Properties

Label 783.2.be.a.710.25
Level $783$
Weight $2$
Character 783.710
Analytic conductor $6.252$
Analytic rank $0$
Dimension $672$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(8,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(84)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.be (of order \(84\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(672\)
Relative dimension: \(28\) over \(\Q(\zeta_{84})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{84}]$

Embedding invariants

Embedding label 710.25
Character \(\chi\) \(=\) 783.710
Dual form 783.2.be.a.665.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.915081 - 2.09739i) q^{2} +(-2.20132 - 2.37246i) q^{4} +(1.59462 + 0.240350i) q^{5} +(2.61989 + 2.43090i) q^{7} +(-2.67053 + 0.934460i) q^{8} +(1.96331 - 3.12459i) q^{10} +(2.89572 - 2.49197i) q^{11} +(-2.15055 + 3.15427i) q^{13} +(7.49596 - 3.27045i) q^{14} +(-0.000114643 + 0.00152981i) q^{16} +(2.40371 + 2.40371i) q^{17} +(3.94790 + 2.48063i) q^{19} +(-2.94004 - 4.31225i) q^{20} +(-2.57681 - 8.35381i) q^{22} +(-1.21407 - 0.476487i) q^{23} +(-2.29282 - 0.707243i) q^{25} +(4.64781 + 7.39694i) q^{26} -11.5668i q^{28} +(-5.35553 + 0.564198i) q^{29} +(5.64002 - 4.16253i) q^{31} +(-4.99976 - 2.64245i) q^{32} +(7.24111 - 2.84193i) q^{34} +(3.59346 + 4.50605i) q^{35} +(-3.43990 - 9.83068i) q^{37} +(8.81549 - 6.01030i) q^{38} +(-4.48308 + 0.848244i) q^{40} +(-3.98133 - 1.06680i) q^{41} +(-4.24116 + 5.74657i) q^{43} +(-12.2865 - 1.38436i) q^{44} +(-2.11035 + 2.11035i) q^{46} +(-1.51336 - 1.75856i) q^{47} +(0.431424 + 5.75696i) q^{49} +(-3.58148 + 4.16176i) q^{50} +(12.2174 - 1.84148i) q^{52} +(1.15186 + 0.918579i) q^{53} +(5.21652 - 3.27776i) q^{55} +(-9.26808 - 4.04362i) q^{56} +(-3.71740 + 11.7489i) q^{58} +(-10.0209 + 5.78554i) q^{59} +(1.11550 - 0.0417389i) q^{61} +(-3.56935 - 15.6384i) q^{62} +(-10.1198 + 8.07029i) q^{64} +(-4.18743 + 4.51298i) q^{65} +(1.39074 - 0.104222i) q^{67} +(0.411368 - 10.9940i) q^{68} +(12.7392 - 3.41347i) q^{70} +(-11.9049 + 5.73310i) q^{71} +(0.714449 - 6.34091i) q^{73} +(-23.7665 - 1.78106i) q^{74} +(-2.80540 - 14.8269i) q^{76} +(13.6442 + 0.510531i) q^{77} +(-1.64882 + 8.71422i) q^{79} +(-0.000550502 + 0.00241191i) q^{80} +(-5.88073 + 7.37420i) q^{82} +(2.03244 - 6.58902i) q^{83} +(3.25527 + 4.41074i) q^{85} +(8.17178 + 14.1539i) q^{86} +(-5.40448 + 9.36083i) q^{88} +(2.47228 - 0.278559i) q^{89} +(-13.3019 + 3.03608i) q^{91} +(1.54211 + 3.92923i) q^{92} +(-5.07324 + 1.56489i) q^{94} +(5.69917 + 4.90454i) q^{95} +(-2.31387 - 4.37806i) q^{97} +(12.4694 + 4.36322i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 672 q + 36 q^{2} - 14 q^{4} + 42 q^{5} - 10 q^{7} - 56 q^{10} + 48 q^{11} - 14 q^{13} + 24 q^{14} - 54 q^{16} - 48 q^{19} + 30 q^{20} - 14 q^{22} + 30 q^{23} + 30 q^{25} - 12 q^{31} - 24 q^{32} - 14 q^{34}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.915081 2.09739i 0.647060 1.48308i −0.215178 0.976575i \(-0.569033\pi\)
0.862238 0.506503i \(-0.169062\pi\)
\(3\) 0 0
\(4\) −2.20132 2.37246i −1.10066 1.18623i
\(5\) 1.59462 + 0.240350i 0.713135 + 0.107488i 0.495583 0.868561i \(-0.334955\pi\)
0.217552 + 0.976049i \(0.430193\pi\)
\(6\) 0 0
\(7\) 2.61989 + 2.43090i 0.990225 + 0.918794i 0.996699 0.0811846i \(-0.0258703\pi\)
−0.00647413 + 0.999979i \(0.502061\pi\)
\(8\) −2.67053 + 0.934460i −0.944176 + 0.330382i
\(9\) 0 0
\(10\) 1.96331 3.12459i 0.620854 0.988083i
\(11\) 2.89572 2.49197i 0.873094 0.751358i −0.0966925 0.995314i \(-0.530826\pi\)
0.969786 + 0.243956i \(0.0784454\pi\)
\(12\) 0 0
\(13\) −2.15055 + 3.15427i −0.596454 + 0.874838i −0.999180 0.0404830i \(-0.987110\pi\)
0.402726 + 0.915321i \(0.368063\pi\)
\(14\) 7.49596 3.27045i 2.00338 0.874065i
\(15\) 0 0
\(16\) −0.000114643 0.00152981i −2.86608e−5 0.000382452i
\(17\) 2.40371 + 2.40371i 0.582986 + 0.582986i 0.935723 0.352737i \(-0.114749\pi\)
−0.352737 + 0.935723i \(0.614749\pi\)
\(18\) 0 0
\(19\) 3.94790 + 2.48063i 0.905711 + 0.569096i 0.902400 0.430899i \(-0.141803\pi\)
0.00331029 + 0.999995i \(0.498946\pi\)
\(20\) −2.94004 4.31225i −0.657413 0.964248i
\(21\) 0 0
\(22\) −2.57681 8.35381i −0.549378 1.78104i
\(23\) −1.21407 0.476487i −0.253151 0.0993544i 0.235372 0.971905i \(-0.424369\pi\)
−0.488523 + 0.872551i \(0.662464\pi\)
\(24\) 0 0
\(25\) −2.29282 0.707243i −0.458565 0.141449i
\(26\) 4.64781 + 7.39694i 0.911510 + 1.45066i
\(27\) 0 0
\(28\) 11.5668i 2.18591i
\(29\) −5.35553 + 0.564198i −0.994497 + 0.104769i
\(30\) 0 0
\(31\) 5.64002 4.16253i 1.01298 0.747612i 0.0450870 0.998983i \(-0.485643\pi\)
0.967891 + 0.251371i \(0.0808816\pi\)
\(32\) −4.99976 2.64245i −0.883841 0.467124i
\(33\) 0 0
\(34\) 7.24111 2.84193i 1.24184 0.487387i
\(35\) 3.59346 + 4.50605i 0.607405 + 0.761662i
\(36\) 0 0
\(37\) −3.43990 9.83068i −0.565517 1.61615i −0.770537 0.637396i \(-0.780012\pi\)
0.205020 0.978758i \(-0.434274\pi\)
\(38\) 8.81549 6.01030i 1.43006 0.975000i
\(39\) 0 0
\(40\) −4.48308 + 0.848244i −0.708837 + 0.134119i
\(41\) −3.98133 1.06680i −0.621780 0.166605i −0.0658431 0.997830i \(-0.520974\pi\)
−0.555937 + 0.831225i \(0.687640\pi\)
\(42\) 0 0
\(43\) −4.24116 + 5.74657i −0.646771 + 0.876343i −0.998206 0.0598687i \(-0.980932\pi\)
0.351435 + 0.936212i \(0.385694\pi\)
\(44\) −12.2865 1.38436i −1.85226 0.208700i
\(45\) 0 0
\(46\) −2.11035 + 2.11035i −0.311154 + 0.311154i
\(47\) −1.51336 1.75856i −0.220747 0.256513i 0.636668 0.771138i \(-0.280312\pi\)
−0.857415 + 0.514625i \(0.827931\pi\)
\(48\) 0 0
\(49\) 0.431424 + 5.75696i 0.0616321 + 0.822423i
\(50\) −3.58148 + 4.16176i −0.506498 + 0.588562i
\(51\) 0 0
\(52\) 12.2174 1.84148i 1.69425 0.255367i
\(53\) 1.15186 + 0.918579i 0.158220 + 0.126177i 0.699400 0.714730i \(-0.253451\pi\)
−0.541180 + 0.840907i \(0.682022\pi\)
\(54\) 0 0
\(55\) 5.21652 3.27776i 0.703395 0.441973i
\(56\) −9.26808 4.04362i −1.23850 0.540352i
\(57\) 0 0
\(58\) −3.71740 + 11.7489i −0.488119 + 1.54271i
\(59\) −10.0209 + 5.78554i −1.30460 + 0.753214i −0.981190 0.193044i \(-0.938164\pi\)
−0.323414 + 0.946257i \(0.604831\pi\)
\(60\) 0 0
\(61\) 1.11550 0.0417389i 0.142825 0.00534412i 0.0341167 0.999418i \(-0.489138\pi\)
0.108708 + 0.994074i \(0.465329\pi\)
\(62\) −3.56935 15.6384i −0.453308 1.98607i
\(63\) 0 0
\(64\) −10.1198 + 8.07029i −1.26498 + 1.00879i
\(65\) −4.18743 + 4.51298i −0.519387 + 0.559766i
\(66\) 0 0
\(67\) 1.39074 0.104222i 0.169907 0.0127327i 0.0104948 0.999945i \(-0.496659\pi\)
0.159412 + 0.987212i \(0.449040\pi\)
