Properties

Label 783.2.be.a.143.7
Level $783$
Weight $2$
Character 783.143
Analytic conductor $6.252$
Analytic rank $0$
Dimension $672$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(8,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(84)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.be (of order \(84\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(672\)
Relative dimension: \(28\) over \(\Q(\zeta_{84})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{84}]$

Embedding invariants

Embedding label 143.7
Character \(\chi\) \(=\) 783.143
Dual form 783.2.be.a.449.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03117 + 1.39718i) q^{2} +(-0.299298 - 0.970301i) q^{4} +(1.46016 - 3.72043i) q^{5} +(0.524586 + 0.161813i) q^{7} +(-1.61379 - 0.564688i) q^{8} +(3.69245 + 5.87649i) q^{10} +(0.576982 - 3.04942i) q^{11} +(-0.400833 + 0.0300383i) q^{13} +(-0.767018 + 0.566085i) q^{14} +(4.13100 - 2.81647i) q^{16} +(-2.69557 + 2.69557i) q^{17} +(-5.36550 + 3.37137i) q^{19} +(-4.04697 - 0.303278i) q^{20} +(3.66563 + 3.95061i) q^{22} +(1.02148 - 6.77709i) q^{23} +(-8.04430 - 7.46402i) q^{25} +(0.371356 - 0.591010i) q^{26} -0.557437i q^{28} +(-5.11766 - 1.67616i) q^{29} +(1.59052 - 0.693937i) q^{31} +(-0.196775 + 5.25892i) q^{32} +(-0.986616 - 6.54577i) q^{34} +(1.36800 - 1.71542i) q^{35} +(2.74830 - 7.85418i) q^{37} +(0.822313 - 10.9730i) q^{38} +(-4.45727 + 5.17945i) q^{40} +(-0.912701 + 3.40625i) q^{41} +(0.611906 - 1.40250i) q^{43} +(-3.13155 + 0.352841i) q^{44} +(8.41550 + 8.41550i) q^{46} +(-9.57858 - 1.81237i) q^{47} +(-5.53466 - 3.77347i) q^{49} +(18.7236 - 3.54269i) q^{50} +(0.149115 + 0.379938i) q^{52} +(-2.20154 + 1.75567i) q^{53} +(-10.5027 - 6.59928i) q^{55} +(-0.755196 - 0.557360i) q^{56} +(7.61906 - 5.42189i) q^{58} +(1.88972 - 1.09103i) q^{59} +(3.44312 + 6.51471i) q^{61} +(-0.670535 + 2.93781i) q^{62} +(0.673195 + 0.536855i) q^{64} +(-0.473526 + 1.53513i) q^{65} +(4.54628 - 6.66818i) q^{67} +(3.42229 + 1.80873i) q^{68} +(0.986111 + 3.68022i) q^{70} +(12.9810 + 6.25130i) q^{71} +(-0.0593993 - 0.527184i) q^{73} +(8.13976 + 11.9388i) q^{74} +(4.87713 + 4.19711i) q^{76} +(0.796115 - 1.50632i) q^{77} +(9.06925 - 7.80472i) q^{79} +(-4.44655 - 19.4816i) q^{80} +(-3.81799 - 4.78761i) q^{82} +(4.78588 - 5.15796i) q^{83} +(6.09271 + 13.9647i) q^{85} +(1.32857 + 2.30115i) q^{86} +(-2.65310 + 4.59530i) q^{88} +(0.918803 + 0.103524i) q^{89} +(-0.215132 - 0.0491025i) q^{91} +(-6.88155 + 1.03723i) q^{92} +(12.4093 - 11.5141i) q^{94} +(4.70845 + 24.8847i) q^{95} +(9.19060 - 0.343888i) q^{97} +(10.9794 - 3.84185i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 672 q + 36 q^{2} - 14 q^{4} + 42 q^{5} - 10 q^{7} - 56 q^{10} + 48 q^{11} - 14 q^{13} + 24 q^{14} - 54 q^{16} - 48 q^{19} + 30 q^{20} - 14 q^{22} + 30 q^{23} + 30 q^{25} - 12 q^{31} - 24 q^{32} - 14 q^{34}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03117 + 1.39718i −0.729144 + 0.987955i 0.270537 + 0.962710i \(0.412799\pi\)
−0.999681 + 0.0252456i \(0.991963\pi\)
\(3\) 0 0
\(4\) −0.299298 0.970301i −0.149649 0.485151i
\(5\) 1.46016 3.72043i 0.653005 1.66383i −0.0911628 0.995836i \(-0.529058\pi\)
0.744168 0.667993i \(-0.232846\pi\)
\(6\) 0 0
\(7\) 0.524586 + 0.161813i 0.198275 + 0.0611598i 0.392302 0.919836i \(-0.371679\pi\)
−0.194027 + 0.980996i \(0.562155\pi\)
\(8\) −1.61379 0.564688i −0.570559 0.199647i
\(9\) 0 0
\(10\) 3.69245 + 5.87649i 1.16765 + 1.85831i
\(11\) 0.576982 3.04942i 0.173967 0.919436i −0.781404 0.624026i \(-0.785496\pi\)
0.955370 0.295410i \(-0.0954563\pi\)
\(12\) 0 0
\(13\) −0.400833 + 0.0300383i −0.111171 + 0.00833112i −0.130199 0.991488i \(-0.541562\pi\)
0.0190283 + 0.999819i \(0.493943\pi\)
\(14\) −0.767018 + 0.566085i −0.204994 + 0.151293i
\(15\) 0 0
\(16\) 4.13100 2.81647i 1.03275 0.704117i
\(17\) −2.69557 + 2.69557i −0.653771 + 0.653771i −0.953899 0.300128i \(-0.902971\pi\)
0.300128 + 0.953899i \(0.402971\pi\)
\(18\) 0 0
\(19\) −5.36550 + 3.37137i −1.23093 + 0.773445i −0.980847 0.194780i \(-0.937601\pi\)
−0.250083 + 0.968224i \(0.580458\pi\)
\(20\) −4.04697 0.303278i −0.904929 0.0678151i
\(21\) 0 0
\(22\) 3.66563 + 3.95061i 0.781515 + 0.842273i
\(23\) 1.02148 6.77709i 0.212994 1.41312i −0.585282 0.810829i \(-0.699016\pi\)
0.798276 0.602292i \(-0.205746\pi\)
\(24\) 0 0
\(25\) −8.04430 7.46402i −1.60886 1.49280i
\(26\) 0.371356 0.591010i 0.0728290 0.115907i
\(27\) 0 0
\(28\) 0.557437i 0.105346i
\(29\) −5.11766 1.67616i −0.950326 0.311256i
\(30\) 0 0
\(31\) 1.59052 0.693937i 0.285666 0.124635i −0.252174 0.967682i \(-0.581145\pi\)
0.537839 + 0.843047i \(0.319241\pi\)
\(32\) −0.196775 + 5.25892i −0.0347852 + 0.929655i
\(33\) 0 0
\(34\) −0.986616 6.54577i −0.169203 1.12259i
