903.3 0.677109
\(320\) 0 0
\(321\) − 171772.i − 1.66703i
\(322\) 0 0
\(323\) −288.399 −0.00276433
\(324\) 0 0
\(325\) 29895.0i 0.283029i
\(326\) 0 0
\(327\) − 174666.i − 1.63348i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −104098. −0.950136 −0.475068 0.879949i \(-0.657577\pi\)
−0.475068 + 0.879949i \(0.657577\pi\)
\(332\) 0 0
\(333\) 173300. 1.56282
\(334\) 0 0
\(335\) − 354.263i − 0.00315672i
\(336\) 0 0
\(337\) 55874.8 0.491990 0.245995 0.969271i \(-0.420885\pi\)
0.245995 + 0.969271i \(0.420885\pi\)
\(338\) 0 0
\(339\) − 57447.1i − 0.499883i
\(340\) 0 0
\(341\) − 2370.29i − 0.0203842i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −245871. −2.06570
\(346\) 0 0
\(347\) −158282. −1.31454 −0.657269 0.753656i \(-0.728289\pi\)
−0.657269 + 0.753656i \(0.728289\pi\)
\(348\) 0 0
\(349\) 19796.6i 0.162532i 0.996692 + 0.0812660i \(0.0258963\pi\)
−0.996692 + 0.0812660i \(0.974104\pi\)
\(350\) 0 0
\(351\) −2965.28 −0.0240686
\(352\) 0 0
\(353\) − 137832.i − 1.10612i −0.833143 0.553058i \(-0.813461\pi\)
0.833143 0.553058i \(-0.186539\pi\)
\(354\) 0 0
\(355\) 136796.i 1.08546i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 35706.3 0.277049 0.138524 0.990359i \(-0.455764\pi\)
0.138524 + 0.990359i \(0.455764\pi\)
\(360\) 0 0
\(361\) 101717. 0.780511
\(362\) 0 0
\(363\) − 95044.6i − 0.721297i
\(364\) 0 0
\(365\) −35763.1 −0.268441
\(366\) 0 0
\(367\) 17758.3i 0.131847i 0.997825 + 0.0659233i \(0.0209993\pi\)
−0.997825 + 0.0659233i \(0.979001\pi\)
\(368\) 0 0
\(369\) − 244387.i − 1.79484i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 30309.7 0.217853 0.108926 0.994050i \(-0.465259\pi\)
0.108926 + 0.994050i \(0.465259\pi\)
\(374\) 0 0
\(375\) 49618.8 0.352845
\(376\) 0 0
\(377\) − 27228.5i − 0.191576i
\(378\) 0 0
\(379\) 32246.5 0.224494 0.112247 0.993680i \(-0.464195\pi\)
0.112247 + 0.993680i \(0.464195\pi\)
\(380\) 0 0
\(381\) 116560.i 0.802970i
\(382\) 0 0
\(383\) − 166129.i − 1.13252i −0.824225 0.566262i \(-0.808389\pi\)
0.824225 0.566262i \(-0.191611\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −232001. −1.54906
\(388\) 0 0
\(389\) −97062.4 −0.641434 −0.320717 0.947175i \(-0.603924\pi\)
−0.320717 + 0.947175i \(0.603924\pi\)
\(390\) 0 0
\(391\) − 991.079i − 0.00648269i
\(392\) 0 0
\(393\) −48829.6 −0.316154
\(394\) 0 0
\(395\) − 143661.i − 0.920754i
\(396\) 0 0
\(397\) − 278836.i − 1.76916i −0.466384 0.884582i \(-0.654444\pi\)
0.466384 0.884582i \(-0.345556\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 101047. 0.628398 0.314199 0.949357i \(-0.398264\pi\)
0.314199 + 0.949357i \(0.398264\pi\)
\(402\) 0 0
\(403\) −936.667 −0.00576733
\(404\) 0 0
\(405\) − 231197.i − 1.40952i
\(406\) 0 0