\(68\) 0.411368 10.9940i 0.0498857 1.33322i
\(69\) 0 0
\(70\) 12.7392 3.41347i 1.52263 0.407988i
\(71\) −11.9049 + 5.73310i −1.41285 + 0.680394i −0.975724 0.219005i \(-0.929719\pi\)
−0.437129 + 0.899399i \(0.644005\pi\)
\(72\) 0 0
\(73\) 0.714449 6.34091i 0.0836199 0.742147i −0.880019 0.474939i \(-0.842470\pi\)
0.963639 0.267208i \(-0.0861012\pi\)
\(74\) −23.7665 1.78106i −2.76280 0.207044i
\(75\) 0 0
\(76\) −2.80540 14.8269i −0.321801 1.70076i
\(77\) 13.6442 + 0.510531i 1.55490 + 0.0581804i
\(78\) 0 0
\(79\) −1.64882 + 8.71422i −0.185507 + 0.980426i 0.758791 + 0.651334i \(0.225790\pi\)
−0.944298 + 0.329092i \(0.893257\pi\)
\(80\) −0.000550502 0.00241191i −6.15480e−5 0.000269659i
\(81\) 0 0
\(82\) −5.88073 + 7.37420i −0.649418 + 0.814344i
\(83\) 2.03244 6.58902i 0.223090 0.723239i −0.772961 0.634453i \(-0.781225\pi\)
0.996051 0.0887853i \(-0.0282985\pi\)
\(84\) 0 0
\(85\) 3.25527 + 4.41074i 0.353084 + 0.478412i
\(86\) 8.17178 + 14.1539i 0.881186 + 1.52626i
\(87\) 0 0
\(88\) −5.40448 + 9.36083i −0.576119 + 0.997868i
\(89\) 2.47228 0.278559i 0.262061 0.0295272i 0.0200435 0.999799i \(-0.493620\pi\)
0.242017 + 0.970272i \(0.422191\pi\)
\(90\) 0 0
\(91\) −13.3019 + 3.03608i −1.39442 + 0.318267i
\(92\) 1.54211 + 3.92923i 0.160776 + 0.409650i
\(93\) 0 0
\(94\) −5.07324 + 1.56489i −0.523265 + 0.161406i
\(95\) 5.69917 + 4.90454i 0.584723 + 0.503195i
\(96\) 0 0
\(97\) −2.31387 4.37806i −0.234938 0.444525i 0.738252 0.674525i \(-0.235651\pi\)
−0.973191 + 0.230000i \(0.926128\pi\)
\(98\) 12.4694 + 4.36322i 1.25960 + 0.440752i
\(99\) 0 0
\(100\) 3.36933 + 6.99650i 0.336933 + 0.699650i
\(101\) 13.8186 + 10.1986i 1.37500 + 1.01479i 0.995996 + 0.0893988i \(0.0284946\pi\)
0.379002 + 0.925396i \(0.376267\pi\)
\(102\) 0 0
\(103\) −1.09753 0.748281i −0.108143 0.0737303i 0.508041 0.861333i \(-0.330370\pi\)
−0.616184 + 0.787602i \(0.711322\pi\)
\(104\) 2.79556 10.4332i 0.274128 1.02306i
\(105\) 0 0
\(106\) 2.98066 1.57533i 0.289508 0.153009i
\(107\) 5.72054 11.8788i 0.553025 1.14837i −0.417791 0.908543i \(-0.637196\pi\)
0.970816 0.239825i \(-0.0770901\pi\)
\(108\) 0 0
\(109\) 16.9223 + 3.86241i 1.62087 + 0.369952i 0.934124 0.356950i \(-0.116183\pi\)
0.686742 + 0.726902i \(0.259040\pi\)
\(110\) −2.10119 13.9405i −0.200341 1.32917i
\(111\) 0 0
\(112\) −0.00401917 + 0.00372924i −0.000379776 + 0.000352380i
\(113\) −1.18842 + 2.24860i −0.111797 + 0.211531i −0.933665 0.358148i \(-0.883408\pi\)
0.821868 + 0.569679i \(0.192932\pi\)
\(114\) 0 0
\(115\) −1.82145 1.05162i −0.169851 0.0980637i
\(116\) 13.1278 + 11.4638i 1.21888 + 1.06439i
\(117\) 0 0
\(118\) 2.96464 + 26.3119i 0.272917 + 2.42220i
\(119\) 0.454271 + 12.1407i 0.0416430 + 1.11293i
\(120\) 0 0
\(121\) 0.535828 3.55499i 0.0487117 0.323181i
\(122\) 0.933226 2.37782i 0.0844903 0.215278i
\(123\) 0 0
\(124\) −22.2909 4.21766i −2.00178 0.378757i
\(125\) −10.7508 5.17733i −0.961584 0.463075i
\(126\) 0 0
\(127\) 5.05009 14.4323i 0.448123 1.28066i −0.469403 0.882984i \(-0.655531\pi\)
0.917525 0.397677i \(-0.130184\pi\)
\(128\) 4.73878 + 17.6854i 0.418853 + 1.56318i
\(129\) 0 0
\(130\) 5.63362 + 12.9124i 0.494102 + 1.13249i
\(131\) 3.80156 + 8.71328i 0.332144 + 0.761282i 0.999858 + 0.0168642i \(0.00536831\pi\)
−0.667714 + 0.744418i \(0.732727\pi\)
\(132\) 0 0
\(133\) 4.31289 + 16.0959i 0.373975 + 1.39569i
\(134\) 1.05405 3.01230i 0.0910561 0.260223i
\(135\) 0 0
\(136\) −8.66537 4.17302i −0.743050 0.357834i
\(137\) 4.11753 + 0.779079i 0.351785 + 0.0665612i 0.358801 0.933414i \(-0.383186\pi\)
−0.00701627 + 0.999975i \(0.502233\pi\)
\(138\) 0 0
\(139\) 0.236037 0.601414i 0.0200204 0.0510112i −0.920514 0.390709i \(-0.872230\pi\)
0.940534 + 0.339698i \(0.110325\pi\)
\(140\) 2.78007 18.4446i 0.234959 1.55885i
\(141\) 0 0
\(142\) 1.13058 + 30.2155i 0.0948764 + 2.53563i
\(143\) 1.63297 + 14.4930i 0.136556 + 1.21197i
\(144\) 0 0
\(145\) −8.67563 0.387520i −0.720472 0.0321818i
\(146\) −12.6456 7.30092i −1.04655 0.604229i
\(147\) 0 0
\(148\) −15.7505 + 29.8015i −1.29469 + 2.44967i
\(149\) 1.90475 1.76735i 0.156043 0.144787i −0.598288 0.801281i \(-0.704152\pi\)
0.754331 + 0.656495i \(0.227962\pi\)
\(150\) 0 0
\(151\) −3.24963 21.5599i −0.264451 1.75452i −0.588516 0.808485i \(-0.700288\pi\)
0.324065 0.946035i \(-0.394950\pi\)
\(152\) −12.8611 2.93545i −1.04317 0.238097i
\(153\) 0 0
\(154\) 13.5563 28.1500i 1.09240 2.26839i
\(155\) 9.99414 5.28206i 0.802749 0.424265i
\(156\) 0 0
\(157\) 1.43522 5.35630i 0.114543 0.427479i −0.884710 0.466143i \(-0.845643\pi\)
0.999252 + 0.0386635i \(0.0123100\pi\)
\(158\) 16.7683 + 11.4324i 1.33401 + 0.909515i
\(159\) 0 0
\(160\) −7.33760 5.41539i −0.580088 0.428124i
\(161\) −2.02243 4.19962i −0.159390 0.330977i
\(162\) 0 0
\(163\) −22.9167 8.01891i −1.79498 0.628090i −0.999763 0.0217608i \(-0.993073\pi\)
−0.795214 0.606329i \(-0.792642\pi\)
\(164\) 6.23326 + 11.7939i 0.486736 + 0.920949i
\(165\) 0 0
\(166\) −11.9599 10.2923i −0.928267 0.798838i
\(167\) −12.7167 + 3.92259i −0.984051 + 0.303539i −0.744704 0.667395i \(-0.767409\pi\)
−0.239347 + 0.970934i \(0.576933\pi\)
\(168\) 0 0
\(169\) −0.575149 1.46546i −0.0442422 0.112727i
\(170\) 12.2299 2.79139i 0.937988 0.214090i
\(171\) 0 0
\(172\) 22.9696 2.58806i 1.75142 0.197337i
\(173\) −2.97576 + 5.15417i −0.226243 + 0.391864i −0.956692 0.291103i \(-0.905978\pi\)
0.730449 + 0.682968i \(0.239311\pi\)
\(174\) 0 0
\(175\) −4.28771 7.42653i −0.324120 0.561393i
\(176\) 0.00348027 + 0.00471559i 0.000262335 + 0.000355451i
\(177\) 0 0
\(178\) 1.67809 5.44023i 0.125778 0.407762i
\(179\) −7.03123 + 8.81689i −0.525539 + 0.659005i −0.971775 0.235910i \(-0.924193\pi\)
0.446236 + 0.894915i \(0.352764\pi\)
\(180\) 0 0
\(181\) −4.45707 + 19.5277i −0.331292 + 1.45148i 0.485340 + 0.874325i \(0.338696\pi\)
−0.816632 + 0.577159i \(0.804161\pi\)
\(182\) −5.80450 + 30.6775i −0.430258 + 2.27397i
\(183\) 0 0
\(184\) 3.68747 + 0.137975i 0.271844 + 0.0101717i
\(185\) −3.12253 16.5030i −0.229573 1.21332i
\(186\) 0 0
\(187\) 12.9505 + 0.970504i 0.947033 + 0.0709703i
\(188\) −0.840714 + 7.46155i −0.0613154 + 0.544189i
\(189\) 0 0
\(190\) 15.5019 7.46533i 1.12463 0.541592i
\(191\) 10.6084 2.84252i 0.767599 0.205677i 0.146288 0.989242i \(-0.453267\pi\)
0.621310 + 0.783565i \(0.286601\pi\)
\(192\) 0 0
\(193\) −0.756010 + 20.2048i −0.0544188 + 1.45437i 0.658211 + 0.752833i \(0.271313\pi\)
−0.712630 + 0.701540i \(0.752496\pi\)
\(194\) −11.2999 + 0.846809i −0.811284 + 0.0607973i
\(195\) 0 0