\(35\) 1.36800 1.71542i 0.231234 0.289958i
\(36\) 0 0
\(37\) 2.74830 7.85418i 0.451817 1.29122i −0.462643 0.886545i \(-0.653099\pi\)
0.914460 0.404675i \(-0.132615\pi\)
\(38\) 0.822313 10.9730i 0.133397 1.78006i
\(39\) 0 0
\(40\) −4.45727 + 5.17945i −0.704757 + 0.818942i
\(41\) −0.912701 + 3.40625i −0.142540 + 0.531966i 0.857313 + 0.514796i \(0.172132\pi\)
−0.999853 + 0.0171701i \(0.994534\pi\)
\(42\) 0 0
\(43\) 0.611906 1.40250i 0.0933147 0.213880i −0.863645 0.504101i \(-0.831824\pi\)
0.956960 + 0.290221i \(0.0937288\pi\)
\(44\) −3.13155 + 0.352841i −0.472099 + 0.0531928i
\(45\) 0 0
\(46\) 8.41550 + 8.41550i 1.24080 + 1.24080i
\(47\) −9.57858 1.81237i −1.39718 0.264361i −0.567855 0.823128i \(-0.692227\pi\)
−0.829324 + 0.558768i \(0.811274\pi\)
\(48\) 0 0
\(49\) −5.53466 3.77347i −0.790666 0.539067i
\(50\) 18.7236 3.54269i 2.64791 0.501012i
\(51\) 0 0
\(52\) 0.149115 + 0.379938i 0.0206785 + 0.0526880i
\(53\) −2.20154 + 1.75567i −0.302405 + 0.241160i −0.762921 0.646491i \(-0.776236\pi\)
0.460517 + 0.887651i \(0.347664\pi\)
\(54\) 0 0
\(55\) −10.5027 6.59928i −1.41618 0.889847i
\(56\) −0.755196 0.557360i −0.100917 0.0744804i
\(57\) 0 0
\(58\) 7.61906 5.42189i 1.00043 0.711929i
\(59\) 1.88972 1.09103i 0.246021 0.142040i −0.371920 0.928265i \(-0.621300\pi\)
0.617941 + 0.786224i \(0.287967\pi\)
\(60\) 0 0
\(61\) 3.44312 + 6.51471i 0.440847 + 0.834123i 0.999987 + 0.00504999i \(0.00160747\pi\)
−0.559140 + 0.829073i \(0.688869\pi\)
\(62\) −0.670535 + 2.93781i −0.0851580 + 0.373102i
\(63\) 0 0
\(64\) 0.673195 + 0.536855i 0.0841494 + 0.0671069i
\(65\) −0.473526 + 1.53513i −0.0587337 + 0.190410i
\(66\) 0 0
\(67\) 4.54628 6.66818i 0.555417 0.814647i −0.441150 0.897433i \(-0.645429\pi\)
0.996567 + 0.0827860i \(0.0263818\pi\)
\(68\) 3.42229 + 1.80873i 0.415014 + 0.219341i
\(69\) 0 0
\(70\) 0.986111 + 3.68022i 0.117863 + 0.439870i
\(71\) 12.9810 + 6.25130i 1.54056 + 0.741892i 0.995342 0.0964048i \(-0.0307343\pi\)
0.545213 + 0.838297i \(0.316449\pi\)
\(72\) 0 0
\(73\) −0.0593993 0.527184i −0.00695217 0.0617022i 0.989757 0.142762i \(-0.0455982\pi\)
−0.996709 + 0.0810594i \(0.974170\pi\)
\(74\) 8.13976 + 11.9388i 0.946227 + 1.38786i
\(75\) 0 0
\(76\) 4.87713 + 4.19711i 0.559445 + 0.481441i
\(77\) 0.796115 1.50632i 0.0907257 0.171661i
\(78\) 0 0
\(79\) 9.06925 7.80472i 1.02037 0.878099i 0.0277804 0.999614i \(-0.491156\pi\)
0.992590 + 0.121515i \(0.0387751\pi\)
\(80\) −4.44655 19.4816i −0.497139 2.17811i
\(81\) 0 0
\(82\) −3.81799 4.78761i −0.421627 0.528703i
\(83\) 4.78588 5.15796i 0.525319 0.566159i −0.413529 0.910491i \(-0.635704\pi\)
0.938848 + 0.344332i \(0.111894\pi\)
\(84\) 0 0
\(85\) 6.09271 + 13.9647i 0.660848 + 1.51468i
\(86\) 1.32857 + 2.30115i 0.143264 + 0.248140i
\(87\) 0 0
\(88\) −2.65310 + 4.59530i −0.282821 + 0.489861i
\(89\) 0.918803 + 0.103524i 0.0973929 + 0.0109735i 0.160526 0.987032i \(-0.448681\pi\)
−0.0631335 + 0.998005i \(0.520109\pi\)
\(90\) 0 0
\(91\) −0.215132 0.0491025i −0.0225520 0.00514734i
\(92\) −6.88155 + 1.03723i −0.717451 + 0.108138i
\(93\) 0 0
\(94\) 12.4093 11.5141i 1.27992 1.18759i
\(95\) 4.70845 + 24.8847i 0.483077 + 2.55312i
\(96\) 0 0
\(97\) 9.19060 0.343888i 0.933164 0.0349165i 0.433517 0.901146i \(-0.357273\pi\)
0.499647 + 0.866229i \(0.333463\pi\)
\(98\) 10.9794 3.84185i 1.10908 0.388085i
\(99\) 0 0
\(100\) −4.83470 + 10.0394i −0.483470 + 1.00394i
\(101\) 12.8283 + 5.59693i 1.27646 + 0.556915i 0.925242 0.379378i \(-0.123862\pi\)
0.351221 + 0.936293i \(0.385767\pi\)
\(102\) 0 0
\(103\) −0.380474 5.07708i −0.0374893 0.500259i −0.984069 0.177789i \(-0.943106\pi\)
0.946579 0.322471i \(-0.104513\pi\)
\(104\) 0.663821 + 0.177870i 0.0650930 + 0.0174416i
\(105\) 0 0
\(106\) −0.182834 4.88633i −0.0177584 0.474603i
\(107\) −1.02857 2.13585i −0.0994356 0.206480i 0.845316 0.534266i \(-0.179412\pi\)
−0.944752 + 0.327786i \(0.893698\pi\)
\(108\) 0 0
\(109\) 0.343427 0.0783850i 0.0328943 0.00750792i −0.206042 0.978543i \(-0.566058\pi\)
0.238936 + 0.971035i \(0.423201\pi\)
\(110\) 20.0504 7.86920i 1.91173 0.750299i
\(111\) 0 0
\(112\) 2.62281 0.809029i 0.247832 0.0764461i
\(113\) −19.5885 0.732949i −1.84273 0.0689500i −0.906887 0.421373i \(-0.861548\pi\)
−0.935841 + 0.352423i \(0.885358\pi\)
\(114\) 0 0
\(115\) −23.7222 13.6960i −2.21211 1.27716i
\(116\) −0.0946761 + 5.46735i −0.00879045 + 0.507630i
\(117\) 0 0
\(118\) −0.424250 + 3.76532i −0.0390553 + 0.346626i
\(119\) −1.85024 + 0.977879i −0.169611 + 0.0896420i
\(120\) 0 0
\(121\) 1.27353 + 0.499824i 0.115776 + 0.0454386i
\(122\) −12.6526 1.90708i −1.14552 0.172659i
\(123\) 0 0
\(124\) −1.14937 1.33559i −0.103216 0.119939i
\(125\) −21.5108 + 10.3591i −1.92399 + 0.926543i
\(126\) 0 0
