Properties

Label 783.2.bf.a
Level $783$
Weight $2$
Character orbit 783.bf
Analytic conductor $6.252$
Analytic rank $0$
Dimension $3168$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(4,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(126)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.bf (of order \(126\), degree \(36\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(3168\)
Relative dimension: \(88\) over \(\Q(\zeta_{126})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{126}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 3168 q - 42 q^{2} - 42 q^{3} - 30 q^{4} - 30 q^{5} - 60 q^{6} - 30 q^{7} - 21 q^{8} - 42 q^{9} - 21 q^{10} - 42 q^{11} - 30 q^{13} - 42 q^{14} - 42 q^{15} - 18 q^{16} - 189 q^{18} - 21 q^{19} + 24 q^{20}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −2.31815 1.49722i −1.61840 0.617070i 2.30957 + 5.11854i −1.12745 0.475261i 2.82781 + 3.85356i 1.11127 2.46284i 1.48704 9.86590i 2.23845 + 1.99734i 1.90203 + 2.78977i
4.2 −2.29980 1.48537i 0.191103 + 1.72148i 2.26020 + 5.00912i 2.36394 + 0.996485i 2.11753 4.24292i −0.465087 + 1.03074i 1.42629 9.46282i −2.92696 + 0.657957i −3.95645 5.80305i
4.3 −2.21274 1.42914i 1.69038 0.377660i 2.03122 + 4.50164i 1.52196 + 0.641561i −4.28010 1.58012i −0.818764 + 1.81457i 1.15372 7.65445i 2.71475 1.27677i −2.45083 3.59471i
4.4 −2.17690 1.40599i −1.59884 + 0.666118i 1.93951 + 4.29840i −1.03633 0.436851i 4.41707 + 0.797882i −2.00776 + 4.44965i 1.04891 6.95909i 2.11257 2.13003i 1.64179 + 2.40806i
4.5 −2.16762 1.40000i 1.07791 + 1.35577i 1.91601 + 4.24632i −3.42091 1.44203i −0.438428 4.44787i −1.35513 + 3.00328i 1.02247 6.78362i −0.676217 + 2.92279i 5.39639 + 7.91505i
4.6 −2.16409 1.39772i −0.553725 1.64115i 1.90709 + 4.22654i −1.65832 0.699040i −1.09556 + 4.32555i −0.678395 + 1.50348i 1.01247 6.71729i −2.38678 + 1.81750i 2.61169 + 3.83064i
4.7 −2.14537 1.38563i 1.66689 + 0.470612i 1.86008 + 4.12237i −2.51815 1.06149i −2.92401 3.31933i 1.83118 4.05831i 0.960210 6.37057i 2.55705 + 1.56892i 3.93154 + 5.76650i
4.8 −2.14186 1.38336i 0.885768 1.48843i 1.85129 + 4.10289i 2.11365 + 0.890980i −3.95621 + 1.96266i 1.44917 3.21169i 0.950516 6.30626i −1.43083 2.63680i −3.29460 4.83229i
4.9 −2.04840 1.32300i −1.48439 + 0.892509i 1.62306 + 3.59706i 1.66007 + 0.699777i 4.22143 + 0.135634i 1.38685 3.07357i 0.707358 4.69301i 1.40685 2.64967i −2.47468 3.62969i
4.10 −2.00959 1.29793i 0.816487 1.52753i 1.53126 + 3.39361i −3.11245 1.31201i −3.62344 + 2.00997i −0.613105 + 1.35878i 0.614372 4.07609i −1.66670 2.49442i 4.55185 + 6.67634i
4.11 −1.91602 1.23750i 0.932239 + 1.45977i 1.31716 + 2.91914i 1.16159 + 0.489651i 0.0202736 3.95060i 1.07427 2.38083i 0.408806 2.71225i −1.26186 + 2.72171i −1.61969 2.37565i
4.12 −1.87098 1.20841i −1.55739 0.757984i 1.21774 + 2.69879i 3.92962 + 1.65647i 1.99789 + 3.30013i 0.0840813 0.186343i 0.318948 2.11608i 1.85092 + 2.36095i −5.35054 7.84780i
4.13 −1.86293 1.20321i −1.30729 + 1.13622i 1.20023 + 2.65998i −3.38341 1.42623i 3.80250 0.543755i 0.375103 0.831313i 0.303504 2.01361i 0.418015 2.97073i 4.58701 + 6.72791i
4.14 −1.73247 1.11895i −1.02598 + 1.39548i 0.926827 + 2.05406i 2.39352 + 1.00895i 3.33894 1.26961i −0.679465 + 1.50585i 0.0779155 0.516936i −0.894742 2.86347i −3.01773 4.42620i
4.15 −1.72710 1.11548i 1.65466 0.511946i 0.916003 + 2.03007i −0.987871 0.416423i −3.42883 0.961560i −0.431716 + 0.956780i 0.0696099 0.461831i 2.47582 1.69420i 1.24164 + 1.82115i
4.16 −1.59639 1.03106i −0.0687713 + 1.73068i 0.662799 + 1.46891i −1.71473 0.722821i 1.89422 2.69193i 0.554417 1.22871i −0.110032 + 0.730015i −2.99054 0.238043i 1.99211 + 2.92189i
4.17 −1.59066 1.02736i −1.56230 0.747815i 0.652159 + 1.44533i −3.66732 1.54591i 1.71681 + 2.79455i 0.987458 2.18843i −0.116938 + 0.775835i 1.88155 + 2.33662i 4.24526 + 6.22665i
4.18 −1.58421 1.02319i 1.57107 + 0.729195i 0.640218 + 1.41887i 2.56954 + 1.08315i −1.74280 2.76270i −1.47186 + 3.26199i −0.124625 + 0.826830i 1.93655 + 2.29124i −2.96241 4.34506i
4.19 −1.57501 1.01725i −0.626339 1.61484i 0.623282 + 1.38133i −0.440790 0.185809i −0.656201 + 3.18052i −0.351653 + 0.779343i −0.135408 + 0.898374i −2.21540 + 2.02287i 0.505234 + 0.741042i
4.20 −1.56918 1.01348i −1.65922 0.496973i 0.612595 + 1.35765i 0.678126 + 0.285854i 2.09994 + 2.46143i −1.58084 + 3.50351i −0.142141 + 0.943043i 2.50604 + 1.64918i −0.774392 1.13582i
See next 80 embeddings (of 3168 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.88
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner
29.e even 14 1 inner
783.bf even 126 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 783.2.bf.a 3168
27.e even 9 1 inner 783.2.bf.a 3168
29.e even 14 1 inner 783.2.bf.a 3168
783.bf even 126 1 inner 783.2.bf.a 3168
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
783.2.bf.a 3168 1.a even 1 1 trivial
783.2.bf.a 3168 27.e even 9 1 inner
783.2.bf.a 3168 29.e even 14 1 inner
783.2.bf.a 3168 783.bf even 126 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(783, [\chi])\).