Properties

Label 783.2.u.a.451.5
Level $783$
Weight $2$
Character 783.451
Analytic conductor $6.252$
Analytic rank $0$
Dimension $336$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(181,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([28, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.u (of order \(21\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(336\)
Relative dimension: \(28\) over \(\Q(\zeta_{21})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 451.5
Character \(\chi\) \(=\) 783.451
Dual form 783.2.u.a.658.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59949 + 1.09051i) q^{2} +(0.638466 - 1.62678i) q^{4} +(-0.303634 - 4.05171i) q^{5} +(-1.40293 - 3.57461i) q^{7} +(-0.108732 - 0.476384i) q^{8} +(4.90411 + 6.14956i) q^{10} +(-0.957158 - 0.888113i) q^{11} +(4.18326 - 1.29036i) q^{13} +(6.14214 + 4.18764i) q^{14} +(3.25556 + 3.02072i) q^{16} -4.03457 q^{17} +(-2.46134 - 3.08642i) q^{19} +(-6.78512 - 2.09293i) q^{20} +(2.49946 + 0.376734i) q^{22} +(5.57787 + 3.80293i) q^{23} +(-11.3800 + 1.71526i) q^{25} +(-5.28392 + 6.62583i) q^{26} -6.71085 q^{28} +(-5.26785 + 1.11791i) q^{29} +(-0.337284 - 4.50074i) q^{31} +(-7.53503 - 1.13572i) q^{32} +(6.45325 - 4.39975i) q^{34} +(-14.0573 + 6.76965i) q^{35} +(-0.0121631 - 0.0532900i) q^{37} +(7.30266 + 2.25257i) q^{38} +(-1.89716 + 0.585196i) q^{40} +(1.95712 + 3.38984i) q^{41} +(-0.356363 + 4.75533i) q^{43} +(-2.05588 + 0.990060i) q^{44} -13.0689 q^{46} +(3.81292 + 3.53787i) q^{47} +(-5.67827 + 5.26866i) q^{49} +(16.3317 - 15.1536i) q^{50} +(0.571723 - 7.62911i) q^{52} +(5.90857 + 2.84542i) q^{53} +(-3.30775 + 4.14779i) q^{55} +(-1.55035 + 1.05701i) q^{56} +(7.20678 - 7.53276i) q^{58} +(-5.54407 - 9.60261i) q^{59} +(2.14867 + 5.47473i) q^{61} +(5.44760 + 6.83107i) q^{62} +(5.28812 - 2.54662i) q^{64} +(-6.49837 - 16.5576i) q^{65} +(1.07318 - 0.995765i) q^{67} +(-2.57593 + 6.56338i) q^{68} +(15.1022 - 26.1577i) q^{70} +(2.24473 - 9.83479i) q^{71} +(3.80506 - 1.83242i) q^{73} +(0.0775682 + 0.0719728i) q^{74} +(-6.59241 + 2.03349i) q^{76} +(-1.83183 + 4.66743i) q^{77} +(-1.69085 - 0.521557i) q^{79} +(11.2506 - 14.1078i) q^{80} +(-6.82706 - 3.28774i) q^{82} +(0.158316 - 0.0238622i) q^{83} +(1.22503 + 16.3469i) q^{85} +(-4.61575 - 7.99472i) q^{86} +(-0.319010 + 0.552541i) q^{88} +(3.79906 + 1.82953i) q^{89} +(-10.4814 - 13.1432i) q^{91} +(9.74782 - 6.64595i) q^{92} +(-9.95683 - 1.50075i) q^{94} +(-11.7579 + 10.9098i) q^{95} +(-13.3447 + 2.01139i) q^{97} +(3.33678 - 14.6194i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 336 q + 5 q^{2} + 21 q^{4} + 9 q^{5} - 5 q^{7} - 2 q^{8} - 28 q^{10} + q^{11} - 5 q^{13} + 9 q^{14} + 21 q^{16} + 60 q^{17} - 20 q^{19} + 15 q^{20} - 13 q^{22} + 32 q^{23} + 15 q^{25} + 4 q^{26} - 72 q^{28}+ \cdots + 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.59949 + 1.09051i −1.13101 + 0.771110i −0.976208 0.216836i \(-0.930426\pi\)
−0.154802 + 0.987945i \(0.549474\pi\)
\(3\) 0 0
\(4\) 0.638466 1.62678i 0.319233 0.813392i
\(5\) −0.303634 4.05171i −0.135789 1.81198i −0.484544 0.874767i \(-0.661014\pi\)
0.348754 0.937214i \(-0.386605\pi\)
\(6\) 0 0
\(7\) −1.40293 3.57461i −0.530258 1.35108i −0.905578 0.424181i \(-0.860562\pi\)
0.375319 0.926896i \(-0.377533\pi\)
\(8\) −0.108732 0.476384i −0.0384424 0.168427i
\(9\) 0 0
\(10\) 4.90411 + 6.14956i 1.55082 + 1.94466i
\(11\) −0.957158 0.888113i −0.288594 0.267776i 0.522568 0.852598i \(-0.324974\pi\)
−0.811162 + 0.584821i \(0.801165\pi\)
\(12\) 0 0
\(13\) 4.18326 1.29036i 1.16023 0.357883i 0.345890 0.938275i \(-0.387577\pi\)
0.814337 + 0.580392i \(0.197101\pi\)
\(14\) 6.14214 + 4.18764i 1.64156 + 1.11919i
\(15\) 0 0
\(16\) 3.25556 + 3.02072i 0.813891 + 0.755181i
\(17\) −4.03457 −0.978527 −0.489263 0.872136i \(-0.662734\pi\)
−0.489263 + 0.872136i \(0.662734\pi\)
\(18\) 0 0
\(19\) −2.46134 3.08642i −0.564669 0.708073i 0.414744 0.909938i \(-0.363871\pi\)
−0.979413 + 0.201865i \(0.935300\pi\)
\(20\) −6.78512 2.09293i −1.51720 0.467994i
\(21\) 0 0
\(22\) 2.49946 + 0.376734i 0.532888 + 0.0803199i
\(23\) 5.57787 + 3.80293i 1.16307 + 0.792965i 0.981697 0.190450i \(-0.0609947\pi\)
0.181369 + 0.983415i \(0.441947\pi\)
\(24\) 0 0
\(25\) −11.3800 + 1.71526i −2.27601 + 0.343053i
\(26\) −5.28392 + 6.62583i −1.03626 + 1.29943i
\(27\) 0 0
\(28\) −6.71085 −1.26823
\(29\) −5.26785 + 1.11791i −0.978216 + 0.207591i
\(30\) 0 0
\(31\) −0.337284 4.50074i −0.0605779 0.808356i −0.941911 0.335861i \(-0.890973\pi\)
0.881334 0.472495i \(-0.156646\pi\)
\(32\) −7.53503 1.13572i −1.33202 0.200769i
\(33\) 0 0
\(34\) 6.45325 4.39975i 1.10672 0.754552i
\(35\) −14.0573 + 6.76965i −2.37612 + 1.14428i
\(36\) 0 0
\(37\) −0.0121631 0.0532900i −0.00199960 0.00876082i 0.973918 0.226899i \(-0.0728588\pi\)
−0.975918 + 0.218138i \(0.930002\pi\)
\(38\) 7.30266 + 2.25257i 1.18465 + 0.365416i
\(39\) 0 0
\(40\) −1.89716 + 0.585196i −0.299967 + 0.0925276i
\(41\) 1.95712 + 3.38984i 0.305651 + 0.529403i 0.977406 0.211370i \(-0.0677925\pi\)
−0.671755 + 0.740773i \(0.734459\pi\)
\(42\) 0 0
\(43\) −0.356363 + 4.75533i −0.0543448 + 0.725181i 0.901775 + 0.432205i \(0.142264\pi\)
−0.956120 + 0.292975i \(0.905355\pi\)
\(44\) −2.05588 + 0.990060i −0.309936 + 0.149257i
\(45\) 0 0
\(46\) −13.0689 −1.92690
\(47\) 3.81292 + 3.53787i 0.556172 + 0.516052i 0.907417 0.420232i \(-0.138051\pi\)
−0.351245 + 0.936284i \(0.614242\pi\)
\(48\) 0 0
\(49\) −5.67827 + 5.26866i −0.811181 + 0.752666i
\(50\) 16.3317 15.1536i 2.30966 2.14305i
\(51\) 0 0
\(52\) 0.571723 7.62911i 0.0792837 1.05797i
\(53\) 5.90857 + 2.84542i 0.811605 + 0.390848i 0.793184 0.608982i \(-0.208422\pi\)
0.0184209 + 0.999830i \(0.494136\pi\)
\(54\) 0 0
\(55\) −3.30775 + 4.14779i −0.446017 + 0.559288i
\(56\) −1.55035 + 1.05701i −0.207174 + 0.141249i
\(57\) 0 0
\(58\) 7.20678 7.53276i 0.946296 0.989099i
\(59\) −5.54407 9.60261i −0.721776 1.25015i −0.960287 0.279013i \(-0.909993\pi\)
0.238511 0.971140i \(-0.423341\pi\)
\(60\) 0 0
\(61\) 2.14867 + 5.47473i 0.275109 + 0.700967i 0.999928 + 0.0120272i \(0.00382847\pi\)
−0.724818 + 0.688940i \(0.758076\pi\)
\(62\) 5.44760 + 6.83107i 0.691845 + 0.867547i
\(63\) 0 0
\(64\) 5.28812 2.54662i 0.661015 0.318328i
\(65\) −6.49837 16.5576i −0.806023 2.05371i
\(66\) 0 0
\(67\) 1.07318 0.995765i 0.131110 0.121652i −0.611893 0.790941i \(-0.709592\pi\)
0.743002 + 0.669289i \(0.233401\pi\)
\(68\) −2.57593 + 6.56338i −0.312378 + 0.795926i
