Properties

Label 783.2.be.a.665.21
Level $783$
Weight $2$
Character 783.665
Analytic conductor $6.252$
Analytic rank $0$
Dimension $672$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(8,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(84)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.be (of order \(84\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(672\)
Relative dimension: \(28\) over \(\Q(\zeta_{84})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{84}]$

Embedding invariants

Embedding label 665.21
Character \(\chi\) \(=\) 783.665
Dual form 783.2.be.a.710.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.571642 + 1.31022i) q^{2} +(-0.0295503 + 0.0318477i) q^{4} +(-2.61481 + 0.394119i) q^{5} +(-1.32416 + 1.22864i) q^{7} +(2.63993 + 0.923750i) q^{8} +(-2.01111 - 3.20067i) q^{10} +(0.291375 + 0.250749i) q^{11} +(1.83426 + 2.69036i) q^{13} +(-2.36673 - 1.03259i) q^{14} +(0.305273 + 4.07358i) q^{16} +(-0.359515 + 0.359515i) q^{17} +(-6.57779 + 4.13310i) q^{19} +(0.0647166 - 0.0949219i) q^{20} +(-0.161973 + 0.525104i) q^{22} +(-0.0597689 + 0.0234575i) q^{23} +(1.90402 - 0.587312i) q^{25} +(-2.47642 + 3.94120i) q^{26} -0.0784782i q^{28} +(-2.80031 + 4.59981i) q^{29} +(-7.73493 - 5.70864i) q^{31} +(-0.217246 + 0.114818i) q^{32} +(-0.676557 - 0.265529i) q^{34} +(2.97819 - 3.73453i) q^{35} +(-1.91078 + 5.46069i) q^{37} +(-9.17541 - 6.25569i) q^{38} +(-7.26696 - 1.37498i) q^{40} +(1.60421 - 0.429846i) q^{41} +(1.21456 + 1.64567i) q^{43} +(-0.0165960 + 0.00186992i) q^{44} +(-0.0649009 - 0.0649009i) q^{46} +(0.331957 - 0.385741i) q^{47} +(-0.279270 + 3.72659i) q^{49} +(1.85792 + 2.15895i) q^{50} +(-0.139885 - 0.0210842i) q^{52} +(-1.68105 + 1.34059i) q^{53} +(-0.860715 - 0.540823i) q^{55} +(-4.63064 + 2.02033i) q^{56} +(-7.62753 - 1.03957i) q^{58} +(-3.87386 - 2.23658i) q^{59} +(9.16119 + 0.342788i) q^{61} +(3.05795 - 13.3977i) q^{62} +(6.11295 + 4.87491i) q^{64} +(-5.85654 - 6.31185i) q^{65} +(13.5780 + 1.01753i) q^{67} +(-0.000825933 - 0.0220735i) q^{68} +(6.59551 + 1.76726i) q^{70} +(14.0494 + 6.76584i) q^{71} +(-0.264280 - 2.34555i) q^{73} +(-8.24697 + 0.618025i) q^{74} +(0.0627463 - 0.331622i) q^{76} +(-0.693908 + 0.0259642i) q^{77} +(1.45117 + 7.66960i) q^{79} +(-2.40370 - 10.5313i) q^{80} +(1.48022 + 1.85614i) q^{82} +(-0.0736019 - 0.238612i) q^{83} +(0.798370 - 1.08175i) q^{85} +(-1.46189 + 2.53208i) q^{86} +(0.537580 + 0.931116i) q^{88} +(-8.94513 - 1.00787i) q^{89} +(-5.73433 - 1.30882i) q^{91} +(0.00101912 - 0.00259668i) q^{92} +(0.695166 + 0.214430i) q^{94} +(15.5707 - 13.3997i) q^{95} +(5.87063 - 11.1078i) q^{97} +(-5.04229 + 1.76437i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 672 q + 36 q^{2} - 14 q^{4} + 42 q^{5} - 10 q^{7} - 56 q^{10} + 48 q^{11} - 14 q^{13} + 24 q^{14} - 54 q^{16} - 48 q^{19} + 30 q^{20} - 14 q^{22} + 30 q^{23} + 30 q^{25} - 12 q^{31} - 24 q^{32} - 14 q^{34}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.571642 + 1.31022i 0.404212 + 0.926464i 0.992993 + 0.118171i \(0.0377032\pi\)
−0.588781 + 0.808292i \(0.700392\pi\)
\(3\) 0 0
\(4\) −0.0295503 + 0.0318477i −0.0147752 + 0.0159238i
\(5\) −2.61481 + 0.394119i −1.16938 + 0.176255i −0.704885 0.709322i \(-0.749001\pi\)
−0.464492 + 0.885577i \(0.653763\pi\)
\(6\) 0 0
\(7\) −1.32416 + 1.22864i −0.500485 + 0.464383i −0.889557 0.456825i \(-0.848987\pi\)
0.389071 + 0.921208i \(0.372796\pi\)
\(8\) 2.63993 + 0.923750i 0.933355 + 0.326595i
\(9\) 0 0
\(10\) −2.01111 3.20067i −0.635970 1.01214i
\(11\) 0.291375 + 0.250749i 0.0878530 + 0.0756036i 0.695118 0.718896i \(-0.255352\pi\)
−0.607265 + 0.794500i \(0.707733\pi\)
\(12\) 0 0
\(13\) 1.83426 + 2.69036i 0.508731 + 0.746171i 0.991575 0.129535i \(-0.0413485\pi\)
−0.482844 + 0.875706i \(0.660396\pi\)
\(14\) −2.36673 1.03259i −0.632536 0.275973i
\(15\) 0 0
\(16\) 0.305273 + 4.07358i 0.0763182 + 1.01840i
\(17\) −0.359515 + 0.359515i −0.0871952 + 0.0871952i −0.749359 0.662164i \(-0.769638\pi\)
0.662164 + 0.749359i \(0.269638\pi\)
\(18\) 0 0
\(19\) −6.57779 + 4.13310i −1.50905 + 0.948198i −0.513095 + 0.858332i \(0.671501\pi\)
−0.995954 + 0.0898667i \(0.971356\pi\)
\(20\) 0.0647166 0.0949219i 0.0144711 0.0212252i
\(21\) 0 0
\(22\) −0.161973 + 0.525104i −0.0345328 + 0.111953i
\(23\) −0.0597689 + 0.0234575i −0.0124627 + 0.00489124i −0.371564 0.928407i \(-0.621178\pi\)
0.359102 + 0.933299i \(0.383083\pi\)
\(24\) 0 0
\(25\) 1.90402 0.587312i 0.380804 0.117462i
\(26\) −2.47642 + 3.94120i −0.485666 + 0.772932i
\(27\) 0 0
\(28\) 0.0784782i 0.0148310i
\(29\) −2.80031 + 4.59981i −0.520004 + 0.854164i
\(30\) 0 0
\(31\) −7.73493 5.70864i −1.38924 1.02530i −0.994303 0.106592i \(-0.966006\pi\)
−0.394933 0.918710i \(-0.629232\pi\)
\(32\) −0.217246 + 0.114818i −0.0384040 + 0.0202971i
\(33\) 0 0
\(34\) −0.676557 0.265529i −0.116029 0.0455378i
\(35\) 2.97819 3.73453i 0.503406 0.631251i
\(36\) 0 0
\(37\) −1.91078 + 5.46069i −0.314130 + 0.897732i 0.673257 + 0.739408i \(0.264895\pi\)
−0.987387 + 0.158324i \(0.949391\pi\)
\(38\) −9.17541 6.25569i −1.48845 1.01481i
\(39\) 0 0
\(40\) −7.26696 1.37498i −1.14901 0.217404i
\(41\) 1.60421 0.429846i 0.250535 0.0671306i −0.131366 0.991334i \(-0.541936\pi\)
0.381901 + 0.924203i \(0.375270\pi\)
\(42\) 0 0
\(43\) 1.21456 + 1.64567i 0.185219 + 0.250963i 0.887362 0.461073i \(-0.152535\pi\)
−0.702143 + 0.712036i \(0.747773\pi\)
\(44\) −0.0165960 + 0.00186992i −0.00250194 + 0.000281901i
\(45\) 0 0
\(46\) −0.0649009 0.0649009i −0.00956911 0.00956911i
\(47\) 0.331957 0.385741i 0.0484209 0.0562661i −0.733239 0.679971i \(-0.761992\pi\)
0.781660 + 0.623705i \(0.214373\pi\)
\(48\) 0 0
\(49\) −0.279270 + 3.72659i −0.0398957 + 0.532370i
\(50\) 1.85792 + 2.15895i 0.262750 + 0.305321i
\(51\) 0 0
\(52\) −0.139885 0.0210842i −0.0193985 0.00292385i
\(53\) −1.68105 + 1.34059i −0.230910 + 0.184144i −0.732109 0.681188i \(-0.761464\pi\)
0.501199 + 0.865332i \(0.332892\pi\)
\(54\) 0 0
\(55\) −0.860715 0.540823i −0.116059 0.0729246i
\(56\) −4.63064 + 2.02033i −0.618796 + 0.269978i
\(57\) 0 0
\(58\) −7.62753 1.03957i −1.00154 0.136502i
\(59\) −3.87386 2.23658i −0.504334 0.291177i 0.226167 0.974088i \(-0.427380\pi\)
−0.730502 + 0.682911i \(0.760714\pi\)
\(60\) 0 0
\(61\) 9.16119 + 0.342788i 1.17297 + 0.0438895i 0.616759 0.787152i \(-0.288445\pi\)
0.556211 + 0.831041i \(0.312255\pi\)
\(62\) 3.05795 13.3977i 0.388360 1.70152i
\(63\) 0 0
\(64\) 6.11295 + 4.87491i 0.764118 + 0.609364i
\(65\) −5.85654 6.31185i −0.726415 0.782889i
\(66\) 0 0
\(67\) 13.5780 + 1.01753i 1.65881 + 0.124311i 0.870895 0.491469i \(-0.163540\pi\)