\(196\) 12.7084 13.6964i 0.907745 0.978317i
\(197\) 2.05623 1.63979i 0.146501 0.116830i −0.547497 0.836808i \(-0.684419\pi\)
0.693998 + 0.719977i \(0.255848\pi\)
\(198\) 0 0
\(199\) −3.59164 15.7360i −0.254605 1.11550i −0.926928 0.375239i \(-0.877561\pi\)
0.672324 0.740257i \(-0.265296\pi\)
\(200\) 6.78396 0.253838i 0.479698 0.0179490i
\(201\) 0 0
\(202\) 34.0354 19.6504i 2.39473 1.38260i
\(203\) −15.4024 11.5406i −1.08104 0.809993i
\(204\) 0 0
\(205\) −6.09230 2.65805i −0.425505 0.185646i
\(206\) −2.57376 + 1.61720i −0.179323 + 0.112676i
\(207\) 0 0
\(208\) −0.00457889 0.00365154i −0.000317489 0.000253189i
\(209\) 17.6137 2.65484i 1.21836 0.183639i
\(210\) 0 0
\(211\) −9.07273 + 10.5427i −0.624592 + 0.725789i −0.977750 0.209775i \(-0.932727\pi\)
0.353158 + 0.935564i \(0.385108\pi\)
\(212\) −0.356325 4.75483i −0.0244725 0.326563i
\(213\) 0 0
\(214\) −19.6797 22.8683i −1.34528 1.56324i
\(215\) −8.14422 + 8.14422i −0.555431 + 0.555431i
\(216\) 0 0
\(217\) 24.8949 + 2.80498i 1.68998 + 0.190415i
\(218\) 23.5863 31.9583i 1.59746 2.16449i
\(219\) 0 0
\(220\) −19.2596 5.16058i −1.29848 0.347926i
\(221\) −12.7513 + 2.41267i −0.857743 + 0.162294i
\(222\) 0 0
\(223\) −15.3217 + 10.4462i −1.02602 + 0.699527i −0.954591 0.297919i \(-0.903707\pi\)
−0.0714264 + 0.997446i \(0.522755\pi\)
\(224\) −6.67528 19.0769i −0.446011 1.27463i
\(225\) 0 0
\(226\) 3.62869 + 4.55024i 0.241377 + 0.302677i
\(227\) 9.52049 3.73652i 0.631897 0.248001i −0.0277052 0.999616i \(-0.508820\pi\)
0.659602 + 0.751615i \(0.270725\pi\)
\(228\) 0 0
\(229\) −6.98872 3.69364i −0.461827 0.244083i 0.220136 0.975469i \(-0.429350\pi\)
−0.681963 + 0.731386i \(0.738874\pi\)
\(230\) −3.87242 + 2.85798i −0.255340 + 0.188450i
\(231\) 0 0
\(232\) 13.7749 6.51124i 0.904366 0.427484i
\(233\) 8.13511i 0.532949i −0.963842 0.266474i \(-0.914141\pi\)
0.963842 0.266474i \(-0.0858588\pi\)
\(234\) 0 0
\(235\) −1.99057 3.16797i −0.129850 0.206656i
\(236\) 35.7851 + 11.0382i 2.32941 + 0.718527i
\(237\) 0 0
\(238\) 25.8794 + 10.1569i 1.67751 + 0.658374i
\(239\) 6.58210 + 21.3386i 0.425760 + 1.38028i 0.873808 + 0.486272i \(0.161643\pi\)
−0.448047 + 0.894010i \(0.647880\pi\)
\(240\) 0 0
\(241\) 11.8380 + 17.3632i 0.762554 + 1.11846i 0.989497 + 0.144554i \(0.0461746\pi\)
−0.226943 + 0.973908i \(0.572873\pi\)
\(242\) −6.96586 4.37694i −0.447783 0.281361i
\(243\) 0 0
\(244\) −2.55458 2.55458i −0.163541 0.163541i
\(245\) −0.695728 + 9.28384i −0.0444484 + 0.593123i
\(246\) 0 0
\(247\) −16.3147 + 7.11804i −1.03808 + 0.452910i
\(248\) −11.1722 + 16.3865i −0.709432 + 1.04055i
\(249\) 0 0
\(250\) −20.6968 + 17.8110i −1.30898 + 1.12647i
\(251\) 16.1458 25.6958i 1.01911 1.62191i 0.266046 0.963960i \(-0.414283\pi\)
0.753066 0.657946i \(-0.228574\pi\)
\(252\) 0 0
\(253\) −4.70300 + 1.64565i −0.295675 + 0.103461i
\(254\) −25.6489 23.7987i −1.60936 1.49327i
\(255\) 0 0
\(256\) 15.8311 + 2.38616i 0.989444 + 0.149135i
\(257\) −1.98731 2.14181i −0.123965 0.133602i 0.668019 0.744144i \(-0.267142\pi\)
−0.791984 + 0.610542i \(0.790952\pi\)
\(258\) 0 0
\(259\) 14.8852 34.1174i 0.924924 2.11995i
\(260\) 19.9247 1.23568
\(261\) 0 0
\(262\) 21.7539 1.34396
\(263\) −12.9044 + 29.5773i −0.795722 + 1.82381i −0.305603 + 0.952159i \(0.598858\pi\)
−0.490119 + 0.871655i \(0.663047\pi\)
\(264\) 0 0
\(265\) 1.61600 + 1.74163i 0.0992701 + 0.106988i
\(266\) 37.7061 + 5.68328i 2.31191 + 0.348464i
\(267\) 0 0
\(268\) −3.30873 3.07006i −0.202113 0.187534i
\(269\) 21.1046 7.38481i 1.28677 0.450260i 0.401721 0.915762i \(-0.368412\pi\)
0.885047 + 0.465503i \(0.154126\pi\)
\(270\) 0 0
\(271\) −13.1889 + 20.9901i −0.801170 + 1.27505i 0.156641 + 0.987656i \(0.449934\pi\)
−0.957811 + 0.287399i \(0.907209\pi\)
\(272\) −0.00395279 + 0.00340165i −0.000239673 + 0.000206256i
\(273\) 0 0
\(274\) 5.40191 7.92314i 0.326341 0.478655i
\(275\) −8.40182 + 3.66568i −0.506649 + 0.221049i
\(276\) 0 0
\(277\) −1.60047 + 21.3568i −0.0961632 + 1.28321i 0.715305 + 0.698812i \(0.246288\pi\)
−0.811468 + 0.584396i \(0.801331\pi\)
\(278\) −1.04540 1.04540i −0.0626992 0.0626992i
\(279\) 0 0
\(280\) −13.8072 8.67562i −0.825136 0.518467i
\(281\) 4.70631 + 6.90289i 0.280755 + 0.411792i 0.940551 0.339653i \(-0.110310\pi\)
−0.659796 + 0.751445i \(0.729357\pi\)
\(282\) 0 0
\(283\) −0.880025 2.85297i −0.0523121 0.169592i 0.925647 0.378388i \(-0.123522\pi\)
−0.977959 + 0.208797i \(0.933045\pi\)
\(284\) 39.8080 + 15.6235i 2.36217 + 0.927084i
\(285\) 0 0
\(286\) 31.8918 + 9.83730i 1.88580 + 0.581692i
\(287\) −7.83738 12.4731i −0.462626 0.736265i
\(288\) 0 0
\(289\) 5.44432i 0.320254i
\(290\) −8.75168 + 17.8415i −0.513917 + 1.04769i
\(291\) 0 0
\(292\) −16.6163 + 12.2634i −0.972393 + 0.717659i
\(293\) 3.40982 + 1.80214i 0.199204 + 0.105282i 0.563896 0.825846i \(-0.309302\pi\)
−0.364692 + 0.931128i \(0.618826\pi\)
\(294\) 0 0
\(295\) −17.3700 + 6.81722i −1.01132 + 0.396914i
\(296\) 18.3728 + 23.0387i 1.06789 + 1.33910i
\(297\) 0 0
\(298\) −1.96382 5.61226i −0.113761 0.325110i
\(299\) 4.11388 2.80480i 0.237912 0.162206i
\(300\) 0 0
\(301\) −25.0807 + 4.74553i −1.44563 + 0.273528i
\(302\) −48.1932 12.9133i −2.77321 0.743078i
\(303\) 0 0
\(304\) −0.00424749 + 0.00575515i −0.000243610 + 0.000330080i
\(305\) 1.78882 + 0.201552i 0.102428 + 0.0115408i
\(306\) 0 0
\(307\) −7.57437 + 7.57437i −0.432292 + 0.432292i −0.889407 0.457115i \(-0.848883\pi\)
0.457115 + 0.889407i \(0.348883\pi\)
\(308\) −28.8241 33.4942i −1.64240 1.90851i
\(309\) 0 0
\(310\) −1.93308 25.7951i −0.109791 1.46506i
\(311\) −17.2932 + 20.0951i −0.980609 + 1.13949i 0.00960794 + 0.999954i \(0.496942\pi\)
−0.990217 + 0.139535i \(0.955439\pi\)
\(312\) 0 0
\(313\) 4.70733 0.709516i 0.266074 0.0401042i −0.0146501 0.999893i \(-0.504663\pi\)
0.280724 + 0.959788i \(0.409425\pi\)
\(314\) −9.92090 7.91165i −0.559869 0.446480i
\(315\) 0 0
\(316\) 24.3037 15.2710i 1.36719 0.859062i
\(317\) −5.82311 2.54060i −0.327059 0.142694i 0.229946 0.973203i \(-0.426145\pi\)
−0.557005 + 0.830509i \(0.688050\pi\)
\(318\) 0 0
\(319\) −14.1022 + 14.9796i −0.789570 + 0.838696i
\(320\) −18.0770 + 10.4367i −1.01053 + 0.583431i
\(321\) 0 0
\(322\) −10.6589 + 0.398829i −0.593999 + 0.0222259i
\(323\) 3.52690 + 15.4523i 0.196242 + 0.859792i
\(324\) 0 0
\(325\) 7.16166 5.71123i 0.397258 0.316802i
\(326\) −37.7894 + 40.7273i −2.09296 + 2.25568i
\(327\) 0 0
\(328\) 11.6292 0.871485i 0.642113 0.0481197i
\(329\) 0.310043 8.28608i 0.0170932 0.456826i
\(330\) 0 0