\(69\) 0 0
\(70\) 15.1022 26.1577i 1.80505 3.12644i
\(71\) 2.24473 9.83479i 0.266400 1.16717i −0.647768 0.761838i \(-0.724297\pi\)
0.914168 0.405337i \(-0.132846\pi\)
\(72\) 0 0
\(73\) 3.80506 1.83242i 0.445349 0.214469i −0.197749 0.980253i \(-0.563363\pi\)
0.643098 + 0.765784i \(0.277649\pi\)
\(74\) 0.0775682 + 0.0719728i 0.00901712 + 0.00836666i
\(75\) 0 0
\(76\) −6.59241 + 2.03349i −0.756202 + 0.233257i
\(77\) −1.83183 + 4.66743i −0.208757 + 0.531903i
\(78\) 0 0
\(79\) −1.69085 0.521557i −0.190235 0.0586797i 0.198174 0.980167i \(-0.436499\pi\)
−0.388409 + 0.921487i \(0.626975\pi\)
\(80\) 11.2506 14.1078i 1.25786 1.57730i
\(81\) 0 0
\(82\) −6.82706 3.28774i −0.753923 0.363070i
\(83\) 0.158316 0.0238622i 0.0173774 0.00261922i −0.140348 0.990102i \(-0.544822\pi\)
0.157725 + 0.987483i \(0.449584\pi\)
\(84\) 0 0
\(85\) 1.22503 + 16.3469i 0.132873 + 1.77307i
\(86\) −4.61575 7.99472i −0.497730 0.862093i
\(87\) 0 0
\(88\) −0.319010 + 0.552541i −0.0340066 + 0.0589011i
\(89\) 3.79906 + 1.82953i 0.402700 + 0.193930i 0.624260 0.781217i \(-0.285401\pi\)
−0.221560 + 0.975147i \(0.571115\pi\)
\(90\) 0 0
\(91\) −10.4814 13.1432i −1.09875 1.37779i
\(92\) 9.74782 6.64595i 1.01628 0.692888i
\(93\) 0 0
\(94\) −9.95683 1.50075i −1.02697 0.154791i
\(95\) −11.7579 + 10.9098i −1.20634 + 1.11932i
\(96\) 0 0
\(97\) −13.3447 + 2.01139i −1.35495 + 0.204226i −0.786040 0.618175i \(-0.787872\pi\)
−0.568908 + 0.822401i \(0.692634\pi\)
\(98\) 3.33678 14.6194i 0.337066 1.47678i
\(99\) 0 0
\(100\) −4.47540 + 19.6080i −0.447540 + 1.96080i
\(101\) −0.0342914 + 0.457586i −0.00341212 + 0.0455315i −0.998650 0.0519448i \(-0.983458\pi\)
0.995238 + 0.0974764i \(0.0310770\pi\)
\(102\) 0 0
\(103\) 7.13224 2.20000i 0.702761 0.216773i 0.0772763 0.997010i \(-0.475378\pi\)
0.625484 + 0.780237i \(0.284901\pi\)
\(104\) −1.06956 1.85254i −0.104879 0.181656i
\(105\) 0 0
\(106\) −12.5537 + 1.89216i −1.21932 + 0.183783i
\(107\) −0.458441 2.00856i −0.0443192 0.194175i 0.947922 0.318502i \(-0.103180\pi\)
−0.992241 + 0.124327i \(0.960323\pi\)
\(108\) 0 0
\(109\) −5.40439 + 6.77689i −0.517647 + 0.649108i −0.970107 0.242676i \(-0.921975\pi\)
0.452461 + 0.891784i \(0.350546\pi\)
\(110\) 0.767494 10.2415i 0.0731777 0.976489i
\(111\) 0 0
\(112\) 6.23058 15.8752i 0.588734 1.50007i
\(113\) −3.25899 0.491213i −0.306580 0.0462095i −0.00604940 0.999982i \(-0.501926\pi\)
−0.300530 + 0.953772i \(0.597164\pi\)
\(114\) 0 0
\(115\) 13.7147 23.7546i 1.27891 2.21513i
\(116\) −1.54474 + 9.28341i −0.143426 + 0.861943i
\(117\) 0 0
\(118\) 19.3395 + 9.31339i 1.78034 + 0.857367i
\(119\) 5.66023 + 14.4220i 0.518872 + 1.32206i
\(120\) 0 0
\(121\) −0.694624 9.26911i −0.0631476 0.842647i
\(122\) −9.40705 6.41362i −0.851674 0.580662i
\(123\) 0 0
\(124\) −7.53707 2.32488i −0.676849 0.208780i
\(125\) 5.88453 + 25.7818i 0.526328 + 2.30599i
\(126\) 0 0
\(127\) 1.85976 8.14812i 0.165027 0.723029i −0.822910 0.568171i \(-0.807651\pi\)
0.987937 0.154857i \(-0.0494918\pi\)
\(128\) 1.93898 3.35840i 0.171383 0.296844i
\(129\) 0 0
\(130\) 28.4503 + 19.3971i 2.49526 + 1.70124i
\(131\) 10.6529 + 7.26304i 0.930750 + 0.634575i 0.930841 0.365425i \(-0.119076\pi\)
−9.06149e−5 1.00000i \(0.500029\pi\)
\(132\) 0 0
\(133\) −7.57966 + 13.1284i −0.657240 + 1.13837i
\(134\) −0.630644 + 2.76303i −0.0544793 + 0.238690i
\(135\) 0 0
\(136\) 0.438685 + 1.92201i 0.0376170 + 0.164811i
\(137\) −5.37309 1.65738i −0.459054 0.141599i 0.0565990 0.998397i \(-0.481974\pi\)
−0.515653 + 0.856798i \(0.672451\pi\)
\(138\) 0 0
\(139\) −10.8875 7.42295i −0.923463 0.629607i 0.00541755 0.999985i \(-0.498276\pi\)
−0.928881 + 0.370379i \(0.879228\pi\)
\(140\) 2.03764 + 27.1904i 0.172212 + 2.29801i
\(141\) 0 0
\(142\) 7.13456 + 18.1786i 0.598719 + 1.52551i
\(143\) −5.15003 2.48012i −0.430667 0.207398i
\(144\) 0 0
\(145\) 6.12896 + 21.0044i 0.508982 + 1.74432i
\(146\) −4.08788 + 7.08041i −0.338315 + 0.585979i
\(147\) 0 0
\(148\) −0.0944570 0.0142371i −0.00776432 0.00117028i
\(149\) 4.49445 11.4517i 0.368200 0.938158i −0.619946 0.784644i \(-0.712846\pi\)
0.988146 0.153514i \(-0.0490591\pi\)
\(150\) 0 0
\(151\) 1.06527 14.2151i 0.0866906 1.15681i −0.768976 0.639278i \(-0.779233\pi\)
0.855666 0.517528i \(-0.173148\pi\)
\(152\) −1.20270 + 1.50813i −0.0975515 + 0.122326i
\(153\) 0 0
\(154\) −2.15990 9.46314i −0.174050 0.762562i
\(155\) −18.1333 + 2.73315i −1.45650 + 0.219532i
\(156\) 0 0
\(157\) 4.01648 + 6.95674i 0.320550 + 0.555209i 0.980602 0.196012i \(-0.0627990\pi\)
−0.660052 + 0.751220i \(0.729466\pi\)
\(158\) 3.27326 1.00967i 0.260406 0.0803247i
\(159\) 0 0
\(160\) −2.31373 + 30.8746i −0.182917 + 2.44085i
\(161\) 5.76862 25.2740i 0.454631 1.99187i
\(162\) 0 0
\(163\) −1.21278 + 5.31353i −0.0949921 + 0.416187i −0.999957 0.00929923i \(-0.997040\pi\)
0.904965 + 0.425487i \(0.139897\pi\)
\(164\) 6.76409 1.01952i 0.528186 0.0796113i
\(165\) 0 0
\(166\) −0.227202 + 0.210813i −0.0176343 + 0.0163622i
\(167\) −5.52797 0.833208i −0.427767 0.0644756i −0.0683697 0.997660i \(-0.521780\pi\)
−0.359398 + 0.933184i \(0.617018\pi\)
\(168\) 0 0
\(169\) 5.09352 3.47270i 0.391809 0.267131i
\(170\) −19.7860 24.8108i −1.51751 1.90290i
\(171\) 0 0
\(172\) 7.50837 + 3.61584i 0.572508 + 0.275705i
\(173\) −8.22022 + 14.2378i −0.624971 + 1.08248i 0.363575 + 0.931565i \(0.381556\pi\)
−0.988546 + 0.150917i \(0.951777\pi\)
\(174\) 0 0
\(175\) 22.0968 + 38.2728i 1.67036 + 2.89315i
\(176\) −0.433347 5.78262i −0.0326648 0.435881i
\(177\) 0 0
\(178\) −8.07169 + 1.21661i −0.604999 + 0.0911889i
\(179\) 9.74766 + 4.69422i 0.728574 + 0.350863i 0.761123 0.648607i \(-0.224648\pi\)
−0.0325491 + 0.999470i \(0.510363\pi\)
\(180\) 0 0
\(181\) −2.01346 + 2.52480i −0.149659 + 0.187667i −0.851010 0.525150i \(-0.824009\pi\)
0.701351 + 0.712816i \(0.252581\pi\)
\(182\) 31.0977 + 9.59238i 2.30512 + 0.711035i
\(183\) 0 0
\(184\) 1.20516 3.07071i 0.0888459 0.226376i
\(185\) −0.212223 + 0.0654620i −0.0156029 + 0.00481286i
\(186\) 0 0
\(187\) 3.86172 + 3.58315i 0.282397 + 0.262026i
\(188\) 8.18978 3.94399i 0.597301 0.287645i
\(189\) 0 0
\(190\) 6.90944 30.2723i 0.501264 2.19618i
\(191\) 7.35761 12.7438i 0.532378 0.922106i −0.466907 0.884306i \(-0.654632\pi\)
0.999285 0.0377999i \(-0.0120349\pi\)
\(192\) 0 0
\(193\) −6.70185 + 17.0760i −0.482410 + 1.22916i 0.457950 + 0.888978i \(0.348584\pi\)
−0.940360 + 0.340182i \(0.889511\pi\)
\(194\) 19.1513 17.7698i 1.37498 1.27580i