\(407\) −335386. −2.02468
\(408\) 0 0
\(409\) 238004.i 1.42278i 0.702797 + 0.711390i \(0.251934\pi\)
−0.702797 + 0.711390i \(0.748066\pi\)
\(410\) 0 0
\(411\) − 327458.i − 1.93853i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 148306. 0.861117
\(416\) 0 0
\(417\) −231267. −1.32997
\(418\) 0 0
\(419\) − 349836.i − 1.99268i −0.0855008 0.996338i \(-0.527249\pi\)
0.0855008 0.996338i \(-0.472751\pi\)
\(420\) 0 0
\(421\) −248575. −1.40247 −0.701236 0.712929i \(-0.747368\pi\)
−0.701236 + 0.712929i \(0.747368\pi\)
\(422\) 0 0
\(423\) 29711.3i 0.166051i
\(424\) 0 0
\(425\) − 865.755i − 0.00479311i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −110282. −0.599225
\(430\) 0 0
\(431\) 131868. 0.709879 0.354940 0.934889i \(-0.384501\pi\)
0.354940 + 0.934889i \(0.384501\pi\)
\(432\) 0 0
\(433\) − 125370.i − 0.668680i −0.942453 0.334340i \(-0.891487\pi\)
0.942453 0.334340i \(-0.108513\pi\)
\(434\) 0 0
\(435\) 195622. 1.03381
\(436\) 0 0
\(437\) − 98297.3i − 0.514729i
\(438\) 0 0
\(439\) − 79030.8i − 0.410079i −0.978754 0.205039i \(-0.934268\pi\)
0.978754 0.205039i \(-0.0657322\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −152348. −0.776301 −0.388150 0.921596i \(-0.626886\pi\)
−0.388150 + 0.921596i \(0.626886\pi\)
\(444\) 0 0
\(445\) −267823. −1.35247
\(446\) 0 0
\(447\) − 138887.i − 0.695098i
\(448\) 0 0
\(449\) −125622. −0.623124 −0.311562 0.950226i \(-0.600852\pi\)
−0.311562 + 0.950226i \(0.600852\pi\)
\(450\) 0 0
\(451\) 472961.i 2.32526i
\(452\) 0 0
\(453\) − 210658.i − 1.02655i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 73357.2 0.351245 0.175622 0.984458i \(-0.443806\pi\)
0.175622 + 0.984458i \(0.443806\pi\)
\(458\) 0 0
\(459\) 85.8740 0.000407602 0
\(460\) 0 0
\(461\) − 184410.i − 0.867728i −0.900978 0.433864i \(-0.857150\pi\)
0.900978 0.433864i \(-0.142850\pi\)
\(462\) 0 0
\(463\) 219357. 1.02327 0.511635 0.859203i \(-0.329040\pi\)
0.511635 + 0.859203i \(0.329040\pi\)
\(464\) 0 0
\(465\) − 6729.45i − 0.0311224i
\(466\) 0 0
\(467\) 363598.i 1.66720i 0.552369 + 0.833600i \(0.313724\pi\)
−0.552369 + 0.833600i \(0.686276\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 461407. 2.07990
\(472\) 0 0
\(473\) 448990. 2.00685
\(474\) 0 0
\(475\) − 85867.3i − 0.380575i
\(476\) 0 0
\(477\) −119571. −0.525521
\(478\) 0 0
\(479\) 235276.i 1.02543i 0.858558 + 0.512716i \(0.171361\pi\)
−0.858558 + 0.512716i \(0.828639\pi\)
\(480\) 0 0
\(481\) 132534.i 0.572846i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 331261. 1.40827
\(486\) 0 0
\(487\) −58242.6 −0.245574 −0.122787 0.992433i \(-0.539183\pi\)
−0.122787 + 0.992433i \(0.539183\pi\)
\(488\) 0 0
\(489\) 101831.i 0.425856i
\(490\) 0 0
