Properties

Label 784.2.x.g.373.1
Level $784$
Weight $2$
Character 784.373
Analytic conductor $6.260$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(165,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.165"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 373.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 784.373
Dual form 784.2.x.g.557.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(2.73205 + 0.732051i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(2.73205 - 0.732051i) q^{5} -4.00000i q^{6} +(2.00000 + 2.00000i) q^{8} +(4.33013 + 2.50000i) q^{9} +(-2.00000 - 3.46410i) q^{10} +(-1.09808 + 4.09808i) q^{11} +(-5.46410 + 1.46410i) q^{12} +8.00000 q^{15} +(2.00000 - 3.46410i) q^{16} +(3.00000 + 5.19615i) q^{17} +(1.83013 - 6.83013i) q^{18} +(-1.46410 - 5.46410i) q^{19} +(-4.00000 + 4.00000i) q^{20} +6.00000 q^{22} +(-1.73205 - 1.00000i) q^{23} +(4.00000 + 6.92820i) q^{24} +(2.59808 - 1.50000i) q^{25} +(4.00000 + 4.00000i) q^{27} +(-1.00000 + 1.00000i) q^{29} +(-2.92820 - 10.9282i) q^{30} +(-2.00000 - 3.46410i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-6.00000 + 10.3923i) q^{33} +(6.00000 - 6.00000i) q^{34} -10.0000 q^{36} +(-4.09808 + 1.09808i) q^{37} +(-6.92820 + 4.00000i) q^{38} +(6.92820 + 4.00000i) q^{40} +2.00000i q^{41} +(-5.00000 - 5.00000i) q^{43} +(-2.19615 - 8.19615i) q^{44} +(13.6603 + 3.66025i) q^{45} +(-0.732051 + 2.73205i) q^{46} +(4.00000 - 6.92820i) q^{47} +(8.00000 - 8.00000i) q^{48} +(-3.00000 - 3.00000i) q^{50} +(4.39230 + 16.3923i) q^{51} +(2.56218 - 9.56218i) q^{53} +(4.00000 - 6.92820i) q^{54} +12.0000i q^{55} -16.0000i q^{57} +(1.73205 + 1.00000i) q^{58} +(0.732051 - 2.73205i) q^{59} +(-13.8564 + 8.00000i) q^{60} +(2.19615 + 8.19615i) q^{61} +(-4.00000 + 4.00000i) q^{62} +8.00000i q^{64} +(16.3923 + 4.39230i) q^{66} +(6.83013 + 1.83013i) q^{67} +(-10.3923 - 6.00000i) q^{68} +(-4.00000 - 4.00000i) q^{69} -8.00000i q^{71} +(3.66025 + 13.6603i) q^{72} +(-8.66025 + 5.00000i) q^{73} +(3.00000 + 5.19615i) q^{74} +(8.19615 - 2.19615i) q^{75} +(8.00000 + 8.00000i) q^{76} +(7.00000 - 12.1244i) q^{79} +(2.92820 - 10.9282i) q^{80} +(0.500000 + 0.866025i) q^{81} +(2.73205 - 0.732051i) q^{82} +(12.0000 + 12.0000i) q^{85} +(-5.00000 + 8.66025i) q^{86} +(-3.46410 + 2.00000i) q^{87} +(-10.3923 + 6.00000i) q^{88} +(-5.19615 - 3.00000i) q^{89} -20.0000i q^{90} +4.00000 q^{92} +(-2.92820 - 10.9282i) q^{93} +(-10.9282 - 2.92820i) q^{94} +(-8.00000 - 13.8564i) q^{95} +(-13.8564 - 8.00000i) q^{96} -6.00000 q^{97} +(-15.0000 + 15.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{3} + 4 q^{5} + 8 q^{8} - 8 q^{10} + 6 q^{11} - 8 q^{12} + 32 q^{15} + 8 q^{16} + 12 q^{17} - 10 q^{18} + 8 q^{19} - 16 q^{20} + 24 q^{22} + 16 q^{24} + 16 q^{27} - 4 q^{29} + 16 q^{30}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.258819 0.965926i
\(3\) 2.73205 + 0.732051i 1.57735 + 0.422650i 0.938104 0.346353i \(-0.112580\pi\)
0.639246 + 0.769002i \(0.279247\pi\)
\(4\) −1.73205 + 1.00000i −0.866025 + 0.500000i
\(5\) 2.73205 0.732051i 1.22181 0.327383i 0.410425 0.911894i \(-0.365380\pi\)
0.811386 + 0.584511i \(0.198714\pi\)
\(6\) 4.00000i 1.63299i
\(7\) 0 0
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) 4.33013 + 2.50000i 1.44338 + 0.833333i
\(10\) −2.00000 3.46410i −0.632456 1.09545i
\(11\) −1.09808 + 4.09808i −0.331082 + 1.23562i 0.576972 + 0.816764i \(0.304234\pi\)
−0.908054 + 0.418852i \(0.862432\pi\)
\(12\) −5.46410 + 1.46410i −1.57735 + 0.422650i
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 8.00000 2.06559
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 1.83013 6.83013i 0.431365 1.60988i
\(19\) −1.46410 5.46410i −0.335888 1.25355i −0.902903 0.429844i \(-0.858569\pi\)
0.567015 0.823707i \(-0.308098\pi\)
\(20\) −4.00000 + 4.00000i −0.894427 + 0.894427i
\(21\) 0 0
\(22\) 6.00000 1.27920
\(23\) −1.73205 1.00000i −0.361158 0.208514i 0.308431 0.951247i \(-0.400196\pi\)
−0.669588 + 0.742732i \(0.733529\pi\)
\(24\) 4.00000 + 6.92820i 0.816497 + 1.41421i
\(25\) 2.59808 1.50000i 0.519615 0.300000i
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 0 0
\(29\) −1.00000 + 1.00000i −0.185695 + 0.185695i −0.793832 0.608137i \(-0.791917\pi\)
0.608137 + 0.793832i \(0.291917\pi\)
\(30\) −2.92820 10.9282i −0.534614 1.99521i
\(31\) −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i \(-0.283621\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) −5.46410 1.46410i −0.965926 0.258819i
\(33\) −6.00000 + 10.3923i −1.04447 + 1.80907i
\(34\) 6.00000 6.00000i 1.02899 1.02899i
\(35\) 0 0
\(36\) −10.0000 −1.66667
\(37\) −4.09808 + 1.09808i −0.673720 + 0.180523i −0.579430 0.815022i \(-0.696725\pi\)
−0.0942898 + 0.995545i \(0.530058\pi\)
\(38\) −6.92820 + 4.00000i −1.12390 + 0.648886i
\(39\) 0 0
\(40\) 6.92820 + 4.00000i 1.09545 + 0.632456i
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 0 0
\(43\) −5.00000 5.00000i −0.762493 0.762493i 0.214280 0.976772i \(-0.431260\pi\)
−0.976772 + 0.214280i \(0.931260\pi\)
\(44\) −2.19615 8.19615i −0.331082 1.23562i
\(45\) 13.6603 + 3.66025i 2.03635 + 0.545638i
\(46\) −0.732051 + 2.73205i −0.107935 + 0.402819i
\(47\) 4.00000 6.92820i 0.583460 1.01058i −0.411606 0.911362i \(-0.635032\pi\)
0.995066 0.0992202i \(-0.0316348\pi\)
\(48\) 8.00000 8.00000i 1.15470 1.15470i
\(49\) 0 0
\(50\) −3.00000 3.00000i −0.424264 0.424264i
\(51\) 4.39230 + 16.3923i 0.615046 + 2.29538i
\(52\) 0 0
\(53\) 2.56218 9.56218i 0.351942 1.31347i −0.532347 0.846526i \(-0.678690\pi\)
0.884289 0.466940i \(-0.154644\pi\)
\(54\) 4.00000 6.92820i 0.544331 0.942809i
\(55\) 12.0000i 1.61808i
\(56\) 0 0
\(57\) 16.0000i 2.11925i
\(58\) 1.73205 + 1.00000i 0.227429 + 0.131306i
\(59\) 0.732051 2.73205i 0.0953049 0.355683i −0.901761 0.432236i \(-0.857725\pi\)
0.997066 + 0.0765531i \(0.0243915\pi\)
\(60\) −13.8564 + 8.00000i −1.78885 + 1.03280i
\(61\) 2.19615 + 8.19615i 0.281189 + 1.04941i 0.951580 + 0.307402i \(0.0994596\pi\)
−0.670391 + 0.742008i \(0.733874\pi\)
\(62\) −4.00000 + 4.00000i −0.508001 + 0.508001i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 16.3923 + 4.39230i 2.01775 + 0.540655i
\(67\) 6.83013 + 1.83013i 0.834433 + 0.223586i 0.650647 0.759381i \(-0.274498\pi\)
0.183786 + 0.982966i \(0.441165\pi\)
\(68\) −10.3923 6.00000i −1.26025 0.727607i
\(69\) −4.00000 4.00000i −0.481543 0.481543i
\(70\) 0 0
\(71\) 8.00000i 0.949425i −0.880141 0.474713i \(-0.842552\pi\)