\(195\) 0 0
\(196\) 4.94560 + 12.6012i 0.353257 + 0.900084i
\(197\) −6.23462 + 3.00243i −0.444198 + 0.213915i −0.642593 0.766208i \(-0.722141\pi\)
0.198395 + 0.980122i \(0.436427\pi\)
\(198\) 0 0
\(199\) −2.28709 2.86792i −0.162127 0.203301i 0.694132 0.719848i \(-0.255789\pi\)
−0.856259 + 0.516547i \(0.827217\pi\)
\(200\) 2.05449 + 5.23477i 0.145275 + 0.370154i
\(201\) 0 0
\(202\) −0.444156 0.769300i −0.0312507 0.0541278i
\(203\) 11.3865 + 17.2622i 0.799178 + 1.21157i
\(204\) 0 0
\(205\) 13.1404 8.95897i 0.917765 0.625721i
\(206\) −9.00881 + 11.2967i −0.627674 + 0.787078i
\(207\) 0 0
\(208\) 17.5167 + 8.43560i 1.21457 + 0.584904i
\(209\) −0.385200 + 5.14013i −0.0266448 + 0.355550i
\(210\) 0 0
\(211\) −10.8741 + 10.0897i −0.748604 + 0.694603i −0.959124 0.282986i \(-0.908675\pi\)
0.210520 + 0.977590i \(0.432484\pi\)
\(212\) 8.40131 7.79527i 0.577004 0.535382i
\(213\) 0 0
\(214\) 2.92364 + 2.71274i 0.199856 + 0.185439i
\(215\) 19.3754 1.32139
\(216\) 0 0
\(217\) −15.6152 + 7.51988i −1.06003 + 0.510483i
\(218\) 1.25397 16.7331i 0.0849299 1.13331i
\(219\) 0 0
\(220\) 4.63567 + 8.02922i 0.312537 + 0.541330i
\(221\) −16.8777 + 5.20607i −1.13531 + 0.350198i
\(222\) 0 0
\(223\) 2.56327 + 0.790664i 0.171649 + 0.0529468i 0.379389 0.925237i \(-0.376134\pi\)
−0.207739 + 0.978184i \(0.566611\pi\)
\(224\) 6.51136 + 28.5281i 0.435059 + 1.90612i
\(225\) 0 0
\(226\) 5.74839 2.76828i 0.382377 0.184143i
\(227\) 3.44471 2.34857i 0.228634 0.155880i −0.443585 0.896232i \(-0.646294\pi\)
0.672219 + 0.740352i \(0.265341\pi\)
\(228\) 0 0
\(229\) −1.42309 0.214496i −0.0940402 0.0141743i 0.101854 0.994799i \(-0.467523\pi\)
−0.195894 + 0.980625i \(0.562761\pi\)
\(230\) 3.96816 + 52.9514i 0.261653 + 3.49151i
\(231\) 0 0
\(232\) 1.10534 + 2.38797i 0.0725690 + 0.156778i
\(233\) 13.2578 0.868545 0.434272 0.900782i \(-0.357006\pi\)
0.434272 + 0.900782i \(0.357006\pi\)
\(234\) 0 0
\(235\) 13.1767 16.5231i 0.859554 1.07785i
\(236\) −19.1611 + 2.88807i −1.24728 + 0.187997i
\(237\) 0 0
\(238\) −24.7809 16.8953i −1.60631 1.09516i
\(239\) −24.8642 3.74767i −1.60833 0.242417i −0.717434 0.696626i \(-0.754684\pi\)
−0.890895 + 0.454210i \(0.849922\pi\)
\(240\) 0 0
\(241\) −2.52723 0.779546i −0.162793 0.0502150i 0.212287 0.977207i \(-0.431909\pi\)
−0.375080 + 0.926992i \(0.622385\pi\)
\(242\) 11.2191 + 14.0684i 0.721194 + 0.904348i
\(243\) 0 0
\(244\) 10.2781 0.657985
\(245\) 23.0712 + 21.4070i 1.47397 + 1.36764i
\(246\) 0 0
\(247\) −14.2790 9.73526i −0.908552 0.619440i
\(248\) −2.10741 + 0.650049i −0.133820 + 0.0412782i
\(249\) 0 0
\(250\) −37.5276 34.8206i −2.37346 2.20225i
\(251\) 2.53977 + 3.18478i 0.160309 + 0.201021i 0.855498 0.517805i \(-0.173251\pi\)
−0.695189 + 0.718827i \(0.744679\pi\)
\(252\) 0 0
\(253\) −1.96147 8.59378i −0.123317 0.540286i
\(254\) 5.91098 + 15.0609i 0.370888 + 0.945007i
\(255\) 0 0
\(256\) 1.43825 + 19.1921i 0.0898907 + 1.19951i
\(257\) 2.49978 6.36933i 0.155932 0.397308i −0.831464 0.555579i \(-0.812497\pi\)
0.987396 + 0.158271i \(0.0505919\pi\)
\(258\) 0 0
\(259\) −0.173427 + 0.118240i −0.0107762 + 0.00734711i
\(260\) −31.0846 −1.92778
\(261\) 0 0
\(262\) −24.9597 −1.54201
\(263\) −9.97453 + 6.80052i −0.615056 + 0.419338i −0.830374 0.557206i \(-0.811873\pi\)
0.215318 + 0.976544i \(0.430921\pi\)
\(264\) 0 0
\(265\) 9.73478 24.8038i 0.598003 1.52369i
\(266\) −2.19306 29.2644i −0.134465 1.79431i
\(267\) 0 0
\(268\) −0.934706 2.38159i −0.0570963 0.145479i
\(269\) −5.36370 23.4999i −0.327031 1.43281i −0.824760 0.565482i \(-0.808690\pi\)
0.497730 0.867332i \(-0.334167\pi\)
\(270\) 0 0
\(271\) −15.1249 18.9661i −0.918775 1.15211i −0.987992 0.154506i \(-0.950621\pi\)
0.0692168 0.997602i \(-0.477950\pi\)
\(272\) −13.1348 12.1873i −0.796415 0.738965i
\(273\) 0 0
\(274\) 10.4016 3.20847i 0.628383 0.193830i
\(275\) 12.4158 + 8.46498i 0.748703 + 0.510457i
\(276\) 0 0
\(277\) −6.57570 6.10136i −0.395096 0.366595i 0.457461 0.889230i \(-0.348759\pi\)
−0.852557 + 0.522634i \(0.824949\pi\)
\(278\) 25.5092 1.52994
\(279\) 0 0
\(280\) 4.75343 + 5.96061i 0.284072 + 0.356215i
\(281\) 0.722142 + 0.222751i 0.0430794 + 0.0132882i 0.316220 0.948686i \(-0.397586\pi\)
−0.273141 + 0.961974i \(0.588062\pi\)
\(282\) 0 0
\(283\) 22.9052 + 3.45240i 1.36157 + 0.205224i 0.788880 0.614547i \(-0.210661\pi\)
0.572691 + 0.819771i \(0.305899\pi\)
\(284\) −14.5659 9.93086i −0.864327 0.589288i
\(285\) 0 0
\(286\) 10.9420 1.64925i 0.647016 0.0975219i
\(287\) 9.37164 11.7517i 0.553190 0.693679i
\(288\) 0 0
\(289\) −0.722244 −0.0424850
\(290\) −32.7088 26.9126i −1.92073 1.58036i
\(291\) 0 0
\(292\) −0.551552 7.35995i −0.0322771 0.430709i
\(293\) −15.8817 2.39378i −0.927817 0.139846i −0.332287 0.943178i \(-0.607820\pi\)
−0.595531 + 0.803332i \(0.703058\pi\)
\(294\) 0 0
\(295\) −37.2237 + 25.3787i −2.16724 + 1.47760i
\(296\) −0.0240640 + 0.0115886i −0.00139869 + 0.000673574i
\(297\) 0 0
\(298\) 5.29938 + 23.2181i 0.306985 + 1.34499i
\(299\) 28.2408 + 8.71115i 1.63321 + 0.503779i
\(300\) 0 0
\(301\) 17.4984 5.39754i 1.00859 0.311109i
\(302\) 13.7978 + 23.8986i 0.793977 + 1.37521i
\(303\) 0 0
\(304\) 1.31017 17.4830i 0.0751436 1.00272i
\(305\) 21.5296 10.3681i 1.23278 0.593677i
\(306\) 0 0
\(307\) 25.5077 1.45580 0.727900 0.685683i \(-0.240496\pi\)
0.727900 + 0.685683i \(0.240496\pi\)
\(308\) 6.42334 + 5.95999i 0.366004 + 0.339602i
\(309\) 0 0
\(310\) 26.0235 24.1462i 1.47803 1.37141i
\(311\) 2.01101 1.86594i 0.114034 0.105808i −0.621095 0.783735i \(-0.713312\pi\)
0.735129 + 0.677927i \(0.237122\pi\)
\(312\) 0 0
\(313\) 1.75008 23.3532i 0.0989202 1.32000i −0.698080 0.716020i \(-0.745962\pi\)
0.797000 0.603979i \(-0.206419\pi\)
\(314\) −14.0107 6.74722i −0.790672 0.380767i
\(315\) 0 0
\(316\) −1.92801 + 2.41765i −0.108459 + 0.136003i
\(317\) 21.4695 14.6376i 1.20585 0.822132i 0.217755 0.976003i \(-0.430127\pi\)
0.988091 + 0.153872i \(0.0491742\pi\)
\(318\) 0 0
\(319\) 6.03500 + 3.60843i 0.337895 + 0.202033i
\(320\) −11.9238 20.6527i −0.666563 1.15452i
\(321\) 0 0
\(322\) 18.3348 + 46.7162i 1.02176 + 2.60339i
\(323\) 9.93043 + 12.4524i 0.552544 + 0.692868i
\(324\) 0 0
\(325\) −45.3923 + 21.8598i −2.51791 + 1.21256i
\(326\) −3.85465 9.82148i −0.213489 0.543962i
\(327\) 0 0
\(328\) 1.40206 1.30092i 0.0774160 0.0718316i
\(329\) 7.29726 18.5931i 0.402311 1.02507i
\(330\) 0 0
\(331\) −3.65144 + 6.32449i −0.200702 + 0.347625i −0.948755 0.316014i \(-0.897655\pi\)