0.787918 + 0.615780i \(0.211159\pi\)
\(68\) −0.000825933 0.0220735i −0.000100159 0.00267681i
\(69\) 0 0
\(70\) 6.59551 + 1.76726i 0.788314 + 0.211228i
\(71\) 14.0494 + 6.76584i 1.66736 + 0.802957i 0.998209 + 0.0598288i \(0.0190555\pi\)
0.669149 + 0.743128i \(0.266659\pi\)
\(72\) 0 0
\(73\) −0.264280 2.34555i −0.0309317 0.274526i −0.999652 0.0263719i \(-0.991605\pi\)
0.968721 0.248154i \(-0.0798240\pi\)
\(74\) −8.24697 + 0.618025i −0.958691 + 0.0718440i
\(75\) 0 0
\(76\) 0.0627463 0.331622i 0.00719749 0.0380397i
\(77\) −0.693908 + 0.0259642i −0.0790781 + 0.00295890i
\(78\) 0 0
\(79\) 1.45117 + 7.66960i 0.163269 + 0.862897i 0.964408 + 0.264419i \(0.0851801\pi\)
−0.801139 + 0.598478i \(0.795772\pi\)
\(80\) −2.40370 10.5313i −0.268742 1.17744i
\(81\) 0 0
\(82\) 1.48022 + 1.85614i 0.163463 + 0.204977i
\(83\) −0.0736019 0.238612i −0.00807886 0.0261910i 0.951444 0.307823i \(-0.0996005\pi\)
−0.959523 + 0.281632i \(0.909124\pi\)
\(84\) 0 0
\(85\) 0.798370 1.08175i 0.0865954 0.117333i
\(86\) −1.46189 + 2.53208i −0.157640 + 0.273041i
\(87\) 0 0
\(88\) 0.537580 + 0.931116i 0.0573063 + 0.0992574i
\(89\) −8.94513 1.00787i −0.948182 0.106834i −0.375691 0.926745i \(-0.622594\pi\)
−0.572492 + 0.819911i \(0.694023\pi\)
\(90\) 0 0
\(91\) −5.73433 1.30882i −0.601121 0.137202i
\(92\) 0.00101912 0.00259668i 0.000106251 0.000270722i
\(93\) 0 0
\(94\) 0.695166 + 0.214430i 0.0717009 + 0.0221168i
\(95\) 15.5707 13.3997i 1.59752 1.37478i
\(96\) 0 0
\(97\) 5.87063 11.1078i 0.596072 1.12782i −0.382892 0.923793i \(-0.625072\pi\)
0.978964 0.204031i \(-0.0654042\pi\)
\(98\) −5.04229 + 1.76437i −0.509348 + 0.178229i
\(99\) 0 0
\(100\) −0.0375599 + 0.0779939i −0.00375599 + 0.00779939i
\(101\) 14.5170 10.7141i 1.44450 1.06609i 0.460550 0.887634i \(-0.347652\pi\)
0.983948 0.178455i \(-0.0571098\pi\)
\(102\) 0 0
\(103\) 9.92230 6.76491i 0.977673 0.666566i 0.0346869 0.999398i \(-0.488957\pi\)
0.942986 + 0.332832i \(0.108004\pi\)
\(104\) 2.35708 + 8.79674i 0.231131 + 0.862592i
\(105\) 0 0
\(106\) −2.71742 1.43620i −0.263939 0.139496i
\(107\) −3.27119 6.79269i −0.316238 0.656674i 0.680892 0.732384i \(-0.261592\pi\)
−0.997130 + 0.0757093i \(0.975878\pi\)
\(108\) 0 0
\(109\) −12.2777 + 2.80231i −1.17599 + 0.268412i −0.765490 0.643448i \(-0.777503\pi\)
−0.410501 + 0.911860i \(0.634646\pi\)
\(110\) 0.216575 1.43688i 0.0206496 0.137001i
\(111\) 0 0
\(112\) −5.40920 5.01900i −0.511121 0.474251i
\(113\) 2.55738 + 4.83879i 0.240578 + 0.455195i 0.974607 0.223923i \(-0.0718863\pi\)
−0.734029 + 0.679118i \(0.762363\pi\)
\(114\) 0 0
\(115\) 0.147039 0.0848930i 0.0137114 0.00791631i
\(116\) −0.0637434 0.225109i −0.00591842 0.0209009i
\(117\) 0 0
\(118\) 0.715938 6.35413i 0.0659074 0.584945i
\(119\) 0.0343405 0.917770i 0.00314799 0.0841318i
\(120\) 0 0
\(121\) −1.61744 10.7310i −0.147040 0.975547i
\(122\) 4.78780 + 12.1991i 0.433467 + 1.10446i
\(123\) 0 0
\(124\) 0.410377 0.0776475i 0.0368529 0.00697295i
\(125\) 7.16518 3.45057i 0.640873 0.308628i
\(126\) 0 0
\(127\) −0.888975 2.54054i −0.0788838 0.225437i 0.897687 0.440634i \(-0.145246\pi\)
−0.976571 + 0.215197i \(0.930961\pi\)
\(128\) −3.01997 + 11.2707i −0.266930 + 0.996198i
\(129\) 0 0
\(130\) 4.92206 11.2815i 0.431693 0.989450i
\(131\) −2.57590 + 5.90403i −0.225058 + 0.515837i −0.992054 0.125814i \(-0.959846\pi\)
0.766996 + 0.641652i \(0.221750\pi\)
\(132\) 0 0
\(133\) 3.63195 13.5546i 0.314930 1.17534i
\(134\) 6.42856 + 18.3718i 0.555343 + 1.58708i
\(135\) 0 0
\(136\) −1.28120 + 0.616991i −0.109862 + 0.0529065i
\(137\) −2.20230 + 0.416697i −0.188155 + 0.0356008i −0.279135 0.960252i \(-0.590048\pi\)
0.0909800 + 0.995853i \(0.471000\pi\)
\(138\) 0 0
\(139\) −4.99129 12.7176i −0.423356 1.07869i −0.970381 0.241578i \(-0.922335\pi\)
0.547025 0.837116i \(-0.315760\pi\)
\(140\) 0.0309297 + 0.205205i 0.00261404 + 0.0173430i
\(141\) 0 0
\(142\) −0.833487 + 22.2754i −0.0699447 + 1.86931i
\(143\) −0.140147 + 1.24384i −0.0117197 + 0.104015i
\(144\) 0 0
\(145\) 5.50939 13.1313i 0.457530 1.09049i
\(146\) 2.92211 1.68708i 0.241836 0.139624i
\(147\) 0 0
\(148\) −0.117446 0.222219i −0.00965402 0.0182663i
\(149\) 11.0712 + 10.2726i 0.906991 + 0.841565i 0.987890 0.155158i \(-0.0495886\pi\)
−0.0808987 + 0.996722i \(0.525779\pi\)
\(150\) 0 0
\(151\) 0.331182 2.19725i 0.0269512 0.178809i −0.971305 0.237836i \(-0.923562\pi\)
0.998256 + 0.0590272i \(0.0187999\pi\)
\(152\) −21.1828 + 4.83485i −1.71816 + 0.392158i
\(153\) 0 0
\(154\) −0.430686 0.894328i −0.0347056 0.0720670i
\(155\) 22.4752 + 11.8785i 1.80525 + 0.954105i
\(156\) 0 0
\(157\) 4.12541 + 15.3963i 0.329244 + 1.22876i 0.909976 + 0.414660i \(0.136100\pi\)
−0.580732 + 0.814095i \(0.697234\pi\)
\(158\) −9.21929 + 6.28561i −0.733448 + 0.500056i
\(159\) 0 0
\(160\) 0.522803 0.385846i 0.0413312 0.0305038i
\(161\) 0.0503226 0.104496i 0.00396598 0.00823544i
\(162\) 0 0
\(163\) −12.1571 + 4.25394i −0.952215 + 0.333194i −0.761291 0.648411i \(-0.775434\pi\)
−0.190924 + 0.981605i \(0.561148\pi\)
\(164\) −0.0337153 + 0.0637924i −0.00263272 + 0.00498135i
\(165\) 0 0
\(166\) 0.270559 0.232835i 0.0209995 0.0180715i
\(167\) −23.7126 7.31438i −1.83494 0.566004i −0.999874 0.0158514i \(-0.994954\pi\)
−0.835064 0.550152i \(-0.814570\pi\)
\(168\) 0 0
\(169\) 0.875895 2.23174i 0.0673766 0.171673i
\(170\) 1.87371 + 0.427663i 0.143707 + 0.0328003i
\(171\) 0 0
\(172\) −0.0883016 0.00994920i −0.00673293 0.000758619i
\(173\) 8.04318 + 13.9312i 0.611511 + 1.05917i 0.990986 + 0.133967i \(0.0427715\pi\)
−0.379474 + 0.925202i \(0.623895\pi\)
\(174\) 0 0
\(175\) −1.79963 + 3.11705i −0.136039 + 0.235627i
\(176\) −0.932497 + 1.26349i −0.0702896 + 0.0952390i
\(177\) 0 0
\(178\) −3.79288 12.2962i −0.284288 0.921640i
\(179\) −0.841890 1.05570i −0.0629258 0.0789065i 0.749372 0.662149i \(-0.230355\pi\)
−0.812298 + 0.583242i \(0.801784\pi\)
\(180\) 0 0
\(181\) 1.98920 + 8.71524i 0.147856 + 0.647799i 0.993479 + 0.114018i \(0.0363722\pi\)
−0.845623 + 0.533781i \(0.820771\pi\)
\(182\) −1.56314 8.26140i −0.115868 0.612376i
\(183\) 0 0
\(184\) −0.179454 + 0.00671471i −0.0132295 + 0.000495015i
\(185\) 2.84416 15.0317i 0.209106 1.10515i
\(186\) 0 0
\(187\) −0.194902 + 0.0146059i −0.0142526 + 0.00106809i
\(188\) 0.00247552 + 0.0219709i 0.000180546 + 0.00160239i
\(189\) 0 0
\(190\) 26.4574 + 12.7412i 1.91942 + 0.924344i
\(191\) 25.7956 + 6.91191i 1.86650 + 0.500128i 1.00000 0.000956810i \(0.000304562\pi\)
0.866503 + 0.499171i \(0.166362\pi\)
\(192\) 0 0
\(193\) −0.278862 7.45275i −0.0200729 0.536461i −0.972665 0.232211i \(-0.925404\pi\)
0.952592 0.304249i \(-0.0984056\pi\)