\(331\) 12.1289 3.24993i 0.666666 0.178633i 0.0904133 0.995904i \(-0.471181\pi\)
0.576252 + 0.817272i \(0.304515\pi\)
\(332\) −20.1062 + 9.68264i −1.10347 + 0.531404i
\(333\) 0 0
\(334\) −3.40964 + 30.2614i −0.186567 + 1.65583i
\(335\) 2.24276 + 0.168071i 0.122535 + 0.00918272i
\(336\) 0 0
\(337\) −3.80404 20.1048i −0.207219 1.09518i −0.919442 0.393226i \(-0.871359\pi\)
0.712223 0.701953i \(-0.247688\pi\)
\(338\) −3.59994 0.134700i −0.195811 0.00732672i
\(339\) 0 0
\(340\) 3.29839 17.4324i 0.178881 0.945407i
\(341\) 5.95905 26.1083i 0.322701 1.41384i
\(342\) 0 0
\(343\) 2.73392 3.42823i 0.147618 0.185107i
\(344\) 5.95622 19.3096i 0.321138 1.04110i
\(345\) 0 0
\(346\) 8.08724 + 10.9578i 0.434773 + 0.589096i
\(347\) −8.09092 14.0139i −0.434343 0.752305i 0.562899 0.826526i \(-0.309686\pi\)
−0.997242 + 0.0742214i \(0.976353\pi\)
\(348\) 0 0
\(349\) 3.65666 6.33352i 0.195736 0.339025i −0.751405 0.659841i \(-0.770624\pi\)
0.947142 + 0.320816i \(0.103957\pi\)
\(350\) −19.4999 + 2.19711i −1.04231 + 0.117441i
\(351\) 0 0
\(352\) −21.0628 + 4.80746i −1.12265 + 0.256238i
\(353\) −5.06632 12.9088i −0.269653 0.687064i −0.999992 0.00397948i \(-0.998733\pi\)
0.730339 0.683085i \(-0.239362\pi\)
\(354\) 0 0
\(355\) −20.3617 + 6.28076i −1.08069 + 0.333348i
\(356\) −6.10313 5.25217i −0.323465 0.278365i
\(357\) 0 0
\(358\) 12.0583 + 22.8154i 0.637300 + 1.20583i
\(359\) −19.7861 6.92347i −1.04427 0.365407i −0.246993 0.969017i \(-0.579443\pi\)
−0.797279 + 0.603610i \(0.793728\pi\)
\(360\) 0 0
\(361\) 1.18860 + 2.46816i 0.0625579 + 0.129903i
\(362\) 36.8786 + 27.2177i 1.93830 + 1.43053i
\(363\) 0 0
\(364\) 36.4847 + 24.8749i 1.91232 + 1.30380i
\(365\) 2.66331 9.93961i 0.139404 0.520263i
\(366\) 0 0
\(367\) −7.65862 + 4.04770i −0.399777 + 0.211288i −0.655058 0.755579i \(-0.727356\pi\)
0.255281 + 0.966867i \(0.417832\pi\)
\(368\) 0.000868119 0.00180267i 4.52538e−5 9.39705e-5i
\(369\) 0 0
\(370\) −37.4705 8.55239i −1.94800 0.444618i
\(371\) 0.784775 + 5.20664i 0.0407435 + 0.270315i
\(372\) 0 0
\(373\) 23.1266 21.4584i 1.19745 1.11107i 0.206278 0.978493i \(-0.433865\pi\)
0.991173 0.132578i \(-0.0423255\pi\)
\(374\) 13.8863 26.2741i 0.718042 1.35860i
\(375\) 0 0
\(376\) 5.68480 + 3.28212i 0.293171 + 0.169262i
\(377\) 9.73768 18.1061i 0.501516 0.932513i
\(378\) 0 0
\(379\) −2.09845 18.6243i −0.107790 0.956666i −0.924907 0.380194i \(-0.875857\pi\)
0.817117 0.576472i \(-0.195571\pi\)
\(380\) −0.909896 24.3175i −0.0466767 1.24746i
\(381\) 0 0
\(382\) 3.74570 24.8511i 0.191647 1.27149i
\(383\) 8.76909 22.3433i 0.448080 1.14169i −0.511258 0.859427i \(-0.670820\pi\)
0.959338 0.282261i \(-0.0910845\pi\)
\(384\) 0 0
\(385\) 21.6346 + 4.09349i 1.10260 + 0.208624i
\(386\) 41.6855 + 20.0747i 2.12174 + 1.02177i
\(387\) 0 0
\(388\) −5.29319 + 15.1271i −0.268721 + 0.767961i
\(389\) 5.77033 + 21.5352i 0.292567 + 1.09188i 0.943130 + 0.332424i \(0.107866\pi\)
−0.650563 + 0.759452i \(0.725467\pi\)
\(390\) 0 0
\(391\) −1.77294 4.06361i −0.0896612 0.205506i
\(392\) −6.53178 14.9710i −0.329905 0.756150i
\(393\) 0 0
\(394\) −1.55766 5.81327i −0.0784738 0.292868i
\(395\) −4.72370 + 13.4996i −0.237675 + 0.679236i
\(396\) 0 0
\(397\) −2.98644 1.43819i −0.149885 0.0721808i 0.357438 0.933937i \(-0.383650\pi\)
−0.507323 + 0.861756i \(0.669365\pi\)
\(398\) −36.2912 6.86666i −1.81911 0.344194i
\(399\) 0 0
\(400\) 0.00134480 0.00342650i 6.72402e−5 0.000171325i
\(401\) 2.45064 16.2589i 0.122379 0.811931i −0.840464 0.541868i \(-0.817717\pi\)
0.962843 0.270063i \(-0.0870447\pi\)
\(402\) 0 0
\(403\) 1.00061 + 26.7419i 0.0498439 + 1.33211i
\(404\) −6.22340 55.2342i −0.309626 2.74800i
\(405\) 0 0
\(406\) −38.2996 + 21.7442i −1.90078 + 1.07915i
\(407\) −34.4588 19.8948i −1.70806 0.986148i
\(408\) 0 0
\(409\) −3.30015 + 6.24419i −0.163182 + 0.308755i −0.952124 0.305712i \(-0.901105\pi\)
0.788942 + 0.614468i \(0.210629\pi\)
\(410\) −11.1499 + 10.3456i −0.550655 + 0.510933i
\(411\) 0 0
\(412\) 0.640741 + 4.25104i 0.0315671 + 0.209434i
\(413\) −40.3176 9.20223i −1.98390 0.452812i
\(414\) 0 0
\(415\) 4.82464 10.0185i 0.236832 0.491787i
\(416\) 19.0872 10.0879i 0.935828 0.494600i
\(417\) 0 0
\(418\) 10.5497 39.3721i 0.516004 1.92575i
\(419\) −6.38013 4.34990i −0.311690 0.212506i 0.397364 0.917661i \(-0.369925\pi\)
−0.709053 + 0.705155i \(0.750877\pi\)
\(420\) 0 0
\(421\) 3.35566 + 2.47659i 0.163545 + 0.120702i 0.672518 0.740081i \(-0.265213\pi\)
−0.508973 + 0.860783i \(0.669975\pi\)
\(422\) 13.8099 + 28.6765i 0.672253 + 1.39595i
\(423\) 0 0
\(424\) −3.93446 1.37673i −0.191074 0.0668598i
\(425\) −3.81129 7.21130i −0.184874 0.349800i
\(426\) 0 0
\(427\) 3.02394 + 2.60231i 0.146339 + 0.125935i
\(428\) −40.7747 + 12.5773i −1.97092 + 0.607948i
\(429\) 0 0
\(430\) 9.62897 + 24.5342i 0.464350 + 1.18314i
\(431\) 4.50448 1.02812i 0.216973 0.0495227i −0.112652 0.993634i \(-0.535935\pi\)
0.329626 + 0.944112i \(0.393078\pi\)
\(432\) 0 0
\(433\) −23.6255 + 2.66196i −1.13537 + 0.127926i −0.659581 0.751634i \(-0.729266\pi\)
−0.475790 + 0.879559i \(0.657838\pi\)
\(434\) 28.6640 49.6475i 1.37592 2.38316i
\(435\) 0 0
\(436\) −28.0880 48.6499i −1.34517 2.32991i
\(437\) −3.61103 4.89278i −0.172739 0.234053i
\(438\) 0 0
\(439\) 4.65426 15.0888i 0.222136 0.720147i −0.774068 0.633102i \(-0.781781\pi\)
0.996204 0.0870451i \(-0.0277424\pi\)
\(440\) −10.8680 + 13.6280i −0.518110 + 0.649689i
\(441\) 0 0
\(442\) −6.60814 + 28.9521i −0.314317 + 1.37711i
\(443\) −1.77046 + 9.35713i −0.0841173 + 0.444571i 0.915034 + 0.403377i \(0.132164\pi\)
−0.999151 + 0.0411937i \(0.986884\pi\)
\(444\) 0 0
\(445\) 4.00929 + 0.150017i 0.190058 + 0.00711149i
\(446\) 7.88906 + 41.6947i 0.373558 + 1.97430i
\(447\) 0 0
\(448\) −46.1309 3.45703i −2.17948 0.163330i
\(449\) −0.582696 + 5.17157i −0.0274991 + 0.244061i 0.972441 + 0.233148i \(0.0749026\pi\)
−0.999940 + 0.0109137i \(0.996526\pi\)
\(450\) 0 0
\(451\) −14.1873 + 6.83223i −0.668052 + 0.321717i
\(452\) 7.95081 2.13041i 0.373975 0.100206i
\(453\) 0 0
\(454\) 0.875094 23.3874i 0.0410702 1.09762i
\(455\) −21.9412 + 1.64427i −1.02862 + 0.0770844i
\(456\) 0 0
\(457\) −1.53515 + 1.65449i −0.0718111 + 0.0773939i −0.767935 0.640527i \(-0.778716\pi\)
0.696124 + 0.717921i \(0.254906\pi\)
\(458\) −14.1422 + 11.2781i −0.660824 + 0.526989i
\(459\) 0 0
\(460\) 1.51468 + 6.63626i 0.0706225 + 0.309417i
\(461\) 26.6785 0.998238i 1.24254 0.0464926i 0.591984 0.805950i \(-0.298345\pi\)
0.650557 + 0.759457i \(0.274535\pi\)
\(462\) 0 0