0.748053 + 0.663639i \(0.230989\pi\)
\(332\) 0.0622604 0.272781i 0.00341698 0.0149708i
\(333\) 0 0
\(334\) 9.75056 4.69562i 0.533527 0.256933i
\(335\) −4.36041 4.04587i −0.238234 0.221049i
\(336\) 0 0
\(337\) −18.6233 + 5.74452i −1.01447 + 0.312924i −0.757037 0.653371i \(-0.773354\pi\)
−0.257436 + 0.966295i \(0.582878\pi\)
\(338\) −4.36000 + 11.1091i −0.237153 + 0.604255i
\(339\) 0 0
\(340\) 27.3751 + 8.44409i 1.48462 + 0.457945i
\(341\) −3.67433 + 4.60746i −0.198976 + 0.249508i
\(342\) 0 0
\(343\) 2.58121 + 1.24304i 0.139372 + 0.0671181i
\(344\) 2.30411 0.347289i 0.124229 0.0187246i
\(345\) 0 0
\(346\) −2.37840 31.7375i −0.127864 1.70622i
\(347\) −15.3781 26.6357i −0.825542 1.42988i −0.901505 0.432770i \(-0.857536\pi\)
0.0759627 0.997111i \(-0.475797\pi\)
\(348\) 0 0
\(349\) 16.4569 28.5041i 0.880916 1.52579i 0.0305922 0.999532i \(-0.490261\pi\)
0.850324 0.526260i \(-0.176406\pi\)
\(350\) −77.0806 37.1201i −4.12013 1.98415i
\(351\) 0 0
\(352\) 6.20356 + 7.77902i 0.330651 + 0.414623i
\(353\) −25.4906 + 17.3792i −1.35673 + 0.925002i −0.999958 0.00918938i \(-0.997075\pi\)
−0.356771 + 0.934192i \(0.616123\pi\)
\(354\) 0 0
\(355\) −40.5293 6.10881i −2.15107 0.324222i
\(356\) 5.40182 5.01216i 0.286296 0.265644i
\(357\) 0 0
\(358\) −20.7104 + 3.12159i −1.09458 + 0.164981i
\(359\) 1.00719 4.41280i 0.0531576 0.232899i −0.941370 0.337377i \(-0.890460\pi\)
0.994527 + 0.104479i \(0.0333174\pi\)
\(360\) 0 0
\(361\) 0.760099 3.33021i 0.0400052 0.175274i
\(362\) 0.467180 6.23409i 0.0245544 0.327656i
\(363\) 0 0
\(364\) −28.0732 + 8.65944i −1.47144 + 0.453878i
\(365\) −8.57979 14.8606i −0.449087 0.777841i
\(366\) 0 0
\(367\) 20.7328 3.12497i 1.08225 0.163122i 0.416378 0.909192i \(-0.363299\pi\)
0.665868 + 0.746070i \(0.268061\pi\)
\(368\) 6.67153 + 29.2299i 0.347777 + 1.52371i
\(369\) 0 0
\(370\) 0.268061 0.336137i 0.0139358 0.0174750i
\(371\) 1.88194 25.1128i 0.0977056 1.30379i
\(372\) 0 0
\(373\) 0.236722 0.603158i 0.0122570 0.0312303i −0.924614 0.380905i \(-0.875613\pi\)
0.936871 + 0.349674i \(0.113708\pi\)
\(374\) −10.0843 1.51996i −0.521445 0.0785952i
\(375\) 0 0
\(376\) 1.27080 2.20109i 0.0655366 0.113513i
\(377\) −20.5943 + 11.4740i −1.06066 + 0.590939i
\(378\) 0 0
\(379\) −26.2054 12.6199i −1.34608 0.648238i −0.384593 0.923086i \(-0.625658\pi\)
−0.961488 + 0.274848i \(0.911373\pi\)
\(380\) 10.2408 + 26.0931i 0.525342 + 1.33855i
\(381\) 0 0
\(382\) 2.12882 + 28.4071i 0.108920 + 1.45343i
\(383\) 12.6788 + 8.64428i 0.647858 + 0.441702i 0.842151 0.539242i \(-0.181289\pi\)
−0.194293 + 0.980943i \(0.562241\pi\)
\(384\) 0 0
\(385\) 19.4673 + 6.00486i 0.992145 + 0.306036i
\(386\) −7.90211 34.6214i −0.402207 1.76218i
\(387\) 0 0
\(388\) −5.24804 + 22.9931i −0.266429 + 1.16730i
\(389\) −15.8577 + 27.4664i −0.804018 + 1.39260i 0.112934 + 0.993602i \(0.463975\pi\)
−0.916952 + 0.398998i \(0.869358\pi\)
\(390\) 0 0
\(391\) −22.5043 15.3432i −1.13809 0.775938i
\(392\) 3.12731 + 2.13217i 0.157953 + 0.107691i
\(393\) 0 0
\(394\) 6.69801 11.6013i 0.337441 0.584465i
\(395\) −1.59980 + 7.00919i −0.0804947 + 0.352670i
\(396\) 0 0
\(397\) 7.02476 + 30.7775i 0.352563 + 1.54468i 0.771241 + 0.636543i \(0.219636\pi\)
−0.418678 + 0.908135i \(0.637507\pi\)
\(398\) 6.78567 + 2.09310i 0.340135 + 0.104918i
\(399\) 0 0
\(400\) −42.2298 28.7918i −2.11149 1.43959i
\(401\) 0.469905 + 6.27044i 0.0234659 + 0.313131i 0.996569 + 0.0827621i \(0.0263742\pi\)
−0.973103 + 0.230369i \(0.926007\pi\)
\(402\) 0 0
\(403\) −7.21854 18.3925i −0.359581 0.916197i
\(404\) 0.722500 + 0.347938i 0.0359457 + 0.0173106i
\(405\) 0 0
\(406\) −37.0373 15.1935i −1.83813 0.754040i
\(407\) −0.0356855 + 0.0618091i −0.00176887 + 0.00306376i
\(408\) 0 0
\(409\) 12.4615 + 1.87828i 0.616184 + 0.0928748i 0.449715 0.893172i \(-0.351525\pi\)
0.166469 + 0.986047i \(0.446764\pi\)
\(410\) −11.2480 + 28.6596i −0.555502 + 1.41539i
\(411\) 0 0
\(412\) 0.974758 13.0072i 0.0480229 0.640821i
\(413\) −26.5476 + 33.2897i −1.30632 + 1.63808i
\(414\) 0 0
\(415\) −0.144753 0.634204i −0.00710564 0.0311318i
\(416\) −32.9865 + 4.97191i −1.61729 + 0.243768i
\(417\) 0 0
\(418\) −4.98926 8.64166i −0.244033 0.422677i
\(419\) 14.1569 4.36682i 0.691609 0.213333i 0.0710268 0.997474i \(-0.477372\pi\)
0.620582 + 0.784141i \(0.286896\pi\)
\(420\) 0 0
\(421\) −1.13215 + 15.1076i −0.0551778 + 0.736297i 0.899170 + 0.437600i \(0.144171\pi\)
−0.954348 + 0.298698i \(0.903448\pi\)
\(422\) 6.39007 27.9967i 0.311064 1.36286i
\(423\) 0 0
\(424\) 0.713064 3.12414i 0.0346295 0.151722i
\(425\) 45.9135 6.92035i 2.22713 0.335686i
\(426\) 0 0
\(427\) 16.5556 15.3613i 0.801181 0.743387i
\(428\) −3.56020 0.536613i −0.172089 0.0259382i
\(429\) 0 0
\(430\) −30.9908 + 21.1292i −1.49451 + 1.01894i
\(431\) −24.2562 30.4164i −1.16838 1.46511i −0.857371 0.514699i \(-0.827904\pi\)
−0.311011 0.950406i \(-0.600668\pi\)
\(432\) 0 0
\(433\) 23.3421 + 11.2410i 1.12175 + 0.540206i 0.900432 0.434996i \(-0.143250\pi\)
0.221317 + 0.975202i \(0.428965\pi\)
\(434\) 16.7758 29.0566i 0.805265 1.39476i
\(435\) 0 0
\(436\) 7.57402 + 13.1186i 0.362730 + 0.628266i
\(437\) −1.99159 26.5759i −0.0952707 1.27130i
\(438\) 0 0
\(439\) 35.2700 5.31609i 1.68334 0.253723i 0.763443 0.645875i \(-0.223507\pi\)
0.919901 + 0.392152i \(0.128269\pi\)
\(440\) 2.33560 + 1.12477i 0.111345 + 0.0536211i
\(441\) 0 0
\(442\) 21.3184 26.7324i 1.01401 1.27153i
\(443\) −27.2025 8.39087i −1.29243 0.398662i −0.429080 0.903267i \(-0.641162\pi\)
−0.863351 + 0.504604i \(0.831638\pi\)
\(444\) 0 0
\(445\) 6.25921 15.9482i 0.296715 0.756018i
\(446\) −4.96215 + 1.53062i −0.234965 + 0.0724770i
\(447\) 0 0
\(448\) −16.5221 15.3302i −0.780594 0.724285i
\(449\) 35.4096 17.0523i 1.67108 0.804750i 0.673215 0.739447i \(-0.264913\pi\)
0.997865 0.0653032i \(-0.0208014\pi\)
\(450\) 0 0
\(451\) 1.13728 4.98275i 0.0535525 0.234629i
\(452\) −2.87985 + 4.98805i −0.135457 + 0.234618i
\(453\) 0 0
\(454\) −2.94864 + 7.51302i −0.138387 + 0.352603i
\(455\) −50.0701 + 46.4583i −2.34732 + 2.17800i
\(456\) 0 0
\(457\) 4.16018 + 10.6000i 0.194605 + 0.495845i 0.994554 0.104223i \(-0.0332354\pi\)
−0.799949 + 0.600068i \(0.795140\pi\)
\(458\) 2.51012 1.20881i 0.117290 0.0564840i
\(459\) 0 0
\(460\) −29.8873 37.4774i −1.39350 1.74739i
\(461\) 9.48629 + 24.1707i 0.441820 + 1.12574i 0.962330 + 0.271884i \(0.0876468\pi\)
−0.520510 + 0.853856i \(0.674258\pi\)
\(462\) 0 0