\(194\) 17.9095 + 1.34213i 1.28583 + 0.0963594i
\(195\) 0 0
\(196\) −0.110431 0.119016i −0.00788792 0.00850116i
\(197\) −6.58790 5.25367i −0.469368 0.374309i 0.360053 0.932932i \(-0.382758\pi\)
−0.829422 + 0.558623i \(0.811330\pi\)
\(198\) 0 0
\(199\) −3.65786 + 16.0262i −0.259299 + 1.13606i 0.662704 + 0.748881i \(0.269409\pi\)
−0.922003 + 0.387182i \(0.873448\pi\)
\(200\) 5.56900 + 0.208377i 0.393788 + 0.0147345i
\(201\) 0 0
\(202\) 22.3363 + 12.8959i 1.57158 + 0.907350i
\(203\) −1.94346 9.53146i −0.136404 0.668977i
\(204\) 0 0
\(205\) −4.02528 + 1.75621i −0.281138 + 0.122659i
\(206\) 14.5355 + 9.13326i 1.01274 + 0.636345i
\(207\) 0 0
\(208\) −10.3994 + 8.29328i −0.721072 + 0.575036i
\(209\) −2.95298 0.445090i −0.204262 0.0307875i
\(210\) 0 0
\(211\) −2.48569 2.88842i −0.171122 0.198847i 0.665862 0.746075i \(-0.268064\pi\)
−0.836984 + 0.547228i \(0.815683\pi\)
\(212\) 0.00698081 0.0931524i 0.000479444 0.00639773i
\(213\) 0 0
\(214\) 7.02996 8.16896i 0.480558 0.558418i
\(215\) −3.82443 3.82443i −0.260824 0.260824i
\(216\) 0 0
\(217\) 17.2562 1.94430i 1.17142 0.131988i
\(218\) −10.6901 14.4846i −0.724024 0.981018i
\(219\) 0 0
\(220\) 0.0426584 0.0114303i 0.00287603 0.000770629i
\(221\) −1.62667 0.307782i −0.109421 0.0207037i
\(222\) 0 0
\(223\) −7.25621 4.94720i −0.485912 0.331289i 0.295460 0.955355i \(-0.404527\pi\)
−0.781371 + 0.624066i \(0.785480\pi\)
\(224\) 0.146598 0.418954i 0.00979501 0.0279925i
\(225\) 0 0
\(226\) −4.87797 + 6.11678i −0.324477 + 0.406882i
\(227\) 12.3848 + 4.86069i 0.822011 + 0.322615i 0.738807 0.673917i \(-0.235390\pi\)
0.0832038 + 0.996533i \(0.473485\pi\)
\(228\) 0 0
\(229\) 21.6411 11.4377i 1.43009 0.755823i 0.440229 0.897885i \(-0.354897\pi\)
0.989858 + 0.142062i \(0.0453734\pi\)
\(230\) 0.195282 + 0.144125i 0.0128765 + 0.00950330i
\(231\) 0 0
\(232\) −11.6417 + 9.55638i −0.764314 + 0.627407i
\(233\) 11.6588i 0.763791i 0.924206 + 0.381895i \(0.124729\pi\)
−0.924206 + 0.381895i \(0.875271\pi\)
\(234\) 0 0
\(235\) −0.715976 + 1.13947i −0.0467051 + 0.0743308i
\(236\) 0.185704 0.0572820i 0.0120883 0.00372874i
\(237\) 0 0
\(238\) 1.22211 0.479642i 0.0792176 0.0310906i
\(239\) 4.69767 15.2295i 0.303867 0.985113i −0.666912 0.745137i \(-0.732384\pi\)
0.970779 0.239976i \(-0.0771396\pi\)
\(240\) 0 0
\(241\) −8.84502 + 12.9733i −0.569758 + 0.835681i −0.997676 0.0681362i \(-0.978295\pi\)
0.427918 + 0.903817i \(0.359247\pi\)
\(242\) 13.1354 8.25350i 0.844374 0.530555i
\(243\) 0 0
\(244\) −0.281633 + 0.281633i −0.0180297 + 0.0180297i
\(245\) −0.738484 9.85438i −0.0471800 0.629574i
\(246\) 0 0
\(247\) −23.1849 10.1155i −1.47522 0.643631i
\(248\) −15.1463 22.2155i −0.961791 1.41069i
\(249\) 0 0
\(250\) 8.61691 + 7.41545i 0.544981 + 0.468994i
\(251\) 13.6271 + 21.6874i 0.860136 + 1.36890i 0.928537 + 0.371241i \(0.121067\pi\)
−0.0684008 + 0.997658i \(0.521790\pi\)
\(252\) 0 0
\(253\) −0.0232971 0.00815202i −0.00146468 0.000512513i
\(254\) 2.82049 2.61703i 0.176973 0.164207i
\(255\) 0 0
\(256\) −1.03056 + 0.155332i −0.0644100 + 0.00970824i
\(257\) −19.2515 + 20.7482i −1.20088 + 1.29424i −0.256049 + 0.966664i \(0.582421\pi\)
−0.944826 + 0.327572i \(0.893770\pi\)
\(258\) 0 0
\(259\) −4.17905 9.57849i −0.259674 0.595178i
\(260\) 0.374081 0.0231995
\(261\) 0 0
\(262\) −9.20806 −0.568876
\(263\) −0.647554 1.48421i −0.0399299 0.0915203i 0.895454 0.445153i \(-0.146851\pi\)
−0.935384 + 0.353633i \(0.884946\pi\)
\(264\) 0 0
\(265\) 3.86726 4.16792i 0.237564 0.256033i
\(266\) 19.8357 2.98975i 1.21620 0.183313i
\(267\) 0 0
\(268\) −0.433640 + 0.402359i −0.0264888 + 0.0245780i
\(269\) −10.4695 3.66344i −0.638337 0.223364i −0.00834497 0.999965i \(-0.502656\pi\)
−0.629992 + 0.776601i \(0.716942\pi\)
\(270\) 0 0
\(271\) −5.46346 8.69504i −0.331881 0.528186i 0.638545 0.769585i \(-0.279537\pi\)
−0.970426 + 0.241399i \(0.922394\pi\)
\(272\) −1.57426 1.35476i −0.0954537 0.0821446i
\(273\) 0 0
\(274\) −1.80489 2.64729i −0.109037 0.159928i
\(275\) 0.702052 + 0.306302i 0.0423353 + 0.0184707i
\(276\) 0 0
\(277\) 0.745645 + 9.94995i 0.0448015 + 0.597834i 0.973749 + 0.227623i \(0.0730955\pi\)
−0.928948 + 0.370211i \(0.879285\pi\)
\(278\) 13.8096 13.8096i 0.828245 0.828245i
\(279\) 0 0
\(280\) 11.3120 7.10779i 0.676020 0.424772i
\(281\) −10.5753 + 15.5111i −0.630868 + 0.925314i −0.999992 0.00406632i \(-0.998706\pi\)
0.369123 + 0.929380i \(0.379658\pi\)
\(282\) 0 0
\(283\) 2.37356 7.69490i 0.141094 0.457414i −0.857253 0.514896i \(-0.827831\pi\)
0.998347 + 0.0574811i \(0.0183069\pi\)
\(284\) −0.630641 + 0.247508i −0.0374217 + 0.0146869i
\(285\) 0 0
\(286\) −1.70982 + 0.527409i −0.101104 + 0.0311863i
\(287\) −1.59610 + 2.54018i −0.0942148 + 0.149942i
\(288\) 0 0
\(289\) 16.7415i 0.984794i
\(290\) 20.3542 0.287889i 1.19524 0.0169054i
\(291\) 0 0
\(292\) 0.0825100 + 0.0608952i 0.00482853 + 0.00356362i
\(293\) −7.58785 + 4.01030i −0.443287 + 0.234284i −0.673990 0.738740i \(-0.735421\pi\)
0.230703 + 0.973024i \(0.425897\pi\)
\(294\) 0 0
\(295\) 11.0109 + 4.32145i 0.641078 + 0.251605i
\(296\) −10.0886 + 12.6507i −0.586390 + 0.735309i
\(297\) 0 0
\(298\) −7.13057 + 20.3780i −0.413063 + 1.18046i
\(299\) −0.172741 0.117773i −0.00998985 0.00681096i
\(300\) 0 0
\(301\) −3.63021 0.686873i −0.209242 0.0395907i
\(302\) 3.06819 0.822118i 0.176554 0.0473076i
\(303\) 0 0
\(304\) −18.8445 25.5334i −1.08081 1.46444i
\(305\) −24.0898 + 2.71427i −1.37938 + 0.155419i
\(306\) 0 0
\(307\) −10.0713 10.0713i −0.574798 0.574798i 0.358668 0.933465i \(-0.383231\pi\)
−0.933465 + 0.358668i \(0.883231\pi\)
\(308\) 0.0196783 0.0228666i 0.00112128 0.00130295i
\(309\) 0 0
\(310\) −2.71564 + 36.2377i −0.154238 + 2.05816i
\(311\) 5.43852 + 6.31968i 0.308390 + 0.358356i 0.890684 0.454622i \(-0.150226\pi\)
−0.582294 + 0.812978i \(0.697845\pi\)
\(312\) 0 0
\(313\) −1.63694 0.246730i −0.0925255 0.0139460i 0.102616 0.994721i \(-0.467279\pi\)
−0.195142 + 0.980775i \(0.562517\pi\)
\(314\) −17.8142 + 14.2063i −1.00531 + 0.801710i
\(315\) 0 0
\(316\) −0.287141 0.180423i −0.0161530 0.0101496i
\(317\) 6.44315 2.81112i 0.361884 0.157888i −0.211080 0.977469i \(-0.567698\pi\)
0.572964 + 0.819580i \(0.305793\pi\)
\(318\) 0 0
\(319\) −1.96934 + 0.638099i −0.110262 + 0.0357267i
\(320\) −17.9055 10.3377i −1.00095 0.577896i
\(321\) 0 0
\(322\) 0.165679 + 0.00619927i 0.00923293 + 0.000345472i
\(323\) 0.878903 3.85073i 0.0489035 0.214260i
\(324\) 0 0
\(325\) 5.07254 + 4.04521i 0.281374 + 0.224388i
\(326\) −12.5231 13.4967i −0.693589 0.747511i
\(327\) 0 0
\(328\) 4.63206 + 0.347125i 0.255763 + 0.0191668i