0.880141 0.474713i \(-0.157448\pi\)
\(72\) 3.66025 + 13.6603i 0.431365 + 1.60988i
\(73\) −8.66025 + 5.00000i −1.01361 + 0.585206i −0.912245 0.409644i \(-0.865653\pi\)
−0.101361 + 0.994850i \(0.532320\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) 8.19615 2.19615i 0.946410 0.253590i
\(76\) 8.00000 + 8.00000i 0.917663 + 0.917663i
\(77\) 0 0
\(78\) 0 0
\(79\) 7.00000 12.1244i 0.787562 1.36410i −0.139895 0.990166i \(-0.544677\pi\)
0.927457 0.373930i \(-0.121990\pi\)
\(80\) 2.92820 10.9282i 0.327383 1.22181i
\(81\) 0.500000 + 0.866025i 0.0555556 + 0.0962250i
\(82\) 2.73205 0.732051i 0.301705 0.0808415i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 12.0000 + 12.0000i 1.30158 + 1.30158i
\(86\) −5.00000 + 8.66025i −0.539164 + 0.933859i
\(87\) −3.46410 + 2.00000i −0.371391 + 0.214423i
\(88\) −10.3923 + 6.00000i −1.10782 + 0.639602i
\(89\) −5.19615 3.00000i −0.550791 0.317999i 0.198650 0.980071i \(-0.436344\pi\)
−0.749441 + 0.662071i \(0.769678\pi\)
\(90\) 20.0000i 2.10819i
\(91\) 0 0
\(92\) 4.00000 0.417029
\(93\) −2.92820 10.9282i −0.303641 1.13320i
\(94\) −10.9282 2.92820i −1.12716 0.302021i
\(95\) −8.00000 13.8564i −0.820783 1.42164i
\(96\) −13.8564 8.00000i −1.41421 0.816497i
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) −15.0000 + 15.0000i −1.50756 + 1.50756i
\(100\) −3.00000 + 5.19615i −0.300000 + 0.519615i
\(101\) 0.732051 2.73205i 0.0728418 0.271849i −0.919893 0.392168i \(-0.871725\pi\)
0.992735 + 0.120319i \(0.0383918\pi\)
\(102\) 20.7846 12.0000i 2.05798 1.18818i
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) −6.83013 + 1.83013i −0.660293 + 0.176925i −0.573378 0.819291i \(-0.694367\pi\)
−0.0869149 + 0.996216i \(0.527701\pi\)
\(108\) −10.9282 2.92820i −1.05157 0.281766i
\(109\) 4.09808 + 1.09808i 0.392525 + 0.105177i 0.449682 0.893189i \(-0.351537\pi\)
−0.0571579 + 0.998365i \(0.518204\pi\)
\(110\) 16.3923 4.39230i 1.56294 0.418790i
\(111\) −12.0000 −1.13899
\(112\) 0 0
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) −21.8564 + 5.85641i −2.04704 + 0.548503i
\(115\) −5.46410 1.46410i −0.509530 0.136528i
\(116\) 0.732051 2.73205i 0.0679692 0.253665i
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 16.0000 + 16.0000i 1.46059 + 1.46059i
\(121\) −6.06218 3.50000i −0.551107 0.318182i
\(122\) 10.3923 6.00000i 0.940875 0.543214i
\(123\) −1.46410 + 5.46410i −0.132014 + 0.492681i
\(124\) 6.92820 + 4.00000i 0.622171 + 0.359211i
\(125\) −4.00000 + 4.00000i −0.357771 + 0.357771i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 10.9282 2.92820i 0.965926 0.258819i
\(129\) −10.0000 17.3205i −0.880451 1.52499i
\(130\) 0 0
\(131\) 4.39230 + 16.3923i 0.383757 + 1.43220i 0.840116 + 0.542406i \(0.182487\pi\)
−0.456359 + 0.889796i \(0.650847\pi\)
\(132\) 24.0000i 2.08893i
\(133\) 0 0
\(134\) 10.0000i 0.863868i
\(135\) 13.8564 + 8.00000i 1.19257 + 0.688530i
\(136\) −4.39230 + 16.3923i −0.376637 + 1.40563i
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) −4.00000 + 6.92820i −0.340503 + 0.589768i
\(139\) −12.0000 12.0000i −1.01783 1.01783i −0.999838 0.0179885i \(-0.994274\pi\)
−0.0179885 0.999838i \(-0.505726\pi\)
\(140\) 0 0
\(141\) 16.0000 16.0000i 1.34744 1.34744i
\(142\) −10.9282 + 2.92820i −0.917074 + 0.245729i
\(143\) 0 0
\(144\) 17.3205 10.0000i 1.44338 0.833333i
\(145\) −2.00000 + 3.46410i −0.166091 + 0.287678i
\(146\) 10.0000 + 10.0000i 0.827606 + 0.827606i
\(147\) 0 0
\(148\) 6.00000 6.00000i 0.493197 0.493197i
\(149\) 17.7583 4.75833i 1.45482 0.389818i 0.557122 0.830431i \(-0.311906\pi\)
0.897697 + 0.440613i \(0.145239\pi\)
\(150\) −6.00000 10.3923i −0.489898 0.848528i
\(151\) −5.19615 + 3.00000i −0.422857 + 0.244137i −0.696299 0.717752i \(-0.745171\pi\)
0.273442 + 0.961888i \(0.411838\pi\)
\(152\) 8.00000 13.8564i 0.648886 1.12390i
\(153\) 30.0000i 2.42536i
\(154\) 0 0
\(155\) −8.00000 8.00000i −0.642575 0.642575i
\(156\) 0 0
\(157\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(158\) −19.1244 5.12436i −1.52145 0.407672i
\(159\) 14.0000 24.2487i 1.11027 1.92305i
\(160\) −16.0000 −1.26491
\(161\) 0 0
\(162\) 1.00000 1.00000i 0.0785674 0.0785674i
\(163\) −1.83013 6.83013i −0.143347 0.534977i −0.999823 0.0187913i \(-0.994018\pi\)
0.856477 0.516185i \(-0.172648\pi\)
\(164\) −2.00000 3.46410i −0.156174 0.270501i
\(165\) −8.78461 + 32.7846i −0.683881 + 2.55228i
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 12.0000 20.7846i 0.920358 1.59411i
\(171\) 7.32051 27.3205i 0.559813 2.08925i
\(172\) 13.6603 + 3.66025i 1.04158 + 0.279092i
\(173\) 5.85641 + 21.8564i 0.445254 + 1.66171i 0.715264 + 0.698854i \(0.246306\pi\)
−0.270010 + 0.962858i \(0.587027\pi\)
\(174\) 4.00000 + 4.00000i 0.303239 + 0.303239i
\(175\) 0 0
\(176\) 12.0000 + 12.0000i 0.904534 + 0.904534i
\(177\) 4.00000 6.92820i 0.300658 0.520756i
\(178\) −2.19615 + 8.19615i −0.164609 + 0.614328i
\(179\) −6.83013 1.83013i −0.510508 0.136790i −0.00563529 0.999984i \(-0.501794\pi\)
−0.504872 + 0.863194i \(0.668460\pi\)
\(180\) −27.3205 + 7.32051i −2.03635 + 0.545638i
\(181\) 4.00000 + 4.00000i 0.297318 + 0.297318i 0.839962 0.542645i \(-0.182577\pi\)
−0.542645 + 0.839962i \(0.682577\pi\)
\(182\) 0 0
\(183\) 24.0000i 1.77413i
\(184\) −1.46410 5.46410i −0.107935 0.402819i
\(185\) −10.3923 + 6.00000i −0.764057 + 0.441129i
\(186\) −13.8564 + 8.00000i −1.01600 + 0.586588i
\(187\) −24.5885 + 6.58846i −1.79809 + 0.481796i
\(188\) 16.0000i 1.16692i
\(189\) 0 0
\(190\) −16.0000 + 16.0000i −1.16076 + 1.16076i
\(191\) −11.0000 + 19.0526i −0.795932 + 1.37859i 0.126314 + 0.991990i \(0.459685\pi\)
−0.922246 + 0.386604i \(0.873648\pi\)
\(192\) −5.85641 + 21.8564i −0.422650 + 1.57735i
\(193\) 12.0000 + 20.7846i 0.863779 + 1.49611i 0.868255 + 0.496119i \(0.165242\pi\)
−0.00447566 + 0.999990i \(0.501425\pi\)
\(194\) 2.19615 + 8.19615i 0.157675 + 0.588449i
\(195\) 0 0
\(196\) 0 0
\(197\) −11.0000 11.0000i −0.783718 0.783718i 0.196738 0.980456i \(-0.436965\pi\)
−0.980456 + 0.196738i \(0.936965\pi\)
\(198\) 25.9808 + 15.0000i 1.84637 + 1.06600i
\(199\) −17.3205 + 10.0000i −1.22782 + 0.708881i −0.966573 0.256391i \(-0.917466\pi\)
−0.261245 + 0.965272i \(0.584133\pi\)
\(200\) 8.19615 + 2.19615i 0.579555 + 0.155291i
\(201\) 17.3205 + 10.0000i 1.22169 + 0.705346i
\(202\) −4.00000 −0.281439
\(203\) 0 0
\(204\) −24.0000 24.0000i −1.68034 1.68034i
\(205\) 1.46410 + 5.46410i 0.102257 + 0.381629i
\(206\) 0 0
\(207\) −5.00000 8.66025i −0.347524 0.601929i
\(208\) 0 0