\(127\) 1.48514 + 4.24429i 0.131785 + 0.376620i 0.990801 0.135329i \(-0.0432093\pi\)
−0.859016 + 0.511949i \(0.828924\pi\)
\(128\) −11.6108 + 3.11111i −1.02626 + 0.274986i
\(129\) 0 0
\(130\) −1.65657 2.24458i −0.145291 0.196863i
\(131\) −10.2878 13.9395i −0.898848 1.21790i −0.975314 0.220824i \(-0.929125\pi\)
0.0764654 0.997072i \(-0.475637\pi\)
\(132\) 0 0
\(133\) −3.36020 + 0.900363i −0.291366 + 0.0780714i
\(134\) 4.62867 + 13.2280i 0.399856 + 1.14272i
\(135\) 0 0
\(136\) 5.87222 2.82791i 0.503539 0.242492i
\(137\) 1.72920 + 2.00937i 0.147736 + 0.171672i 0.826964 0.562255i \(-0.190066\pi\)
−0.679228 + 0.733927i \(0.737685\pi\)
\(138\) 0 0
\(139\) 2.11112 + 0.318200i 0.179063 + 0.0269894i 0.237961 0.971275i \(-0.423521\pi\)
−0.0588987 + 0.998264i \(0.518759\pi\)
\(140\) −2.07391 0.813949i −0.175277 0.0687913i
\(141\) 0 0
\(142\) −22.1197 + 11.6906i −1.85624 + 0.981053i
\(143\) −0.139674 + 1.23964i −0.0116801 + 0.103664i
\(144\) 0 0
\(145\) −13.7087 + 16.5925i −1.13844 + 1.37793i
\(146\) 0.797821 + 0.460622i 0.0660281 + 0.0381214i
\(147\) 0 0
\(148\) −8.44348 0.315933i −0.694050 0.0259695i
\(149\) −2.07495 + 0.640038i −0.169987 + 0.0524340i −0.378580 0.925568i \(-0.623588\pi\)
0.208594 + 0.978002i \(0.433111\pi\)
\(150\) 0 0
\(151\) 0.908066 0.356390i 0.0738974 0.0290026i −0.328104 0.944641i \(-0.606410\pi\)
0.402002 + 0.915639i \(0.368315\pi\)
\(152\) 10.5625 2.41083i 0.856735 0.195544i
\(153\) 0 0
\(154\) 1.28368 + 2.66558i 0.103442 + 0.214799i
\(155\) −0.259328 6.93069i −0.0208297 0.556686i
\(156\) 0 0
\(157\) 3.66546 + 0.982158i 0.292536 + 0.0783848i 0.402102 0.915595i \(-0.368280\pi\)
−0.109566 + 0.993979i \(0.534946\pi\)
\(158\) 1.55270 + 20.7193i 0.123526 + 1.64834i
\(159\) 0 0
\(160\) 19.2781 + 8.41097i 1.52407 + 0.664945i
\(161\) 1.63248 3.38988i 0.128657 0.267160i
\(162\) 0 0
\(163\) −0.141584 + 0.0495424i −0.0110897 + 0.00388046i −0.335818 0.941927i \(-0.609013\pi\)
0.324729 + 0.945807i \(0.394727\pi\)
\(164\) 3.57825 0.133889i 0.279415 0.0104550i
\(165\) 0 0
\(166\) 2.27155 + 12.0054i 0.176307 + 0.931803i
\(167\) 10.5592 9.79747i 0.817092 0.758151i −0.156199 0.987726i \(-0.549924\pi\)
0.973291 + 0.229575i \(0.0737336\pi\)
\(168\) 0 0
\(169\) −12.6950 + 1.91347i −0.976541 + 0.147190i
\(170\) −25.7937 5.88725i −1.97829 0.451531i
\(171\) 0 0
\(172\) −1.54399 0.173966i −0.117728 0.0132648i
\(173\) −4.19462 + 7.26529i −0.318911 + 0.552370i −0.980261 0.197707i \(-0.936650\pi\)
0.661350 + 0.750077i \(0.269984\pi\)
\(174\) 0 0
\(175\) −3.01215 5.21720i −0.227697 0.394383i
\(176\) −6.20509 14.2222i −0.467726 1.07204i
\(177\) 0 0
\(178\) −1.09208 + 1.17698i −0.0818548 + 0.0882185i
\(179\) 11.0513 + 13.8580i 0.826017 + 1.03579i 0.998708 + 0.0508160i \(0.0161822\pi\)
−0.172692 + 0.984976i \(0.555246\pi\)
\(180\) 0 0
\(181\) 4.32644 + 18.9554i 0.321582 + 1.40894i 0.834738 + 0.550647i \(0.185619\pi\)
−0.513156 + 0.858295i \(0.671524\pi\)
\(182\) 0.290442 0.249946i 0.0215290 0.0185272i
\(183\) 0 0
\(184\) −5.47539 + 10.3600i −0.403651 + 0.763746i
\(185\) −25.2080 21.6933i −1.85333 1.59492i
\(186\) 0 0
\(187\) 6.66463 + 9.77522i 0.487366 + 0.714835i
\(188\) 1.10831 + 9.83655i 0.0808320 + 0.717404i
\(189\) 0 0
\(190\) −39.6236 19.0817i −2.87460 1.38434i
\(191\) −4.46461 16.6622i −0.323048 1.20563i −0.916260 0.400585i \(-0.868807\pi\)
0.593212 0.805046i \(-0.297860\pi\)
\(192\) 0 0
\(193\) 1.84801 + 0.976701i 0.133023 + 0.0703045i 0.532456 0.846458i \(-0.321269\pi\)
−0.399433 + 0.916762i \(0.630793\pi\)
\(194\) −8.99655 + 13.1955i −0.645915 + 0.947383i
\(195\) 0 0
\(196\) −2.00489 + 6.49968i −0.143206 + 0.464263i
\(197\) −11.5562 9.21574i −0.823343 0.656595i 0.118385 0.992968i \(-0.462228\pi\)
−0.941729 + 0.336373i \(0.890800\pi\)
\(198\) 0 0
\(199\) 3.86265 16.9234i 0.273816 1.19967i −0.631652 0.775252i \(-0.717623\pi\)
0.905468 0.424415i \(-0.139520\pi\)
\(200\) 8.76693 + 16.5878i 0.619916 + 1.17294i
\(201\) 0 0
\(202\) −21.0480 + 12.1521i −1.48093 + 0.855017i
\(203\) −2.41343 1.70740i −0.169390 0.119836i
\(204\) 0 0
\(205\) 11.3400 + 8.36932i 0.792022 + 0.584539i
\(206\) 7.48592 + 4.70372i 0.521569 + 0.327723i
\(207\) 0 0
\(208\) −1.57124 + 1.25302i −0.108946 + 0.0868814i
\(209\) 7.18493 + 18.3069i 0.496992 + 1.26632i
\(210\) 0 0
\(211\) 0.996034 0.188460i 0.0685698 0.0129741i −0.151513 0.988455i \(-0.548415\pi\)
0.220083 + 0.975481i \(0.429367\pi\)
\(212\) 2.36245 + 1.61069i 0.162253 + 0.110622i
\(213\) 0 0
\(214\) 4.04479 + 0.765316i 0.276496 + 0.0523159i
\(215\) −4.32444 4.32444i −0.294924 0.294924i
\(216\) 0 0
\(217\) 0.946654 0.106662i 0.0642630 0.00724071i
\(218\) −0.244612 + 0.560657i −0.0165672 + 0.0379725i
\(219\) 0 0
\(220\) −3.25985 + 12.1659i −0.219779 + 0.820227i