\(329\) 0.0343731 + 0.918639i 0.00189505 + 0.0506462i
\(330\) 0 0
\(331\) 29.1989 + 7.82382i 1.60492 + 0.430036i 0.946522 0.322638i \(-0.104570\pi\)
0.658393 + 0.752674i \(0.271236\pi\)
\(332\) 0.00977419 + 0.00470700i 0.000536429 + 0.000258330i
\(333\) 0 0
\(334\) −3.97171 35.2499i −0.217322 1.92879i
\(335\) −35.9048 + 2.69069i −1.96169 + 0.147008i
\(336\) 0 0
\(337\) −3.68473 + 19.4743i −0.200720 + 1.06083i 0.726741 + 0.686911i \(0.241034\pi\)
−0.927461 + 0.373919i \(0.878014\pi\)
\(338\) 3.42477 0.128146i 0.186283 0.00697022i
\(339\) 0 0
\(340\) 0.0108592 + 0.0573924i 0.000588925 + 0.00311254i
\(341\) −0.822335 3.60288i −0.0445319 0.195107i
\(342\) 0 0
\(343\) −12.0926 15.1636i −0.652939 0.818760i
\(344\) 1.68616 + 5.46640i 0.0909118 + 0.294729i
\(345\) 0 0
\(346\) −13.6551 + 18.5020i −0.734101 + 0.994672i
\(347\) 14.9881 25.9602i 0.804604 1.39361i −0.111955 0.993713i \(-0.535711\pi\)
0.916558 0.399901i \(-0.130955\pi\)
\(348\) 0 0
\(349\) 9.77235 + 16.9262i 0.523102 + 0.906039i 0.999639 + 0.0268847i \(0.00855871\pi\)
−0.476536 + 0.879155i \(0.658108\pi\)
\(350\) −5.11276 0.576069i −0.273288 0.0307922i
\(351\) 0 0
\(352\) −0.0920904 0.0210190i −0.00490843 0.00112032i
\(353\) 5.27594 13.4429i 0.280810 0.715492i −0.718981 0.695030i \(-0.755391\pi\)
0.999791 0.0204619i \(-0.00651368\pi\)
\(354\) 0 0
\(355\) −39.4030 12.1542i −2.09129 0.645079i
\(356\) 0.296430 0.255099i 0.0157108 0.0135202i
\(357\) 0 0
\(358\) 0.901933 1.70654i 0.0476686 0.0901935i
\(359\) 6.39826 2.23885i 0.337687 0.118162i −0.156108 0.987740i \(-0.549895\pi\)
0.493795 + 0.869578i \(0.335609\pi\)
\(360\) 0 0
\(361\) 17.9410 37.2549i 0.944265 1.96079i
\(362\) −10.2818 + 7.58828i −0.540397 + 0.398831i
\(363\) 0 0
\(364\) 0.211135 0.143949i 0.0110665 0.00754498i
\(365\) 1.61547 + 6.02901i 0.0845575 + 0.315573i
\(366\) 0 0
\(367\) −8.73503 4.61660i −0.455965 0.240984i 0.223484 0.974708i \(-0.428257\pi\)
−0.679448 + 0.733723i \(0.737781\pi\)
\(368\) −0.113802 0.236312i −0.00593234 0.0123186i
\(369\) 0 0
\(370\) 21.3207 4.86630i 1.10841 0.252987i
\(371\) 0.578871 3.84056i 0.0300535 0.199392i
\(372\) 0 0
\(373\) 1.71082 + 1.58741i 0.0885830 + 0.0821930i 0.723222 0.690616i \(-0.242661\pi\)
−0.634639 + 0.772809i \(0.718851\pi\)
\(374\) −0.130551 0.247014i −0.00675063 0.0127728i
\(375\) 0 0
\(376\) 1.23267 0.711683i 0.0635702 0.0367022i
\(377\) −17.5116 + 0.903401i −0.901895 + 0.0465275i
\(378\) 0 0
\(379\) 2.66109 23.6178i 0.136691 1.21317i −0.718751 0.695267i \(-0.755286\pi\)
0.855442 0.517898i \(-0.173285\pi\)
\(380\) −0.0333709 + 0.891857i −0.00171189 + 0.0457513i
\(381\) 0 0
\(382\) 5.68974 + 37.7490i 0.291113 + 1.93141i
\(383\) −8.68644 22.1327i −0.443856 1.13093i −0.961372 0.275254i \(-0.911238\pi\)
0.517515 0.855674i \(-0.326857\pi\)
\(384\) 0 0
\(385\) 1.80420 0.341373i 0.0919506 0.0173980i
\(386\) 9.60531 4.62567i 0.488898 0.235441i
\(387\) 0 0
\(388\) 0.180278 + 0.515205i 0.00915222 + 0.0261555i
\(389\) −1.58423 + 5.91242i −0.0803236 + 0.299772i −0.994388 0.105798i \(-0.966260\pi\)
0.914064 + 0.405570i \(0.132927\pi\)
\(390\) 0 0
\(391\) 0.0130545 0.0299211i 0.000660192 0.00151318i
\(392\) −4.17969 + 9.57996i −0.211106 + 0.483861i
\(393\) 0 0
\(394\) 3.11754 11.6348i 0.157059 0.586153i
\(395\) −6.81725 19.4826i −0.343013 0.980275i
\(396\) 0 0
\(397\) 0.105265 0.0506928i 0.00528308 0.00254420i −0.431240 0.902237i \(-0.641924\pi\)
0.436523 + 0.899693i \(0.356210\pi\)
\(398\) −23.0887 + 4.36862i −1.15733 + 0.218979i
\(399\) 0 0
\(400\) 2.97371 + 7.57688i 0.148685 + 0.378844i
\(401\) 3.35978 + 22.2907i 0.167780 + 1.11315i 0.901211 + 0.433381i \(0.142680\pi\)
−0.733431 + 0.679764i \(0.762082\pi\)
\(402\) 0 0
\(403\) 1.17045 31.2809i 0.0583041 1.55821i
\(404\) −0.0877652 + 0.778938i −0.00436648 + 0.0387536i
\(405\) 0 0
\(406\) 11.3773 7.99494i 0.564647 0.396782i
\(407\) −1.92602 + 1.11199i −0.0954690 + 0.0551191i
\(408\) 0 0
\(409\) −11.5388 21.8325i −0.570557 1.07955i −0.985496 0.169698i \(-0.945721\pi\)
0.414939 0.909849i \(-0.363803\pi\)
\(410\) −4.60204 4.27007i −0.227279 0.210884i
\(411\) 0 0
\(412\) −0.0777606 + 0.515908i −0.00383099 + 0.0254169i
\(413\) 7.87756 1.79800i 0.387630 0.0884739i
\(414\) 0 0
\(415\) 0.286496 + 0.594915i 0.0140635 + 0.0292032i
\(416\) −0.707385 0.373864i −0.0346824 0.0183302i
\(417\) 0 0
\(418\) −1.10488 4.12348i −0.0540415 0.201686i
\(419\) −8.83796 + 6.02562i −0.431763 + 0.294371i −0.759633 0.650352i \(-0.774621\pi\)
0.327870 + 0.944723i \(0.393669\pi\)
\(420\) 0 0
\(421\) −18.3893 + 13.5719i −0.896240 + 0.661455i −0.941315 0.337529i \(-0.890409\pi\)
0.0450756 + 0.998984i \(0.485647\pi\)
\(422\) 2.36354 4.90794i 0.115055 0.238915i
\(423\) 0 0
\(424\) −5.67621 + 1.98619i −0.275661 + 0.0964580i
\(425\) −0.473376 + 0.895671i −0.0229621 + 0.0434464i
\(426\) 0 0
\(427\) −12.5520 + 10.8019i −0.607436 + 0.522741i
\(428\) 0.312996 + 0.0965466i 0.0151292 + 0.00466675i
\(429\) 0 0
\(430\) 2.82463 7.19705i 0.136216 0.347072i
\(431\) −8.06014 1.83967i −0.388243 0.0886140i 0.0239437 0.999713i \(-0.492378\pi\)
−0.412187 + 0.911099i \(0.635235\pi\)
\(432\) 0 0
\(433\) 16.7797 + 1.89062i 0.806380 + 0.0908572i 0.505524 0.862812i \(-0.331299\pi\)
0.300856 + 0.953670i \(0.402728\pi\)
\(434\) 12.4118 + 21.4979i 0.595786 + 1.03193i
\(435\) 0 0
\(436\) 0.273563 0.473826i 0.0131013 0.0226921i
\(437\) 0.296195 0.401330i 0.0141689 0.0191982i
\(438\) 0 0
\(439\) 2.85228 + 9.24685i 0.136132 + 0.441328i 0.997811 0.0661244i \(-0.0210634\pi\)
−0.861680 + 0.507453i \(0.830587\pi\)
\(440\) −1.77264 2.22282i −0.0845072 0.105969i
\(441\) 0 0
\(442\) −0.526610 2.30723i −0.0250483 0.109744i
\(443\) −5.82951 30.8097i −0.276969 1.46381i −0.794037 0.607870i \(-0.792024\pi\)
0.517068 0.855944i \(-0.327023\pi\)
\(444\) 0 0
\(445\) 23.7870 0.890047i 1.12761 0.0421923i
\(446\) 2.33395 12.3352i 0.110516 0.584090i
\(447\) 0 0
\(448\) −14.0840 + 1.05545i −0.665408 + 0.0498654i
\(449\) −3.24721 28.8197i −0.153245 1.36009i −0.801194 0.598404i \(-0.795802\pi\)
0.647949 0.761684i \(-0.275627\pi\)
\(450\) 0 0
\(451\) 0.575210 + 0.277006i 0.0270856 + 0.0130437i
\(452\) −0.229676 0.0615414i −0.0108030 0.00289466i
\(453\) 0 0
\(454\) 0.711133 + 19.0054i 0.0333751 + 0.891968i
\(455\) 15.5100 + 1.16231i 0.727120 + 0.0544901i
\(456\) 0 0
\(457\) 9.78392 + 10.5446i 0.457672 + 0.493253i 0.919155 0.393896i \(-0.128873\pi\)
−0.461483 + 0.887149i \(0.652682\pi\)
\(458\) 27.3568 + 21.8163i 1.27830 + 1.01941i
\(459\) 0 0
\(460\) −0.00164141 + 0.00719147i −7.65309e−5 + 0.000335304i
\(461\) −18.3098 0.685104i −0.852772 0.0319085i −0.392569 0.919722i \(-0.628414\pi\)