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −9.00000 + 9.00000i −0.619586 + 0.619586i −0.945425 0.325840i \(-0.894353\pi\)
0.325840 + 0.945425i \(0.394353\pi\)
\(212\) 5.12436 + 19.1244i 0.351942 + 1.31347i
\(213\) 5.85641 21.8564i 0.401274 1.49758i
\(214\) 5.00000 + 8.66025i 0.341793 + 0.592003i
\(215\) −17.3205 10.0000i −1.18125 0.681994i
\(216\) 16.0000i 1.08866i
\(217\) 0 0
\(218\) 6.00000i 0.406371i
\(219\) −27.3205 + 7.32051i −1.84615 + 0.494674i
\(220\) −12.0000 20.7846i −0.809040 1.40130i
\(221\) 0 0
\(222\) 4.39230 + 16.3923i 0.294792 + 1.10018i
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 4.39230 + 16.3923i 0.292172 + 1.09040i
\(227\) −5.46410 1.46410i −0.362665 0.0971758i 0.0728849 0.997340i \(-0.476779\pi\)
−0.435550 + 0.900165i \(0.643446\pi\)
\(228\) 16.0000 + 27.7128i 1.05963 + 1.83533i
\(229\) −16.3923 + 4.39230i −1.08323 + 0.290252i −0.755920 0.654664i \(-0.772810\pi\)
−0.327314 + 0.944916i \(0.606143\pi\)
\(230\) 8.00000i 0.527504i
\(231\) 0 0
\(232\) −4.00000 −0.262613
\(233\) 6.92820 + 4.00000i 0.453882 + 0.262049i 0.709468 0.704737i \(-0.248935\pi\)
−0.255586 + 0.966786i \(0.582269\pi\)
\(234\) 0 0
\(235\) 5.85641 21.8564i 0.382030 1.42575i
\(236\) 1.46410 + 5.46410i 0.0953049 + 0.355683i
\(237\) 28.0000 28.0000i 1.81880 1.81880i
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 16.0000 27.7128i 1.03280 1.78885i
\(241\) 11.0000 + 19.0526i 0.708572 + 1.22728i 0.965387 + 0.260822i \(0.0839937\pi\)
−0.256814 + 0.966461i \(0.582673\pi\)
\(242\) −2.56218 + 9.56218i −0.164703 + 0.614680i
\(243\) −3.66025 13.6603i −0.234805 0.876306i
\(244\) −12.0000 12.0000i −0.768221 0.768221i
\(245\) 0 0
\(246\) 8.00000 0.510061
\(247\) 0 0
\(248\) 2.92820 10.9282i 0.185941 0.693942i
\(249\) 0 0
\(250\) 6.92820 + 4.00000i 0.438178 + 0.252982i
\(251\) 4.00000 + 4.00000i 0.252478 + 0.252478i 0.821986 0.569508i \(-0.192866\pi\)
−0.569508 + 0.821986i \(0.692866\pi\)
\(252\) 0 0
\(253\) 6.00000 6.00000i 0.377217 0.377217i
\(254\) −2.92820 10.9282i −0.183732 0.685696i
\(255\) 24.0000 + 41.5692i 1.50294 + 2.60317i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 5.00000 8.66025i 0.311891 0.540212i −0.666880 0.745165i \(-0.732371\pi\)
0.978772 + 0.204953i \(0.0657041\pi\)
\(258\) −20.0000 + 20.0000i −1.24515 + 1.24515i
\(259\) 0 0
\(260\) 0 0
\(261\) −6.83013 + 1.83013i −0.422774 + 0.113282i
\(262\) 20.7846 12.0000i 1.28408 0.741362i
\(263\) 20.7846 12.0000i 1.28163 0.739952i 0.304487 0.952517i \(-0.401515\pi\)
0.977147 + 0.212565i \(0.0681817\pi\)
\(264\) −32.7846 + 8.78461i −2.01775 + 0.540655i
\(265\) 28.0000i 1.72003i
\(266\) 0 0
\(267\) −12.0000 12.0000i −0.734388 0.734388i
\(268\) −13.6603 + 3.66025i −0.834433 + 0.223586i
\(269\) 21.8564 + 5.85641i 1.33261 + 0.357071i 0.853687 0.520786i \(-0.174361\pi\)
0.478922 + 0.877858i \(0.341028\pi\)
\(270\) 5.85641 21.8564i 0.356410 1.33014i
\(271\) −8.00000 + 13.8564i −0.485965 + 0.841717i −0.999870 0.0161307i \(-0.994865\pi\)
0.513905 + 0.857847i \(0.328199\pi\)
\(272\) 24.0000 1.45521
\(273\) 0 0
\(274\) −12.0000 12.0000i −0.724947 0.724947i
\(275\) 3.29423 + 12.2942i 0.198649 + 0.741370i
\(276\) 10.9282 + 2.92820i 0.657801 + 0.176257i
\(277\) 0.366025 1.36603i 0.0219923 0.0820765i −0.954057 0.299624i \(-0.903139\pi\)
0.976050 + 0.217547i \(0.0698056\pi\)
\(278\) −12.0000 + 20.7846i −0.719712 + 1.24658i
\(279\) 20.0000i 1.19737i
\(280\) 0 0
\(281\) 24.0000i 1.43172i 0.698244 + 0.715860i \(0.253965\pi\)
−0.698244 + 0.715860i \(0.746035\pi\)
\(282\) −27.7128 16.0000i −1.65027 0.952786i
\(283\) −2.19615 + 8.19615i −0.130548 + 0.487211i −0.999977 0.00684749i \(-0.997820\pi\)
0.869429 + 0.494058i \(0.164487\pi\)
\(284\) 8.00000 + 13.8564i 0.474713 + 0.822226i
\(285\) −11.7128 43.7128i −0.693807 2.58932i
\(286\) 0 0
\(287\) 0 0
\(288\) −20.0000 20.0000i −1.17851 1.17851i
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 5.46410 + 1.46410i 0.320863 + 0.0859750i
\(291\) −16.3923 4.39230i −0.960934 0.257481i
\(292\) 10.0000 17.3205i 0.585206 1.01361i
\(293\) −10.0000 10.0000i −0.584206 0.584206i 0.351850 0.936056i \(-0.385553\pi\)
−0.936056 + 0.351850i \(0.885553\pi\)
\(294\) 0 0
\(295\) 8.00000i 0.465778i
\(296\) −10.3923 6.00000i −0.604040 0.348743i
\(297\) −20.7846 + 12.0000i −1.20605 + 0.696311i
\(298\) −13.0000 22.5167i −0.753070 1.30436i
\(299\) 0 0
\(300\) −12.0000 + 12.0000i −0.692820 + 0.692820i
\(301\) 0 0
\(302\) 6.00000 + 6.00000i 0.345261 + 0.345261i
\(303\) 4.00000 6.92820i 0.229794 0.398015i
\(304\) −21.8564 5.85641i −1.25355 0.335888i
\(305\) 12.0000 + 20.7846i 0.687118 + 1.19012i
\(306\) 40.9808 10.9808i 2.34271 0.627728i
\(307\) −8.00000 + 8.00000i −0.456584 + 0.456584i −0.897532 0.440948i \(-0.854642\pi\)
0.440948 + 0.897532i \(0.354642\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −8.00000 + 13.8564i −0.454369 + 0.786991i
\(311\) −3.46410 + 2.00000i −0.196431 + 0.113410i −0.594990 0.803733i \(-0.702844\pi\)
0.398559 + 0.917143i \(0.369511\pi\)
\(312\) 0 0
\(313\) 1.73205 + 1.00000i 0.0979013 + 0.0565233i 0.548151 0.836379i \(-0.315332\pi\)
−0.450250 + 0.892903i \(0.648665\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 28.0000i 1.57512i
\(317\) −5.49038 20.4904i −0.308371 1.15085i −0.930005 0.367547i \(-0.880198\pi\)
0.621634 0.783307i \(-0.286469\pi\)
\(318\) −38.2487 10.2487i −2.14488 0.574719i
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 5.85641 + 21.8564i 0.327383 + 1.22181i
\(321\) −20.0000 −1.11629
\(322\) 0 0
\(323\) 24.0000 24.0000i 1.33540 1.33540i
\(324\) −1.73205 1.00000i −0.0962250 0.0555556i
\(325\) 0 0
\(326\) −8.66025 + 5.00000i −0.479647 + 0.276924i
\(327\) 10.3923 + 6.00000i 0.574696 + 0.331801i
\(328\) −4.00000 + 4.00000i −0.220863 + 0.220863i
\(329\) 0 0
\(330\) 48.0000 2.64231
\(331\) 20.4904 5.49038i 1.12625 0.301779i 0.352842 0.935683i \(-0.385215\pi\)
0.773411 + 0.633904i \(0.218549\pi\)
\(332\) 0 0
\(333\) −20.4904 5.49038i −1.12287 0.300871i
\(334\) 0 0
\(335\) 20.0000 1.09272
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 17.7583 4.75833i 0.965926 0.258819i
\(339\) −32.7846 8.78461i −1.78062 0.477115i
\(340\) −32.7846 8.78461i −1.77800 0.476412i
\(341\) 16.3923 4.39230i 0.887693 0.237857i
\(342\) −40.0000 −2.16295
\(343\) 0 0
\(344\) 20.0000i 1.07833i
\(345\) −13.8564 8.00000i −0.746004 0.430706i
\(346\) 27.7128 16.0000i 1.48985 0.860165i
\(347\) −4.75833 + 17.7583i −0.255441 + 0.953317i 0.712404 + 0.701769i \(0.247606\pi\)