\(463\) −0.164519 0.284956i −0.00764587 0.0132430i 0.862177 0.506607i \(-0.169100\pi\)
−0.869823 + 0.493364i \(0.835767\pi\)
\(464\) −20.5267 12.2733i −0.952930 0.569773i
\(465\) 0 0
\(466\) −21.2057 + 14.4578i −0.982333 + 0.669743i
\(467\) 25.6715 32.1910i 1.18793 1.48962i 0.356235 0.934396i \(-0.384060\pi\)
0.831699 0.555226i \(-0.187368\pi\)
\(468\) 0 0
\(469\) −5.06507 2.43921i −0.233883 0.112632i
\(470\) −3.05738 + 40.7979i −0.141026 + 1.88187i
\(471\) 0 0
\(472\) −3.97172 + 3.68522i −0.182813 + 0.169626i
\(473\) 4.56436 4.23511i 0.209870 0.194731i
\(474\) 0 0
\(475\) 33.3041 + 30.9017i 1.52810 + 1.41787i
\(476\) 27.0754 1.24100
\(477\) 0 0
\(478\) 43.8569 21.1203i 2.00597 0.966022i
\(479\) 1.13812 15.1872i 0.0520021 0.693920i −0.908897 0.417021i \(-0.863074\pi\)
0.960899 0.276899i \(-0.0893068\pi\)
\(480\) 0 0
\(481\) −0.119645 0.207231i −0.00545534 0.00944892i
\(482\) 4.89238 1.50910i 0.222842 0.0687376i
\(483\) 0 0
\(484\) −15.5223 4.78801i −0.705561 0.217637i
\(485\) 12.2015 + 53.4582i 0.554041 + 2.42741i
\(486\) 0 0
\(487\) 26.8766 12.9431i 1.21789 0.586507i 0.289170 0.957278i \(-0.406621\pi\)
0.928724 + 0.370771i \(0.120906\pi\)
\(488\) 2.37445 1.61887i 0.107486 0.0732828i
\(489\) 0 0
\(490\) −60.2468 9.08074i −2.72167 0.410226i
\(491\) −1.99076 26.5649i −0.0898419 1.19886i −0.841853 0.539707i \(-0.818535\pi\)
0.752011 0.659150i \(-0.229084\pi\)
\(492\) 0 0
\(493\) 21.2535 4.51029i 0.957210 0.203133i
\(494\) 33.4556 1.50524
\(495\) 0 0
\(496\) 12.4974 15.6713i 0.561151 0.703661i
\(497\) −38.3047 + 5.77351i −1.71820 + 0.258977i
\(498\) 0 0
\(499\) −6.14799 4.19163i −0.275222 0.187643i 0.417841 0.908520i \(-0.362787\pi\)
−0.693063 + 0.720877i \(0.743739\pi\)
\(500\) 45.6985 + 6.88794i 2.04370 + 0.308038i
\(501\) 0 0
\(502\) −7.53539 2.32436i −0.336321 0.103741i
\(503\) −6.41354 8.04232i −0.285965 0.358589i 0.618013 0.786168i \(-0.287938\pi\)
−0.903978 + 0.427579i \(0.859367\pi\)
\(504\) 0 0
\(505\) 1.86442 0.0829656
\(506\) 12.5090 + 11.6067i 0.556093 + 0.515979i
\(507\) 0 0
\(508\) −12.0678 8.22772i −0.535424 0.365046i
\(509\) 10.1439 3.12899i 0.449622 0.138690i −0.0616710 0.998097i \(-0.519643\pi\)
0.511293 + 0.859407i \(0.329167\pi\)
\(510\) 0 0
\(511\) −11.8884 11.0309i −0.525913 0.487976i
\(512\) −18.3940 23.0654i −0.812908 1.01935i
\(513\) 0 0
\(514\) 2.94747 + 12.9137i 0.130007 + 0.569600i
\(515\) −11.0794 28.2298i −0.488216 1.24395i
\(516\) 0 0
\(517\) −0.507537 6.77261i −0.0223214 0.297859i
\(518\) 0.148452 0.378249i 0.00652260 0.0166193i
\(519\) 0 0
\(520\) −7.18119 + 4.89605i −0.314916 + 0.214706i
\(521\) 15.5623 0.681795 0.340897 0.940101i \(-0.389269\pi\)
0.340897 + 0.940101i \(0.389269\pi\)
\(522\) 0 0
\(523\) −1.40462 −0.0614198 −0.0307099 0.999528i \(-0.509777\pi\)
−0.0307099 + 0.999528i \(0.509777\pi\)
\(524\) 18.6169 12.6928i 0.813284 0.554488i
\(525\) 0 0
\(526\) 8.53810 21.7547i 0.372279 0.948551i
\(527\) 1.36079 + 18.1585i 0.0592771 + 0.790998i
\(528\) 0 0
\(529\) 8.24753 + 21.0144i 0.358588 + 0.913668i
\(530\) 11.4782 + 50.2894i 0.498582 + 2.18443i
\(531\) 0 0
\(532\) 16.5176 + 20.7125i 0.716131 + 0.897999i
\(533\) 12.5613 + 11.6552i 0.544089 + 0.504841i
\(534\) 0 0
\(535\) −7.99892 + 2.46734i −0.345823 + 0.106672i
\(536\) −0.591055 0.402975i −0.0255297 0.0174059i
\(537\) 0 0
\(538\) 34.2062 + 31.7387i 1.47473 + 1.36835i
\(539\) 10.1142 0.435648
\(540\) 0 0
\(541\) −25.0277 31.3837i −1.07602 1.34929i −0.933124 0.359555i \(-0.882928\pi\)
−0.142901 0.989737i \(-0.545643\pi\)
\(542\) 44.8750 + 13.8421i 1.92755 + 0.594569i
\(543\) 0 0
\(544\) 30.4006 + 4.58215i 1.30341 + 0.196458i
\(545\) 29.0990 + 19.8393i 1.24646 + 0.849824i
\(546\) 0 0
\(547\) 26.9712 4.06525i 1.15320 0.173818i 0.455522 0.890224i \(-0.349453\pi\)
0.697683 + 0.716407i \(0.254215\pi\)
\(548\) −6.12673 + 7.68267i −0.261721 + 0.328188i
\(549\) 0 0
\(550\) −29.0902 −1.24041
\(551\) 16.4163 + 13.5072i 0.699358 + 0.575428i
\(552\) 0 0
\(553\) 0.507778 + 6.77583i 0.0215929 + 0.288137i
\(554\) 17.1714 + 2.58817i 0.729542 + 0.109961i
\(555\) 0 0
\(556\) −19.0268 + 12.9723i −0.806917 + 0.550147i
\(557\) −31.1072 + 14.9804i −1.31805 + 0.634742i −0.954883 0.296981i \(-0.904020\pi\)
−0.363171 + 0.931722i \(0.618306\pi\)
\(558\) 0 0
\(559\) 4.64535 + 20.3526i 0.196477 + 0.860824i
\(560\) −66.2138 20.4242i −2.79804 0.863082i
\(561\) 0 0
\(562\) −1.39797 + 0.431217i −0.0589699 + 0.0181898i
\(563\) 0.422003 + 0.730931i 0.0177853 + 0.0308051i 0.874781 0.484518i \(-0.161005\pi\)
−0.856996 + 0.515323i \(0.827672\pi\)
\(564\) 0 0
\(565\) −1.00072 + 13.3536i −0.0421005 + 0.561792i
\(566\) −40.4015 + 19.4563i −1.69820 + 0.817810i
\(567\) 0 0
\(568\) −4.92921 −0.206825
\(569\) 25.5179 + 23.6771i 1.06977 + 0.992598i 0.999988 0.00496494i \(-0.00158040\pi\)
0.0697781 + 0.997563i \(0.477771\pi\)
\(570\) 0 0
\(571\) −5.55839 + 5.15743i −0.232611 + 0.215832i −0.787863 0.615851i \(-0.788812\pi\)
0.555251 + 0.831682i \(0.312622\pi\)
\(572\) −7.32274 + 6.79451i −0.306179 + 0.284093i
\(573\) 0 0
\(574\) −2.17449 + 29.0166i −0.0907615 + 1.21113i
\(575\) −69.9994 33.7099i −2.91918 1.40580i
\(576\) 0 0
\(577\) 27.8052 34.8666i 1.15755 1.45152i 0.288025 0.957623i \(-0.407001\pi\)
0.869522 0.493895i \(-0.164427\pi\)
\(578\) 1.15522 0.787617i 0.0480509 0.0327606i
\(579\) 0 0
\(580\) 38.0827 + 3.44009i 1.58130 + 0.142842i
\(581\) −0.307404 0.532440i −0.0127533 0.0220893i
\(582\) 0 0
\(583\) −3.12839 7.97100i −0.129564 0.330125i
\(584\) −1.28667 1.61343i −0.0532427 0.0667642i
\(585\) 0 0
\(586\) 28.0130 13.4904i 1.15721 0.557282i
\(587\) −10.9098 27.7978i −0.450297 1.14734i −0.958245 0.285950i \(-0.907691\pi\)
0.507948 0.861388i \(-0.330404\pi\)
\(588\) 0 0
\(589\) −13.0610 + 12.1188i −0.538168 + 0.499347i
\(590\) 31.8631 81.1858i 1.31178 3.34237i
\(591\) 0 0
\(592\) 0.121376 0.210230i 0.00498854 0.00864041i
\(593\) −7.15459 + 31.3463i −0.293804 + 1.28724i 0.585382 + 0.810758i \(0.300945\pi\)
−0.879185 + 0.476480i \(0.841912\pi\)
\(594\) 0 0
\(595\) 56.7153 27.3126i 2.32510 1.11971i
\(596\) −15.7599 14.6230i −0.645549 0.598982i
\(597\) 0 0
\(598\) −54.6706 + 16.8636i −2.23565 + 0.689605i
\(599\) −5.73528 + 14.6133i −0.234337 + 0.597082i −0.998871 0.0475018i \(-0.984874\pi\)
0.764534 + 0.644584i \(0.222969\pi\)
\(600\) 0 0
\(601\) −8.99702 2.77521i −0.366996 0.113203i 0.105771 0.994390i \(-0.466269\pi\)
−0.472768 + 0.881187i \(0.656745\pi\)