\(221\) 0.999503 1.16144i 0.0672338 0.0781271i
\(222\) 0 0
\(223\) 1.17013 15.6143i 0.0783575 1.04561i −0.809992 0.586441i \(-0.800529\pi\)
0.888350 0.459168i \(-0.151852\pi\)
\(224\) −0.954190 + 2.72692i −0.0637545 + 0.182200i
\(225\) 0 0
\(226\) 21.2230 26.6128i 1.41173 1.77026i
\(227\) 1.88279 + 12.4915i 0.124965 + 0.829088i 0.960224 + 0.279231i \(0.0900797\pi\)
−0.835259 + 0.549857i \(0.814682\pi\)
\(228\) 0 0
\(229\) 0.286783 7.66445i 0.0189512 0.506481i −0.957205 0.289411i \(-0.906541\pi\)
0.976156 0.217070i \(-0.0696500\pi\)
\(230\) 43.5973 19.0213i 2.87472 1.25423i
\(231\) 0 0
\(232\) 7.31230 + 5.59485i 0.480076 + 0.367320i
\(233\) 25.2517i 1.65429i −0.561985 0.827147i \(-0.689962\pi\)
0.561985 0.827147i \(-0.310038\pi\)
\(234\) 0 0
\(235\) −20.7291 + 32.9901i −1.35222 + 2.15204i
\(236\) −1.62422 1.50706i −0.105728 0.0981011i
\(237\) 0 0
\(238\) 0.541628 3.59347i 0.0351085 0.232930i
\(239\) 14.3600 + 15.4764i 0.928869 + 1.00108i 0.999993 + 0.00361518i \(0.00115075\pi\)
−0.0711245 + 0.997467i \(0.522659\pi\)
\(240\) 0 0
\(241\) −23.6484 1.77220i −1.52333 0.114158i −0.713430 0.700727i \(-0.752859\pi\)
−0.809899 + 0.586569i \(0.800478\pi\)
\(242\) −2.01157 + 1.26395i −0.129308 + 0.0812498i
\(243\) 0 0
\(244\) 5.29071 5.29071i 0.338703 0.338703i
\(245\) −22.1205 + 15.0815i −1.41322 + 0.963520i
\(246\) 0 0
\(247\) 2.04940 1.51253i 0.130400 0.0962398i
\(248\) −2.95862 + 0.221718i −0.187872 + 0.0140791i
\(249\) 0 0
\(250\) 7.70774 40.7364i 0.487480 2.57639i
\(251\) 10.9893 + 17.4894i 0.693642 + 1.10392i 0.988911 + 0.148510i \(0.0474478\pi\)
−0.295269 + 0.955414i \(0.595409\pi\)
\(252\) 0 0
\(253\) −20.0768 7.02519i −1.26222 0.441670i
\(254\) −7.46146 2.30156i −0.468174 0.144412i
\(255\) 0 0
\(256\) 6.99675 17.8274i 0.437297 1.11421i
\(257\) −0.608529 1.97280i −0.0379590 0.123060i 0.934610 0.355674i \(-0.115748\pi\)
−0.972569 + 0.232613i \(0.925272\pi\)
\(258\) 0 0
\(259\) 2.71263 3.67549i 0.168555 0.228384i
\(260\) 1.63127 0.101167
\(261\) 0 0
\(262\) 30.0843 1.85862
\(263\) 5.55074 7.52099i 0.342273 0.463764i −0.599323 0.800507i \(-0.704564\pi\)
0.941596 + 0.336743i \(0.109325\pi\)
\(264\) 0 0
\(265\) 3.31725 + 10.7543i 0.203777 + 0.660628i
\(266\) 2.20695 5.62323i 0.135317 0.344782i
\(267\) 0 0
\(268\) −7.83083 2.41549i −0.478344 0.147550i
\(269\) 16.5693 + 5.79784i 1.01025 + 0.353501i 0.784128 0.620599i \(-0.213111\pi\)
0.226119 + 0.974100i \(0.427396\pi\)
\(270\) 0 0
\(271\) 4.13972 + 6.58833i 0.251470 + 0.400213i 0.948474 0.316855i \(-0.102627\pi\)
−0.697004 + 0.717067i \(0.745484\pi\)
\(272\) −3.54341 + 18.7274i −0.214851 + 1.13551i
\(273\) 0 0
\(274\) −4.59054 + 0.344013i −0.277325 + 0.0207826i
\(275\) −27.4024 + 20.2239i −1.65243 + 1.21955i
\(276\) 0 0
\(277\) −6.49120 + 4.42562i −0.390018 + 0.265910i −0.742414 0.669941i \(-0.766319\pi\)
0.352396 + 0.935851i \(0.385367\pi\)
\(278\) −2.62150 + 2.62150i −0.157227 + 0.157227i
\(279\) 0 0
\(280\) −3.17633 + 1.99582i −0.189822 + 0.119273i
\(281\) 26.2974 + 1.97072i 1.56877 + 0.117563i 0.830531 0.556972i \(-0.188037\pi\)
0.738243 + 0.674535i \(0.235656\pi\)
\(282\) 0 0
\(283\) −2.95583 3.18562i −0.175706 0.189366i 0.639059 0.769158i \(-0.279324\pi\)
−0.814764 + 0.579792i \(0.803134\pi\)
\(284\) 2.18046 14.4664i 0.129387 0.858425i
\(285\) 0 0
\(286\) −1.58798 1.47343i −0.0938989 0.0871255i
\(287\) −1.02997 + 1.63918i −0.0607970 + 0.0967579i
\(288\) 0 0
\(289\) 2.46783i 0.145167i
\(290\) −9.04673 36.2631i −0.531242 2.12944i
\(291\) 0 0
\(292\) −0.493749 + 0.215420i −0.0288945 + 0.0126065i
\(293\) −0.792751 + 21.1867i −0.0463130 + 1.23774i 0.761446 + 0.648228i \(0.224490\pi\)
−0.807759 + 0.589512i \(0.799320\pi\)
\(294\) 0 0
\(295\) −1.29981 8.62368i −0.0756779 0.502090i
\(296\) −8.87033 + 11.1230i −0.515577 + 0.646513i
\(297\) 0 0
\(298\) 1.24537 3.55907i 0.0721424 0.206171i
\(299\) −0.205872 + 2.74717i −0.0119059 + 0.158873i
\(300\) 0 0
\(301\) 0.547941 0.636719i 0.0315828 0.0366999i
\(302\) −0.438426 + 1.63623i −0.0252286 + 0.0941544i
\(303\) 0 0
\(304\) −12.6695 + 29.0389i −0.726647 + 1.66549i
\(305\) 29.2651 3.29738i 1.67571 0.188808i
\(306\) 0 0
\(307\) 1.42348 + 1.42348i 0.0812425 + 0.0812425i 0.746560 0.665318i \(-0.231704\pi\)
−0.665318 + 0.746560i \(0.731704\pi\)
\(308\) −1.69986 0.321631i −0.0968587 0.0183267i
\(309\) 0 0
\(310\) 9.95082 + 6.78436i 0.565169 + 0.385326i
\(311\) −5.56844 + 1.05361i −0.315757 + 0.0597445i −0.341375 0.939927i \(-0.610892\pi\)
0.0256174 + 0.999672i \(0.491845\pi\)
\(312\) 0 0
\(313\) 11.1255 + 28.3474i 0.628851 + 1.60229i 0.788446 + 0.615105i \(0.210886\pi\)
−0.159594 + 0.987183i \(0.551019\pi\)
\(314\) −5.15195 + 4.10854i −0.290741 + 0.231859i
\(315\) 0 0