−0.967845 + 0.251548i \(0.919060\pi\)
\(348\) 4.00000 6.92820i 0.214423 0.371391i
\(349\) 16.0000 16.0000i 0.856460 0.856460i −0.134459 0.990919i \(-0.542930\pi\)
0.990919 + 0.134459i \(0.0429296\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 12.0000 20.7846i 0.639602 1.10782i
\(353\) −9.00000 15.5885i −0.479022 0.829690i 0.520689 0.853746i \(-0.325675\pi\)
−0.999711 + 0.0240566i \(0.992342\pi\)
\(354\) −10.9282 2.92820i −0.580827 0.155632i
\(355\) −5.85641 21.8564i −0.310826 1.16002i
\(356\) 12.0000 0.635999
\(357\) 0 0
\(358\) 10.0000i 0.528516i
\(359\) −19.0526 11.0000i −1.00556 0.580558i −0.0956683 0.995413i \(-0.530499\pi\)
−0.909887 + 0.414855i \(0.863832\pi\)
\(360\) 20.0000 + 34.6410i 1.05409 + 1.82574i
\(361\) −11.2583 + 6.50000i −0.592544 + 0.342105i
\(362\) 4.00000 6.92820i 0.210235 0.364138i
\(363\) −14.0000 14.0000i −0.734809 0.734809i
\(364\) 0 0
\(365\) −20.0000 + 20.0000i −1.04685 + 1.04685i
\(366\) 32.7846 8.78461i 1.71368 0.459179i
\(367\) 8.00000 + 13.8564i 0.417597 + 0.723299i 0.995697 0.0926670i \(-0.0295392\pi\)
−0.578101 + 0.815966i \(0.696206\pi\)
\(368\) −6.92820 + 4.00000i −0.361158 + 0.208514i
\(369\) −5.00000 + 8.66025i −0.260290 + 0.450835i
\(370\) 12.0000 + 12.0000i 0.623850 + 0.623850i
\(371\) 0 0
\(372\) 16.0000 + 16.0000i 0.829561 + 0.829561i
\(373\) −6.83013 + 1.83013i −0.353651 + 0.0947604i −0.431271 0.902223i \(-0.641935\pi\)
0.0776200 + 0.996983i \(0.475268\pi\)
\(374\) 18.0000 + 31.1769i 0.930758 + 1.61212i
\(375\) −13.8564 + 8.00000i −0.715542 + 0.413118i
\(376\) 21.8564 5.85641i 1.12716 0.302021i
\(377\) 0 0
\(378\) 0 0
\(379\) 17.0000 + 17.0000i 0.873231 + 0.873231i 0.992823 0.119592i \(-0.0381586\pi\)
−0.119592 + 0.992823i \(0.538159\pi\)
\(380\) 27.7128 + 16.0000i 1.42164 + 0.820783i
\(381\) 21.8564 + 5.85641i 1.11974 + 0.300033i
\(382\) 30.0526 + 8.05256i 1.53762 + 0.412005i
\(383\) 8.00000 13.8564i 0.408781 0.708029i −0.585973 0.810331i \(-0.699287\pi\)
0.994753 + 0.102302i \(0.0326207\pi\)
\(384\) 32.0000 1.63299
\(385\) 0 0
\(386\) 24.0000 24.0000i 1.22157 1.22157i
\(387\) −9.15064 34.1506i −0.465153 1.73597i
\(388\) 10.3923 6.00000i 0.527589 0.304604i
\(389\) 6.95448 25.9545i 0.352606 1.31594i −0.530864 0.847457i \(-0.678132\pi\)
0.883470 0.468487i \(-0.155201\pi\)
\(390\) 0 0
\(391\) 12.0000i 0.606866i
\(392\) 0 0
\(393\) 48.0000i 2.42128i
\(394\) −11.0000 + 19.0526i −0.554172 + 0.959854i
\(395\) 10.2487 38.2487i 0.515669 1.92450i
\(396\) 10.9808 40.9808i 0.551804 2.05936i
\(397\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(398\) 20.0000 + 20.0000i 1.00251 + 1.00251i
\(399\) 0 0
\(400\) 12.0000i 0.600000i
\(401\) 2.00000 3.46410i 0.0998752 0.172989i −0.811758 0.583994i \(-0.801489\pi\)
0.911633 + 0.411005i \(0.134822\pi\)
\(402\) 7.32051 27.3205i 0.365114 1.36262i
\(403\) 0 0
\(404\) 1.46410 + 5.46410i 0.0728418 + 0.271849i
\(405\) 2.00000 + 2.00000i 0.0993808 + 0.0993808i
\(406\) 0 0
\(407\) 18.0000i 0.892227i
\(408\) −24.0000 + 41.5692i −1.18818 + 2.05798i
\(409\) 8.66025 5.00000i 0.428222 0.247234i −0.270367 0.962757i \(-0.587145\pi\)
0.698589 + 0.715523i \(0.253812\pi\)
\(410\) 6.92820 4.00000i 0.342160 0.197546i
\(411\) 32.7846 8.78461i 1.61715 0.433313i
\(412\) 0 0
\(413\) 0 0
\(414\) −10.0000 + 10.0000i −0.491473 + 0.491473i
\(415\) 0 0
\(416\) 0 0
\(417\) −24.0000 41.5692i −1.17529 2.03565i
\(418\) −8.78461 32.7846i −0.429669 1.60355i
\(419\) −10.0000 + 10.0000i −0.488532 + 0.488532i −0.907843 0.419311i \(-0.862272\pi\)
0.419311 + 0.907843i \(0.362272\pi\)
\(420\) 0 0
\(421\) −25.0000 25.0000i −1.21843 1.21843i −0.968183 0.250242i \(-0.919490\pi\)
−0.250242 0.968183i \(-0.580510\pi\)
\(422\) 15.5885 + 9.00000i 0.758834 + 0.438113i
\(423\) 34.6410 20.0000i 1.68430 0.972433i
\(424\) 24.2487 14.0000i 1.17762 0.679900i
\(425\) 15.5885 + 9.00000i 0.756151 + 0.436564i
\(426\) −32.0000 −1.55041
\(427\) 0 0
\(428\) 10.0000 10.0000i 0.483368 0.483368i
\(429\) 0 0
\(430\) −7.32051 + 27.3205i −0.353026 + 1.31751i
\(431\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 21.8564 5.85641i 1.05157 0.281766i
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) −8.00000 + 8.00000i −0.383571 + 0.383571i
\(436\) −8.19615 + 2.19615i −0.392525 + 0.105177i
\(437\) −2.92820 + 10.9282i −0.140075 + 0.522767i
\(438\) 20.0000 + 34.6410i 0.955637 + 1.65521i
\(439\) 20.7846 + 12.0000i 0.991995 + 0.572729i 0.905870 0.423556i \(-0.139218\pi\)
0.0861252 + 0.996284i \(0.472552\pi\)
\(440\) −24.0000 + 24.0000i −1.14416 + 1.14416i
\(441\) 0 0
\(442\) 0 0
\(443\) 23.2224 6.22243i 1.10333 0.295637i 0.339211 0.940710i \(-0.389840\pi\)
0.764120 + 0.645074i \(0.223173\pi\)
\(444\) 20.7846 12.0000i 0.986394 0.569495i
\(445\) −16.3923 4.39230i −0.777070 0.208215i
\(446\) −1.46410 5.46410i −0.0693272 0.258733i
\(447\) 52.0000 2.45952
\(448\) 0 0
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) −5.49038 20.4904i −0.258819 0.965926i
\(451\) −8.19615 2.19615i −0.385942 0.103413i
\(452\) 20.7846 12.0000i 0.977626 0.564433i
\(453\) −16.3923 + 4.39230i −0.770178 + 0.206368i
\(454\) 8.00000i 0.375459i
\(455\) 0 0
\(456\) 32.0000 32.0000i 1.49854 1.49854i
\(457\) 22.5167 + 13.0000i 1.05328 + 0.608114i 0.923567 0.383437i \(-0.125260\pi\)
0.129718 + 0.991551i \(0.458593\pi\)
\(458\) 12.0000 + 20.7846i 0.560723 + 0.971201i
\(459\) −8.78461 + 32.7846i −0.410030 + 1.53025i
\(460\) 10.9282 2.92820i 0.509530 0.136528i
\(461\) −28.0000 + 28.0000i −1.30409 + 1.30409i −0.378481 + 0.925609i \(0.623553\pi\)
−0.925609 + 0.378481i \(0.876447\pi\)
\(462\) 0 0
\(463\) 14.0000 0.650635 0.325318 0.945605i \(-0.394529\pi\)
0.325318 + 0.945605i \(0.394529\pi\)
\(464\) 1.46410 + 5.46410i 0.0679692 + 0.253665i
\(465\) −16.0000 27.7128i −0.741982 1.28515i
\(466\) 2.92820 10.9282i 0.135646 0.506239i
\(467\) −5.85641 21.8564i −0.271002 1.01139i −0.958473 0.285182i \(-0.907946\pi\)
0.687471 0.726212i \(-0.258721\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −32.0000 −1.47605
\(471\) 0 0
\(472\) 6.92820 4.00000i 0.318896 0.184115i
\(473\) 25.9808 15.0000i 1.19460 0.689701i
\(474\) −48.4974 28.0000i −2.22756 1.28608i
\(475\) −12.0000 12.0000i −0.550598 0.550598i
\(476\) 0 0
\(477\) 35.0000 35.0000i 1.60254 1.60254i
\(478\) 2.92820 + 10.9282i 0.133933 + 0.499844i
\(479\) 4.00000 + 6.92820i 0.182765 + 0.316558i 0.942821 0.333300i \(-0.108162\pi\)
−0.760056 + 0.649857i \(0.774829\pi\)