\(602\) −22.1024 + 27.7156i −0.900828 + 1.12960i
\(603\) 0 0
\(604\) −22.4447 10.8088i −0.913263 0.439804i
\(605\) −37.3449 + 5.62883i −1.51829 + 0.228845i
\(606\) 0 0
\(607\) 1.29069 + 17.2231i 0.0523875 + 0.699062i 0.960133 + 0.279542i \(0.0901827\pi\)
−0.907746 + 0.419520i \(0.862198\pi\)
\(608\) 15.0409 + 26.0516i 0.609990 + 1.05653i
\(609\) 0 0
\(610\) −23.1298 + 40.0621i −0.936500 + 1.62207i
\(611\) 20.5156 + 9.87979i 0.829972 + 0.399693i
\(612\) 0 0
\(613\) 5.87230 + 7.36363i 0.237180 + 0.297414i 0.886149 0.463401i \(-0.153371\pi\)
−0.648969 + 0.760815i \(0.724800\pi\)
\(614\) −40.7993 + 27.8165i −1.64653 + 1.12258i
\(615\) 0 0
\(616\) 2.42267 + 0.365159i 0.0976121 + 0.0147127i
\(617\) 24.2780 22.5267i 0.977395 0.906890i −0.0182765 0.999833i \(-0.505818\pi\)
0.995671 + 0.0929430i \(0.0296274\pi\)
\(618\) 0 0
\(619\) −36.7001 + 5.53165i −1.47510 + 0.222336i −0.836825 0.547471i \(-0.815591\pi\)
−0.638277 + 0.769807i \(0.720353\pi\)
\(620\) −7.13123 + 31.2440i −0.286397 + 1.25479i
\(621\) 0 0
\(622\) −1.18175 + 5.17758i −0.0473839 + 0.207602i
\(623\) 1.21004 16.1469i 0.0484793 0.646911i
\(624\) 0 0
\(625\) 47.6873 14.7096i 1.90749 0.588383i
\(626\) 22.6677 + 39.2616i 0.905984 + 1.56921i
\(627\) 0 0
\(628\) 13.8815 2.09230i 0.553932 0.0834919i
\(629\) 0.0490728 + 0.215002i 0.00195666 + 0.00857270i
\(630\) 0 0
\(631\) 12.1390 15.2218i 0.483244 0.605969i −0.479114 0.877752i \(-0.659042\pi\)
0.962358 + 0.271784i \(0.0876135\pi\)
\(632\) −0.0646131 + 0.862202i −0.00257017 + 0.0342966i
\(633\) 0 0
\(634\) −18.3777 + 46.8255i −0.729870 + 1.85968i
\(635\) −33.5785 5.06115i −1.33252 0.200846i
\(636\) 0 0
\(637\) −16.9552 + 29.3672i −0.671788 + 1.16357i
\(638\) −13.5880 + 0.809604i −0.537953 + 0.0320525i
\(639\) 0 0
\(640\) −14.1960 6.83645i −0.561147 0.270234i
\(641\) −3.80900 9.70518i −0.150447 0.383332i 0.835705 0.549179i \(-0.185059\pi\)
−0.986151 + 0.165847i \(0.946964\pi\)
\(642\) 0 0
\(643\) 2.38597 + 31.8386i 0.0940935 + 1.25559i 0.821829 + 0.569734i \(0.192954\pi\)
−0.727736 + 0.685857i \(0.759427\pi\)
\(644\) −37.4322 25.5209i −1.47504 1.00566i
\(645\) 0 0
\(646\) −29.4631 9.08816i −1.15921 0.357569i
\(647\) 4.74981 + 20.8103i 0.186734 + 0.818136i 0.978324 + 0.207082i \(0.0663968\pi\)
−0.791589 + 0.611053i \(0.790746\pi\)
\(648\) 0 0
\(649\) −3.22165 + 14.1150i −0.126461 + 0.554061i
\(650\) 48.7662 84.4655i 1.91277 3.31301i
\(651\) 0 0
\(652\) 7.86964 + 5.36543i 0.308199 + 0.210127i
\(653\) 26.7585 + 18.2436i 1.04714 + 0.713927i 0.959352 0.282212i \(-0.0910681\pi\)
0.0877871 + 0.996139i \(0.472020\pi\)
\(654\) 0 0
\(655\) 26.1932 45.3679i 1.02345 1.77267i
\(656\) −3.86821 + 16.9478i −0.151028 + 0.661699i
\(657\) 0 0
\(658\) 8.60415 + 37.6972i 0.335425 + 1.46959i
\(659\) 4.31269 + 1.33029i 0.167998 + 0.0518206i 0.377613 0.925963i \(-0.376745\pi\)
−0.209615 + 0.977784i \(0.567221\pi\)
\(660\) 0 0
\(661\) 31.6549 + 21.5819i 1.23123 + 0.839440i 0.991335 0.131358i \(-0.0419338\pi\)
0.239898 + 0.970798i \(0.422886\pi\)
\(662\) −1.05649 14.0979i −0.0410617 0.547931i
\(663\) 0 0
\(664\) −0.0285815 0.0728245i −0.00110918 0.00282614i
\(665\) 55.4938 + 26.7244i 2.15196 + 1.03633i
\(666\) 0 0
\(667\) −33.6347 13.7977i −1.30234 0.534249i
\(668\) −4.88487 + 8.46085i −0.189001 + 0.327360i
\(669\) 0 0
\(670\) 11.3865 + 1.71624i 0.439899 + 0.0663041i
\(671\) 2.80556 7.14845i 0.108307 0.275963i
\(672\) 0 0
\(673\) 1.25467 16.7424i 0.0483638 0.645371i −0.919370 0.393395i \(-0.871301\pi\)
0.967734 0.251976i \(-0.0810804\pi\)
\(674\) 23.5233 29.4972i 0.906082 1.13619i
\(675\) 0 0
\(676\) −2.39730 10.5033i −0.0922038 0.403971i
\(677\) −3.11639 + 0.469720i −0.119773 + 0.0180528i −0.208655 0.977989i \(-0.566909\pi\)
0.0888824 + 0.996042i \(0.471670\pi\)
\(678\) 0 0
\(679\) 25.9116 + 44.8803i 0.994397 + 1.72235i
\(680\) 7.65422 2.36101i 0.293526 0.0905407i
\(681\) 0 0
\(682\) 0.852550 11.3765i 0.0326458 0.435629i
\(683\) 1.52220 6.66921i 0.0582455 0.255190i −0.937419 0.348202i \(-0.886792\pi\)
0.995665 + 0.0930118i \(0.0296494\pi\)
\(684\) 0 0
\(685\) −5.08377 + 22.2734i −0.194241 + 0.851024i
\(686\) −5.48417 + 0.826606i −0.209387 + 0.0315600i
\(687\) 0 0
\(688\) −15.5247 + 14.4048i −0.591873 + 0.549178i
\(689\) 28.3887 + 4.27891i 1.08152 + 0.163014i
\(690\) 0 0
\(691\) −30.0566 + 20.4923i −1.14341 + 0.779563i −0.978398 0.206729i \(-0.933718\pi\)
−0.165010 + 0.986292i \(0.552766\pi\)
\(692\) 17.9136 + 22.4629i 0.680971 + 0.853911i
\(693\) 0 0
\(694\) 53.6438 + 25.8335i 2.03629 + 0.980626i
\(695\) −26.7699 + 46.3668i −1.01544 + 1.75879i
\(696\) 0 0
\(697\) −7.89615 13.6765i −0.299088 0.518035i
\(698\) 4.76155 + 63.5385i 0.180227 + 2.40497i
\(699\) 0 0
\(700\) 76.3696 11.5109i 2.88650 0.435070i
\(701\) −31.3828 15.1131i −1.18531 0.570816i −0.265857 0.964013i \(-0.585655\pi\)
−0.919454 + 0.393197i \(0.871369\pi\)
\(702\) 0 0
\(703\) −0.134538 + 0.168705i −0.00507418 + 0.00636282i
\(704\) −7.32325 2.25892i −0.276005 0.0851364i
\(705\) 0 0
\(706\) 21.8197 55.5958i 0.821196 2.09237i
\(707\) 1.68380 0.519384i 0.0633259 0.0195334i
\(708\) 0 0
\(709\) 20.9312 + 19.4213i 0.786089 + 0.729384i 0.967183 0.254082i \(-0.0817733\pi\)
−0.181094 + 0.983466i \(0.557964\pi\)
\(710\) 71.4880 34.4268i 2.68290 1.29201i
\(711\) 0 0
\(712\) 0.458482 2.00874i 0.0171823 0.0752807i
\(713\) 15.2346 26.3872i 0.570542 0.988208i
\(714\) 0 0
\(715\) −8.48503 + 21.6195i −0.317322 + 0.808523i
\(716\) 13.8600 12.8602i 0.517974 0.480609i
\(717\) 0 0
\(718\) 3.20123 + 8.15659i 0.119469 + 0.304401i
\(719\) 3.82445 1.84176i 0.142628 0.0686859i −0.361209 0.932485i \(-0.617636\pi\)
0.503836 + 0.863799i \(0.331921\pi\)
\(720\) 0 0
\(721\) −17.8702 22.4085i −0.665521 0.834537i
\(722\) 2.41587 + 6.15554i 0.0899094 + 0.229085i
\(723\) 0 0
\(724\) 2.82177 + 4.88746i 0.104870 + 0.181641i
\(725\) 58.0308 21.7576i 2.15521 0.808058i
\(726\) 0 0
\(727\) −8.42550 + 5.74441i −0.312484 + 0.213048i −0.709399 0.704807i \(-0.751033\pi\)
0.396914 + 0.917856i \(0.370081\pi\)
\(728\) −5.12157 + 6.42225i −0.189818 + 0.238024i
\(729\) 0 0
\(730\) 29.9290 + 14.4131i 1.10772 + 0.533451i
\(731\) 1.43777 19.1857i 0.0531779 0.709609i
\(732\) 0 0
\(733\) 24.8238 23.0331i 0.916888 0.850747i −0.0723029 0.997383i \(-0.523035\pi\)
0.989191 + 0.146635i \(0.0468444\pi\)
\(734\) −29.7541 + 27.6078i −1.09825 + 1.01902i
\(735\) 0 0
\(736\) −37.7103 34.9901i −1.39002 1.28975i