\(491\) −221076. −0.917020 −0.458510 0.888689i \(-0.651617\pi\)
−0.458510 + 0.888689i \(0.651617\pi\)
\(492\) 0 0
\(493\) 788.532i 0.00324434i
\(494\) 0 0
\(495\) − 386113.i − 1.57581i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 351758. 1.41268 0.706338 0.707875i \(-0.250346\pi\)
0.706338 + 0.707875i \(0.250346\pi\)
\(500\) 0 0
\(501\) −240123. −0.956662
\(502\) 0 0
\(503\) 78708.4i 0.311089i 0.987829 + 0.155545i \(0.0497133\pi\)
−0.987829 + 0.155545i \(0.950287\pi\)
\(504\) 0 0
\(505\) −248992. −0.976342
\(506\) 0 0
\(507\) − 315419.i − 1.22708i
\(508\) 0 0
\(509\) 98012.3i 0.378308i 0.981947 + 0.189154i \(0.0605745\pi\)
−0.981947 + 0.189154i \(0.939426\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 8517.16 0.0323639
\(514\) 0 0
\(515\) −510516. −1.92484
\(516\) 0 0
\(517\) − 57500.2i − 0.215124i
\(518\) 0 0
\(519\) −157849. −0.586012
\(520\) 0 0
\(521\) 383220.i 1.41180i 0.708312 + 0.705899i \(0.249457\pi\)
−0.708312 + 0.705899i \(0.750543\pi\)
\(522\) 0 0
\(523\) 261385.i 0.955602i 0.878468 + 0.477801i \(0.158566\pi\)
−0.878468 + 0.477801i \(0.841434\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 27.1257 9.76698e−5 0
\(528\) 0 0
\(529\) 57955.8 0.207103
\(530\) 0 0
\(531\) − 224969.i − 0.797872i
\(532\) 0 0
\(533\) 186900. 0.657891
\(534\) 0 0
\(535\) 459930.i 1.60688i
\(536\) 0 0
\(537\) − 351617.i − 1.21933i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −298637. −1.02035 −0.510174 0.860071i \(-0.670419\pi\)
−0.510174 + 0.860071i \(0.670419\pi\)
\(542\) 0 0
\(543\) −130543. −0.442744
\(544\) 0 0
\(545\) 467680.i 1.57455i
\(546\) 0 0
\(547\) −504515. −1.68616 −0.843082 0.537785i \(-0.819261\pi\)
−0.843082 + 0.537785i \(0.819261\pi\)
\(548\) 0 0
\(549\) − 448066.i − 1.48661i
\(550\) 0 0
\(551\) 78208.3i 0.257602i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −952187. −3.09127
\(556\) 0 0
\(557\) −353616. −1.13978 −0.569891 0.821720i \(-0.693015\pi\)
−0.569891 + 0.821720i \(0.693015\pi\)
\(558\) 0 0
\(559\) − 177427.i − 0.567801i
\(560\) 0 0
\(561\) 3193.75 0.0101479
\(562\) 0 0
\(563\) − 196934.i − 0.621303i −0.950524 0.310652i \(-0.899453\pi\)
0.950524 0.310652i \(-0.100547\pi\)
\(564\) 0 0
\(565\) 153818.i 0.481849i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −206372. −0.637422 −0.318711 0.947852i \(-0.603250\pi\)
−0.318711 + 0.947852i \(0.603250\pi\)
\(570\) 0 0
\(571\) −145009. −0.444757 −0.222378 0.974960i \(-0.571382\pi\)
−0.222378 + 0.974960i \(0.571382\pi\)
\(572\) 0 0
\(573\) − 220037.i − 0.670172i
\(574\) 0 0
\(575\) 295081. 0.892496
\(576\) 0 0
\(577\) 28699.5i 0.0862031i 0.999071 + 0.0431016i \(0.0137239\pi\)
−0.999071 + 0.0431016i \(0.986276\pi\)
\(578\) 0 0