\(463\) −2.87207 + 1.65819i −0.133476 + 0.0770625i −0.565251 0.824919i \(-0.691221\pi\)
0.431775 + 0.901981i \(0.357887\pi\)
\(464\) −0.000249140 0.00825762i −1.15660e−5 0.000383350i
\(465\) 0 0
\(466\) −17.0625 7.44429i −0.790404 0.344850i
\(467\) −16.9709 + 10.6635i −0.785318 + 0.493448i −0.864024 0.503450i \(-0.832064\pi\)
0.0787066 + 0.996898i \(0.474921\pi\)
\(468\) 0 0
\(469\) 3.89695 + 3.10771i 0.179944 + 0.143501i
\(470\) −8.46600 + 1.27604i −0.390507 + 0.0588595i
\(471\) 0 0
\(472\) 21.3547 24.8146i 0.982928 1.14218i
\(473\) 2.03906 + 27.2093i 0.0937560 + 1.25109i
\(474\) 0 0
\(475\) −7.29744 8.47978i −0.334829 0.389079i
\(476\) 27.8032 27.8032i 1.27436 1.27436i
\(477\) 0 0
\(478\) 50.7786 + 5.72137i 2.32256 + 0.261689i
\(479\) −15.0579 + 20.4027i −0.688013 + 0.932224i −0.999840 0.0179146i \(-0.994297\pi\)
0.311827 + 0.950139i \(0.399059\pi\)
\(480\) 0 0
\(481\) 38.4063 + 10.2909i 1.75118 + 0.469226i
\(482\) 47.2501 8.94020i 2.15218 0.407215i
\(483\) 0 0
\(484\) −9.61359 + 6.55443i −0.436981 + 0.297929i
\(485\) −2.63748 7.53748i −0.119762 0.342259i
\(486\) 0 0
\(487\) −0.176535 0.221368i −0.00799956 0.0100311i 0.777816 0.628493i \(-0.216328\pi\)
−0.785815 + 0.618461i \(0.787756\pi\)
\(488\) −2.93997 + 1.15385i −0.133086 + 0.0522324i
\(489\) 0 0
\(490\) 18.8352 + 9.95468i 0.850887 + 0.449707i
\(491\) 19.8916 14.6807i 0.897694 0.662529i −0.0439880 0.999032i \(-0.514006\pi\)
0.941682 + 0.336504i \(0.109244\pi\)
\(492\) 0 0
\(493\) −14.2293 11.5170i −0.640857 0.518699i
\(494\) 40.7319i 1.83261i
\(495\) 0 0
\(496\) 0.00572128 + 0.00910536i 0.000256893 + 0.000408843i
\(497\) −45.1261 13.9196i −2.02418 0.624378i
\(498\) 0 0
\(499\) 27.9561 + 10.9720i 1.25149 + 0.491172i 0.896227 0.443595i \(-0.146297\pi\)
0.355260 + 0.934768i \(0.384392\pi\)
\(500\) 11.3830 + 36.9029i 0.509064 + 1.65035i
\(501\) 0 0
\(502\) −39.1194 57.3777i −1.74599 2.56089i
\(503\) 20.8110 + 13.0764i 0.927919 + 0.583050i 0.909011 0.416771i \(-0.136838\pi\)
0.0189074 + 0.999821i \(0.493981\pi\)
\(504\) 0 0
\(505\) 19.5841 + 19.5841i 0.871481 + 0.871481i
\(506\) −0.852058 + 11.3699i −0.0378786 + 0.505455i
\(507\) 0 0
\(508\) −45.3569 + 19.7890i −2.01239 + 0.877996i
\(509\) −6.82933 + 10.0168i −0.302705 + 0.443986i −0.947210 0.320614i \(-0.896111\pi\)
0.644505 + 0.764600i \(0.277063\pi\)
\(510\) 0 0
\(511\) 17.2859 14.8757i 0.764683 0.658063i
\(512\) 0.00923413 0.0146960i 0.000408095 0.000649479i
\(513\) 0 0
\(514\) −6.31074 + 2.20822i −0.278355 + 0.0974006i
\(515\) −1.57029 1.45701i −0.0691951 0.0642037i
\(516\) 0 0
\(517\) −8.76457 1.32105i −0.385465 0.0580996i
\(518\) −57.9361 62.4403i −2.54557 2.74347i
\(519\) 0 0
\(520\) 6.96547 15.9650i 0.305456 0.700113i
\(521\) −8.81512 −0.386197 −0.193099 0.981179i \(-0.561854\pi\)
−0.193099 + 0.981179i \(0.561854\pi\)
\(522\) 0 0
\(523\) −21.5957 −0.944315 −0.472157 0.881514i \(-0.656525\pi\)
−0.472157 + 0.881514i \(0.656525\pi\)
\(524\) 12.3034 28.1997i 0.537477 1.23191i
\(525\) 0 0
\(526\) 50.2265 + 54.1313i 2.18998 + 2.36024i
\(527\) 23.5625 + 3.55148i 1.02640 + 0.154705i
\(528\) 0 0
\(529\) −15.6133 14.4870i −0.678838 0.629869i
\(530\) 5.13165 1.79564i 0.222905 0.0779977i
\(531\) 0 0
\(532\) 28.6929 45.6644i 1.24399 1.97980i
\(533\) 11.9270 10.2640i 0.516616 0.444584i
\(534\) 0 0
\(535\) 11.9771 17.5672i 0.517817 0.759498i
\(536\) −3.61664 + 1.57792i −0.156215 + 0.0681559i
\(537\) 0 0
\(538\) 3.82358 51.0222i 0.164846 2.19972i
\(539\) 15.5955 + 15.5955i 0.671744 + 0.671744i
\(540\) 0 0
\(541\) 11.6870 + 7.34345i 0.502465 + 0.315720i 0.759306 0.650734i \(-0.225539\pi\)
−0.256841 + 0.966454i \(0.582682\pi\)
\(542\) 31.9554 + 46.8699i 1.37260 + 2.01323i
\(543\) 0 0
\(544\) −5.66630 18.3697i −0.242940 0.787594i
\(545\) 26.0563 + 10.2264i 1.11613 + 0.438049i
\(546\) 0 0
\(547\) 28.8868 + 8.91040i 1.23511 + 0.380981i 0.842486 0.538717i \(-0.181091\pi\)
0.392625 + 0.919699i \(0.371567\pi\)
\(548\) −7.21567 11.4837i −0.308238 0.490558i
\(549\) 0 0
\(550\) 20.9763i 0.894431i
\(551\) −22.5427 11.0577i −0.960350 0.471073i
\(552\) 0 0
\(553\) −25.5031 + 18.8222i −1.08450 + 0.800400i
\(554\) 43.3290 + 22.9001i 1.84087 + 0.972930i
\(555\) 0 0
\(556\) −1.94642 + 0.763914i −0.0825467 + 0.0323972i
\(557\) −6.23316 7.81614i −0.264108 0.331181i 0.632041 0.774935i \(-0.282218\pi\)
−0.896148 + 0.443755i \(0.853646\pi\)
\(558\) 0 0
\(559\) −9.00543 25.7360i −0.380889 1.08852i
\(560\) −0.00730536 + 0.00498071i −0.000308708 + 0.000210474i
\(561\) 0 0
\(562\) 18.7847 3.55426i 0.792384 0.149927i
\(563\) 5.75271 + 1.54143i 0.242448 + 0.0649637i 0.377997 0.925807i \(-0.376613\pi\)
−0.135549 + 0.990771i \(0.543280\pi\)
\(564\) 0 0
\(565\) −2.43553 + 3.30003i −0.102464 + 0.138833i
\(566\) −6.78908 0.764946i −0.285366 0.0321531i
\(567\) 0 0
\(568\) 26.4351 26.4351i 1.10919 1.10919i
\(569\) −19.3194 22.4496i −0.809913 0.941136i 0.189255 0.981928i \(-0.439393\pi\)
−0.999168 + 0.0407920i \(0.987012\pi\)
\(570\) 0 0
\(571\) −2.21725 29.5871i −0.0927889 1.23818i −0.828150 0.560506i \(-0.810607\pi\)
0.735361 0.677675i \(-0.237012\pi\)
\(572\) 30.7893 35.7779i 1.28737 1.49595i
\(573\) 0 0
\(574\) −33.3328 + 5.02411i −1.39128 + 0.209702i
\(575\) 2.44665 + 1.95114i 0.102033 + 0.0813683i
\(576\) 0 0
\(577\) 32.3269 20.3124i 1.34579 0.845615i 0.349951 0.936768i \(-0.386198\pi\)
0.995837 + 0.0911529i \(0.0290552\pi\)
\(578\) −11.4189 4.98200i −0.474962 0.207224i
\(579\) 0 0
\(580\) 18.1784 + 21.4356i 0.754819 + 0.890065i
\(581\) 21.3420 12.3218i 0.885417 0.511195i
\(582\) 0 0
\(583\) 5.62455 0.210456i 0.232945 0.00871619i
\(584\) 4.01737 + 17.6012i 0.166240 + 0.728344i
\(585\) 0 0
\(586\) 6.90006 5.50261i 0.285039 0.227311i
\(587\) 20.2300 21.8027i 0.834980 0.899895i −0.161226 0.986918i \(-0.551545\pi\)
0.996206 + 0.0870226i \(0.0277352\pi\)
\(588\) 0 0
\(589\) 32.5919 2.44243i 1.34293 0.100638i
\(590\) −1.59660 + 42.6699i −0.0657308 + 1.75669i
\(591\) 0 0
\(592\) 0.0154334 0.00413537i 0.000634310 0.000169963i
\(593\) 29.0205 13.9755i 1.19173 0.573906i 0.270421 0.962742i \(-0.412837\pi\)
0.921307 + 0.388837i \(0.127123\pi\)
\(594\) 0 0
\(595\) −2.19362 + 19.4689i −0.0899295 + 0.798147i
\(596\) −8.38592 0.628437i −0.343500 0.0257418i
\(597\) 0 0
\(598\) −2.11821 11.1950i −0.0866201 0.457798i
\(599\) 3.56523 + 0.133401i 0.145671 + 0.00545063i 0.110127 0.993917i \(-0.464874\pi\)
0.0355438 + 0.999368i \(0.488684\pi\)
\(600\) 0 0
\(601\) 5.75406 30.4109i 0.234713 1.24049i −0.644703 0.764433i \(-0.723019\pi\)