\(737\) −1.91155 −0.0704130
\(738\) 0 0
\(739\) −25.2646 + 12.1668i −0.929373 + 0.447562i −0.836408 0.548107i \(-0.815349\pi\)
−0.0929646 + 0.995669i \(0.529634\pi\)
\(740\) −0.0290043 + 0.387036i −0.00106622 + 0.0142277i
\(741\) 0 0
\(742\) 24.3757 + 42.2199i 0.894860 + 1.54994i
\(743\) 12.4023 3.82560i 0.454996 0.140348i −0.0587819 0.998271i \(-0.518722\pi\)
0.513778 + 0.857923i \(0.328245\pi\)
\(744\) 0 0
\(745\) −47.7636 14.7331i −1.74992 0.539780i
\(746\) 0.279118 + 1.22289i 0.0102192 + 0.0447733i
\(747\) 0 0
\(748\) 8.29460 3.99447i 0.303280 0.146052i
\(749\) −6.53667 + 4.45662i −0.238845 + 0.162841i
\(750\) 0 0
\(751\) −2.00134 0.301653i −0.0730299 0.0110075i 0.112426 0.993660i \(-0.464138\pi\)
−0.185456 + 0.982653i \(0.559376\pi\)
\(752\) 1.72628 + 23.0356i 0.0629508 + 0.840020i
\(753\) 0 0
\(754\) 20.4278 40.8108i 0.743938 1.48624i
\(755\) −57.9189 −2.10788
\(756\) 0 0
\(757\) −18.7005 + 23.4497i −0.679681 + 0.852293i −0.995325 0.0965848i \(-0.969208\pi\)
0.315644 + 0.948878i \(0.397780\pi\)
\(758\) 55.6774 8.39202i 2.02229 0.304812i
\(759\) 0 0
\(760\) 6.47570 + 4.41506i 0.234898 + 0.160151i
\(761\) −14.2223 2.14366i −0.515557 0.0777076i −0.113890 0.993493i \(-0.536331\pi\)
−0.401667 + 0.915786i \(0.631569\pi\)
\(762\) 0 0
\(763\) 31.8067 + 9.81108i 1.15148 + 0.355185i
\(764\) −16.0338 20.1057i −0.580081 0.727399i
\(765\) 0 0
\(766\) −29.7064 −1.07333
\(767\) −35.5831 33.0163i −1.28483 1.19215i
\(768\) 0 0
\(769\) −32.4720 22.1390i −1.17097 0.798353i −0.188008 0.982167i \(-0.560203\pi\)
−0.982961 + 0.183814i \(0.941156\pi\)
\(770\) −37.6861 + 11.6246i −1.35811 + 0.418923i
\(771\) 0 0
\(772\) 23.5001 + 21.8049i 0.845788 + 0.784776i
\(773\) −8.51439 10.6767i −0.306241 0.384014i 0.604767 0.796402i \(-0.293266\pi\)
−0.911008 + 0.412388i \(0.864695\pi\)
\(774\) 0 0
\(775\) 11.5582 + 50.6400i 0.415185 + 1.81904i
\(776\) 2.40919 + 6.13850i 0.0864847 + 0.220359i
\(777\) 0 0
\(778\) −4.58820 61.2252i −0.164495 2.19503i
\(779\) 5.64531 14.3840i 0.202264 0.515361i
\(780\) 0 0
\(781\) −10.8830 + 7.41988i −0.389423 + 0.265504i
\(782\) 52.7274 1.88553
\(783\) 0 0
\(784\) −34.4011 −1.22861
\(785\) 26.9672 18.3859i 0.962500 0.656222i
\(786\) 0 0
\(787\) 2.87812 7.33334i 0.102594 0.261405i −0.870355 0.492424i \(-0.836111\pi\)
0.972949 + 0.231019i \(0.0742060\pi\)
\(788\) 0.903722 + 12.0593i 0.0321938 + 0.429596i
\(789\) 0 0
\(790\) −5.08475 12.9557i −0.180907 0.460944i
\(791\) 2.81624 + 12.3388i 0.100134 + 0.438716i
\(792\) 0 0
\(793\) 16.0529 + 20.1296i 0.570054 + 0.714825i
\(794\) −44.7993 41.5677i −1.58987 1.47518i
\(795\) 0 0
\(796\) −6.12571 + 1.88953i −0.217120 + 0.0669726i
\(797\) −30.2969 20.6561i −1.07317 0.731676i −0.108226 0.994126i \(-0.534517\pi\)
−0.964945 + 0.262450i \(0.915469\pi\)
\(798\) 0 0
\(799\) −15.3835 14.2738i −0.544229 0.504971i
\(800\) 87.6969 3.10055
\(801\) 0 0
\(802\) −7.58961 9.51707i −0.267998 0.336059i
\(803\) −5.26944 1.62541i −0.185955 0.0573594i
\(804\) 0 0
\(805\) −104.154 15.6987i −3.67096 0.553308i
\(806\) 31.6033 + 21.5468i 1.11318 + 0.758952i
\(807\) 0 0
\(808\) 0.221716 0.0334182i 0.00779992 0.00117565i
\(809\) 14.8021 18.5612i 0.520413 0.652577i −0.450284 0.892886i \(-0.648677\pi\)
0.970697 + 0.240308i \(0.0772485\pi\)
\(810\) 0 0
\(811\) −14.8118 −0.520113 −0.260056 0.965593i \(-0.583741\pi\)
−0.260056 + 0.965593i \(0.583741\pi\)
\(812\) 35.3517 7.50213i 1.24060 0.263273i
\(813\) 0 0
\(814\) −0.0103251 0.137779i −0.000361894 0.00482914i
\(815\) 21.8971 + 3.30046i 0.767023 + 0.115610i
\(816\) 0 0
\(817\) 15.5541 10.6046i 0.544168 0.371007i
\(818\) −21.9804 + 10.5852i −0.768527 + 0.370103i
\(819\) 0 0
\(820\) −6.18462 27.0966i −0.215976 0.946254i
\(821\) −30.3370 9.35772i −1.05877 0.326587i −0.283995 0.958826i \(-0.591660\pi\)
−0.774773 + 0.632239i \(0.782136\pi\)
\(822\) 0 0
\(823\) 15.1951 4.68706i 0.529667 0.163381i −0.0183756 0.999831i \(-0.505849\pi\)
0.548042 + 0.836451i \(0.315373\pi\)
\(824\) −1.82355 3.15848i −0.0635263 0.110031i
\(825\) 0 0
\(826\) 6.15982 82.1971i 0.214328 2.86000i
\(827\) −12.4052 + 5.97404i −0.431372 + 0.207738i −0.636954 0.770902i \(-0.719806\pi\)
0.205581 + 0.978640i \(0.434091\pi\)
\(828\) 0 0
\(829\) −0.0933682 −0.00324281 −0.00162140 0.999999i \(-0.500516\pi\)
−0.00162140 + 0.999999i \(0.500516\pi\)
\(830\) 0.923139 + 0.856548i 0.0320426 + 0.0297312i
\(831\) 0 0
\(832\) 18.8355 17.4768i 0.653003 0.605898i
\(833\) 22.9094 21.2568i 0.793762 0.736504i
\(834\) 0 0
\(835\) −1.69744 + 22.6508i −0.0587423 + 0.783862i
\(836\) 8.11595 + 3.90844i 0.280696 + 0.135176i
\(837\) 0 0
\(838\) −17.8817 + 22.4230i −0.617714 + 0.774589i
\(839\) −29.3515 + 20.0115i −1.01333 + 0.690875i −0.951638 0.307220i \(-0.900601\pi\)
−0.0616895 + 0.998095i \(0.519649\pi\)
\(840\) 0 0
\(841\) 26.5005 11.7780i 0.913812 0.406138i
\(842\) −14.6641 25.3990i −0.505359 0.875308i
\(843\) 0 0
\(844\) 9.47101 + 24.1317i 0.326006 + 0.830649i
\(845\) −15.6169 19.5830i −0.537239 0.673677i
\(846\) 0 0
\(847\) −32.1590 + 15.4869i −1.10500 + 0.532138i
\(848\) 10.6405 + 27.1116i 0.365397 + 0.931017i
\(849\) 0 0
\(850\) −65.8915 + 61.1384i −2.26006 + 2.09703i
\(851\) 0.134814 0.343500i 0.00462136 0.0117750i
\(852\) 0 0
\(853\) 20.3518 35.2504i 0.696834 1.20695i −0.272725 0.962092i \(-0.587925\pi\)
0.969559 0.244859i \(-0.0787418\pi\)
\(854\) −9.72874 + 42.6244i −0.332911 + 1.45858i
\(855\) 0 0
\(856\) −0.907000 + 0.436788i −0.0310006 + 0.0149291i
\(857\) 27.1258 + 25.1691i 0.926600 + 0.859759i 0.990404 0.138203i \(-0.0441328\pi\)
−0.0638040 + 0.997962i \(0.520323\pi\)
\(858\) 0 0
\(859\) 4.97416 1.53432i 0.169716 0.0523505i −0.208733 0.977973i \(-0.566934\pi\)
0.378449 + 0.925622i \(0.376458\pi\)
\(860\) 12.3706 31.5197i 0.421832 1.07481i
\(861\) 0 0
\(862\) 71.9671 + 22.1989i 2.45121 + 0.756098i
\(863\) 5.00214 6.27249i 0.170275 0.213518i −0.689371 0.724409i \(-0.742113\pi\)
0.859646 + 0.510891i \(0.170684\pi\)
\(864\) 0 0
\(865\) 60.1835 + 28.9829i 2.04630 + 0.985447i
\(866\) −49.5938 + 7.47507i −1.68527 + 0.254013i
\(867\) 0 0
\(868\) 2.26346 + 30.2037i 0.0768268 + 1.02518i
\(869\) 1.15521 + 2.00087i 0.0391877 + 0.0678750i
\(870\) 0 0
\(871\) 3.20449 5.55033i 0.108580 0.188066i
\(872\) 3.81603 + 1.83770i 0.129227 + 0.0622325i
\(873\) 0 0
\(874\) 32.1669 + 40.3361i 1.08806 + 1.36439i
\(875\) 83.9043 57.2050i 2.83648 1.93388i
\(876\) 0 0
\(877\) −14.6847 2.21337i −0.495868 0.0747401i −0.103653 0.994614i \(-0.533053\pi\)