−0.460203 + 0.887814i \(0.652223\pi\)
\(462\) 0 0
\(463\) 33.6155 + 19.4079i 1.56224 + 0.901961i 0.997030 + 0.0770159i \(0.0245392\pi\)
0.565213 + 0.824945i \(0.308794\pi\)
\(464\) −19.5926 10.0031i −0.909562 0.464381i
\(465\) 0 0
\(466\) −15.2755 + 6.66464i −0.707624 + 0.308733i
\(467\) −1.23733 0.777467i −0.0572569 0.0359769i 0.503099 0.864229i \(-0.332193\pi\)
−0.560356 + 0.828252i \(0.689336\pi\)
\(468\) 0 0
\(469\) −19.2296 + 15.3351i −0.887939 + 0.708108i
\(470\) −1.90223 0.286716i −0.0877435 0.0132252i
\(471\) 0 0
\(472\) −8.16068 9.48288i −0.375626 0.436485i
\(473\) −0.0587570 + 0.784058i −0.00270165 + 0.0360510i
\(474\) 0 0
\(475\) −10.0968 + 11.7327i −0.463274 + 0.538334i
\(476\) 0.0282141 + 0.0282141i 0.00129319 + 0.00129319i
\(477\) 0 0
\(478\) 22.6393 2.55084i 1.03550 0.116673i
\(479\) 6.51383 + 8.82593i 0.297625 + 0.403267i 0.927736 0.373238i \(-0.121753\pi\)
−0.630111 + 0.776505i \(0.716991\pi\)
\(480\) 0 0
\(481\) −18.1961 + 4.87562i −0.829670 + 0.222309i
\(482\) −22.0540 4.17284i −1.00453 0.190068i
\(483\) 0 0
\(484\) 0.389554 + 0.265593i 0.0177070 + 0.0120724i
\(485\) −10.9728 + 31.3584i −0.498248 + 1.42391i
\(486\) 0 0
\(487\) −26.6681 + 33.4407i −1.20845 + 1.51534i −0.411367 + 0.911470i \(0.634948\pi\)
−0.797080 + 0.603874i \(0.793623\pi\)
\(488\) 23.8682 + 9.36759i 1.08046 + 0.424051i
\(489\) 0 0
\(490\) 12.4892 6.60076i 0.564206 0.298192i
\(491\) −17.4189 12.8557i −0.786102 0.580170i 0.125093 0.992145i \(-0.460077\pi\)
−0.911195 + 0.411975i \(0.864839\pi\)
\(492\) 0 0
\(493\) −0.646949 2.66045i −0.0291371 0.119821i
\(494\) 36.1597i 1.62690i
\(495\) 0 0
\(496\) 20.8933 33.2516i 0.938139 1.49304i
\(497\) −26.9164 + 8.30262i −1.20737 + 0.372424i
\(498\) 0 0
\(499\) −15.5114 + 6.08776i −0.694384 + 0.272526i −0.686170 0.727441i \(-0.740710\pi\)
−0.00821319 + 0.999966i \(0.502614\pi\)
\(500\) −0.101841 + 0.330160i −0.00455446 + 0.0147652i
\(501\) 0 0
\(502\) −20.6254 + 30.2519i −0.920558 + 1.35021i
\(503\) −15.0260 + 9.44146i −0.669976 + 0.420974i −0.823612 0.567154i \(-0.808045\pi\)
0.153636 + 0.988128i \(0.450902\pi\)
\(504\) 0 0
\(505\) −33.7366 + 33.7366i −1.50126 + 1.50126i
\(506\) −0.00263670 0.0351843i −0.000117216 0.00156413i
\(507\) 0 0
\(508\) 0.107180 + 0.0467622i 0.00475534 + 0.00207473i
\(509\) 24.8956 + 36.5152i 1.10348 + 1.61851i 0.718410 + 0.695620i \(0.244870\pi\)
0.385070 + 0.922887i \(0.374177\pi\)
\(510\) 0 0
\(511\) 3.23179 + 2.78118i 0.142966 + 0.123032i
\(512\) 11.6232 + 18.4982i 0.513676 + 0.817511i
\(513\) 0 0
\(514\) −38.1896 13.3631i −1.68447 0.589422i
\(515\) −23.2787 + 21.5995i −1.02578 + 0.951787i
\(516\) 0 0
\(517\) 0.193448 0.0291576i 0.00850785 0.00128235i
\(518\) 10.1610 10.9509i 0.446448 0.481156i
\(519\) 0 0
\(520\) −9.63027 22.0728i −0.422315 0.967957i
\(521\) 36.5638 1.60189 0.800944 0.598740i \(-0.204332\pi\)
0.800944 + 0.598740i \(0.204332\pi\)
\(522\) 0 0
\(523\) 9.42150 0.411974 0.205987 0.978555i \(-0.433960\pi\)
0.205987 + 0.978555i \(0.433960\pi\)
\(524\) −0.111911 0.256503i −0.00488885 0.0112054i
\(525\) 0 0
\(526\) 1.57447 1.69687i 0.0686501 0.0739872i
\(527\) 4.83317 0.728483i 0.210536 0.0317332i
\(528\) 0 0
\(529\) −16.8572 + 15.6412i −0.732920 + 0.680051i
\(530\) 7.67157 + 2.68440i 0.333232 + 0.116603i
\(531\) 0 0
\(532\) 0.324358 + 0.516213i 0.0140627 + 0.0223807i
\(533\) 4.09897 + 3.52744i 0.177546 + 0.152791i
\(534\) 0 0
\(535\) 11.2307 + 16.4723i 0.485543 + 0.712161i
\(536\) 34.9049 + 15.2289i 1.50766 + 0.657786i
\(537\) 0 0
\(538\) −1.18491 15.8115i −0.0510851 0.681683i
\(539\) −1.01581 + 1.01581i −0.0437541 + 0.0437541i
\(540\) 0 0
\(541\) 22.6807 14.2512i 0.975120 0.612708i 0.0525827 0.998617i \(-0.483255\pi\)
0.922537 + 0.385908i \(0.126112\pi\)
\(542\) 8.26926 12.1288i 0.355195 0.520975i
\(543\) 0 0
\(544\) 0.0368244 0.119382i 0.00157883 0.00511845i
\(545\) 30.9994 12.1664i 1.32787 0.521150i
\(546\) 0 0
\(547\) 30.1316 9.29437i 1.28833 0.397399i 0.426454 0.904509i \(-0.359763\pi\)
0.861881 + 0.507111i \(0.169287\pi\)
\(548\) 0.0518078 0.0824516i 0.00221312 0.00352216i
\(549\) 0 0
\(550\) 1.09494i 0.0466882i
\(551\) −0.591649 41.8306i −0.0252051 1.78204i
\(552\) 0 0
\(553\) −11.3448 8.37281i −0.482428 0.356048i
\(554\) −12.6104 + 6.66477i −0.535763 + 0.283159i
\(555\) 0 0
\(556\) 0.552521 + 0.216849i 0.0234321 + 0.00919643i
\(557\) 22.5590 28.2880i 0.955854 1.19860i −0.0241667 0.999708i \(-0.507693\pi\)
0.980021 0.198895i \(-0.0637353\pi\)
\(558\) 0 0
\(559\) −2.19963 + 6.28619i −0.0930346 + 0.265877i
\(560\) 16.1221 + 10.9919i 0.681282 + 0.464490i
\(561\) 0 0
\(562\) −26.3682 4.98913i −1.11227 0.210454i
\(563\) −30.5864 + 8.19561i −1.28906 + 0.345404i −0.837305 0.546736i \(-0.815870\pi\)
−0.451759 + 0.892140i \(0.649203\pi\)
\(564\) 0 0
\(565\) −8.59410 11.6446i −0.361557 0.489892i
\(566\) 11.4388 1.28885i 0.480810 0.0541742i
\(567\) 0 0
\(568\) 30.8395 + 30.8395i 1.29399 + 1.29399i
\(569\) −5.39437 + 6.26838i −0.226144 + 0.262784i −0.859569 0.511020i \(-0.829268\pi\)
0.633425 + 0.773804i \(0.281649\pi\)
\(570\) 0 0
\(571\) 0.481270 6.42210i 0.0201405 0.268756i −0.978038 0.208427i \(-0.933166\pi\)
0.998179 0.0603297i \(-0.0192152\pi\)
\(572\) −0.0354721 0.0412193i −0.00148316 0.00172347i
\(573\) 0 0
\(574\) −4.24058 0.639165i −0.176999 0.0266782i
\(575\) −0.100024 + 0.0797666i −0.00417129 + 0.00332650i
\(576\) 0 0
\(577\) 20.7599 + 13.0443i 0.864246 + 0.543042i 0.889654 0.456635i \(-0.150946\pi\)
−0.0254077 + 0.999677i \(0.508088\pi\)
\(578\) −21.9350 + 9.57015i −0.912376 + 0.398066i
\(579\) 0 0
\(580\) 0.255396 + 0.563495i 0.0106048 + 0.0233979i
\(581\) 0.390629 + 0.225530i 0.0162060 + 0.00935654i
\(582\) 0 0
\(583\) −0.825967 0.0309055i −0.0342081 0.00127998i
\(584\) 1.46902 6.43622i 0.0607887 0.266333i
\(585\) 0 0
\(586\) −9.59190 7.64928i −0.396238 0.315989i
\(587\) −20.4785 22.0706i −0.845240 0.910952i 0.151755 0.988418i \(-0.451507\pi\)
−0.996995 + 0.0774662i \(0.975317\pi\)
\(588\) 0 0
\(589\) 74.4732 + 5.58099i 3.06861 + 0.229961i
\(590\) 0.632240 + 16.8970i 0.0260289 + 0.695637i
\(591\) 0 0
\(592\) −22.8279 6.11671i −0.938220 0.251395i
\(593\) −10.3675 4.99273i −0.425742 0.205027i 0.208728 0.977974i \(-0.433068\pi\)
−0.634471 + 0.772947i \(0.718782\pi\)
\(594\) 0 0
\(595\) 0.271916 + 2.41332i 0.0111475 + 0.0989367i
\(596\) −0.654318 + 0.0490343i −0.0268019 + 0.00200852i
\(597\) 0 0
\(598\) 0.0555619 0.293652i 0.00227209 0.0120083i
\(599\) 9.04081 0.338283i 0.369397 0.0138219i 0.147952 0.988995i \(-0.452732\pi\)
0.221446 + 0.975173i \(0.428922\pi\)
\(600\) 0 0