0.879416 0.476055i \(-0.157934\pi\)
\(602\) −12.9977 + 56.9465i −0.529746 + 2.32097i
\(603\) 0 0
\(604\) −43.9965 + 55.1698i −1.79019 + 2.24483i
\(605\) 1.70888 5.54006i 0.0694760 0.225236i
\(606\) 0 0
\(607\) −3.95105 5.35349i −0.160368 0.217291i 0.717045 0.697027i \(-0.245494\pi\)
−0.877413 + 0.479736i \(0.840732\pi\)
\(608\) −13.1836 22.8347i −0.534666 0.926069i
\(609\) 0 0
\(610\) 2.05965 3.56742i 0.0833928 0.144440i
\(611\) 8.80154 0.991696i 0.356072 0.0401197i
\(612\) 0 0
\(613\) 46.5039 10.6142i 1.87827 0.428704i 0.879398 0.476087i \(-0.157945\pi\)
0.998877 + 0.0473834i \(0.0150883\pi\)
\(614\) 8.95523 + 22.8176i 0.361404 + 0.920842i
\(615\) 0 0
\(616\) −36.9144 + 11.3866i −1.48732 + 0.458779i
\(617\) −3.97781 3.42318i −0.160141 0.137812i 0.568567 0.822637i \(-0.307498\pi\)
−0.728708 + 0.684825i \(0.759879\pi\)
\(618\) 0 0
\(619\) 7.30593 + 13.8235i 0.293650 + 0.555613i 0.986160 0.165795i \(-0.0530190\pi\)
−0.692510 + 0.721408i \(0.743495\pi\)
\(620\) −34.5318 12.0832i −1.38683 0.485272i
\(621\) 0 0
\(622\) 26.3225 + 54.6593i 1.05544 + 2.19164i
\(623\) 7.15424 + 5.28007i 0.286628 + 0.211541i
\(624\) 0 0
\(625\) −5.98663 4.08161i −0.239465 0.163265i
\(626\) 2.81946 10.5224i 0.112688 0.420559i
\(627\) 0 0
\(628\) −15.8670 + 8.38593i −0.633160 + 0.334635i
\(629\) 15.3616 31.8987i 0.612507 1.27188i
\(630\) 0 0
\(631\) 21.6848 + 4.94942i 0.863260 + 0.197033i 0.631154 0.775657i \(-0.282581\pi\)
0.232105 + 0.972691i \(0.425439\pi\)
\(632\) −3.73986 24.8124i −0.148764 0.986983i
\(633\) 0 0
\(634\) −10.6572 + 9.88848i −0.423253 + 0.392722i
\(635\) 11.5218 21.8003i 0.457227 0.865117i
\(636\) 0 0
\(637\) −19.0868 11.0198i −0.756247 0.436619i
\(638\) 18.5134 + 43.2853i 0.732952 + 1.71368i
\(639\) 0 0
\(640\) 3.30587 + 29.3404i 0.130676 + 1.15978i
\(641\) 0.390253 + 10.4297i 0.0154141 + 0.411950i 0.985550 + 0.169387i \(0.0541787\pi\)
−0.970136 + 0.242563i \(0.922012\pi\)
\(642\) 0 0
\(643\) −1.90496 + 12.6386i −0.0751244 + 0.498418i 0.919350 + 0.393440i \(0.128715\pi\)
−0.994475 + 0.104977i \(0.966523\pi\)
\(644\) −5.51141 + 14.0428i −0.217180 + 0.553366i
\(645\) 0 0
\(646\) 35.6370 + 6.74288i 1.40212 + 0.265295i
\(647\) 21.4781 + 10.3433i 0.844390 + 0.406637i 0.805492 0.592606i \(-0.201901\pi\)
0.0388978 + 0.999243i \(0.487615\pi\)
\(648\) 0 0
\(649\) −14.6002 + 41.7250i −0.573109 + 1.63785i
\(650\) −5.42517 20.2470i −0.212793 0.794154i
\(651\) 0 0
\(652\) 31.4225 + 72.0212i 1.23060 + 2.82057i
\(653\) −1.39197 3.19043i −0.0544720 0.124851i 0.887198 0.461389i \(-0.152649\pi\)
−0.941670 + 0.336538i \(0.890744\pi\)
\(654\) 0 0
\(655\) 3.96781 + 14.8081i 0.155035 + 0.578599i
\(656\) 0.00208843 0.00596838i 8.15394e−5 0.000233026i
\(657\) 0 0
\(658\) −17.0954 8.23271i −0.666448 0.320945i
\(659\) 30.7669 + 5.82142i 1.19851 + 0.226770i 0.746587 0.665287i \(-0.231691\pi\)
0.451922 + 0.892058i \(0.350739\pi\)
\(660\) 0 0
\(661\) −0.0777038 + 0.197986i −0.00302233 + 0.00770077i −0.932377 0.361488i \(-0.882269\pi\)
0.929355 + 0.369188i \(0.120364\pi\)
\(662\) 4.28257 28.4130i 0.166447 1.10430i
\(663\) 0 0
\(664\) 0.729467 + 19.4954i 0.0283088 + 0.756569i
\(665\) 3.00876 + 26.7035i 0.116675 + 1.03552i
\(666\) 0 0
\(667\) 6.77081 + 1.86686i 0.262167 + 0.0722852i
\(668\) 37.2998 + 21.5350i 1.44317 + 0.833216i
\(669\) 0 0
\(670\) 2.40482 4.55013i 0.0929061 0.175787i
\(671\) 3.12616 2.90065i 0.120684 0.111978i
\(672\) 0 0
\(673\) −6.96874 46.2346i −0.268625 1.78221i −0.562934 0.826502i \(-0.690327\pi\)
0.294309 0.955710i \(-0.404911\pi\)
\(674\) −45.6486 10.4190i −1.75832 0.401325i
\(675\) 0 0
\(676\) −2.21064 + 4.59045i −0.0850248 + 0.176556i
\(677\) −6.49580 + 3.43313i −0.249654 + 0.131946i −0.587415 0.809286i \(-0.699854\pi\)
0.337761 + 0.941232i \(0.390330\pi\)
\(678\) 0 0
\(679\) 4.58055 17.0948i 0.175785 0.656040i
\(680\) −12.8150 8.73710i −0.491432 0.335053i
\(681\) 0 0
\(682\) −49.3062 36.3897i −1.88803 1.39343i
\(683\) 9.39369 + 19.5062i 0.359440 + 0.746384i 0.999764 0.0217204i \(-0.00691435\pi\)
−0.640324 + 0.768105i \(0.721200\pi\)
\(684\) 0 0
\(685\) 6.37864 + 2.23198i 0.243715 + 0.0852797i
\(686\) −4.68857 8.87121i −0.179010 0.338704i
\(687\) 0 0
\(688\) −0.00830493 0.00714697i −0.000316623 0.000272476i
\(689\) −5.37458 + 1.65784i −0.204755 + 0.0631586i
\(690\) 0 0
\(691\) 4.15235 + 10.5800i 0.157963 + 0.402483i 0.987842 0.155460i \(-0.0496860\pi\)
−0.829879 + 0.557943i \(0.811591\pi\)
\(692\) 18.7787 4.28611i 0.713857 0.162933i
\(693\) 0 0
\(694\) −36.7964 + 4.14596i −1.39677 + 0.157378i
\(695\) 0.520940 0.902294i 0.0197604 0.0342260i
\(696\) 0 0
\(697\) −7.00572 12.1343i −0.265360 0.459618i
\(698\) −9.93771 13.4651i −0.376148 0.509662i
\(699\) 0 0
\(700\) −8.18051 + 26.5206i −0.309194 + 1.00238i
\(701\) −30.6862 + 38.4793i −1.15900 + 1.45334i −0.291044 + 0.956710i \(0.594003\pi\)
−0.867960 + 0.496635i \(0.834569\pi\)
\(702\) 0 0
\(703\) 10.8059 47.3437i 0.407552 1.78560i
\(704\) −9.19328 + 48.5877i −0.346485 + 1.83122i
\(705\) 0 0
\(706\) −31.7108 1.18653i −1.19345 0.0446558i
\(707\) 11.4114 + 60.3107i 0.429170 + 2.26822i
\(708\) 0 0
\(709\) 21.0481 + 1.57734i 0.790477 + 0.0592381i 0.463848 0.885915i \(-0.346468\pi\)
0.326629 + 0.945153i \(0.394087\pi\)
\(710\) −5.45944 + 48.4539i −0.204889 + 1.81844i
\(711\) 0 0
\(712\) −6.34199 + 3.05414i −0.237676 + 0.114459i
\(713\) −8.83076 + 2.36620i −0.330715 + 0.0886147i
\(714\) 0 0
\(715\) −0.879431 + 23.5033i −0.0328889 + 0.878973i
\(716\) 36.3957 2.72748i 1.36017 0.101931i
\(717\) 0 0
\(718\) −32.6271 + 35.1637i −1.21763 + 1.31230i
\(719\) −24.1633 + 19.2696i −0.901138 + 0.718634i −0.960109 0.279626i \(-0.909790\pi\)
0.0589707 + 0.998260i \(0.481218\pi\)
\(720\) 0 0
\(721\) −1.05640 4.62839i −0.0393424 0.172370i
\(722\) 6.26435 0.234395i 0.233135 0.00872329i
\(723\) 0 0
\(724\) 56.1401 32.4125i 2.08643 1.20460i
\(725\) 12.6783 + 2.49405i 0.470861 + 0.0926267i
\(726\) 0 0
\(727\) 18.3310 + 7.99775i 0.679861 + 0.296620i 0.711303 0.702885i \(-0.248105\pi\)
−0.0314425 + 0.999506i \(0.510010\pi\)
\(728\) 32.6861 20.5381i 1.21143 0.761191i
\(729\) 0 0
\(730\) −18.4101 14.6815i −0.681387 0.543388i
\(731\) −24.0076 + 3.61857i −0.887955 + 0.133838i
\(732\) 0 0
\(733\) −29.2263 + 33.9616i −1.07950 + 1.25440i −0.114142 + 0.993464i \(0.536412\pi\)
−0.965356 + 0.260935i \(0.915969\pi\)
\(734\) 1.48134 + 19.7671i 0.0546772 + 0.729616i
\(735\) 0 0
\(736\) 4.81096 + 5.59044i 0.177334 + 0.206066i