\(316\) −10.2873 6.46396i −0.578708 0.363626i
\(317\) 27.8967 + 20.5887i 1.56683 + 1.15638i 0.918772 + 0.394789i \(0.129182\pi\)
0.648062 + 0.761588i \(0.275580\pi\)
\(318\) 0 0
\(319\) −8.06414 + 14.6388i −0.451505 + 0.819616i
\(320\) 2.98031 1.72068i 0.166604 0.0961890i
\(321\) 0 0
\(322\) 3.05291 + 5.77640i 0.170132 + 0.321906i
\(323\) 5.37532 23.5508i 0.299091 1.31040i
\(324\) 0 0
\(325\) 3.44863 + 2.75019i 0.191295 + 0.152553i
\(326\) 0.0767769 0.248905i 0.00425228 0.0137856i
\(327\) 0 0
\(328\) 3.39637 4.98156i 0.187533 0.275061i
\(329\) −4.73153 2.50069i −0.260858 0.137867i
\(330\) 0 0
\(331\) 0.362543 + 1.35303i 0.0199272 + 0.0743692i 0.975173 0.221443i \(-0.0710765\pi\)
−0.955246 + 0.295812i \(0.904410\pi\)
\(332\) −6.43718 3.09998i −0.353286 0.170134i
\(333\) 0 0
\(334\) 2.80058 + 24.8559i 0.153241 + 1.36005i
\(335\) −18.1702 26.6508i −0.992744 1.45609i
\(336\) 0 0
\(337\) −10.4407 8.98496i −0.568742 0.489442i 0.320270 0.947326i \(-0.396226\pi\)
−0.889012 + 0.457884i \(0.848607\pi\)
\(338\) 10.4172 19.7103i 0.566622 1.07210i
\(339\) 0 0
\(340\) 11.7264 10.0914i 0.635952 0.547281i
\(341\) −1.19841 5.25056i −0.0648973 0.284334i
\(342\) 0 0
\(343\) −4.68878 5.87954i −0.253170 0.317465i
\(344\) −1.77946 + 1.91780i −0.0959421 + 0.103401i
\(345\) 0 0
\(346\) −5.82557 13.3524i −0.313185 0.717827i
\(347\) −3.36991 5.83686i −0.180907 0.313339i 0.761283 0.648420i \(-0.224570\pi\)
−0.942189 + 0.335081i \(0.891236\pi\)
\(348\) 0 0
\(349\) 8.53408 14.7815i 0.456819 0.791233i −0.541972 0.840397i \(-0.682322\pi\)
0.998791 + 0.0491632i \(0.0156554\pi\)
\(350\) 10.3954 + 1.17128i 0.555657 + 0.0626075i
\(351\) 0 0
\(352\) 15.9231 + 3.63435i 0.848706 + 0.193712i
\(353\) −15.9672 + 2.40667i −0.849848 + 0.128094i −0.559503 0.828828i \(-0.689008\pi\)
−0.290345 + 0.956922i \(0.593770\pi\)
\(354\) 0 0
\(355\) 42.2119 39.1669i 2.24037 2.07876i
\(356\) −0.174546 0.922500i −0.00925094 0.0488924i
\(357\) 0 0
\(358\) −30.7578 + 1.15088i −1.62560 + 0.0608257i
\(359\) 26.6079 9.31051i 1.40431 0.491390i 0.481434 0.876482i \(-0.340116\pi\)
0.922878 + 0.385092i \(0.125830\pi\)
\(360\) 0 0
\(361\) 9.17869 19.0597i 0.483089 1.00314i
\(362\) −30.9453 13.5013i −1.62645 0.709613i
\(363\) 0 0
\(364\) 0.0167445 + 0.223439i 0.000877648 + 0.0117114i
\(365\) −2.04809 0.548783i −0.107202 0.0287246i
\(366\) 0 0
\(367\) −0.281578 7.52533i −0.0146983 0.392819i −0.987158 0.159748i \(-0.948932\pi\)
0.972460 0.233071i \(-0.0748776\pi\)
\(368\) −14.8677 30.8731i −0.775033 1.60937i
\(369\) 0 0
\(370\) 56.3030 12.8508i 2.92705 0.668081i
\(371\) −1.43899 + 0.564762i −0.0747086 + 0.0293210i
\(372\) 0 0
\(373\) 32.2472 9.94695i 1.66970 0.515034i 0.691441 0.722433i \(-0.256976\pi\)
0.978256 + 0.207399i \(0.0664999\pi\)
\(374\) −20.5301 0.768182i −1.06159 0.0397217i
\(375\) 0 0
\(376\) 14.4344 + 8.33368i 0.744395 + 0.429777i
\(377\) 2.10168 + 0.518136i 0.108242 + 0.0266854i
\(378\) 0 0
\(379\) −0.332817 + 2.95383i −0.0170957 + 0.151728i −0.999360 0.0357736i \(-0.988610\pi\)
0.982264 + 0.187502i \(0.0600391\pi\)
\(380\) 22.7365 12.0166i 1.16636 0.616437i
\(381\) 0 0
\(382\) 27.8838 + 10.9436i 1.42666 + 0.559922i
\(383\) −14.0475 2.11733i −0.717796 0.108190i −0.220019 0.975496i \(-0.570612\pi\)
−0.497777 + 0.867305i \(0.665850\pi\)
\(384\) 0 0
\(385\) −4.44172 5.16137i −0.226371 0.263048i
\(386\) −3.27023 + 1.57486i −0.166450 + 0.0801583i
\(387\) 0 0
\(388\) −3.08440 8.81472i −0.156587 0.447500i
\(389\) −12.0039 + 3.21643i −0.608621 + 0.163080i −0.549950 0.835198i \(-0.685353\pi\)
−0.0586716 + 0.998277i \(0.518686\pi\)
\(390\) 0 0
\(391\) 15.5146 + 21.0216i 0.784609 + 1.06311i
\(392\) 6.80093 + 9.21493i 0.343499 + 0.465424i
\(393\) 0 0
\(394\) 24.7924 6.64310i 1.24902 0.334674i
\(395\) −15.7944 45.1377i −0.794701 2.27112i
\(396\) 0 0
\(397\) −8.19230 + 3.94521i −0.411160 + 0.198004i −0.628018 0.778199i \(-0.716133\pi\)
0.216858 + 0.976203i \(0.430419\pi\)
\(398\) 19.6620 + 22.8476i 0.985566 + 1.14525i
\(399\) 0 0
\(400\) −54.2531 8.17734i −2.71266 0.408867i
\(401\) 19.5913 + 7.68902i 0.978343 + 0.383971i 0.800002 0.599998i \(-0.204832\pi\)
0.178341 + 0.983969i \(0.442927\pi\)
\(402\) 0 0
\(403\) −0.616689 + 0.325929i −0.0307194 + 0.0162357i
\(404\) 1.59122 14.1225i 0.0791661 0.702618i
\(405\) 0 0
\(406\) 4.87419 1.61138i 0.241902 0.0799717i
\(407\) −22.3650 12.9124i −1.10859 0.640046i
\(408\) 0 0
\(409\) −23.5962 0.882909i −1.16676 0.0436570i −0.553021 0.833167i \(-0.686525\pi\)
−0.613738 + 0.789510i \(0.710335\pi\)
\(410\) −23.3869 + 7.21390i −1.15500 + 0.356269i
\(411\) 0 0
\(412\) −4.81242 + 1.88874i −0.237091 + 0.0930513i
\(413\) 1.16787 0.266558i 0.0574670 0.0131165i
\(414\) 0 0
\(415\) −12.2017 25.3370i −0.598956 1.24375i