\(601\) 0.533841 + 2.82142i 0.0217758 + 0.115088i 0.991768 0.128049i \(-0.0408713\pi\)
−0.969992 + 0.243137i \(0.921824\pi\)
\(602\) −1.17523 5.14902i −0.0478988 0.209858i
\(603\) 0 0
\(604\) 0.0601907 + 0.0754767i 0.00244912 + 0.00307110i
\(605\) 8.45859 + 27.4221i 0.343890 + 1.11487i
\(606\) 0 0
\(607\) −3.88614 + 5.26554i −0.157734 + 0.213722i −0.876337 0.481699i \(-0.840020\pi\)
0.718603 + 0.695420i \(0.244782\pi\)
\(608\) 0.954443 1.65314i 0.0387078 0.0670439i
\(609\) 0 0
\(610\) −17.3271 30.0113i −0.701552 1.21512i
\(611\) 1.64668 + 0.185536i 0.0666174 + 0.00750598i
\(612\) 0 0
\(613\) 29.6777 + 6.77374i 1.19867 + 0.273589i 0.774843 0.632154i \(-0.217829\pi\)
0.423828 + 0.905743i \(0.360686\pi\)
\(614\) 7.43839 18.9527i 0.300189 0.764869i
\(615\) 0 0
\(616\) −1.85585 0.572454i −0.0747743 0.0230648i
\(617\) −12.8443 + 11.0534i −0.517092 + 0.444994i −0.871713 0.490016i \(-0.836991\pi\)
0.354621 + 0.935010i \(0.384610\pi\)
\(618\) 0 0
\(619\) −19.8590 + 37.5750i −0.798199 + 1.51027i 0.0607199 + 0.998155i \(0.480660\pi\)
−0.858919 + 0.512112i \(0.828863\pi\)
\(620\) −1.04245 + 0.364770i −0.0418660 + 0.0146495i
\(621\) 0 0
\(622\) −5.17126 + 10.7382i −0.207349 + 0.430564i
\(623\) 13.0831 9.65577i 0.524163 0.386850i
\(624\) 0 0
\(625\) −25.6072 + 17.4587i −1.02429 + 0.698348i
\(626\) −0.612477 2.28579i −0.0244795 0.0913587i
\(627\) 0 0
\(628\) −0.612243 0.323580i −0.0244311 0.0129122i
\(629\) −1.27625 2.65015i −0.0508873 0.105669i
\(630\) 0 0
\(631\) −2.84923 + 0.650318i −0.113426 + 0.0258888i −0.278857 0.960333i \(-0.589956\pi\)
0.165431 + 0.986221i \(0.447098\pi\)
\(632\) −3.25382 + 21.5877i −0.129430 + 0.858712i
\(633\) 0 0
\(634\) 7.36636 + 6.83498i 0.292555 + 0.271452i
\(635\) 3.32577 + 6.29267i 0.131979 + 0.249717i
\(636\) 0 0
\(637\) −10.5381 + 6.08419i −0.417536 + 0.241064i
\(638\) −1.96180 2.21550i −0.0776686 0.0877124i
\(639\) 0 0
\(640\) 3.45465 30.6609i 0.136557 1.21198i
\(641\) 0.609023 16.2765i 0.0240550 0.642882i −0.934164 0.356845i \(-0.883852\pi\)
0.958219 0.286037i \(-0.0923381\pi\)
\(642\) 0 0
\(643\) −3.72753 24.7305i −0.146999 0.975278i −0.933729 0.357980i \(-0.883466\pi\)
0.786730 0.617298i \(-0.211773\pi\)
\(644\) 0.00184091 + 0.00469055i 7.25418e−5 + 0.000184834i
\(645\) 0 0
\(646\) 5.54771 1.04968i 0.218272 0.0412992i
\(647\) −0.000657666 0 0.000316715i −2.58555e−5 0 1.24514e-5i −0.433897 0.900963i \(-0.642862\pi\)
0.433871 + 0.900975i \(0.357147\pi\)
\(648\) 0 0
\(649\) −0.567930 1.62305i −0.0222932 0.0637103i
\(650\) −2.40043 + 8.95854i −0.0941528 + 0.351383i
\(651\) 0 0
\(652\) 0.223767 0.512880i 0.00876340 0.0200859i
\(653\) 6.93910 15.9046i 0.271548 0.622395i −0.726341 0.687334i \(-0.758781\pi\)
0.997889 + 0.0649397i \(0.0206855\pi\)
\(654\) 0 0
\(655\) 4.40860 16.4531i 0.172258 0.642876i
\(656\) 2.24073 + 6.40365i 0.0874859 + 0.250020i
\(657\) 0 0
\(658\) −1.18397 + 0.570169i −0.0461559 + 0.0222275i
\(659\) −33.6993 + 6.37624i −1.31274 + 0.248383i −0.794714 0.606984i \(-0.792379\pi\)
−0.518023 + 0.855367i \(0.673332\pi\)
\(660\) 0 0
\(661\) 14.4271 + 36.7596i 0.561149 + 1.42978i 0.876775 + 0.480901i \(0.159690\pi\)
−0.315626 + 0.948884i \(0.602214\pi\)
\(662\) 6.44041 + 42.7293i 0.250314 + 1.66072i
\(663\) 0 0
\(664\) 0.0261138 0.697907i 0.00101341 0.0270840i
\(665\) −4.15472 + 36.8742i −0.161113 + 1.42992i
\(666\) 0 0
\(667\) 0.0594708 0.340614i 0.00230272 0.0131886i
\(668\) 0.933663 0.539050i 0.0361245 0.0208565i
\(669\) 0 0
\(670\) −24.0501 45.5050i −0.929136 1.75801i
\(671\) 2.58339 + 2.39704i 0.0997308 + 0.0925366i
\(672\) 0 0
\(673\) 0.650382 4.31500i 0.0250704 0.166331i −0.972792 0.231680i \(-0.925578\pi\)
0.997862 + 0.0653487i \(0.0208160\pi\)
\(674\) −27.6219 + 6.30451i −1.06395 + 0.242841i
\(675\) 0 0
\(676\) 0.0451929 + 0.0938441i 0.00173819 + 0.00360939i
\(677\) −1.66140 0.878074i −0.0638527 0.0337471i 0.435038 0.900412i \(-0.356735\pi\)
−0.498890 + 0.866665i \(0.666259\pi\)
\(678\) 0 0
\(679\) 5.87381 + 21.9214i 0.225416 + 0.841265i
\(680\) 3.10691 2.11825i 0.119145 0.0812314i
\(681\) 0 0
\(682\) 4.25048 3.13700i 0.162759 0.120122i
\(683\) 18.9004 39.2471i 0.723205 1.50175i −0.136325 0.990664i \(-0.543529\pi\)
0.859529 0.511086i \(-0.170757\pi\)
\(684\) 0 0
\(685\) 5.59435 1.95755i 0.213749 0.0747941i
\(686\) 12.9550 24.5121i 0.494625 0.935877i
\(687\) 0 0
\(688\) −6.33301 + 5.44999i −0.241444 + 0.207779i
\(689\) −6.69014 2.06364i −0.254874 0.0786182i
\(690\) 0 0
\(691\) 1.03107 2.62712i 0.0392236 0.0999402i −0.909920 0.414784i \(-0.863857\pi\)
0.949143 + 0.314844i \(0.101952\pi\)
\(692\) −0.681355 0.155515i −0.0259012 0.00591179i
\(693\) 0 0
\(694\) 42.5813 + 4.79776i 1.61636 + 0.182120i
\(695\) 18.0635 + 31.2869i 0.685188 + 1.18678i
\(696\) 0 0
\(697\) −0.422200 + 0.731272i −0.0159920 + 0.0276989i
\(698\) −16.5907 + 22.4797i −0.627969 + 0.850867i
\(699\) 0 0
\(700\) −0.0460912 0.149424i −0.00174208 0.00564769i
\(701\) 30.7014 + 38.4983i 1.15957 + 1.45406i 0.867341 + 0.497714i \(0.165827\pi\)
0.292233 + 0.956347i \(0.405602\pi\)
\(702\) 0 0
\(703\) −10.0009 43.8167i −0.377190 1.65258i
\(704\) 0.558784 + 2.95324i 0.0210600 + 0.111305i
\(705\) 0 0
\(706\) 20.6290 0.771884i 0.776384 0.0290502i
\(707\) −6.05914 + 32.0233i −0.227877 + 1.20436i
\(708\) 0 0
\(709\) 6.56663 0.492101i 0.246615 0.0184812i 0.0491510 0.998791i \(-0.484348\pi\)
0.197464 + 0.980310i \(0.436729\pi\)
\(710\) −6.59975 58.5744i −0.247684 2.19826i
\(711\) 0 0
\(712\) −22.6835 10.9238i −0.850099 0.409386i
\(713\) 0.596219 + 0.159756i 0.0223286 + 0.00598292i
\(714\) 0 0
\(715\) −0.123763 3.30764i −0.00462848 0.123699i
\(716\) 0.0584997 + 0.00438394i 0.00218623 + 0.000163836i
\(717\) 0 0
\(718\) 6.59089 + 7.10329i 0.245970 + 0.265092i
\(719\) 9.87142 + 7.87220i 0.368142 + 0.293583i 0.790034 0.613062i \(-0.210063\pi\)
−0.421892 + 0.906646i \(0.638634\pi\)
\(720\) 0 0
\(721\) −4.82707 + 21.1488i −0.179769 + 0.787621i
\(722\) 59.0680 + 2.21017i 2.19828 + 0.0822539i
\(723\) 0 0
\(724\) −0.336342 0.194187i −0.0125000 0.00721690i
\(725\) −2.63031 + 10.4028i −0.0976873 + 0.386350i
\(726\) 0 0
\(727\) −5.91730 + 2.58169i −0.219460 + 0.0957496i −0.506746 0.862095i \(-0.669152\pi\)
0.287286 + 0.957845i \(0.407247\pi\)
\(728\) −13.9292 8.75229i −0.516250 0.324381i
\(729\) 0 0
\(730\) −6.97584 + 5.56305i −0.258188 + 0.205898i
\(731\) −1.02830 0.154991i −0.0380329 0.00573254i
\(732\) 0 0
\(733\) 1.34347 + 1.56114i 0.0496221 + 0.0576619i 0.782234 0.622984i \(-0.214080\pi\)
−0.732612 + 0.680646i \(0.761699\pi\)
\(734\) 1.05544 14.0838i 0.0389569 0.519844i
\(735\) 0 0