\(480\) −43.7128 11.7128i −1.99521 0.534614i
\(481\) 0 0
\(482\) 22.0000 22.0000i 1.00207 1.00207i
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) −16.3923 + 4.39230i −0.744336 + 0.199444i
\(486\) −17.3205 + 10.0000i −0.785674 + 0.453609i
\(487\) −1.73205 + 1.00000i −0.0784867 + 0.0453143i −0.538730 0.842479i \(-0.681096\pi\)
0.460243 + 0.887793i \(0.347762\pi\)
\(488\) −12.0000 + 20.7846i −0.543214 + 0.940875i
\(489\) 20.0000i 0.904431i
\(490\) 0 0
\(491\) −11.0000 11.0000i −0.496423 0.496423i 0.413900 0.910323i \(-0.364166\pi\)
−0.910323 + 0.413900i \(0.864166\pi\)
\(492\) −2.92820 10.9282i −0.132014 0.492681i
\(493\) −8.19615 2.19615i −0.369136 0.0989097i
\(494\) 0 0
\(495\) −30.0000 + 51.9615i −1.34840 + 2.33550i
\(496\) −16.0000 −0.718421
\(497\) 0 0
\(498\) 0 0
\(499\) −5.49038 20.4904i −0.245783 0.917275i −0.972988 0.230855i \(-0.925848\pi\)
0.727205 0.686420i \(-0.240819\pi\)
\(500\) 2.92820 10.9282i 0.130953 0.488724i
\(501\) 0 0
\(502\) 4.00000 6.92820i 0.178529 0.309221i
\(503\) 8.00000i 0.356702i 0.983967 + 0.178351i \(0.0570763\pi\)
−0.983967 + 0.178351i \(0.942924\pi\)
\(504\) 0 0
\(505\) 8.00000i 0.355995i
\(506\) −10.3923 6.00000i −0.461994 0.266733i
\(507\) −9.51666 + 35.5167i −0.422650 + 1.57735i
\(508\) −13.8564 + 8.00000i −0.614779 + 0.354943i
\(509\) −4.39230 16.3923i −0.194685 0.726576i −0.992348 0.123472i \(-0.960597\pi\)
0.797663 0.603104i \(-0.206070\pi\)
\(510\) 48.0000 48.0000i 2.12548 2.12548i
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 16.0000 27.7128i 0.706417 1.22355i
\(514\) −13.6603 3.66025i −0.602528 0.161447i
\(515\) 0 0
\(516\) 34.6410 + 20.0000i 1.52499 + 0.880451i
\(517\) 24.0000 + 24.0000i 1.05552 + 1.05552i
\(518\) 0 0
\(519\) 64.0000i 2.80929i
\(520\) 0 0
\(521\) 5.19615 3.00000i 0.227648 0.131432i −0.381839 0.924229i \(-0.624709\pi\)
0.609486 + 0.792797i \(0.291376\pi\)
\(522\) 5.00000 + 8.66025i 0.218844 + 0.379049i
\(523\) −35.5167 + 9.51666i −1.55304 + 0.416135i −0.930450 0.366418i \(-0.880584\pi\)
−0.622585 + 0.782552i \(0.713917\pi\)
\(524\) −24.0000 24.0000i −1.04844 1.04844i
\(525\) 0 0
\(526\) −24.0000 24.0000i −1.04645 1.04645i
\(527\) 12.0000 20.7846i 0.522728 0.905392i
\(528\) 24.0000 + 41.5692i 1.04447 + 1.80907i
\(529\) −9.50000 16.4545i −0.413043 0.715412i
\(530\) −38.2487 + 10.2487i −1.66142 + 0.445176i
\(531\) 10.0000 10.0000i 0.433963 0.433963i
\(532\) 0 0
\(533\) 0 0
\(534\) −12.0000 + 20.7846i −0.519291 + 0.899438i
\(535\) −17.3205 + 10.0000i −0.748831 + 0.432338i
\(536\) 10.0000 + 17.3205i 0.431934 + 0.748132i
\(537\) −17.3205 10.0000i −0.747435 0.431532i
\(538\) 32.0000i 1.37962i
\(539\) 0 0
\(540\) −32.0000 −1.37706
\(541\) −10.6147 39.6147i −0.456363 1.70317i −0.684049 0.729436i \(-0.739783\pi\)
0.227686 0.973735i \(-0.426884\pi\)
\(542\) 21.8564 + 5.85641i 0.938813 + 0.251554i
\(543\) 8.00000 + 13.8564i 0.343313 + 0.594635i
\(544\) −8.78461 32.7846i −0.376637 1.40563i
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) 19.0000 19.0000i 0.812381 0.812381i −0.172609 0.984990i \(-0.555220\pi\)
0.984990 + 0.172609i \(0.0552197\pi\)
\(548\) −12.0000 + 20.7846i −0.512615 + 0.887875i
\(549\) −10.9808 + 40.9808i −0.468648 + 1.74902i
\(550\) 15.5885 9.00000i 0.664694 0.383761i
\(551\) 6.92820 + 4.00000i 0.295151 + 0.170406i
\(552\) 16.0000i 0.681005i
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) −32.7846 + 8.78461i −1.39163 + 0.372886i
\(556\) 32.7846 + 8.78461i 1.39038 + 0.372550i
\(557\) −20.4904 5.49038i −0.868205 0.232635i −0.202894 0.979201i \(-0.565035\pi\)
−0.665312 + 0.746566i \(0.731701\pi\)
\(558\) −27.3205 + 7.32051i −1.15657 + 0.309902i
\(559\) 0 0
\(560\) 0 0
\(561\) −72.0000 −3.03984
\(562\) 32.7846 8.78461i 1.38294 0.370556i
\(563\) 30.0526 + 8.05256i 1.26656 + 0.339375i 0.828714 0.559673i \(-0.189073\pi\)
0.437851 + 0.899048i \(0.355740\pi\)
\(564\) −11.7128 + 43.7128i −0.493198 + 1.84064i
\(565\) −32.7846 + 8.78461i −1.37926 + 0.369571i
\(566\) 12.0000 0.504398
\(567\) 0 0
\(568\) 16.0000 16.0000i 0.671345 0.671345i
\(569\) 39.8372 + 23.0000i 1.67006 + 0.964210i 0.967600 + 0.252488i \(0.0812488\pi\)
0.702461 + 0.711722i \(0.252085\pi\)
\(570\) −55.4256 + 32.0000i −2.32152 + 1.34033i
\(571\) −7.68653 + 28.6865i −0.321671 + 1.20049i 0.595944 + 0.803026i \(0.296778\pi\)
−0.917616 + 0.397468i \(0.869889\pi\)
\(572\) 0 0
\(573\) −44.0000 + 44.0000i −1.83813 + 1.83813i
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) −20.0000 + 34.6410i −0.833333 + 1.44338i
\(577\) 13.0000 + 22.5167i 0.541197 + 0.937381i 0.998836 + 0.0482425i \(0.0153620\pi\)
−0.457639 + 0.889138i \(0.651305\pi\)
\(578\) 25.9545 + 6.95448i 1.07956 + 0.289268i
\(579\) 17.5692 + 65.5692i 0.730152 + 2.72496i
\(580\) 8.00000i 0.332182i
\(581\) 0 0
\(582\) 24.0000i 0.994832i
\(583\) 36.3731 + 21.0000i 1.50642 + 0.869731i
\(584\) −27.3205 7.32051i −1.13053 0.302925i
\(585\) 0 0
\(586\) −10.0000 + 17.3205i −0.413096 + 0.715504i
\(587\) 8.00000 + 8.00000i 0.330195 + 0.330195i 0.852661 0.522465i \(-0.174988\pi\)
−0.522465 + 0.852661i \(0.674988\pi\)
\(588\) 0 0
\(589\) −16.0000 + 16.0000i −0.659269 + 0.659269i
\(590\) −10.9282 + 2.92820i −0.449907 + 0.120552i
\(591\) −22.0000 38.1051i −0.904959 1.56744i
\(592\) −4.39230 + 16.3923i −0.180523 + 0.673720i
\(593\) 11.0000 19.0526i 0.451716 0.782395i −0.546777 0.837278i \(-0.684145\pi\)
0.998493 + 0.0548835i \(0.0174787\pi\)
\(594\) 24.0000 + 24.0000i 0.984732 + 0.984732i
\(595\) 0 0
\(596\) −26.0000 + 26.0000i −1.06500 + 1.06500i
\(597\) −54.6410 + 14.6410i −2.23631 + 0.599217i
\(598\) 0 0
\(599\) −6.92820 + 4.00000i −0.283079 + 0.163436i −0.634816 0.772663i \(-0.718924\pi\)
0.351738 + 0.936099i \(0.385591\pi\)
\(600\) 20.7846 + 12.0000i 0.848528 + 0.489898i
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 0 0
\(603\) 25.0000 + 25.0000i 1.01808 + 1.01808i
\(604\) 6.00000 10.3923i 0.244137 0.422857i
\(605\) −19.1244 5.12436i −0.777516 0.208335i
\(606\) −10.9282 2.92820i −0.443928 0.118950i
\(607\) −10.0000 + 17.3205i −0.405887 + 0.703018i −0.994424 0.105453i \(-0.966371\pi\)
0.588537 + 0.808470i \(0.299704\pi\)
\(608\) 32.0000i 1.29777i
\(609\) 0 0
\(610\) 24.0000 24.0000i 0.971732 0.971732i
\(611\) 0 0
\(612\) −30.0000 51.9615i −1.21268 2.10042i
\(613\) −5.49038 + 20.4904i −0.221754 + 0.827599i 0.761924 + 0.647666i \(0.224255\pi\)
−0.983679 + 0.179933i \(0.942412\pi\)
\(614\) 13.8564 + 8.00000i 0.559199 + 0.322854i