\(416\) −0.0790951 2.11386i −0.00387796 0.103641i
\(417\) 0 0
\(418\) −32.9869 8.83881i −1.61344 0.432320i
\(419\) −1.54522 20.6195i −0.0754889 1.00733i −0.898405 0.439167i \(-0.855274\pi\)
0.822916 0.568163i \(-0.192346\pi\)
\(420\) 0 0
\(421\) 10.6450 + 4.64437i 0.518806 + 0.226353i 0.642946 0.765912i \(-0.277712\pi\)
−0.124139 + 0.992265i \(0.539617\pi\)
\(422\) −0.763764 + 1.58597i −0.0371794 + 0.0772039i
\(423\) 0 0
\(424\) 4.54422 1.59009i 0.220687 0.0772216i
\(425\) 41.8037 1.56418i 2.02778 0.0758741i
\(426\) 0 0
\(427\) 0.752049 + 3.97467i 0.0363942 + 0.192348i
\(428\) −1.76457 + 1.63728i −0.0852935 + 0.0791408i
\(429\) 0 0
\(430\) 10.5012 1.58281i 0.506414 0.0763296i
\(431\) −25.2984 5.77421i −1.21858 0.278134i −0.435579 0.900150i \(-0.643456\pi\)
−0.783004 + 0.622017i \(0.786314\pi\)
\(432\) 0 0
\(433\) 16.3402 + 1.84110i 0.785261 + 0.0884777i 0.495485 0.868617i \(-0.334990\pi\)
0.289777 + 0.957094i \(0.406419\pi\)
\(434\) −0.827130 + 1.43263i −0.0397035 + 0.0687685i
\(435\) 0 0
\(436\) −0.178844 0.309767i −0.00856508 0.0148352i
\(437\) 17.3673 + 39.8063i 0.830791 + 1.90419i
\(438\) 0 0
\(439\) 11.1166 11.9809i 0.530568 0.571817i −0.409713 0.912214i \(-0.634371\pi\)
0.940282 + 0.340398i \(0.110562\pi\)
\(440\) 13.2226 + 16.5806i 0.630361 + 0.790448i
\(441\) 0 0
\(442\) 0.592092 + 2.59412i 0.0281629 + 0.123390i
\(443\) 7.28700 6.27097i 0.346216 0.297943i −0.461940 0.886911i \(-0.652847\pi\)
0.808156 + 0.588968i \(0.200466\pi\)
\(444\) 0 0
\(445\) 1.72676 3.26718i 0.0818561 0.154879i
\(446\) 20.6093 + 17.7358i 0.975880 + 0.839813i
\(447\) 0 0
\(448\) 0.266279 + 0.390559i 0.0125805 + 0.0184522i
\(449\) 0.173703 + 1.54165i 0.00819753 + 0.0727551i 0.997145 0.0755119i \(-0.0240591\pi\)
−0.988947 + 0.148267i \(0.952631\pi\)
\(450\) 0 0
\(451\) 9.86048 + 4.74856i 0.464312 + 0.223601i
\(452\) 5.15161 + 19.2261i 0.242312 + 0.904319i
\(453\) 0 0
\(454\) −19.3943 10.2502i −0.910220 0.481065i
\(455\) −0.496811 + 0.728688i −0.0232909 + 0.0341614i
\(456\) 0 0
\(457\) 4.23695 13.7359i 0.198196 0.642536i −0.800850 0.598865i \(-0.795618\pi\)
0.999046 0.0436710i \(-0.0139053\pi\)
\(458\) 10.4129 + 8.30400i 0.486563 + 0.388021i
\(459\) 0 0
\(460\) −6.18925 + 27.1169i −0.288575 + 1.26433i
\(461\) 16.1712 + 30.5973i 0.753166 + 1.42506i 0.899996 + 0.435898i \(0.143569\pi\)
−0.146830 + 0.989162i \(0.546907\pi\)
\(462\) 0 0
\(463\) −13.6253 + 7.86655i −0.633220 + 0.365589i −0.781998 0.623281i \(-0.785799\pi\)
0.148778 + 0.988871i \(0.452466\pi\)
\(464\) −25.8619 + 7.48950i −1.20061 + 0.347691i
\(465\) 0 0
\(466\) 35.2812 + 26.0387i 1.63437 + 1.20622i
\(467\) 0.946636 + 0.594811i 0.0438051 + 0.0275246i 0.553757 0.832679i \(-0.313194\pi\)
−0.509952 + 0.860203i \(0.670337\pi\)
\(468\) 0 0
\(469\) 3.46392 2.76238i 0.159949 0.127555i
\(470\) −24.7180 62.9805i −1.14016 2.90508i
\(471\) 0 0
\(472\) −3.66570 + 0.693588i −0.168728 + 0.0319250i
\(473\) −3.92377 2.67518i −0.180415 0.123005i
\(474\) 0 0
\(475\) 68.3256 + 12.9279i 3.13500 + 0.593173i
\(476\) 1.50261 + 1.50261i 0.0688720 + 0.0688720i
\(477\) 0 0
\(478\) −36.4308 + 4.10476i −1.66630 + 0.187747i
\(479\) −15.6382 + 35.8432i −0.714528 + 1.63772i 0.0545108 + 0.998513i \(0.482640\pi\)
−0.769039 + 0.639202i \(0.779265\pi\)
\(480\) 0 0
\(481\) −0.865683 + 3.23077i −0.0394717 + 0.147310i
\(482\) 26.8615 31.2137i 1.22351 1.42174i
\(483\) 0 0
\(484\) 0.103814 1.38530i 0.00471883 0.0629684i
\(485\) 12.1404 34.6952i 0.551265 1.57543i
\(486\) 0 0
\(487\) 3.07673 3.85810i 0.139420 0.174827i −0.707219 0.706994i \(-0.750051\pi\)
0.846639 + 0.532167i \(0.178622\pi\)
\(488\) −1.87769 12.4576i −0.0849989 0.563931i
\(489\) 0 0
\(490\) 1.73833 46.4578i 0.0785296 2.09875i
\(491\) 9.12109 3.97949i 0.411629 0.179592i −0.183865 0.982951i \(-0.558861\pi\)
0.595494 + 0.803360i \(0.296956\pi\)
\(492\) 0 0
\(493\) 18.3132 9.27679i 0.824786 0.417806i
\(494\) 4.42305i 0.199002i
\(495\) 0 0
\(496\) 4.61598 7.34630i 0.207264 0.329859i
\(497\) 5.79809 + 5.37984i 0.260080 + 0.241319i
\(498\) 0 0
\(499\) −6.19589 + 41.1070i −0.277366 + 1.84020i 0.223532 + 0.974697i \(0.428241\pi\)
−0.500898 + 0.865507i \(0.666997\pi\)
\(500\) 16.4896 + 17.7715i 0.737436 + 0.794766i
\(501\) 0 0
\(502\) −35.7677 2.68042i −1.59639 0.119633i
\(503\) −23.6134 + 14.8373i −1.05287 + 0.661563i −0.943139 0.332398i \(-0.892142\pi\)
−0.109732 + 0.993961i \(0.534999\pi\)
\(504\) 0 0
\(505\) 39.5544 39.5544i 1.76015 1.76015i
\(506\) 30.5180 20.8068i 1.35669 0.924976i
\(507\) 0 0
\(508\) 3.67374 2.71134i 0.162996 0.120296i
\(509\) 24.2619 1.81818i 1.07539 0.0805893i 0.474759 0.880116i \(-0.342535\pi\)
0.600630 + 0.799527i \(0.294916\pi\)
\(510\) 0 0