−0.392215 + 0.919873i \(0.628291\pi\)
\(878\) −50.6167 + 46.9654i −1.70823 + 1.58501i
\(879\) 0 0
\(880\) −23.2979 + 3.51160i −0.785373 + 0.118376i
\(881\) 2.95418 12.9431i 0.0995289 0.436064i −0.900470 0.434917i \(-0.856778\pi\)
0.999999 0.00114731i \(-0.000365202\pi\)
\(882\) 0 0
\(883\) 12.4995 54.7638i 0.420641 1.84295i −0.108064 0.994144i \(-0.534465\pi\)
0.528705 0.848806i \(-0.322678\pi\)
\(884\) −2.30666 + 30.7802i −0.0775813 + 1.03525i
\(885\) 0 0
\(886\) 52.6605 16.2436i 1.76916 0.545715i
\(887\) −6.08658 10.5423i −0.204367 0.353975i 0.745564 0.666434i \(-0.232180\pi\)
−0.949931 + 0.312460i \(0.898847\pi\)
\(888\) 0 0
\(889\) −31.7355 + 4.78335i −1.06437 + 0.160429i
\(890\) 7.38020 + 32.3348i 0.247385 + 1.08386i
\(891\) 0 0
\(892\) 2.92280 3.66507i 0.0978626 0.122716i
\(893\) 1.53448 20.4762i 0.0513493 0.685209i
\(894\) 0 0
\(895\) 16.0599 40.9200i 0.536824 1.36781i
\(896\) −14.7252 2.21947i −0.491936 0.0741474i
\(897\) 0 0
\(898\) −38.0414 + 65.8897i −1.26946 + 2.19877i
\(899\) 6.80819 + 23.3322i 0.227066 + 0.778171i
\(900\) 0 0
\(901\) −23.8386 11.4800i −0.794177 0.382456i
\(902\) 3.61469 + 9.21009i 0.120356 + 0.306662i
\(903\) 0 0
\(904\) 0.120349 + 1.60594i 0.00400274 + 0.0534128i
\(905\) 10.8411 + 7.39134i 0.360370 + 0.245696i
\(906\) 0 0
\(907\) −19.8044 6.10885i −0.657594 0.202841i −0.0520400 0.998645i \(-0.516572\pi\)
−0.605554 + 0.795804i \(0.707049\pi\)
\(908\) −1.62128 7.10329i −0.0538040 0.235731i
\(909\) 0 0
\(910\) 29.4233 128.912i 0.975371 4.27338i
\(911\) 19.2506 33.3430i 0.637801 1.10470i −0.348113 0.937452i \(-0.613178\pi\)
0.985914 0.167251i \(-0.0534890\pi\)
\(912\) 0 0
\(913\) −0.172725 0.117762i −0.00571638 0.00389736i
\(914\) −18.2136 12.4178i −0.602452 0.410744i
\(915\) 0 0
\(916\) −1.25753 + 2.17811i −0.0415500 + 0.0719666i
\(917\) 11.0172 48.2696i 0.363821 1.59400i
\(918\) 0 0
\(919\) −2.44444 10.7098i −0.0806345 0.353283i 0.918475 0.395479i \(-0.129422\pi\)
−0.999109 + 0.0421966i \(0.986564\pi\)
\(920\) −12.8076 3.95061i −0.422253 0.130248i
\(921\) 0 0
\(922\) −41.5317 28.3158i −1.36777 0.932532i
\(923\) −3.30019 44.0380i −0.108627 1.44953i
\(924\) 0 0
\(925\) 0.229823 + 0.585579i 0.00755652 + 0.0192537i
\(926\) 0.573896 + 0.276374i 0.0188594 + 0.00908220i
\(927\) 0 0
\(928\) 40.9631 2.44068i 1.34468 0.0801192i
\(929\) 16.5839 28.7241i 0.544100 0.942409i −0.454563 0.890715i \(-0.650205\pi\)
0.998663 0.0516942i \(-0.0164621\pi\)
\(930\) 0 0
\(931\) 30.2374 + 4.55756i 0.990991 + 0.149368i
\(932\) 8.46463 21.5675i 0.277268 0.706467i
\(933\) 0 0
\(934\) −5.95653 + 79.4843i −0.194903 + 2.60081i
\(935\) 13.3454 16.7346i 0.436440 0.547278i
\(936\) 0 0
\(937\) 11.3869 + 49.8894i 0.371995 + 1.62981i 0.721171 + 0.692758i \(0.243604\pi\)
−0.349176 + 0.937057i \(0.613538\pi\)
\(938\) 10.7615 1.62204i 0.351376 0.0529614i
\(939\) 0 0
\(940\) −18.4666 31.9851i −0.602314 1.04324i
\(941\) −49.2005 + 15.1764i −1.60389 + 0.494735i −0.962227 0.272250i \(-0.912232\pi\)
−0.641665 + 0.766985i \(0.721756\pi\)
\(942\) 0 0
\(943\) −1.97472 + 26.3509i −0.0643058 + 0.858102i
\(944\) 10.9577 48.0090i 0.356644 1.56256i
\(945\) 0 0
\(946\) −2.68221 + 11.7515i −0.0872061 + 0.382075i
\(947\) −13.4843 + 2.03244i −0.438182 + 0.0660453i −0.364429 0.931231i \(-0.618736\pi\)
−0.0737531 + 0.997277i \(0.523498\pi\)
\(948\) 0 0
\(949\) 13.5531 12.5754i 0.439951 0.408215i
\(950\) −86.9683 13.1084i −2.82162 0.425291i
\(951\) 0 0
\(952\) 6.25498 4.26457i 0.202725 0.138216i
\(953\) −32.2960 40.4979i −1.04617 1.31186i −0.948548 0.316633i \(-0.897448\pi\)
−0.0976225 0.995224i \(-0.531124\pi\)
\(954\) 0 0
\(955\) −53.8681 25.9415i −1.74313 0.839447i
\(956\) −21.9716 + 38.0559i −0.710611 + 1.23081i
\(957\) 0 0
\(958\) 14.7414 + 25.5329i 0.476274 + 0.824930i
\(959\) 1.61359 + 21.5319i 0.0521056 + 0.695301i
\(960\) 0 0
\(961\) 10.5109 1.58426i 0.339061 0.0511052i
\(962\) 0.417359 + 0.200989i 0.0134562 + 0.00648016i
\(963\) 0 0
\(964\) −2.88170 + 3.61354i −0.0928134 + 0.116384i
\(965\) 71.2221 + 21.9691i 2.29272 + 0.707210i
\(966\) 0 0
\(967\) −14.0327 + 35.7547i −0.451261 + 1.14979i 0.506503 + 0.862238i \(0.330938\pi\)
−0.957764 + 0.287556i \(0.907157\pi\)
\(968\) −4.34013 + 1.33875i −0.139497 + 0.0430292i
\(969\) 0 0
\(970\) −77.8130 72.1999i −2.49843 2.31820i
\(971\) −37.2753 + 17.9508i −1.19622 + 0.576070i −0.922596 0.385766i \(-0.873937\pi\)
−0.273625 + 0.961836i \(0.588223\pi\)
\(972\) 0 0
\(973\) −11.2598 + 49.3324i −0.360972 + 1.58152i
\(974\) −28.8742 + 50.0116i −0.925190 + 1.60248i
\(975\) 0 0
\(976\) −9.54250 + 24.3139i −0.305448 + 0.778268i
\(977\) −6.87849 + 6.38230i −0.220062 + 0.204188i −0.782498 0.622653i \(-0.786055\pi\)
0.562436 + 0.826841i \(0.309864\pi\)
\(978\) 0 0
\(979\) −2.01147 5.12515i −0.0642869 0.163800i
\(980\) 49.5547 23.8643i 1.58297 0.762316i
\(981\) 0 0
\(982\) 32.1536 + 40.3193i 1.02606 + 1.28664i
\(983\) 4.37429 + 11.1455i 0.139518 + 0.355487i 0.983506 0.180876i \(-0.0578933\pi\)
−0.843988 + 0.536362i \(0.819798\pi\)
\(984\) 0 0
\(985\) 14.0580 + 24.3492i 0.447927 + 0.775832i
\(986\) −29.0763 + 30.3914i −0.925977 + 0.967860i
\(987\) 0 0
\(988\) −24.9538 + 17.0132i −0.793887 + 0.541263i
\(989\) −20.0719 + 25.1694i −0.638250 + 0.800340i
\(990\) 0 0
\(991\) −36.5422 17.5978i −1.16080 0.559013i −0.248541 0.968621i \(-0.579951\pi\)
−0.912261 + 0.409608i \(0.865665\pi\)
\(992\) −2.57015 + 34.2962i −0.0816023 + 1.08891i
\(993\) 0 0
\(994\) 54.9720 51.0065i 1.74360 1.61783i
\(995\) −10.9255 + 10.1374i −0.346363 + 0.321378i
\(996\) 0 0
\(997\) −23.4381 21.7474i −0.742292 0.688746i 0.215405 0.976525i \(-0.430893\pi\)
−0.957697 + 0.287778i \(0.907083\pi\)
\(998\) 14.4047 0.455972
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.u.a.451.5 336
3.2 odd 2 261.2.q.a.16.24 336
9.4 even 3 inner 783.2.u.a.712.5 336
9.5 odd 6 261.2.q.a.103.24 yes 336
29.20 even 7 inner 783.2.u.a.397.5 336
87.20 odd 14 261.2.q.a.223.24 yes 336
261.49 even 21 inner 783.2.u.a.658.5 336
261.194 odd 42 261.2.q.a.49.24 yes 336
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.q.a.16.24 336 3.2 odd 2
261.2.q.a.49.24 yes 336 261.194 odd 42
261.2.q.a.103.24 yes 336 9.5 odd 6
261.2.q.a.223.24 yes 336 87.20 odd 14
783.2.u.a.397.5 336 29.20 even 7 inner
783.2.u.a.451.5 336 1.1 even 1 trivial
783.2.u.a.658.5 336 261.49 even 21 inner
783.2.u.a.712.5 336 9.4 even 3 inner