\(579\) − 143917.i − 0.429295i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 231405. 0.680827
\(584\) 0 0
\(585\) −152580. −0.445847
\(586\) 0 0
\(587\) − 125084.i − 0.363015i −0.983390 0.181508i \(-0.941902\pi\)
0.983390 0.181508i \(-0.0580977\pi\)
\(588\) 0 0
\(589\) 2690.39 0.00775504
\(590\) 0 0
\(591\) 433963.i 1.24245i
\(592\) 0 0
\(593\) 124044.i 0.352749i 0.984323 + 0.176375i \(0.0564370\pi\)
−0.984323 + 0.176375i \(0.943563\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 306635. 0.860346
\(598\) 0 0
\(599\) −401469. −1.11892 −0.559459 0.828858i \(-0.688991\pi\)
−0.559459 + 0.828858i \(0.688991\pi\)
\(600\) 0 0
\(601\) − 182796.i − 0.506078i −0.967456 0.253039i \(-0.918570\pi\)
0.967456 0.253039i \(-0.0814301\pi\)
\(602\) 0 0
\(603\) 810.440 0.00222888
\(604\) 0 0
\(605\) 254488.i 0.695274i
\(606\) 0 0
\(607\) − 211063.i − 0.572843i −0.958104 0.286421i \(-0.907534\pi\)
0.958104 0.286421i \(-0.0924657\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22722.3 −0.0608653
\(612\) 0 0
\(613\) −602935. −1.60454 −0.802268 0.596964i \(-0.796374\pi\)
−0.802268 + 0.596964i \(0.796374\pi\)
\(614\) 0 0
\(615\) 1.34277e6i 3.55020i
\(616\) 0 0
\(617\) −408191. −1.07224 −0.536122 0.844141i \(-0.680111\pi\)
−0.536122 + 0.844141i \(0.680111\pi\)
\(618\) 0 0
\(619\) − 647925.i − 1.69100i −0.533976 0.845499i \(-0.679303\pi\)
0.533976 0.845499i \(-0.320697\pi\)
\(620\) 0 0
\(621\) 29269.1i 0.0758972i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −450175. −1.15245
\(626\) 0 0
\(627\) 316763. 0.805748
\(628\) 0 0
\(629\) − 3838.17i − 0.00970115i
\(630\) 0 0
\(631\) 634575. 1.59377 0.796883 0.604134i \(-0.206481\pi\)
0.796883 + 0.604134i \(0.206481\pi\)
\(632\) 0 0
\(633\) 751574.i 1.87570i
\(634\) 0 0
\(635\) − 312096.i − 0.774001i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −312945. −0.766418
\(640\) 0 0
\(641\) −51043.1 −0.124228 −0.0621142 0.998069i \(-0.519784\pi\)
−0.0621142 + 0.998069i \(0.519784\pi\)
\(642\) 0 0
\(643\) − 212952.i − 0.515061i −0.966270 0.257531i \(-0.917091\pi\)
0.966270 0.257531i \(-0.0829088\pi\)
\(644\) 0 0
\(645\) 1.27472e6 3.06404
\(646\) 0 0
\(647\) − 323410.i − 0.772582i −0.922377 0.386291i \(-0.873756\pi\)
0.922377 0.386291i \(-0.126244\pi\)
\(648\) 0 0
\(649\) 435380.i 1.03366i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 226839. 0.531976 0.265988 0.963976i \(-0.414302\pi\)
0.265988 + 0.963976i \(0.414302\pi\)
\(654\) 0 0
\(655\) 130744. 0.304748
\(656\) 0 0
\(657\) − 81814.5i − 0.189539i
\(658\) 0 0
\(659\) −280922. −0.646867 −0.323433 0.946251i \(-0.604837\pi\)
−0.323433 + 0.946251i \(0.604837\pi\)
\(660\) 0 0
\(661\) − 409895.i − 0.938145i −0.883160 0.469073i \(-0.844588\pi\)