\(511\) 0.0541454 0.286165i 0.00239525 0.0126592i
\(512\) 4.90282 + 7.80279i 0.216676 + 0.344838i
\(513\) 0 0
\(514\) 3.38386 + 1.18406i 0.149255 + 0.0522267i
\(515\) −19.4445 5.99783i −0.856827 0.264296i
\(516\) 0 0
\(517\) −11.0533 + 28.1635i −0.486125 + 1.23863i
\(518\) 2.33814 + 7.58007i 0.102732 + 0.333049i
\(519\) 0 0
\(520\) 1.63104 2.20998i 0.0715259 0.0969142i
\(521\) 2.60813 0.114264 0.0571322 0.998367i \(-0.481804\pi\)
0.0571322 + 0.998367i \(0.481804\pi\)
\(522\) 0 0
\(523\) 21.7770 0.952240 0.476120 0.879380i \(-0.342043\pi\)
0.476120 + 0.879380i \(0.342043\pi\)
\(524\) −10.4464 + 14.1543i −0.456351 + 0.618334i
\(525\) 0 0
\(526\) 4.78444 + 15.5108i 0.208611 + 0.676301i
\(527\) −2.41680 + 6.15791i −0.105277 + 0.268243i
\(528\) 0 0
\(529\) −22.9074 7.06598i −0.995972 0.307217i
\(530\) −18.4462 6.45462i −0.801254 0.280371i
\(531\) 0 0
\(532\) 1.87933 + 2.99093i 0.0814791 + 0.129673i
\(533\) 0.263523 1.39275i 0.0114144 0.0603268i
\(534\) 0 0
\(535\) −9.44816 + 0.708042i −0.408480 + 0.0306113i
\(536\) −11.1022 + 8.19377i −0.479541 + 0.353917i
\(537\) 0 0
\(538\) −25.1863 + 17.1717i −1.08586 + 0.740325i
\(539\) −14.7003 + 14.7003i −0.633187 + 0.633187i
\(540\) 0 0
\(541\) −13.9221 + 8.74785i −0.598559 + 0.376099i −0.796969 0.604020i \(-0.793565\pi\)
0.198411 + 0.980119i \(0.436422\pi\)
\(542\) −13.4738 1.00972i −0.578750 0.0433713i
\(543\) 0 0
\(544\) −13.6454 14.7062i −0.585040 0.630523i
\(545\) 0.209833 1.39215i 0.00898827 0.0596333i
\(546\) 0 0
\(547\) −14.0672 13.0524i −0.601469 0.558082i 0.319565 0.947564i \(-0.396463\pi\)
−0.921034 + 0.389483i \(0.872654\pi\)
\(548\) 1.43214 2.27925i 0.0611782 0.0973645i
\(549\) 0 0
\(550\) 59.1402i 2.52175i
\(551\) 33.1098 8.26007i 1.41052 0.351891i
\(552\) 0 0
\(553\) 6.02051 2.62672i 0.256018 0.111700i
\(554\) 0.510108 13.6329i 0.0216724 0.579207i
\(555\) 0 0
\(556\) −0.323104 2.14366i −0.0137027 0.0909114i
\(557\) −8.87207 + 11.1252i −0.375922 + 0.471391i −0.933419 0.358788i \(-0.883190\pi\)
0.557498 + 0.830179i \(0.311762\pi\)
\(558\) 0 0
\(559\) −0.203143 + 0.580550i −0.00859204 + 0.0245547i
\(560\) 0.819787 10.9393i 0.0346423 0.462270i
\(561\) 0 0
\(562\) −29.8705 + 34.7101i −1.26001 + 1.46416i
\(563\) −4.18320 + 15.6119i −0.176301 + 0.657963i 0.820026 + 0.572327i \(0.193959\pi\)
−0.996326 + 0.0856366i \(0.972708\pi\)
\(564\) 0 0
\(565\) −31.3292 + 71.8074i −1.31803 + 3.02096i
\(566\) 7.49884 0.844916i 0.315200 0.0355145i
\(567\) 0 0
\(568\) −17.4184 17.4184i −0.730862 0.730862i
\(569\) −41.4095 7.83511i −1.73598 0.328465i −0.780863 0.624702i \(-0.785221\pi\)
−0.955114 + 0.296237i \(0.904268\pi\)
\(570\) 0 0
\(571\) −6.15035 4.19324i −0.257384 0.175482i 0.427753 0.903896i \(-0.359305\pi\)
−0.685137 + 0.728414i \(0.740258\pi\)
\(572\) 1.24463 0.235497i 0.0520406 0.00984661i
\(573\) 0 0
\(574\) −1.22817 3.12932i −0.0512627 0.130615i
\(575\) −58.8014 + 46.8926i −2.45219 + 1.95556i
\(576\) 0 0
\(577\) 26.0769 + 16.3852i 1.08560 + 0.682125i 0.951129 0.308793i \(-0.0999249\pi\)
0.134467 + 0.990918i \(0.457068\pi\)
\(578\) −3.44801 2.54474i −0.143418 0.105847i
\(579\) 0 0
\(580\) 20.2027 + 8.33545i 0.838870 + 0.346111i
\(581\) 3.34524 1.93137i 0.138784 0.0801269i
\(582\) 0 0
\(583\) 4.08353 + 7.72642i 0.169123 + 0.319996i
\(584\) −0.201837 + 0.884304i −0.00835205 + 0.0365927i
\(585\) 0 0
\(586\) −28.7842 22.9546i −1.18906 0.948246i
\(587\) −5.07641 + 16.4573i −0.209526 + 0.679266i 0.788416 + 0.615142i \(0.210901\pi\)
−0.997942 + 0.0641239i \(0.979575\pi\)
\(588\) 0 0
\(589\) −6.19442 + 9.08555i −0.255237 + 0.374363i
\(590\) 13.3892 + 7.07637i 0.551223 + 0.291330i
\(591\) 0 0
\(592\) −10.7678 40.1861i −0.442555 1.65164i
\(593\) 6.27585 + 3.02229i 0.257718 + 0.124111i 0.558282 0.829651i \(-0.311461\pi\)
−0.300564 + 0.953762i \(0.597175\pi\)
\(594\) 0 0
\(595\) 0.936487 + 8.31155i 0.0383922 + 0.340740i
\(596\) 1.24206 + 1.82177i 0.0508767 + 0.0746225i
\(597\) 0 0
\(598\) −3.62600 3.12042i −0.148278 0.127604i
\(599\) 21.7703 41.1914i 0.889510 1.68303i 0.173629 0.984811i \(-0.444451\pi\)
0.715880 0.698223i \(-0.246026\pi\)
\(600\) 0 0
\(601\) 32.4819 27.9529i 1.32496 1.14022i 0.345541 0.938404i \(-0.387695\pi\)
0.979423 0.201820i \(-0.0646855\pi\)
\(602\) 0.324593 + 1.42214i 0.0132294 + 0.0579619i
\(603\) 0 0
\(604\) −0.617588 0.774431i −0.0251293 0.0315111i
\(605\) 3.71913 4.00826i 0.151204 0.162959i
\(606\) 0 0
\(607\) −14.3541 32.8999i −0.582613 1.33536i −0.919230 0.393722i \(-0.871187\pi\)
0.336616 0.941642i \(-0.390717\pi\)
\(608\) −16.6740 28.8801i −0.676218 1.17124i
\(609\) 0 0
\(610\) −25.5701 + 44.2887i −1.03530 + 1.79320i
\(611\) 3.89385 + 0.438732i 0.157528 + 0.0177492i
\(612\) 0 0