\(615\) 16.0000i 0.645182i
\(616\) 0 0
\(617\) 6.00000i 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) 6.58846 24.5885i 0.264812 0.988294i −0.697553 0.716534i \(-0.745728\pi\)
0.962365 0.271760i \(-0.0876057\pi\)
\(620\) 21.8564 + 5.85641i 0.877774 + 0.235199i
\(621\) −2.92820 10.9282i −0.117505 0.438534i
\(622\) 4.00000 + 4.00000i 0.160385 + 0.160385i
\(623\) 0 0
\(624\) 0 0
\(625\) −15.5000 + 26.8468i −0.620000 + 1.07387i
\(626\) 0.732051 2.73205i 0.0292586 0.109195i
\(627\) 65.5692 + 17.5692i 2.61858 + 0.701647i
\(628\) 0 0
\(629\) −18.0000 18.0000i −0.717707 0.717707i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 38.2487 10.2487i 1.52145 0.407672i
\(633\) −31.1769 + 18.0000i −1.23917 + 0.715436i
\(634\) −25.9808 + 15.0000i −1.03183 + 0.595726i
\(635\) 21.8564 5.85641i 0.867345 0.232404i
\(636\) 56.0000i 2.22054i
\(637\) 0 0
\(638\) −6.00000 + 6.00000i −0.237542 + 0.237542i
\(639\) 20.0000 34.6410i 0.791188 1.37038i
\(640\) 27.7128 16.0000i 1.09545 0.632456i
\(641\) −22.0000 38.1051i −0.868948 1.50506i −0.863073 0.505079i \(-0.831463\pi\)
−0.00587459 0.999983i \(-0.501870\pi\)
\(642\) 7.32051 + 27.3205i 0.288917 + 1.07825i
\(643\) 26.0000 26.0000i 1.02534 1.02534i 0.0256694 0.999670i \(-0.491828\pi\)
0.999670 0.0256694i \(-0.00817173\pi\)
\(644\) 0 0
\(645\) −40.0000 40.0000i −1.57500 1.57500i
\(646\) −41.5692 24.0000i −1.63552 0.944267i
\(647\) −20.7846 + 12.0000i −0.817127 + 0.471769i −0.849425 0.527710i \(-0.823051\pi\)
0.0322975 + 0.999478i \(0.489718\pi\)
\(648\) −0.732051 + 2.73205i −0.0287577 + 0.107325i
\(649\) 10.3923 + 6.00000i 0.407934 + 0.235521i
\(650\) 0 0
\(651\) 0 0
\(652\) 10.0000 + 10.0000i 0.391630 + 0.391630i
\(653\) 9.15064 + 34.1506i 0.358092 + 1.33642i 0.876548 + 0.481314i \(0.159840\pi\)
−0.518456 + 0.855104i \(0.673493\pi\)
\(654\) 4.39230 16.3923i 0.171753 0.640990i
\(655\) 24.0000 + 41.5692i 0.937758 + 1.62424i
\(656\) 6.92820 + 4.00000i 0.270501 + 0.156174i
\(657\) −50.0000 −1.95069
\(658\) 0 0
\(659\) 17.0000 17.0000i 0.662226 0.662226i −0.293678 0.955904i \(-0.594879\pi\)
0.955904 + 0.293678i \(0.0948794\pi\)
\(660\) −17.5692 65.5692i −0.683881 2.55228i
\(661\) 10.9808 40.9808i 0.427102 1.59397i −0.332187 0.943214i \(-0.607787\pi\)
0.759289 0.650753i \(-0.225547\pi\)
\(662\) −15.0000 25.9808i −0.582992 1.00977i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 30.0000i 1.16248i
\(667\) 2.73205 0.732051i 0.105785 0.0283451i
\(668\) 0 0
\(669\) 10.9282 + 2.92820i 0.422509 + 0.113211i
\(670\) −7.32051 27.3205i −0.282816 1.05548i
\(671\) −36.0000 −1.38976
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 2.92820 + 10.9282i 0.112790 + 0.420939i
\(675\) 16.3923 + 4.39230i 0.630940 + 0.169060i
\(676\) −13.0000 22.5167i −0.500000 0.866025i
\(677\) −10.9282 + 2.92820i −0.420005 + 0.112540i −0.462631 0.886551i \(-0.653094\pi\)
0.0426257 + 0.999091i \(0.486428\pi\)
\(678\) 48.0000i 1.84343i
\(679\) 0 0
\(680\) 48.0000i 1.84072i
\(681\) −13.8564 8.00000i −0.530979 0.306561i
\(682\) −12.0000 20.7846i −0.459504 0.795884i
\(683\) 1.83013 6.83013i 0.0700279 0.261348i −0.922032 0.387113i \(-0.873472\pi\)
0.992060 + 0.125766i \(0.0401388\pi\)
\(684\) 14.6410 + 54.6410i 0.559813 + 2.08925i
\(685\) 24.0000 24.0000i 0.916993 0.916993i
\(686\) 0 0
\(687\) −48.0000 −1.83131
\(688\) −27.3205 + 7.32051i −1.04158 + 0.279092i
\(689\) 0 0
\(690\) −5.85641 + 21.8564i −0.222950 + 0.832059i
\(691\) 4.39230 + 16.3923i 0.167091 + 0.623593i 0.997764 + 0.0668322i \(0.0212892\pi\)
−0.830673 + 0.556760i \(0.812044\pi\)
\(692\) −32.0000 32.0000i −1.21646 1.21646i
\(693\) 0 0
\(694\) 26.0000 0.986947
\(695\) −41.5692 24.0000i −1.57681 0.910372i
\(696\) −10.9282 2.92820i −0.414232 0.110993i
\(697\) −10.3923 + 6.00000i −0.393637 + 0.227266i
\(698\) −27.7128 16.0000i −1.04895 0.605609i
\(699\) 16.0000 + 16.0000i 0.605176 + 0.605176i
\(700\) 0 0
\(701\) 13.0000 13.0000i 0.491003 0.491003i −0.417619 0.908622i \(-0.637135\pi\)
0.908622 + 0.417619i \(0.137135\pi\)
\(702\) 0 0
\(703\) 12.0000 + 20.7846i 0.452589 + 0.783906i
\(704\) −32.7846 8.78461i −1.23562 0.331082i
\(705\) 32.0000 55.4256i 1.20519 2.08745i
\(706\) −18.0000 + 18.0000i −0.677439 + 0.677439i
\(707\) 0 0
\(708\) 16.0000i 0.601317i
\(709\) 42.3468 11.3468i 1.59037 0.426138i 0.648252 0.761426i \(-0.275501\pi\)
0.942115 + 0.335289i \(0.108834\pi\)
\(710\) −27.7128 + 16.0000i −1.04004 + 0.600469i
\(711\) 60.6218 35.0000i 2.27349 1.31260i
\(712\) −4.39230 16.3923i −0.164609 0.614328i
\(713\) 8.00000i 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 13.6603 3.66025i 0.510508 0.136790i
\(717\) −21.8564 5.85641i −0.816242 0.218712i
\(718\) −8.05256 + 30.0526i −0.300519 + 1.12155i
\(719\) 4.00000 6.92820i 0.149175 0.258378i −0.781748 0.623595i \(-0.785672\pi\)
0.930923 + 0.365216i \(0.119005\pi\)
\(720\) 40.0000 40.0000i 1.49071 1.49071i
\(721\) 0 0
\(722\) 13.0000 + 13.0000i 0.483810 + 0.483810i
\(723\) 16.1051 + 60.1051i 0.598956 + 2.23533i
\(724\) −10.9282 2.92820i −0.406143 0.108826i
\(725\) −1.09808 + 4.09808i −0.0407815 + 0.152199i
\(726\) −14.0000 + 24.2487i −0.519589 + 0.899954i
\(727\) 44.0000i 1.63187i 0.578144 + 0.815935i \(0.303777\pi\)
−0.578144 + 0.815935i \(0.696223\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 34.6410 + 20.0000i 1.28212 + 0.740233i
\(731\) 10.9808 40.9808i 0.406138 1.51573i
\(732\) −24.0000 41.5692i −0.887066 1.53644i
\(733\) −0.732051 2.73205i −0.0270389 0.100911i 0.951088 0.308921i \(-0.0999679\pi\)
−0.978127 + 0.208010i \(0.933301\pi\)
\(734\) 16.0000 16.0000i 0.590571 0.590571i
\(735\) 0 0
\(736\) 8.00000 + 8.00000i 0.294884 + 0.294884i
\(737\) −15.0000 + 25.9808i −0.552532 + 0.957014i
\(738\) 13.6603 + 3.66025i 0.502841 + 0.134736i
\(739\) 6.83013 + 1.83013i 0.251250 + 0.0673223i 0.382246 0.924061i \(-0.375151\pi\)
−0.130996 + 0.991383i \(0.541817\pi\)
\(740\) 12.0000 20.7846i 0.441129 0.764057i
\(741\) 0 0
\(742\) 0 0
\(743\) 6.00000i 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) 16.0000 27.7128i 0.586588 1.01600i
\(745\) 45.0333 26.0000i 1.64989 0.952566i
\(746\) 5.00000 + 8.66025i 0.183063 + 0.317074i
\(747\) 0 0
\(748\) 36.0000 36.0000i 1.31629 1.31629i
\(749\) 0 0
\(750\) 16.0000 + 16.0000i 0.584237 + 0.584237i
\(751\) −20.0000 + 34.6410i −0.729810 + 1.26407i 0.227153 + 0.973859i \(0.427058\pi\)
−0.956963 + 0.290209i \(0.906275\pi\)
\(752\) −16.0000 27.7128i −0.583460 1.01058i