0.883160 0.469073i \(-0.155412\pi\)
\(662\) 0 0
\(663\) − 1262.07i − 0.00287116i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −268761. −0.604109
\(668\) 0 0
\(669\) 973113. 2.17426
\(670\) 0 0
\(671\) 867139.i 1.92595i
\(672\) 0 0
\(673\) 619982. 1.36883 0.684414 0.729094i \(-0.260058\pi\)
0.684414 + 0.729094i \(0.260058\pi\)
\(674\) 0 0
\(675\) 25567.9i 0.0561162i
\(676\) 0 0
\(677\) − 487445.i − 1.06353i −0.846893 0.531763i \(-0.821530\pi\)
0.846893 0.531763i \(-0.178470\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −966337. −2.08370
\(682\) 0 0
\(683\) 629713. 1.34990 0.674949 0.737864i \(-0.264166\pi\)
0.674949 + 0.737864i \(0.264166\pi\)
\(684\) 0 0
\(685\) 876790.i 1.86859i
\(686\) 0 0
\(687\) 915548. 1.93985
\(688\) 0 0
\(689\) − 91444.3i − 0.192628i
\(690\) 0 0
\(691\) 797932.i 1.67113i 0.549394 + 0.835564i \(0.314859\pi\)
−0.549394 + 0.835564i \(0.685141\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 619231. 1.28198
\(696\) 0 0
\(697\) −5412.59 −0.0111414
\(698\) 0 0
\(699\) − 926929.i − 1.89711i
\(700\) 0 0
\(701\) −104064. −0.211769 −0.105885 0.994378i \(-0.533767\pi\)
−0.105885 + 0.994378i \(0.533767\pi\)
\(702\) 0 0
\(703\) − 380678.i − 0.770277i
\(704\) 0 0
\(705\) − 163248.i − 0.328449i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 986633. 1.96274 0.981371 0.192123i \(-0.0615371\pi\)
0.981371 + 0.192123i \(0.0615371\pi\)
\(710\) 0 0
\(711\) 328650. 0.650120
\(712\) 0 0
\(713\) 9245.46i 0.0181865i
\(714\) 0 0
\(715\) 295287. 0.577606
\(716\) 0 0
\(717\) − 352798.i − 0.686259i
\(718\) 0 0
\(719\) − 319068.i − 0.617199i −0.951192 0.308600i \(-0.900140\pi\)
0.951192 0.308600i \(-0.0998603\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −106903. −0.204510
\(724\) 0 0
\(725\) −234776. −0.446660
\(726\) 0 0
\(727\) 214869.i 0.406542i 0.979123 + 0.203271i \(0.0651572\pi\)
−0.979123 + 0.203271i \(0.934843\pi\)
\(728\) 0 0
\(729\) 477632. 0.898749
\(730\) 0 0
\(731\) 5138.26i 0.00961571i
\(732\) 0 0
\(733\) 103272.i 0.192209i 0.995371 + 0.0961046i \(0.0306383\pi\)
−0.995371 + 0.0961046i \(0.969362\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1568.44 −0.00288757
\(738\) 0 0
\(739\) −908518. −1.66358 −0.831792 0.555087i \(-0.812685\pi\)
−0.831792 + 0.555087i \(0.812685\pi\)
\(740\) 0 0
\(741\) − 125175.i − 0.227972i
\(742\) 0 0
\(743\) −1.04905e6 −1.90028 −0.950142 0.311817i \(-0.899062\pi\)
−0.950142 + 0.311817i \(0.899062\pi\)
\(744\) 0 0
\(745\) 371878.i 0.670020i
\(746\) 0 0
\(747\) 339276.i 0.608012i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −404156. −0.716588 −0.358294 0.933609i \(-0.616641\pi\)
−0.358294 + 0.933609i \(0.616641\pi\)
\(752\) 0 0
\(753\) 577649. 1.01877
\(754\) 0 0