\(736\) 0.0102912 0.0119586i 0.000379338 0.000440799i
\(737\) 3.70114 + 3.70114i 0.136333 + 0.136333i
\(738\) 0 0
\(739\) 34.8879 3.93092i 1.28337 0.144601i 0.556196 0.831051i \(-0.312261\pi\)
0.727177 + 0.686450i \(0.240832\pi\)
\(740\) 0.394680 + 0.534772i 0.0145087 + 0.0196586i
\(741\) 0 0
\(742\) 5.36288 1.43698i 0.196877 0.0527531i
\(743\) −24.4829 4.63242i −0.898191 0.169947i −0.283739 0.958901i \(-0.591575\pi\)
−0.614452 + 0.788955i \(0.710623\pi\)
\(744\) 0 0
\(745\) −32.9978 22.4975i −1.20894 0.824244i
\(746\) −1.10188 + 3.14898i −0.0403425 + 0.115292i
\(747\) 0 0
\(748\) 0.00529425 0.00663878i 0.000193577 0.000242738i
\(749\) 12.6774 + 4.97550i 0.463220 + 0.181801i
\(750\) 0 0
\(751\) 25.4167 13.4331i 0.927469 0.490182i 0.0659022 0.997826i \(-0.479007\pi\)
0.861567 + 0.507645i \(0.169484\pi\)
\(752\) 1.67269 + 1.23450i 0.0609966 + 0.0450175i
\(753\) 0 0
\(754\) −11.1940 22.4276i −0.407663 0.816766i
\(755\) 5.87590i 0.213846i
\(756\) 0 0
\(757\) −9.12064 + 14.5154i −0.331495 + 0.527572i −0.970334 0.241769i \(-0.922272\pi\)
0.638838 + 0.769341i \(0.279415\pi\)
\(758\) 32.4657 10.0143i 1.17921 0.363737i
\(759\) 0 0
\(760\) 53.4835 20.9907i 1.94005 0.761414i
\(761\) −0.283559 + 0.919276i −0.0102790 + 0.0333237i −0.960567 0.278049i \(-0.910312\pi\)
0.950288 + 0.311372i \(0.100789\pi\)
\(762\) 0 0
\(763\) 12.8146 18.7956i 0.463920 0.680446i
\(764\) −0.982397 + 0.617281i −0.0355419 + 0.0223324i
\(765\) 0 0
\(766\) 24.0331 24.0331i 0.868352 0.868352i
\(767\) −1.08846 14.5245i −0.0393021 0.524451i
\(768\) 0 0
\(769\) −24.5823 10.7251i −0.886461 0.386759i −0.0932045 0.995647i \(-0.529711\pi\)
−0.793256 + 0.608888i \(0.791616\pi\)
\(770\) 1.47863 + 2.16875i 0.0532862 + 0.0781565i
\(771\) 0 0
\(772\) 0.245593 + 0.211350i 0.00883910 + 0.00760666i
\(773\) 18.5005 + 29.4435i 0.665418 + 1.05901i 0.993442 + 0.114338i \(0.0364746\pi\)
−0.328023 + 0.944670i \(0.606382\pi\)
\(774\) 0 0
\(775\) −18.0802 6.32654i −0.649460 0.227256i
\(776\) 25.7588 23.9007i 0.924689 0.857986i
\(777\) 0 0
\(778\) −8.65217 + 1.30411i −0.310195 + 0.0467544i
\(779\) −8.77554 + 9.45778i −0.314416 + 0.338860i
\(780\) 0 0
\(781\) 2.39713 + 5.49427i 0.0857759 + 0.196600i
\(782\) 0.0466657 0.00166876
\(783\) 0 0
\(784\) −15.2658 −0.545208
\(785\) −16.8551 38.6323i −0.601585 1.37885i
\(786\) 0 0
\(787\) 30.9115 33.3146i 1.10187 1.18754i 0.121050 0.992646i \(-0.461374\pi\)
0.980825 0.194892i \(-0.0624355\pi\)
\(788\) 0.361992 0.0545615i 0.0128954 0.00194367i
\(789\) 0 0
\(790\) 21.6294 20.0691i 0.769539 0.714028i
\(791\) −9.33151 3.26524i −0.331790 0.116098i
\(792\) 0 0
\(793\) 15.8817 + 25.2757i 0.563977 + 0.897565i
\(794\) 0.126592 + 0.108942i 0.00449260 + 0.00386619i
\(795\) 0 0
\(796\) −0.402305 0.590073i −0.0142593 0.0209146i
\(797\) 38.8974 + 16.9708i 1.37782 + 0.601135i 0.952675 0.303992i \(-0.0983197\pi\)
0.425141 + 0.905127i \(0.360224\pi\)
\(798\) 0 0
\(799\) 0.0193362 + 0.258023i 0.000684065 + 0.00912821i
\(800\) −0.346206 + 0.346206i −0.0122402 + 0.0122402i
\(801\) 0 0
\(802\) −27.2851 + 17.1444i −0.963470 + 0.605388i
\(803\) 0.511140 0.749704i 0.0180377 0.0264565i
\(804\) 0 0
\(805\) −0.0904001 + 0.293070i −0.00318618 + 0.0103294i
\(806\) 41.6538 16.3479i 1.46719 0.575831i
\(807\) 0 0
\(808\) 48.2210 14.8742i 1.69641 0.523273i
\(809\) −0.151577 + 0.241234i −0.00532917 + 0.00848133i −0.849378 0.527785i \(-0.823023\pi\)
0.844049 + 0.536266i \(0.180166\pi\)
\(810\) 0 0
\(811\) 34.1033i 1.19753i −0.800925 0.598765i \(-0.795658\pi\)
0.800925 0.598765i \(-0.204342\pi\)
\(812\) 0.360985 + 0.219763i 0.0126681 + 0.00771217i
\(813\) 0 0
\(814\) −2.55793 1.88784i −0.0896556 0.0661688i
\(815\) 30.1118 15.9146i 1.05477 0.557463i
\(816\) 0 0
\(817\) −14.7909 5.80498i −0.517467 0.203091i
\(818\) 22.0092 27.5987i 0.769535 0.964967i
\(819\) 0 0
\(820\) 0.0630171 0.180093i 0.00220065 0.00628910i
\(821\) −2.75820 1.88051i −0.0962618 0.0656302i 0.514233 0.857651i \(-0.328077\pi\)
−0.610494 + 0.792021i \(0.709029\pi\)
\(822\) 0 0
\(823\) −16.2913 3.08248i −0.567879 0.107449i −0.105960 0.994370i \(-0.533791\pi\)
−0.461919 + 0.886922i \(0.652839\pi\)
\(824\) 32.4432 8.69313i 1.13021 0.302840i
\(825\) 0 0
\(826\) 6.85892 + 9.29351i 0.238652 + 0.323363i
\(827\) −32.7221 + 3.68690i −1.13786 + 0.128206i −0.660728 0.750625i \(-0.729752\pi\)
−0.477132 + 0.878831i \(0.658324\pi\)
\(828\) 0 0
\(829\) 26.7657 + 26.7657i 0.929611 + 0.929611i 0.997681 0.0680695i \(-0.0216840\pi\)
−0.0680695 + 0.997681i \(0.521684\pi\)
\(830\) −0.615695 + 0.715451i −0.0213711 + 0.0248337i
\(831\) 0 0
\(832\) −1.90256 + 25.3879i −0.0659593 + 0.880165i
\(833\) −1.23936 1.44017i −0.0429414 0.0498988i
\(834\) 0 0
\(835\) 64.8867 + 9.78009i 2.24550 + 0.338454i
\(836\) 0.101437 0.0808930i 0.00350826 0.00279774i
\(837\) 0 0
\(838\) −12.9470 8.13516i −0.447248 0.281024i
\(839\) −11.1500 + 4.86470i −0.384941 + 0.167948i −0.583446 0.812152i \(-0.698296\pi\)
0.198505 + 0.980100i \(0.436391\pi\)
\(840\) 0 0
\(841\) −13.3166 25.7618i −0.459192 0.888337i
\(842\) −28.2943 16.3357i −0.975085 0.562966i
\(843\) 0 0
\(844\) 0.165443 + 0.00619043i 0.00569477 + 0.000213083i
\(845\) −1.41072 + 6.18079i −0.0485304 + 0.212626i
\(846\) 0 0
\(847\) 15.3263 + 12.2223i 0.526618 + 0.419964i
\(848\) −5.97418 6.43864i −0.205154 0.221104i
\(849\) 0 0
\(850\) −1.44412 0.108222i −0.0495331 0.00371199i
\(851\) −0.0138894 0.371201i −0.000476122 0.0127246i
\(852\) 0 0
\(853\) −55.2666 14.8086i −1.89229 0.507038i −0.998256 0.0590413i \(-0.981196\pi\)
−0.894035 0.447997i \(-0.852138\pi\)
\(854\) −21.3281 10.2711i −0.729834 0.351469i
\(855\) 0 0
\(856\) −2.36095 20.9540i −0.0806954 0.716192i
\(857\) 43.2322 3.23980i 1.47678 0.110670i 0.688165 0.725554i \(-0.258416\pi\)
0.788617 + 0.614884i \(0.210797\pi\)
\(858\) 0 0
\(859\) −4.96865 + 26.2599i −0.169528 + 0.895978i 0.789732 + 0.613452i \(0.210220\pi\)
−0.959260 + 0.282525i \(0.908828\pi\)
\(860\) 0.234813 0.00878607i 0.00800704 0.000299602i
\(861\) 0 0
\(862\) −2.19714 11.6122i −0.0748349 0.395512i
\(863\) 6.11960 + 26.8117i 0.208314 + 0.912682i 0.965689 + 0.259702i \(0.0836243\pi\)
−0.757375 + 0.652980i \(0.773519\pi\)
\(864\) 0 0
\(865\) −26.5219 33.2574i −0.901771 1.13079i
\(866\) 7.11485 + 23.0658i 0.241773 + 0.783808i
\(867\) 0 0
\(868\) −0.448004 + 0.607024i −0.0152062 + 0.0206037i
\(869\) −1.50031 + 2.59861i −0.0508945 + 0.0881518i
\(870\) 0 0
\(871\) 22.1680 + 38.3960i 0.751133 + 1.30100i
\(872\) −35.0009 3.94365i −1.18528 0.133549i
\(873\) 0 0
\(874\) 0.695146 + 0.158663i 0.0235137 + 0.00536684i