\(753\) 8.00000 + 13.8564i 0.291536 + 0.504956i
\(754\) 0 0
\(755\) −12.0000 + 12.0000i −0.436725 + 0.436725i
\(756\) 0 0
\(757\) 33.0000 + 33.0000i 1.19941 + 1.19941i 0.974345 + 0.225061i \(0.0722580\pi\)
0.225061 + 0.974345i \(0.427742\pi\)
\(758\) 17.0000 29.4449i 0.617468 1.06949i
\(759\) 20.7846 12.0000i 0.754434 0.435572i
\(760\) 11.7128 43.7128i 0.424868 1.58563i
\(761\) −15.5885 9.00000i −0.565081 0.326250i 0.190101 0.981764i \(-0.439118\pi\)
−0.755182 + 0.655515i \(0.772452\pi\)
\(762\) 32.0000i 1.15924i
\(763\) 0 0
\(764\) 44.0000i 1.59186i
\(765\) 21.9615 + 81.9615i 0.794021 + 2.96333i
\(766\) −21.8564 5.85641i −0.789704 0.211601i
\(767\) 0 0
\(768\) −11.7128 43.7128i −0.422650 1.57735i
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 20.0000 20.0000i 0.720282 0.720282i
\(772\) −41.5692 24.0000i −1.49611 0.863779i
\(773\) −10.9808 + 40.9808i −0.394951 + 1.47398i 0.426914 + 0.904292i \(0.359601\pi\)
−0.821864 + 0.569683i \(0.807066\pi\)
\(774\) −43.3013 + 25.0000i −1.55643 + 0.898606i
\(775\) −10.3923 6.00000i −0.373303 0.215526i
\(776\) −12.0000 12.0000i −0.430775 0.430775i
\(777\) 0 0
\(778\) −38.0000 −1.36237
\(779\) 10.9282 2.92820i 0.391544 0.104914i
\(780\) 0 0
\(781\) 32.7846 + 8.78461i 1.17313 + 0.314338i
\(782\) −16.3923 + 4.39230i −0.586188 + 0.157069i
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) 0 0
\(786\) 65.5692 17.5692i 2.33878 0.626673i
\(787\) 16.3923 + 4.39230i 0.584323 + 0.156569i 0.538857 0.842397i \(-0.318856\pi\)
0.0454654 + 0.998966i \(0.485523\pi\)
\(788\) 30.0526 + 8.05256i 1.07058 + 0.286861i
\(789\) 65.5692 17.5692i 2.33433 0.625481i
\(790\) −56.0000 −1.99239
\(791\) 0 0
\(792\) −60.0000 −2.13201
\(793\) 0 0
\(794\) 0 0
\(795\) 20.4974 76.4974i 0.726969 2.71308i
\(796\) 20.0000 34.6410i 0.708881 1.22782i
\(797\) 8.00000 8.00000i 0.283375 0.283375i −0.551079 0.834453i \(-0.685784\pi\)
0.834453 + 0.551079i \(0.185784\pi\)
\(798\) 0 0
\(799\) 48.0000 1.69812
\(800\) −16.3923 + 4.39230i −0.579555 + 0.155291i
\(801\) −15.0000 25.9808i −0.529999 0.917985i
\(802\) −5.46410 1.46410i −0.192944 0.0516992i
\(803\) −10.9808 40.9808i −0.387503 1.44618i
\(804\) −40.0000 −1.41069
\(805\) 0 0
\(806\) 0 0
\(807\) 55.4256 + 32.0000i 1.95107 + 1.12645i
\(808\) 6.92820 4.00000i 0.243733 0.140720i
\(809\) 32.9090 19.0000i 1.15702 0.668004i 0.206430 0.978461i \(-0.433815\pi\)
0.950587 + 0.310457i \(0.100482\pi\)
\(810\) 2.00000 3.46410i 0.0702728 0.121716i
\(811\) 30.0000 + 30.0000i 1.05344 + 1.05344i 0.998489 + 0.0549536i \(0.0175011\pi\)
0.0549536 + 0.998489i \(0.482499\pi\)
\(812\) 0 0
\(813\) −32.0000 + 32.0000i −1.12229 + 1.12229i
\(814\) −24.5885 + 6.58846i −0.861825 + 0.230925i
\(815\) −10.0000 17.3205i −0.350285 0.606711i
\(816\) 65.5692 + 17.5692i 2.29538 + 0.615046i
\(817\) −20.0000 + 34.6410i −0.699711 + 1.21194i
\(818\) −10.0000 10.0000i −0.349642 0.349642i
\(819\) 0 0
\(820\) −8.00000 8.00000i −0.279372 0.279372i
\(821\) 9.56218 2.56218i 0.333722 0.0894206i −0.0880668 0.996115i \(-0.528069\pi\)
0.421789 + 0.906694i \(0.361402\pi\)
\(822\) −24.0000 41.5692i −0.837096 1.44989i
\(823\) −34.6410 + 20.0000i −1.20751 + 0.697156i −0.962215 0.272292i \(-0.912218\pi\)
−0.245295 + 0.969448i \(0.578885\pi\)
\(824\) 0 0
\(825\) 36.0000i 1.25336i
\(826\) 0 0
\(827\) −13.0000 13.0000i −0.452054 0.452054i 0.443982 0.896036i \(-0.353566\pi\)
−0.896036 + 0.443982i \(0.853566\pi\)
\(828\) 17.3205 + 10.0000i 0.601929 + 0.347524i
\(829\) 2.73205 + 0.732051i 0.0948880 + 0.0254252i 0.305951 0.952047i \(-0.401026\pi\)
−0.211063 + 0.977473i \(0.567692\pi\)
\(830\) 0 0
\(831\) 2.00000 3.46410i 0.0693792 0.120168i
\(832\) 0 0
\(833\) 0 0
\(834\) −48.0000 + 48.0000i −1.66210 + 1.66210i
\(835\) 0 0
\(836\) −41.5692 + 24.0000i −1.43770 + 0.830057i
\(837\) 5.85641 21.8564i 0.202427 0.755468i
\(838\) 17.3205 + 10.0000i 0.598327 + 0.345444i
\(839\) 24.0000i 0.828572i −0.910147 0.414286i \(-0.864031\pi\)
0.910147 0.414286i \(-0.135969\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) −25.0000 + 43.3013i −0.861557 + 1.49226i
\(843\) −17.5692 + 65.5692i −0.605116 + 2.25832i
\(844\) 6.58846 24.5885i 0.226784 0.846370i
\(845\) 9.51666 + 35.5167i 0.327383 + 1.22181i
\(846\) −40.0000 40.0000i −1.37523 1.37523i
\(847\) 0 0
\(848\) −28.0000 28.0000i −0.961524 0.961524i
\(849\) −12.0000 + 20.7846i −0.411839 + 0.713326i
\(850\) 6.58846 24.5885i 0.225982 0.843377i
\(851\) 8.19615 + 2.19615i 0.280960 + 0.0752831i
\(852\) 11.7128 + 43.7128i 0.401274 + 1.49758i
\(853\) −4.00000 4.00000i −0.136957 0.136957i 0.635304 0.772262i \(-0.280875\pi\)
−0.772262 + 0.635304i \(0.780875\pi\)
\(854\) 0 0
\(855\) 80.0000i 2.73594i
\(856\) −17.3205 10.0000i −0.592003 0.341793i
\(857\) −15.5885 + 9.00000i −0.532492 + 0.307434i −0.742030 0.670366i \(-0.766137\pi\)
0.209539 + 0.977800i \(0.432804\pi\)
\(858\) 0 0
\(859\) 5.46410 1.46410i 0.186433 0.0499545i −0.164395 0.986395i \(-0.552567\pi\)
0.350827 + 0.936440i \(0.385900\pi\)
\(860\) 40.0000 1.36399
\(861\) 0 0
\(862\) 0 0
\(863\) −3.00000 + 5.19615i −0.102121 + 0.176879i −0.912558 0.408946i \(-0.865896\pi\)
0.810437 + 0.585826i \(0.199230\pi\)
\(864\) −16.0000 27.7128i −0.544331 0.942809i
\(865\) 32.0000 + 55.4256i 1.08803 + 1.88453i
\(866\) 0.732051 + 2.73205i 0.0248761 + 0.0928389i
\(867\) −38.0000 + 38.0000i −1.29055 + 1.29055i
\(868\) 0 0
\(869\) 42.0000 + 42.0000i 1.42475 + 1.42475i
\(870\) 13.8564 + 8.00000i 0.469776 + 0.271225i
\(871\) 0 0
\(872\) 6.00000 + 10.3923i 0.203186 + 0.351928i
\(873\) −25.9808 15.0000i −0.879316 0.507673i
\(874\) 16.0000 0.541208
\(875\) 0 0
\(876\) 40.0000 40.0000i 1.35147 1.35147i
\(877\) −7.68653 28.6865i −0.259556 0.968675i −0.965499 0.260407i \(-0.916143\pi\)
0.705943 0.708268i \(-0.250523\pi\)
\(878\) 8.78461 32.7846i 0.296466 1.10643i
\(879\) −20.0000 34.6410i −0.674583 1.16841i
\(880\) 41.5692 + 24.0000i 1.40130 + 0.809040i
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −17.0000 + 17.0000i −0.572096 + 0.572096i −0.932714 0.360618i \(-0.882566\pi\)
0.360618 + 0.932714i \(0.382566\pi\)
\(884\) 0 0
\(885\) 5.85641 21.8564i 0.196861 0.734695i
\(886\) −17.0000 29.4449i −0.571126 0.989220i
\(887\) 20.7846 + 12.0000i 0.697879 + 0.402921i 0.806557 0.591156i \(-0.201328\pi\)
−0.108678 + 0.994077i \(0.534662\pi\)
\(888\) −24.0000 24.0000i −0.805387 0.805387i
\(889\) 0 0
\(890\) 24.0000i 0.804482i
\(891\) −4.09808 + 1.09808i −0.137291 + 0.0367869i