\(755\) 564050.i 0.989518i
\(756\) 0 0
\(757\) −74517.7 −0.130037 −0.0650186 0.997884i \(-0.520711\pi\)
−0.0650186 + 0.997884i \(0.520711\pi\)
\(758\) 0 0
\(759\) 1.08855e6i 1.88958i
\(760\) 0 0
\(761\) − 6428.89i − 0.0111011i −0.999985 0.00555056i \(-0.998233\pi\)
0.999985 0.00555056i \(-0.00176681\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4418.69 0.00755042
\(766\) 0 0
\(767\) 172049. 0.292457
\(768\) 0 0
\(769\) − 358812.i − 0.606756i −0.952870 0.303378i \(-0.901886\pi\)
0.952870 0.303378i \(-0.0981145\pi\)
\(770\) 0 0
\(771\) −531225. −0.893655
\(772\) 0 0
\(773\) − 560384.i − 0.937835i −0.883242 0.468918i \(-0.844644\pi\)
0.883242 0.468918i \(-0.155356\pi\)
\(774\) 0 0
\(775\) 8076.35i 0.0134466i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −536832. −0.884633
\(780\) 0 0
\(781\) 605639. 0.992915
\(782\) 0 0
\(783\) − 23287.4i − 0.0379836i
\(784\) 0 0
\(785\) −1.23545e6 −2.00486
\(786\) 0 0
\(787\) − 809526.i − 1.30702i −0.756919 0.653509i \(-0.773296\pi\)
0.756919 0.653509i \(-0.226704\pi\)
\(788\) 0 0
\(789\) 598791.i 0.961881i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 342667. 0.544911
\(794\) 0 0
\(795\) 656979. 1.03948
\(796\) 0 0
\(797\) 367836.i 0.579078i 0.957166 + 0.289539i \(0.0935020\pi\)
−0.957166 + 0.289539i \(0.906498\pi\)
\(798\) 0 0
\(799\) 658.035 0.00103075
\(800\) 0 0
\(801\) − 612693.i − 0.954944i
\(802\) 0 0
\(803\) 158335.i 0.245553i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.64892e6 2.53194
\(808\) 0 0
\(809\) 368305. 0.562744 0.281372 0.959599i \(-0.409210\pi\)
0.281372 + 0.959599i \(0.409210\pi\)
\(810\) 0 0
\(811\) − 1.19992e6i − 1.82435i −0.409798 0.912176i \(-0.634401\pi\)
0.409798 0.912176i \(-0.365599\pi\)
\(812\) 0 0
\(813\) −761412. −1.15196
\(814\) 0 0
\(815\) − 272659.i − 0.410492i
\(816\) 0 0
\(817\) 509623.i 0.763493i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.07580e6 −1.59604 −0.798022 0.602628i \(-0.794120\pi\)
−0.798022 + 0.602628i \(0.794120\pi\)
\(822\) 0 0
\(823\) −114826. −0.169528 −0.0847642 0.996401i \(-0.527014\pi\)
−0.0847642 + 0.996401i \(0.527014\pi\)
\(824\) 0 0
\(825\) 950900.i 1.39710i
\(826\) 0 0
\(827\) 734458. 1.07388 0.536940 0.843620i \(-0.319580\pi\)
0.536940 + 0.843620i \(0.319580\pi\)
\(828\) 0 0
\(829\) − 1.10906e6i − 1.61379i −0.590693 0.806896i \(-0.701146\pi\)
0.590693 0.806896i \(-0.298854\pi\)
\(830\) 0 0
\(831\) − 231680.i − 0.335495i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 642944. 0.922147
\(836\) 0 0
\(837\) −801.092 −0.00114349
\(838\) 0 0
\(839\) 308748.i 0.438612i 0.975656 + 0.219306i \(0.0703792\pi\)
−0.975656 + 0.219306i \(0.929621\pi\)
\(840\) 0 0
\(841\) −493446. −0.697667