\(875\) −5.24833 + 13.3725i −0.177426 + 0.452074i
\(876\) 0 0
\(877\) −30.2023 9.31619i −1.01986 0.314585i −0.260652 0.965433i \(-0.583937\pi\)
−0.759208 + 0.650848i \(0.774414\pi\)
\(878\) −10.4849 + 9.02300i −0.353849 + 0.304511i
\(879\) 0 0
\(880\) 1.94033 3.67129i 0.0654086 0.123759i
\(881\) −45.8134 + 16.0308i −1.54349 + 0.540092i −0.961903 0.273390i \(-0.911855\pi\)
−0.581590 + 0.813482i \(0.697569\pi\)
\(882\) 0 0
\(883\) −4.39277 + 9.12168i −0.147828 + 0.306969i −0.961713 0.274057i \(-0.911634\pi\)
0.813885 + 0.581026i \(0.197349\pi\)
\(884\) 0.0578707 0.0427105i 0.00194640 0.00143651i
\(885\) 0 0
\(886\) 37.0350 25.2501i 1.24422 0.848293i
\(887\) −9.16695 34.2115i −0.307796 1.14871i −0.930512 0.366262i \(-0.880637\pi\)
0.622716 0.782448i \(-0.286029\pi\)
\(888\) 0 0
\(889\) 4.29856 + 2.27186i 0.144169 + 0.0761956i
\(890\) 14.7638 + 30.6574i 0.494884 + 1.02764i
\(891\) 0 0
\(892\) 0.371980 0.0849021i 0.0124548 0.00284273i
\(893\) −0.589238 + 3.90934i −0.0197181 + 0.130821i
\(894\) 0 0
\(895\) 2.61745 + 2.42864i 0.0874917 + 0.0811804i
\(896\) −9.84870 18.6347i −0.329022 0.622540i
\(897\) 0 0
\(898\) 35.9039 20.7291i 1.19813 0.691740i
\(899\) 47.9189 19.5933i 1.59818 0.653473i
\(900\) 0 0
\(901\) 0.122399 1.08632i 0.00407771 0.0361907i
\(902\) −0.0341246 + 0.911999i −0.00113622 + 0.0303662i
\(903\) 0 0
\(904\) 2.28145 + 15.1364i 0.0758799 + 0.503430i
\(905\) −8.63621 22.0047i −0.287077 0.731461i
\(906\) 0 0
\(907\) 31.1760 5.89881i 1.03518 0.195867i 0.359565 0.933120i \(-0.382925\pi\)
0.675617 + 0.737253i \(0.263878\pi\)
\(908\) −0.520778 + 0.250794i −0.0172826 + 0.00832288i
\(909\) 0 0
\(910\) 7.34329 + 20.9859i 0.243428 + 0.695676i
\(911\) 9.98200 37.2533i 0.330719 1.23426i −0.577718 0.816236i \(-0.696057\pi\)
0.908437 0.418022i \(-0.137277\pi\)
\(912\) 0 0
\(913\) 0.0383858 0.0879812i 0.00127038 0.00291175i
\(914\) −8.22276 + 18.8468i −0.271985 + 0.623396i
\(915\) 0 0
\(916\) −0.275239 + 1.02721i −0.00909417 + 0.0339399i
\(917\) −3.84302 10.9827i −0.126908 0.362682i
\(918\) 0 0
\(919\) 36.0572 17.3642i 1.18942 0.572793i 0.268776 0.963203i \(-0.413381\pi\)
0.920641 + 0.390409i \(0.127666\pi\)
\(920\) 0.466592 0.0882839i 0.0153831 0.00291064i
\(921\) 0 0
\(922\) −9.56901 24.3814i −0.315139 0.802960i
\(923\) 7.56767 + 50.2082i 0.249093 + 1.65262i
\(924\) 0 0
\(925\) −0.431028 + 11.5195i −0.0141721 + 0.378758i
\(926\) −6.21255 + 55.1379i −0.204157 + 1.81194i
\(927\) 0 0
\(928\) 0.0802148 1.32081i 0.00263318 0.0433578i
\(929\) −7.27103 + 4.19793i −0.238555 + 0.137730i −0.614512 0.788907i \(-0.710647\pi\)
0.375958 + 0.926637i \(0.377314\pi\)
\(930\) 0 0
\(931\) −13.5654 25.6670i −0.444588 0.841202i
\(932\) −0.371305 0.344520i −0.0121625 0.0112851i
\(933\) 0 0
\(934\) 0.311340 2.06561i 0.0101874 0.0675887i
\(935\) 0.503874 0.115006i 0.0164784 0.00376110i
\(936\) 0 0
\(937\) −4.48545 9.31413i −0.146533 0.304279i 0.814764 0.579793i \(-0.196866\pi\)
−0.961297 + 0.275513i \(0.911152\pi\)
\(938\) −31.0847 16.4288i −1.01495 0.536418i
\(939\) 0 0
\(940\) −0.0151321 0.0564739i −0.000493556 0.00184197i
\(941\) −14.3238 + 9.76582i −0.466943 + 0.318357i −0.773834 0.633388i \(-0.781664\pi\)
0.306891 + 0.951745i \(0.400711\pi\)
\(942\) 0 0
\(943\) −0.0857985 + 0.0633221i −0.00279398 + 0.00206205i
\(944\) 7.92829 16.4633i 0.258044 0.535834i
\(945\) 0 0
\(946\) −1.06087 + 0.371216i −0.0344920 + 0.0120693i
\(947\) −22.6435 + 42.8437i −0.735816 + 1.39223i 0.177145 + 0.984185i \(0.443314\pi\)
−0.912961 + 0.408047i \(0.866210\pi\)
\(948\) 0 0
\(949\) 5.82562 5.01335i 0.189108 0.162740i
\(950\) −21.1442 6.52212i −0.686008 0.211605i
\(951\) 0 0
\(952\) 0.938447 2.39112i 0.0304152 0.0774967i
\(953\) −13.7708 3.14309i −0.446079 0.101815i −0.00642014 0.999979i \(-0.502044\pi\)
−0.439659 + 0.898165i \(0.644901\pi\)
\(954\) 0 0
\(955\) −70.1746 7.90677i −2.27080 0.255857i
\(956\) 0.346206 + 0.599646i 0.0111971 + 0.0193939i
\(957\) 0 0
\(958\) −7.84031 + 13.5798i −0.253309 + 0.438744i
\(959\) 2.40422 3.25761i 0.0776364 0.105194i
\(960\) 0 0
\(961\) 18.1032 + 58.6892i 0.583975 + 1.89320i
\(962\) −16.7898 21.0537i −0.541324 0.678799i
\(963\) 0 0
\(964\) −0.151795 0.665058i −0.00488899 0.0214201i
\(965\) 3.66644 + 19.3776i 0.118027 + 0.623787i
\(966\) 0 0
\(967\) −11.6409 + 0.435571i −0.374345 + 0.0140070i −0.223902 0.974612i \(-0.571880\pi\)
−0.150443 + 0.988619i \(0.548070\pi\)
\(968\) 5.64285 29.8232i 0.181368 0.958554i
\(969\) 0 0
\(970\) −47.3588 + 3.54905i −1.52060 + 0.113953i
\(971\) −1.95962 17.3921i −0.0628873 0.558140i −0.985165 0.171612i \(-0.945103\pi\)
0.922277 0.386529i \(-0.126326\pi\)
\(972\) 0 0
\(973\) 22.2346 + 10.7076i 0.712810 + 0.343271i
\(974\) −59.0592 15.8249i −1.89238 0.507062i
\(975\) 0 0
\(976\) 1.40029 + 37.4235i 0.0448221 + 1.19790i
\(977\) −15.1895 1.13829i −0.485954 0.0364172i −0.170499 0.985358i \(-0.554538\pi\)
−0.315455 + 0.948941i \(0.602157\pi\)
\(978\) 0 0
\(979\) −2.35367 2.53665i −0.0752236 0.0810717i
\(980\) 0.335662 + 0.267681i 0.0107223 + 0.00855077i
\(981\) 0 0
\(982\) 6.88642 30.1714i 0.219754 0.962807i
\(983\) 49.2137 + 1.84145i 1.56967 + 0.0587331i 0.807982 0.589207i \(-0.200560\pi\)
0.761692 + 0.647940i \(0.224369\pi\)
\(984\) 0 0
\(985\) 19.2966 + 11.1409i 0.614842 + 0.354979i
\(986\) 3.11595 2.36847i 0.0992321 0.0754275i
\(987\) 0 0
\(988\) 1.00728 0.439470i 0.0320457 0.0139814i
\(989\) −0.111196 0.0698693i −0.00353584 0.00222171i
\(990\) 0 0
\(991\) 3.45860 2.75814i 0.109866 0.0876153i −0.567016 0.823707i \(-0.691902\pi\)
0.676882 + 0.736092i \(0.263331\pi\)
\(992\) 2.33583 + 0.352070i 0.0741628 + 0.0111782i
\(993\) 0 0
\(994\) −26.2648 30.5203i −0.833069 0.968044i
\(995\) 3.24840 43.3469i 0.102981 1.37419i
\(996\) 0 0
\(997\) −4.36849 + 5.07627i −0.138351 + 0.160767i −0.822873 0.568225i \(-0.807630\pi\)
0.684522 + 0.728993i \(0.260011\pi\)
\(998\) −16.8432 16.8432i −0.533163 0.533163i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.be.a.665.21 672
3.2 odd 2 261.2.x.a.230.8 yes 672
9.2 odd 6 inner 783.2.be.a.143.8 672
9.7 even 3 261.2.x.a.56.21 yes 672
29.14 odd 28 inner 783.2.be.a.449.8 672
87.14 even 28 261.2.x.a.14.21 672
261.43 odd 84 261.2.x.a.101.8 yes 672
261.101 even 84 inner 783.2.be.a.710.21 672
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.x.a.14.21 672 87.14 even 28
261.2.x.a.56.21 yes 672 9.7 even 3
261.2.x.a.101.8 yes 672 261.43 odd 84
261.2.x.a.230.8 yes 672 3.2 odd 2
783.2.be.a.143.8 672 9.2 odd 6 inner
783.2.be.a.449.8 672 29.14 odd 28 inner
783.2.be.a.665.21 672 1.1 even 1 trivial
783.2.be.a.710.21 672 261.101 even 84 inner