\(737\) 3.76749 3.76749i 0.138777 0.138777i
\(738\) 0 0
\(739\) −16.9602 1.91095i −0.623890 0.0702956i −0.205641 0.978628i \(-0.565928\pi\)
−0.418250 + 0.908332i \(0.637356\pi\)
\(740\) −32.2789 + 43.7363i −1.18660 + 1.60778i
\(741\) 0 0
\(742\) 11.6385 + 3.11852i 0.427262 + 0.114484i
\(743\) −7.79992 + 1.47582i −0.286151 + 0.0541427i −0.327006 0.945022i \(-0.606040\pi\)
0.0408545 + 0.999165i \(0.486992\pi\)
\(744\) 0 0
\(745\) 3.46213 2.36044i 0.126843 0.0864798i
\(746\) −23.8438 68.1416i −0.872983 2.49484i
\(747\) 0 0
\(748\) −26.2056 32.8608i −0.958173 1.20151i
\(749\) 43.8634 17.2151i 1.60273 0.629027i
\(750\) 0 0
\(751\) −9.05811 4.78735i −0.330535 0.174693i 0.293765 0.955878i \(-0.405092\pi\)
−0.624300 + 0.781185i \(0.714616\pi\)
\(752\) 0.00286376 0.00211355i 0.000104431 7.70733e-5i
\(753\) 0 0
\(754\) −29.0648 36.9923i −1.05848 1.34718i
\(755\) 35.1609i 1.27964i
\(756\) 0 0
\(757\) 0.486620 + 0.774451i 0.0176865 + 0.0281479i 0.855450 0.517885i \(-0.173280\pi\)
−0.837764 + 0.546033i \(0.816137\pi\)
\(758\) −40.9826 12.6415i −1.48856 0.459159i
\(759\) 0 0
\(760\) −19.8029 7.77208i −0.718328 0.281923i
\(761\) 8.70153 + 28.2097i 0.315430 + 1.02260i 0.964990 + 0.262288i \(0.0844772\pi\)
−0.649559 + 0.760311i \(0.725047\pi\)
\(762\) 0 0
\(763\) 34.9455 + 51.2556i 1.26511 + 1.85558i
\(764\) −30.0963 18.9107i −1.08884 0.684167i
\(765\) 0 0
\(766\) −38.8381 38.8381i −1.40328 1.40328i
\(767\) 3.30113 44.0506i 0.119197 1.59057i
\(768\) 0 0
\(769\) 20.8677 9.10450i 0.752510 0.328317i 0.0116102 0.999933i \(-0.496304\pi\)
0.740899 + 0.671616i \(0.234400\pi\)
\(770\) 28.3831 41.6303i 1.02285 1.50025i
\(771\) 0 0
\(772\) 49.5992 42.6836i 1.78512 1.53622i
\(773\) 24.0026 38.2000i 0.863315 1.37396i −0.0633186 0.997993i \(-0.520168\pi\)
0.926634 0.375965i \(-0.122689\pi\)
\(774\) 0 0
\(775\) −15.8755 + 5.55508i −0.570265 + 0.199544i
\(776\) 10.2704 + 9.52954i 0.368686 + 0.342091i
\(777\) 0 0
\(778\) 50.4479 + 7.60380i 1.80864 + 0.272609i
\(779\) −13.0716 14.0878i −0.468338 0.504749i
\(780\) 0 0
\(781\) −20.1866 + 46.2682i −0.722333 + 1.65561i
\(782\) −10.1454 −0.362797
\(783\) 0 0
\(784\) −0.00885651 −0.000316304
\(785\) 3.57601 8.19630i 0.127633 0.292538i
\(786\) 0 0
\(787\) −5.74106 6.18740i −0.204647 0.220557i 0.622386 0.782710i \(-0.286163\pi\)
−0.827033 + 0.562154i \(0.809973\pi\)
\(788\) −8.41676 1.26862i −0.299835 0.0451928i
\(789\) 0 0
\(790\) 23.9912 + 22.2606i 0.853570 + 0.791997i
\(791\) −8.57967 + 3.00216i −0.305058 + 0.106744i
\(792\) 0 0
\(793\) −2.26727 + 3.60834i −0.0805131 + 0.128136i
\(794\) −5.74928 + 4.94765i −0.204034 + 0.175586i
\(795\) 0 0
\(796\) −29.4267 + 43.1610i −1.04300 + 1.52980i
\(797\) 15.6615 6.83305i 0.554760 0.242039i −0.103760 0.994602i \(-0.533088\pi\)
0.658520 + 0.752563i \(0.271183\pi\)
\(798\) 0 0
\(799\) 0.589383 7.86477i 0.0208509 0.278236i
\(800\) 9.59472 + 9.59472i 0.339225 + 0.339225i
\(801\) 0 0
\(802\) −31.8587 20.0182i −1.12497 0.706866i
\(803\) −13.7325 20.1419i −0.484610 0.710792i
\(804\) 0 0
\(805\) −2.21563 7.18289i −0.0780906 0.253164i
\(806\) 57.0037 + 22.3723i 2.00787 + 0.788031i
\(807\) 0 0
\(808\) −46.4331 14.3227i −1.63351 0.503871i
\(809\) 8.84291 + 14.0734i 0.310900 + 0.494795i 0.965226 0.261418i \(-0.0841902\pi\)
−0.654325 + 0.756213i \(0.727047\pi\)
\(810\) 0 0
\(811\) 39.8566i 1.39955i −0.714361 0.699777i \(-0.753283\pi\)
0.714361 0.699777i \(-0.246717\pi\)
\(812\) 6.52595 + 61.9461i 0.229016 + 2.17388i
\(813\) 0 0
\(814\) −73.2597 + 54.0681i −2.56775 + 1.89509i
\(815\) −34.6161 18.2951i −1.21255 0.640851i
\(816\) 0 0
\(817\) −30.9988 + 12.1661i −1.08451 + 0.425639i
\(818\) 10.0766 + 12.6356i 0.352319 + 0.441795i
\(819\) 0 0
\(820\) 7.10500 + 20.3049i 0.248118 + 0.709079i
\(821\) −9.51431 + 6.48675i −0.332052 + 0.226389i −0.717856 0.696192i \(-0.754876\pi\)
0.385804 + 0.922581i \(0.373924\pi\)
\(822\) 0 0
\(823\) −20.2227 + 3.82634i −0.704919 + 0.133378i −0.525998 0.850486i \(-0.676308\pi\)
−0.178920 + 0.983864i \(0.557260\pi\)
\(824\) 3.63022 + 0.972715i 0.126465 + 0.0338861i
\(825\) 0 0
\(826\) −56.1946 + 76.1409i −1.95526 + 2.64928i
\(827\) −33.9079 3.82051i −1.17909 0.132852i −0.499416 0.866362i \(-0.666452\pi\)
−0.679678 + 0.733510i \(0.737881\pi\)
\(828\) 0 0
\(829\) 20.3339 20.3339i 0.706226 0.706226i −0.259513 0.965740i \(-0.583562\pi\)
0.965740 + 0.259513i \(0.0835622\pi\)
\(830\) −16.5977 19.2869i −0.576114 0.669457i
\(831\) 0 0
\(832\) −3.69274 49.2762i −0.128023 1.70835i
\(833\) −12.8011 + 14.8751i −0.443530 + 0.515392i
\(834\) 0 0
\(835\) −21.2211 + 3.19857i −0.734388 + 0.110691i
\(836\) −45.0718 35.9436i −1.55884 1.24314i
\(837\) 0 0
\(838\) −14.9618 + 9.40109i −0.516845 + 0.324755i
\(839\) 8.03838 + 3.50711i 0.277516 + 0.121079i 0.534041 0.845459i \(-0.320673\pi\)
−0.256525 + 0.966538i \(0.582578\pi\)
\(840\) 0 0
\(841\) 28.3634 6.04316i 0.978047 0.208385i
\(842\) 8.26508 4.77185i 0.284833 0.164449i
\(843\) 0 0
\(844\) 44.9841 1.68318i 1.54842 0.0579376i
\(845\) −0.564921 2.47508i −0.0194339 0.0851453i
\(846\) 0 0
\(847\) 10.0456 8.01113i 0.345172 0.275266i
\(848\) −0.00153730 + 0.00165682i −5.27913e−5 + 5.68955e-5i
\(849\) 0 0
\(850\) −18.6125 + 1.39482i −0.638405 + 0.0478418i
\(851\) −0.507910 + 13.5742i −0.0174109 + 0.465317i
\(852\) 0 0
\(853\) 1.18186 0.316680i 0.0404663 0.0108429i −0.238529 0.971135i \(-0.576665\pi\)
0.278995 + 0.960292i \(0.409999\pi\)
\(854\) 8.22520 3.96105i 0.281461 0.135544i
\(855\) 0 0
\(856\) −4.17660 + 37.0684i −0.142753 + 1.26697i
\(857\) −6.71981 0.503580i −0.229544 0.0172020i −0.0405387 0.999178i \(-0.512907\pi\)
−0.189006 + 0.981976i \(0.560526\pi\)
\(858\) 0 0
\(859\) 2.73205 + 14.4392i 0.0932164 + 0.492661i 0.997796 + 0.0663559i \(0.0211373\pi\)
−0.904580 + 0.426305i \(0.859815\pi\)
\(860\) 37.2498 + 1.39379i 1.27021 + 0.0475279i
\(861\) 0 0
\(862\) 1.96560 10.3885i 0.0669487 0.353832i
\(863\) −1.39105 + 6.09458i −0.0473518 + 0.207462i −0.993070 0.117527i \(-0.962503\pi\)
0.945718 + 0.324989i \(0.105361\pi\)
\(864\) 0 0
\(865\) −5.98401 + 7.50371i −0.203462 + 0.255134i
\(866\) −16.0361 + 51.9878i −0.544929 + 1.76662i
\(867\) 0 0
\(868\) −48.1469 65.2368i −1.63421 2.21428i
\(869\) 16.9411 + 29.3428i 0.574686 + 0.995385i
\(870\) 0 0
\(871\) −2.66212 + 4.61092i −0.0902024 + 0.156235i
\(872\) −48.8009 + 5.49854i −1.65261 + 0.186204i
\(873\) 0 0
\(874\) −13.5664 + 3.09645i −0.458892 + 0.104739i
\(875\) −15.5804 39.6983i −0.526714 1.34205i
\(876\) 0 0