\(842\) 0 0
\(843\) − 289877.i − 0.407905i
\(844\) 0 0
\(845\) 844553.i 1.18281i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.15975e6 1.60898
\(850\) 0 0
\(851\) 1.30819e6 1.80639
\(852\) 0 0
\(853\) − 1.02011e6i − 1.40200i −0.713160 0.701001i \(-0.752737\pi\)
0.713160 0.701001i \(-0.247263\pi\)
\(854\) 0 0
\(855\) 438255. 0.599508
\(856\) 0 0
\(857\) − 545546.i − 0.742797i −0.928474 0.371398i \(-0.878878\pi\)
0.928474 0.371398i \(-0.121122\pi\)
\(858\) 0 0
\(859\) 708517.i 0.960205i 0.877213 + 0.480102i \(0.159400\pi\)
−0.877213 + 0.480102i \(0.840600\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 178941. 0.240263 0.120132 0.992758i \(-0.461668\pi\)
0.120132 + 0.992758i \(0.461668\pi\)
\(864\) 0 0
\(865\) 422649. 0.564869
\(866\) 0 0
\(867\) − 1.04978e6i − 1.39657i
\(868\) 0 0
\(869\) −636033. −0.842248
\(870\) 0 0
\(871\) 619.799i 0 0.000816985i
\(872\) 0 0
\(873\) 757818.i 0.994344i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 662846. 0.861814 0.430907 0.902396i \(-0.358194\pi\)
0.430907 + 0.902396i \(0.358194\pi\)
\(878\) 0 0
\(879\) 1.30770e6 1.69251
\(880\) 0 0
\(881\) 687434.i 0.885685i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(882\) 0 0
\(883\) −670169. −0.859534 −0.429767 0.902940i \(-0.641404\pi\)
−0.429767 + 0.902940i \(0.641404\pi\)
\(884\) 0 0
\(885\) 1.23608e6i 1.57819i
\(886\) 0 0
\(887\) 1.33538e6i 1.69730i 0.528954 + 0.848650i \(0.322584\pi\)
−0.528954 + 0.848650i \(0.677416\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.02359e6 −1.28934
\(892\) 0 0
\(893\) 65265.2 0.0818425
\(894\) 0 0
\(895\) 941477.i 1.17534i
\(896\) 0 0
\(897\) 430162. 0.534622
\(898\) 0 0
\(899\) − 7355.97i − 0.00910166i
\(900\) 0 0
\(901\) 2648.22i 0.00326215i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 349536. 0.426771
\(906\) 0 0
\(907\) 280160. 0.340559 0.170279 0.985396i \(-0.445533\pi\)
0.170279 + 0.985396i \(0.445533\pi\)
\(908\) 0 0
\(909\) − 569613.i − 0.689370i
\(910\) 0 0
\(911\) −872536. −1.05135 −0.525674 0.850686i \(-0.676187\pi\)
−0.525674 + 0.850686i \(0.676187\pi\)
\(912\) 0 0
\(913\) − 656599.i − 0.787696i
\(914\) 0 0
\(915\) 2.46188e6i 2.94052i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 924044. 1.09411 0.547056 0.837096i \(-0.315749\pi\)
0.547056 + 0.837096i \(0.315749\pi\)
\(920\) 0 0
\(921\) 1.25306e6 1.47725
\(922\) 0 0
\(923\) − 239330.i − 0.280927i
\(924\) 0 0
\(925\) 1.14277e6 1.33559
\(926\) 0 0
\(927\) − 1.16790e6i − 1.35908i
\(928\) 0 0
\(929\) − 895977.i − 1.03816i −0.854725 0.519082i \(-0.826274\pi\)
0.854725 0.519082i \(-0.173726\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 139231. 0.159946
\(934\) 0 0
\(935\) −8551.47 −0.00978177
\(936\) 0 0
