Newspace parameters
Level: | \( N \) | \(=\) | \( 783 = 3^{3} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 783.bf (of order \(126\), degree \(36\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.25228647827\) |
Analytic rank: | \(0\) |
Dimension: | \(3168\) |
Relative dimension: | \(88\) over \(\Q(\zeta_{126})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{126}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.31815 | − | 1.49722i | −1.61840 | − | 0.617070i | 2.30957 | + | 5.11854i | −1.12745 | − | 0.475261i | 2.82781 | + | 3.85356i | 1.11127 | − | 2.46284i | 1.48704 | − | 9.86590i | 2.23845 | + | 1.99734i | 1.90203 | + | 2.78977i |
4.2 | −2.29980 | − | 1.48537i | 0.191103 | + | 1.72148i | 2.26020 | + | 5.00912i | 2.36394 | + | 0.996485i | 2.11753 | − | 4.24292i | −0.465087 | + | 1.03074i | 1.42629 | − | 9.46282i | −2.92696 | + | 0.657957i | −3.95645 | − | 5.80305i |
4.3 | −2.21274 | − | 1.42914i | 1.69038 | − | 0.377660i | 2.03122 | + | 4.50164i | 1.52196 | + | 0.641561i | −4.28010 | − | 1.58012i | −0.818764 | + | 1.81457i | 1.15372 | − | 7.65445i | 2.71475 | − | 1.27677i | −2.45083 | − | 3.59471i |
4.4 | −2.17690 | − | 1.40599i | −1.59884 | + | 0.666118i | 1.93951 | + | 4.29840i | −1.03633 | − | 0.436851i | 4.41707 | + | 0.797882i | −2.00776 | + | 4.44965i | 1.04891 | − | 6.95909i | 2.11257 | − | 2.13003i | 1.64179 | + | 2.40806i |
4.5 | −2.16762 | − | 1.40000i | 1.07791 | + | 1.35577i | 1.91601 | + | 4.24632i | −3.42091 | − | 1.44203i | −0.438428 | − | 4.44787i | −1.35513 | + | 3.00328i | 1.02247 | − | 6.78362i | −0.676217 | + | 2.92279i | 5.39639 | + | 7.91505i |
4.6 | −2.16409 | − | 1.39772i | −0.553725 | − | 1.64115i | 1.90709 | + | 4.22654i | −1.65832 | − | 0.699040i | −1.09556 | + | 4.32555i | −0.678395 | + | 1.50348i | 1.01247 | − | 6.71729i | −2.38678 | + | 1.81750i | 2.61169 | + | 3.83064i |
4.7 | −2.14537 | − | 1.38563i | 1.66689 | + | 0.470612i | 1.86008 | + | 4.12237i | −2.51815 | − | 1.06149i | −2.92401 | − | 3.31933i | 1.83118 | − | 4.05831i | 0.960210 | − | 6.37057i | 2.55705 | + | 1.56892i | 3.93154 | + | 5.76650i |
4.8 | −2.14186 | − | 1.38336i | 0.885768 | − | 1.48843i | 1.85129 | + | 4.10289i | 2.11365 | + | 0.890980i | −3.95621 | + | 1.96266i | 1.44917 | − | 3.21169i | 0.950516 | − | 6.30626i | −1.43083 | − | 2.63680i | −3.29460 | − | 4.83229i |
4.9 | −2.04840 | − | 1.32300i | −1.48439 | + | 0.892509i | 1.62306 | + | 3.59706i | 1.66007 | + | 0.699777i | 4.22143 | + | 0.135634i | 1.38685 | − | 3.07357i | 0.707358 | − | 4.69301i | 1.40685 | − | 2.64967i | −2.47468 | − | 3.62969i |
4.10 | −2.00959 | − | 1.29793i | 0.816487 | − | 1.52753i | 1.53126 | + | 3.39361i | −3.11245 | − | 1.31201i | −3.62344 | + | 2.00997i | −0.613105 | + | 1.35878i | 0.614372 | − | 4.07609i | −1.66670 | − | 2.49442i | 4.55185 | + | 6.67634i |
4.11 | −1.91602 | − | 1.23750i | 0.932239 | + | 1.45977i | 1.31716 | + | 2.91914i | 1.16159 | + | 0.489651i | 0.0202736 | − | 3.95060i | 1.07427 | − | 2.38083i | 0.408806 | − | 2.71225i | −1.26186 | + | 2.72171i | −1.61969 | − | 2.37565i |