\(877\) −46.5702 + 14.3650i −1.57256 + 0.485071i −0.953784 0.300494i \(-0.902849\pi\)
−0.618779 + 0.785565i \(0.712372\pi\)
\(878\) −27.3879 23.5692i −0.924299 0.795423i
\(879\) 0 0
\(880\) 0.00441630 + 0.00835605i 0.000148874 + 0.000281683i
\(881\) 43.3675 + 15.1749i 1.46109 + 0.511257i 0.939681 0.342051i \(-0.111122\pi\)
0.521407 + 0.853308i \(0.325407\pi\)
\(882\) 0 0
\(883\) 3.79987 + 7.89051i 0.127876 + 0.265537i 0.955071 0.296378i \(-0.0957790\pi\)
−0.827195 + 0.561915i \(0.810065\pi\)
\(884\) 33.7935 + 24.9408i 1.13660 + 0.838849i
\(885\) 0 0
\(886\) 18.0054 + 12.2759i 0.604904 + 0.412416i
\(887\) 0.709166 2.64664i 0.0238115 0.0888656i −0.952998 0.302978i \(-0.902019\pi\)
0.976809 + 0.214112i \(0.0686858\pi\)
\(888\) 0 0
\(889\) 48.3142 25.5348i 1.62041 0.856410i
\(890\) 3.98347 8.27176i 0.133526 0.277270i
\(891\) 0 0
\(892\) 58.5110 + 13.3548i 1.95909 + 0.447151i
\(893\) −1.61227 10.6967i −0.0539526 0.357952i
\(894\) 0 0
\(895\) −13.3313 + 12.3696i −0.445615 + 0.413471i
\(896\) −30.5763 + 57.8532i −1.02148 + 1.93274i
\(897\) 0 0
\(898\) 10.3136 + 5.95455i 0.344168 + 0.198706i
\(899\) −27.8568 + 25.4746i −0.929076 + 0.849626i
\(900\) 0 0
\(901\) 0.560745 + 4.97675i 0.0186811 + 0.165800i
\(902\) 1.34733 + 36.0083i 0.0448613 + 1.19894i
\(903\) 0 0
\(904\) 1.07249 7.11551i 0.0356705 0.236658i
\(905\) −11.8008 + 30.0680i −0.392273 + 0.999494i
\(906\) 0 0
\(907\) 23.3442 + 4.41697i 0.775133 + 0.146663i 0.558404 0.829569i \(-0.311414\pi\)
0.216729 + 0.976232i \(0.430461\pi\)
\(908\) −29.8224 14.3617i −0.989690 0.476609i
\(909\) 0 0
\(910\) −16.6293 + 47.5239i −0.551256 + 1.57540i
\(911\) −9.64349 35.9900i −0.319503 1.19240i −0.919723 0.392567i \(-0.871587\pi\)
0.600220 0.799835i \(-0.295080\pi\)
\(912\) 0 0
\(913\) −10.5343 24.1448i −0.348633 0.799075i
\(914\) 2.06533 + 4.73379i 0.0683151 + 0.156580i
\(915\) 0 0
\(916\) 6.62138 + 24.7113i 0.218776 + 0.816485i
\(917\) −11.2214 + 32.0690i −0.370565 + 1.05901i
\(918\) 0 0
\(919\) 20.6934 + 9.96540i 0.682611 + 0.328728i 0.742852 0.669456i \(-0.233473\pi\)
−0.0602409 + 0.998184i \(0.519187\pi\)
\(920\) 5.84694 + 1.10630i 0.192768 + 0.0364737i
\(921\) 0 0
\(922\) 22.3193 56.8686i 0.735046 1.87287i
\(923\) 7.51829 49.8806i 0.247468 1.64184i
\(924\) 0 0
\(925\) 0.934419 + 24.9729i 0.0307235 + 0.821103i
\(926\) 0.849691 + 7.54121i 0.0279226 + 0.247820i
\(927\) 0 0
\(928\) 28.2672 + 11.3309i 0.927917 + 0.371954i
\(929\) −0.443013 0.255774i −0.0145348 0.00839166i 0.492715 0.870191i \(-0.336005\pi\)
−0.507250 + 0.861799i \(0.669338\pi\)
\(930\) 0 0
\(931\) −12.5777 + 23.7981i −0.412216 + 0.779951i
\(932\) −19.3002 + 17.9080i −0.632199 + 0.586595i
\(933\) 0 0
\(934\) 6.83578 + 45.3525i 0.223674 + 1.48398i
\(935\) 20.4178 + 4.66023i 0.667734 + 0.152406i
\(936\) 0 0
\(937\) −13.9108 + 28.8861i −0.454446 + 0.943667i 0.540317 + 0.841462i \(0.318304\pi\)
−0.994763 + 0.102206i \(0.967410\pi\)
\(938\) 10.0841 5.32961i 0.329258 0.174018i
\(939\) 0 0
\(940\) −3.13400 + 11.6963i −0.102220 + 0.381490i
\(941\) −3.19708 2.17973i −0.104222 0.0710572i 0.510088 0.860122i \(-0.329613\pi\)
−0.614309 + 0.789065i \(0.710565\pi\)
\(942\) 0 0
\(943\) 4.32530 + 3.19222i 0.140851 + 0.103953i
\(944\) −0.00770196 0.0159933i −0.000250677 0.000520537i
\(945\) 0 0
\(946\) 58.9344 + 20.6220i 1.91612 + 0.670481i
\(947\) −2.89511 5.47782i −0.0940785 0.178005i 0.832585 0.553898i \(-0.186860\pi\)
−0.926663 + 0.375892i \(0.877336\pi\)
\(948\) 0 0
\(949\) 18.4645 + 15.8900i 0.599383 + 0.515811i
\(950\) −24.4631 + 7.54588i −0.793689 + 0.244821i
\(951\) 0 0
\(952\) −12.5581 31.9975i −0.407010 1.03705i
\(953\) 8.07682 1.84348i 0.261634 0.0597162i −0.0896917 0.995970i \(-0.528588\pi\)
0.351326 + 0.936253i \(0.385731\pi\)
\(954\) 0 0
\(955\) 17.5996 1.98300i 0.569509 0.0641683i
\(956\) 36.1357 62.5889i 1.16871 2.02427i
\(957\) 0 0
\(958\) 29.0132 + 50.2524i 0.937375 + 1.62358i
\(959\) 8.89361 + 12.0504i 0.287190 + 0.389128i
\(960\) 0 0
\(961\) 5.34581 17.3307i 0.172446 0.559055i
\(962\) 56.7290 71.1359i 1.82902 2.29351i
\(963\) 0 0
\(964\) 15.1342 66.3071i 0.487439 2.13561i
\(965\) −6.06177 + 32.0372i −0.195135 + 1.03132i
\(966\) 0 0
\(967\) 47.3679 + 1.77238i 1.52325 + 0.0569960i 0.785832 0.618440i \(-0.212235\pi\)
0.737419 + 0.675436i \(0.236045\pi\)
\(968\) 1.89105 + 9.99443i 0.0607806 + 0.321233i
\(969\) 0 0
\(970\) −18.2225 1.36559i −0.585090 0.0438464i
\(971\) 5.56016 49.3478i 0.178434 1.58365i −0.511183 0.859472i \(-0.670792\pi\)
0.689617 0.724174i \(-0.257779\pi\)
\(972\) 0 0
\(973\) 2.08037 1.00185i 0.0666936 0.0321179i
\(974\) −0.625838 + 0.167693i −0.0200531 + 0.00537322i
\(975\) 0 0
\(976\) −6.40316e−5 0.00171128i −2.04960e−6 5.47768e-5i
\(977\) 7.20845 0.540199i 0.230619 0.0172825i 0.0410806 0.999156i \(-0.486920\pi\)
0.189538 + 0.981873i \(0.439301\pi\)
\(978\) 0 0
\(979\) 6.46487 6.96747i 0.206618 0.222681i
\(980\) 23.5570 18.7861i 0.752502 0.600100i
\(981\) 0 0
\(982\) −12.5886 55.1543i −0.401719 1.76005i
\(983\) −12.2725 + 0.459204i −0.391431 + 0.0146463i −0.232383 0.972624i \(-0.574652\pi\)
−0.159048 + 0.987271i \(0.550843\pi\)
\(984\) 0 0
\(985\) 3.67303 2.12063i 0.117033 0.0675688i
\(986\) −37.1766 + 19.3054i −1.18394 + 0.614811i
\(987\) 0 0
\(988\) 52.8012 + 23.0369i 1.67983 + 0.732902i
\(989\) 7.88722 4.95587i 0.250799 0.157588i
\(990\) 0 0
\(991\) −7.07898 5.64530i −0.224871 0.179329i 0.504573 0.863369i \(-0.331650\pi\)
−0.729444 + 0.684040i \(0.760221\pi\)
\(992\) −39.1980 + 5.90815i −1.24454 + 0.187584i
\(993\) 0 0
\(994\) −70.4888 + 81.9095i −2.23577 + 2.59801i
\(995\) −1.94515 25.9562i −0.0616653 0.822866i
\(996\) 0 0
\(997\) 18.3238 + 21.2926i 0.580320 + 0.674344i 0.969009 0.247025i \(-0.0794530\pi\)
−0.388689 + 0.921369i \(0.627072\pi\)
\(998\) 48.5946 48.5946i 1.53823 1.53823i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.be.a.710.25 672
3.2 odd 2 261.2.x.a.101.4 yes 672
9.4 even 3 261.2.x.a.14.25 672
9.5 odd 6 inner 783.2.be.a.449.4 672
29.27 odd 28 inner 783.2.be.a.143.4 672
87.56 even 28 261.2.x.a.56.25 yes 672
261.85 odd 84 261.2.x.a.230.4 yes 672
261.230 even 84 inner 783.2.be.a.665.25 672
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.x.a.14.25 672 9.4 even 3
261.2.x.a.56.25 yes 672 87.56 even 28
261.2.x.a.101.4 yes 672 3.2 odd 2
261.2.x.a.230.4 yes 672 261.85 odd 84
783.2.be.a.143.4 672 29.27 odd 28 inner
783.2.be.a.449.4 672 9.5 odd 6 inner
783.2.be.a.665.25 672 261.230 even 84 inner
783.2.be.a.710.25 672 1.1 even 1 trivial