\(937\) − 1.18796e6i − 1.35308i −0.736405 0.676541i \(-0.763478\pi\)
0.736405 0.676541i \(-0.236522\pi\)
\(938\) 0 0
\(939\) 1.53647e6 1.74258
\(940\) 0 0
\(941\) 62559.0i 0.0706498i 0.999376 + 0.0353249i \(0.0112466\pi\)
−0.999376 + 0.0353249i \(0.988753\pi\)
\(942\) 0 0
\(943\) − 1.84481e6i − 2.07457i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 217615. 0.242655 0.121328 0.992613i \(-0.461285\pi\)
0.121328 + 0.992613i \(0.461285\pi\)
\(948\) 0 0
\(949\) 62569.2 0.0694749
\(950\) 0 0
\(951\) − 405560.i − 0.448429i
\(952\) 0 0
\(953\) 291854. 0.321352 0.160676 0.987007i \(-0.448633\pi\)
0.160676 + 0.987007i \(0.448633\pi\)
\(954\) 0 0
\(955\) 589162.i 0.645993i
\(956\) 0 0
\(957\) − 866083.i − 0.945661i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 923268. 0.999726
\(962\) 0 0
\(963\) −1.05217e6 −1.13458
\(964\) 0 0
\(965\) 385348.i 0.413807i
\(966\) 0 0
\(967\) 15778.3 0.0168735 0.00843677 0.999964i \(-0.497314\pi\)
0.00843677 + 0.999964i \(0.497314\pi\)
\(968\) 0 0
\(969\) 3625.05i 0.00386070i
\(970\) 0 0
\(971\) − 1.25427e6i − 1.33031i −0.746705 0.665155i \(-0.768365\pi\)
0.746705 0.665155i \(-0.231635\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 375766. 0.395284
\(976\) 0 0
\(977\) −384179. −0.402480 −0.201240 0.979542i \(-0.564497\pi\)
−0.201240 + 0.979542i \(0.564497\pi\)
\(978\) 0 0
\(979\) 1.18574e6i 1.23716i
\(980\) 0 0
\(981\) −1.06990e6 −1.11175
\(982\) 0 0
\(983\) 1.06846e6i 1.10574i 0.833268 + 0.552869i \(0.186467\pi\)
−0.833268 + 0.552869i \(0.813533\pi\)
\(984\) 0 0
\(985\) − 1.16196e6i − 1.19762i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.75131e6 −1.79049
\(990\) 0 0
\(991\) 1.84807e6 1.88179 0.940896 0.338694i \(-0.109985\pi\)
0.940896 + 0.338694i \(0.109985\pi\)
\(992\) 0 0
\(993\) 1.30846e6i 1.32698i
\(994\) 0 0
\(995\) −821034. −0.829306
\(996\) 0 0
\(997\) 1.61892e6i 1.62868i 0.580388 + 0.814340i \(0.302901\pi\)
−0.580388 + 0.814340i \(0.697099\pi\)
\(998\) 0 0
\(999\) 113351.i 0.113578i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.5.c.g.97.2 8
4.3 odd 2 49.5.b.b.48.4 yes 8
7.6 odd 2 inner 784.5.c.g.97.7 8
12.11 even 2 441.5.d.g.244.5 8
28.3 even 6 49.5.d.c.19.5 16
28.11 odd 6 49.5.d.c.19.6 16
28.19 even 6 49.5.d.c.31.6 16
28.23 odd 6 49.5.d.c.31.5 16
28.27 even 2 49.5.b.b.48.3 8
84.83 odd 2 441.5.d.g.244.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.5.b.b.48.3 8 28.27 even 2
49.5.b.b.48.4 yes 8 4.3 odd 2
49.5.d.c.19.5 16 28.3 even 6
49.5.d.c.19.6 16 28.11 odd 6
49.5.d.c.31.5 16 28.23 odd 6
49.5.d.c.31.6 16 28.19 even 6
441.5.d.g.244.5 8 12.11 even 2
441.5.d.g.244.6 8 84.83 odd 2
784.5.c.g.97.2 8 1.1 even 1 trivial
784.5.c.g.97.7 8 7.6 odd 2 inner