4.12 | −1.87098 | − | 1.20841i | −1.55739 | − | 0.757984i | 1.21774 | + | 2.69879i | 3.92962 | + | 1.65647i | 1.99789 | + | 3.30013i | 0.0840813 | − | 0.186343i | 0.318948 | − | 2.11608i | 1.85092 | + | 2.36095i | −5.35054 | − | 7.84780i |
4.13 | −1.86293 | − | 1.20321i | −1.30729 | + | 1.13622i | 1.20023 | + | 2.65998i | −3.38341 | − | 1.42623i | 3.80250 | − | 0.543755i | 0.375103 | − | 0.831313i | 0.303504 | − | 2.01361i | 0.418015 | − | 2.97073i | 4.58701 | + | 6.72791i |
4.14 | −1.73247 | − | 1.11895i | −1.02598 | + | 1.39548i | 0.926827 | + | 2.05406i | 2.39352 | + | 1.00895i | 3.33894 | − | 1.26961i | −0.679465 | + | 1.50585i | 0.0779155 | − | 0.516936i | −0.894742 | − | 2.86347i | −3.01773 | − | 4.42620i |
4.15 | −1.72710 | − | 1.11548i | 1.65466 | − | 0.511946i | 0.916003 | + | 2.03007i | −0.987871 | − | 0.416423i | −3.42883 | − | 0.961560i | −0.431716 | + | 0.956780i | 0.0696099 | − | 0.461831i | 2.47582 | − | 1.69420i | 1.24164 | + | 1.82115i |
4.16 | −1.59639 | − | 1.03106i | −0.0687713 | + | 1.73068i | 0.662799 | + | 1.46891i | −1.71473 | − | 0.722821i | 1.89422 | − | 2.69193i | 0.554417 | − | 1.22871i | −0.110032 | + | 0.730015i | −2.99054 | − | 0.238043i | 1.99211 | + | 2.92189i |
4.17 | −1.59066 | − | 1.02736i | −1.56230 | − | 0.747815i | 0.652159 | + | 1.44533i | −3.66732 | − | 1.54591i | 1.71681 | + | 2.79455i | 0.987458 | − | 2.18843i | −0.116938 | + | 0.775835i | 1.88155 | + | 2.33662i | 4.24526 | + | 6.22665i |
4.18 | −1.58421 | − | 1.02319i | 1.57107 | + | 0.729195i | 0.640218 | + | 1.41887i | 2.56954 | + | 1.08315i | −1.74280 | − | 2.76270i | −1.47186 | + | 3.26199i | −0.124625 | + | 0.826830i | 1.93655 | + | 2.29124i | −2.96241 | − | 4.34506i |
4.19 | −1.57501 | − | 1.01725i | −0.626339 | − | 1.61484i | 0.623282 | + | 1.38133i | −0.440790 | − | 0.185809i | −0.656201 | + | 3.18052i | −0.351653 | + | 0.779343i | −0.135408 | + | 0.898374i | −2.21540 | + | 2.02287i | 0.505234 | + | 0.741042i |
4.20 | −1.56918 | − | 1.01348i | −1.65922 | − | 0.496973i | 0.612595 | + | 1.35765i | 0.678126 | + | 0.285854i | 2.09994 | + | 2.46143i | −1.58084 | + | 3.50351i | −0.142141 | + | 0.943043i | 2.50604 | + | 1.64918i | −0.774392 | − | 1.13582i |
See next 80 embeddings (of 3168 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
29.e | even | 14 | 1 | inner |
783.bf | even | 126 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 783.2.bf.a | ✓ | 3168 |
27.e | even | 9 | 1 | inner | 783.2.bf.a | ✓ | 3168 |
29.e | even | 14 | 1 | inner | 783.2.bf.a | ✓ | 3168 |
783.bf | even | 126 | 1 | inner | 783.2.bf.a | ✓ | 3168 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
783.2.bf.a | ✓ | 3168 | 1.a | even | 1 | 1 | trivial |
783.2.bf.a | ✓ | 3168 | 27.e | even | 9 | 1 | inner |
783.2.bf.a | ✓ | 3168 | 29.e | even | 14 | 1 | inner |
783.2.bf.a | ✓ | 3168 | 783.bf | even | 126 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(783, [\chi])\).