\(892\) −6.92820 + 4.00000i −0.231973 + 0.133930i
\(893\) −43.7128 11.7128i −1.46279 0.391954i
\(894\) −19.0333 71.0333i −0.636569 2.37571i
\(895\) −20.0000 −0.668526
\(896\) 0 0
\(897\) 0 0
\(898\) −12.4449 46.4449i −0.415290 1.54989i
\(899\) 5.46410 + 1.46410i 0.182238 + 0.0488305i
\(900\) −25.9808 + 15.0000i −0.866025 + 0.500000i
\(901\) 57.3731 15.3731i 1.91137 0.512151i
\(902\) 12.0000i 0.399556i
\(903\) 0 0
\(904\) −24.0000 24.0000i −0.798228 0.798228i
\(905\) 13.8564 + 8.00000i 0.460603 + 0.265929i
\(906\) 12.0000 + 20.7846i 0.398673 + 0.690522i
\(907\) −3.29423 + 12.2942i −0.109383 + 0.408223i −0.998805 0.0488630i \(-0.984440\pi\)
0.889422 + 0.457086i \(0.151107\pi\)
\(908\) 10.9282 2.92820i 0.362665 0.0971758i
\(909\) 10.0000 10.0000i 0.331679 0.331679i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −55.4256 32.0000i −1.83533 1.05963i
\(913\) 0 0
\(914\) 9.51666 35.5167i 0.314783 1.17479i
\(915\) 17.5692 + 65.5692i 0.580820 + 2.16765i
\(916\) 24.0000 24.0000i 0.792982 0.792982i
\(917\) 0 0
\(918\) 48.0000 1.58424
\(919\) −48.4974 28.0000i −1.59978 0.923635i −0.991528 0.129893i \(-0.958537\pi\)
−0.608254 0.793742i \(-0.708130\pi\)
\(920\) −8.00000 13.8564i −0.263752 0.456832i
\(921\) −27.7128 + 16.0000i −0.913168 + 0.527218i
\(922\) 48.4974 + 28.0000i 1.59718 + 0.922131i
\(923\) 0 0
\(924\) 0 0
\(925\) −9.00000 + 9.00000i −0.295918 + 0.295918i
\(926\) −5.12436 19.1244i −0.168397 0.628465i
\(927\) 0 0
\(928\) 6.92820 4.00000i 0.227429 0.131306i
\(929\) 15.0000 25.9808i 0.492134 0.852401i −0.507825 0.861460i \(-0.669550\pi\)
0.999959 + 0.00905914i \(0.00288365\pi\)
\(930\) −32.0000 + 32.0000i −1.04932 + 1.04932i
\(931\) 0 0
\(932\) −16.0000 −0.524097
\(933\) −10.9282 + 2.92820i −0.357773 + 0.0958651i
\(934\) −27.7128 + 16.0000i −0.906791 + 0.523536i
\(935\) −62.3538 + 36.0000i −2.03919 + 1.17733i
\(936\) 0 0
\(937\) 50.0000i 1.63343i 0.577042 + 0.816714i \(0.304207\pi\)
−0.577042 + 0.816714i \(0.695793\pi\)
\(938\) 0 0
\(939\) 4.00000 + 4.00000i 0.130535 + 0.130535i
\(940\) 11.7128 + 43.7128i 0.382030 + 1.42575i
\(941\) −35.5167 9.51666i −1.15781 0.310234i −0.371719 0.928345i \(-0.621232\pi\)
−0.786091 + 0.618111i \(0.787898\pi\)
\(942\) 0 0
\(943\) 2.00000 3.46410i 0.0651290 0.112807i
\(944\) −8.00000 8.00000i −0.260378 0.260378i
\(945\) 0 0
\(946\) −30.0000 30.0000i −0.975384 0.975384i
\(947\) 4.75833 + 17.7583i 0.154625 + 0.577068i 0.999137 + 0.0415319i \(0.0132238\pi\)
−0.844512 + 0.535536i \(0.820110\pi\)
\(948\) −20.4974 + 76.4974i −0.665725 + 2.48452i
\(949\) 0 0
\(950\) −12.0000 + 20.7846i −0.389331 + 0.674342i
\(951\) 60.0000i 1.94563i
\(952\) 0 0
\(953\) 16.0000i 0.518291i −0.965838 0.259145i \(-0.916559\pi\)
0.965838 0.259145i \(-0.0834409\pi\)
\(954\) −60.6218 35.0000i −1.96270 1.13317i
\(955\) −16.1051 + 60.1051i −0.521149 + 1.94496i
\(956\) 13.8564 8.00000i 0.448148 0.258738i
\(957\) −4.39230 16.3923i −0.141983 0.529888i
\(958\) 8.00000 8.00000i 0.258468 0.258468i
\(959\) 0 0
\(960\) 64.0000i 2.06559i
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 0 0
\(963\) −34.1506 9.15064i −1.10049 0.294875i
\(964\) −38.1051 22.0000i −1.22728 0.708572i
\(965\) 48.0000 + 48.0000i 1.54517 + 1.54517i
\(966\) 0 0
\(967\) 38.0000i 1.22200i −0.791632 0.610999i \(-0.790768\pi\)
0.791632 0.610999i \(-0.209232\pi\)
\(968\) −5.12436 19.1244i −0.164703 0.614680i
\(969\) 83.1384 48.0000i 2.67079 1.54198i
\(970\) 12.0000 + 20.7846i 0.385297 + 0.667354i
\(971\) −35.5167 + 9.51666i −1.13978 + 0.305404i −0.778864 0.627193i \(-0.784204\pi\)
−0.360920 + 0.932597i \(0.617537\pi\)
\(972\) 20.0000 + 20.0000i 0.641500 + 0.641500i
\(973\) 0 0
\(974\) 2.00000 + 2.00000i 0.0640841 + 0.0640841i
\(975\) 0 0
\(976\) 32.7846 + 8.78461i 1.04941 + 0.281189i
\(977\) 17.0000 + 29.4449i 0.543878 + 0.942025i 0.998677 + 0.0514302i \(0.0163780\pi\)
−0.454798 + 0.890594i \(0.650289\pi\)
\(978\) −27.3205 + 7.32051i −0.873614 + 0.234084i
\(979\) 18.0000 18.0000i 0.575282 0.575282i
\(980\) 0 0
\(981\) 15.0000 + 15.0000i 0.478913 + 0.478913i
\(982\) −11.0000 + 19.0526i −0.351024 + 0.607992i
\(983\) 41.5692 24.0000i 1.32585 0.765481i 0.341197 0.939992i \(-0.389168\pi\)
0.984655 + 0.174511i \(0.0558344\pi\)
\(984\) −13.8564 + 8.00000i −0.441726 + 0.255031i
\(985\) −38.1051 22.0000i −1.21413 0.700978i
\(986\) 12.0000i 0.382158i
\(987\) 0 0
\(988\) 0 0
\(989\) 3.66025 + 13.6603i 0.116389 + 0.434371i
\(990\) 81.9615 + 21.9615i 2.60491 + 0.697983i
\(991\) 5.00000 + 8.66025i 0.158830 + 0.275102i 0.934447 0.356102i \(-0.115894\pi\)
−0.775617 + 0.631204i \(0.782561\pi\)
\(992\) 5.85641 + 21.8564i 0.185941 + 0.693942i
\(993\) 60.0000 1.90404
\(994\) 0 0
\(995\) −40.0000 + 40.0000i −1.26809 + 1.26809i
\(996\) 0 0
\(997\) 10.9808 40.9808i 0.347764 1.29787i −0.541585 0.840646i \(-0.682176\pi\)
0.889350 0.457228i \(-0.151158\pi\)
\(998\) −25.9808 + 15.0000i −0.822407 + 0.474817i
\(999\) −20.7846 12.0000i −0.657596 0.379663i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.g.373.1 4
7.2 even 3 112.2.m.a.85.1 yes 2
7.3 odd 6 784.2.x.b.165.1 4
7.4 even 3 inner 784.2.x.g.165.1 4
7.5 odd 6 784.2.m.c.197.1 2
7.6 odd 2 784.2.x.b.373.1 4
16.13 even 4 inner 784.2.x.g.765.1 4
28.23 odd 6 448.2.m.b.113.1 2
56.37 even 6 896.2.m.d.225.1 2
56.51 odd 6 896.2.m.a.225.1 2
112.13 odd 4 784.2.x.b.765.1 4
112.37 even 12 896.2.m.d.673.1 2
112.45 odd 12 784.2.x.b.557.1 4
112.51 odd 12 448.2.m.b.337.1 2
112.61 odd 12 784.2.m.c.589.1 2
112.93 even 12 112.2.m.a.29.1 2
112.107 odd 12 896.2.m.a.673.1 2
112.109 even 12 inner 784.2.x.g.557.1 4
224.51 odd 24 7168.2.a.i.1.1 2
224.93 even 24 7168.2.a.q.1.1 2
224.163 odd 24 7168.2.a.i.1.2 2
224.205 even 24 7168.2.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.m.a.29.1 2 112.93 even 12
112.2.m.a.85.1 yes 2 7.2 even 3
448.2.m.b.113.1 2 28.23 odd 6
448.2.m.b.337.1 2 112.51 odd 12
784.2.m.c.197.1 2 7.5 odd 6
784.2.m.c.589.1 2 112.61 odd 12
784.2.x.b.165.1 4 7.3 odd 6
784.2.x.b.373.1 4 7.6 odd 2
784.2.x.b.557.1 4 112.45 odd 12
784.2.x.b.765.1 4 112.13 odd 4
784.2.x.g.165.1 4 7.4 even 3 inner
784.2.x.g.373.1 4 1.1 even 1 trivial
784.2.x.g.557.1 4 112.109 even 12 inner
784.2.x.g.765.1 4 16.13 even 4 inner
896.2.m.a.225.1 2 56.51 odd 6
896.2.m.a.673.1 2 112.107 odd 12
896.2.m.d.225.1 2 56.37 even 6
896.2.m.d.673.1 2 112.37 even 12
7168.2.a.i.1.1 2 224.51 odd 24
7168.2.a.i.1.2 2 224.163 odd 24
7168.2.a.q.1.1 2 224.93 even 24
7168.2.a.q.1.2 2 224.205 even 24