\(613\) −36.7355 8.38463i −1.48373 0.338652i −0.597491 0.801876i \(-0.703835\pi\)
−0.886241 + 0.463224i \(0.846693\pi\)
\(614\) −3.45671 + 0.521015i −0.139501 + 0.0210265i
\(615\) 0 0
\(616\) −2.13536 + 1.98133i −0.0860362 + 0.0798299i
\(617\) −6.44348 34.0546i −0.259405 1.37099i −0.833645 0.552300i \(-0.813750\pi\)
0.574241 0.818686i \(-0.305297\pi\)
\(618\) 0 0
\(619\) −14.3066 + 0.535315i −0.575030 + 0.0215161i −0.323325 0.946288i \(-0.604801\pi\)
−0.251705 + 0.967804i \(0.580991\pi\)
\(620\) −6.64724 + 2.32597i −0.266959 + 0.0934132i
\(621\) 0 0
\(622\) 4.26991 8.86655i 0.171208 0.355516i
\(623\) 0.465240 + 0.202982i 0.0186394 + 0.00813231i
\(624\) 0 0
\(625\) 3.03059 + 40.4404i 0.121223 + 1.61761i
\(626\) −51.0786 13.6865i −2.04151 0.547021i
\(627\) 0 0
\(628\) −0.144078 3.85056i −0.00574933 0.153654i
\(629\) 13.7633 + 28.5797i 0.548777 + 1.13955i
\(630\) 0 0
\(631\) −14.4465 + 3.29732i −0.575106 + 0.131264i −0.500175 0.865924i \(-0.666731\pi\)
−0.0749315 + 0.997189i \(0.523874\pi\)
\(632\) −19.0430 + 7.47385i −0.757492 + 0.297294i
\(633\) 0 0
\(634\) −57.5322 + 17.7463i −2.28490 + 0.704797i
\(635\) 17.9592 + 0.671984i 0.712687 + 0.0266669i
\(636\) 0 0
\(637\) 2.33183 + 1.34628i 0.0923903 + 0.0533416i
\(638\) −12.1376 26.3621i −0.480532 1.04368i
\(639\) 0 0
\(640\) −5.37901 + 47.7400i −0.212624 + 1.88709i
\(641\) 23.3152 12.3225i 0.920896 0.486708i 0.0615509 0.998104i \(-0.480395\pi\)
0.859345 + 0.511396i \(0.170872\pi\)
\(642\) 0 0
\(643\) −28.7532 11.2848i −1.13391 0.445029i −0.277196 0.960813i \(-0.589405\pi\)
−0.856718 + 0.515785i \(0.827500\pi\)
\(644\) −3.77780 0.569412i −0.148866 0.0224380i
\(645\) 0 0
\(646\) 27.3619 + 31.7951i 1.07654 + 1.25096i
\(647\) 21.5212 10.3641i 0.846087 0.407454i 0.0399631 0.999201i \(-0.487276\pi\)
0.806124 + 0.591747i \(0.201562\pi\)
\(648\) 0 0
\(649\) −2.23668 6.39208i −0.0877976 0.250911i
\(650\) −7.39861 + 1.98245i −0.290198 + 0.0777582i
\(651\) 0 0
\(652\) 0.0904469 + 0.122551i 0.00354217 + 0.00479947i
\(653\) 2.23017 + 3.02177i 0.0872732 + 0.118251i 0.846059 0.533089i \(-0.178969\pi\)
−0.758786 + 0.651340i \(0.774207\pi\)
\(654\) 0 0
\(655\) −66.8827 + 17.9212i −2.61332 + 0.700238i
\(656\) 5.82321 + 16.6418i 0.227358 + 0.649753i
\(657\) 0 0
\(658\) 8.37290 4.03217i 0.326409 0.157191i
\(659\) −24.3595 28.3063i −0.948912 1.10266i −0.994609 0.103700i \(-0.966932\pi\)
0.0456967 0.998955i \(-0.485449\pi\)
\(660\) 0 0
\(661\) 29.3605 + 4.42538i 1.14199 + 0.172127i 0.692678 0.721247i \(-0.256431\pi\)
0.449312 + 0.893375i \(0.351669\pi\)
\(662\) −2.26427 0.888659i −0.0880032 0.0345387i
\(663\) 0 0
\(664\) −10.6360 + 5.62130i −0.412758 + 0.218149i
\(665\) −1.55670 + 13.8161i −0.0603662 + 0.535765i
\(666\) 0 0
\(667\) −16.5871 + 32.9707i −0.642256 + 1.27663i
\(668\) −12.6668 7.31320i −0.490094 0.282956i
\(669\) 0 0
\(670\) 55.9724 + 2.09434i 2.16240 + 0.0809114i
\(671\) 21.8527 6.74068i 0.843615 0.260221i
\(672\) 0 0
\(673\) −33.4731 + 13.1372i −1.29029 + 0.506403i −0.908515 0.417852i \(-0.862783\pi\)
−0.381777 + 0.924254i \(0.624688\pi\)
\(674\) 23.3197 5.32257i 0.898242 0.205018i
\(675\) 0 0
\(676\) 5.65624 + 11.7453i 0.217548 + 0.451743i
\(677\) 0.118113 + 3.15663i 0.00453944 + 0.121319i 0.999728 + 0.0233373i \(0.00742916\pi\)
−0.995188 + 0.0979818i \(0.968761\pi\)
\(678\) 0 0
\(679\) 4.87691 + 1.30676i 0.187159 + 0.0501490i
\(680\) −1.94666 25.9764i −0.0746512 0.996151i
\(681\) 0 0
\(682\) 8.57173 + 3.73981i 0.328229 + 0.143205i
\(683\) −10.4087 + 21.6139i −0.398279 + 0.827035i 0.601328 + 0.799002i \(0.294638\pi\)
−0.999607 + 0.0280324i \(0.991076\pi\)
\(684\) 0 0
\(685\) 10.0006 3.49937i 0.382105 0.133704i
\(686\) 13.0497 0.488285i 0.498239 0.0186428i
\(687\) 0 0
\(688\) −1.42232 7.51715i −0.0542255 0.286588i
\(689\) 0.829713 0.769861i 0.0316095 0.0293294i
\(690\) 0 0
\(691\) 47.5965 7.17402i 1.81066 0.272913i 0.845384 0.534159i \(-0.179372\pi\)
0.965272 + 0.261246i \(0.0841334\pi\)
\(692\) 8.30496 + 1.89555i 0.315707 + 0.0720581i
\(693\) 0 0
\(694\) 11.6301 + 1.31040i 0.441472 + 0.0497420i
\(695\) 4.26642 7.38966i 0.161835 0.280306i
\(696\) 0 0
\(697\) −6.72152 11.6420i −0.254596 0.440973i
\(698\) 11.8523 + 27.1658i 0.448616 + 1.02824i
\(699\) 0 0
\(700\) −4.16072 + 4.48419i −0.157261 + 0.169487i
\(701\) −16.4837 20.6699i −0.622580 0.780691i 0.366125 0.930566i \(-0.380684\pi\)
−0.988705 + 0.149875i \(0.952113\pi\)
\(702\) 0 0
\(703\) 11.7333 + 51.4072i 0.442532 + 1.93886i
\(704\) 2.02552 1.74310i 0.0763397 0.0656956i
\(705\) 0 0
\(706\) 13.1023 24.7907i 0.493110 0.933010i
\(707\) 5.82389 + 5.01186i 0.219030 + 0.188490i
\(708\) 0 0
\(709\) −7.30713 10.7176i −0.274425 0.402508i 0.664141 0.747607i \(-0.268798\pi\)
−0.938566 + 0.345100i \(0.887845\pi\)
\(710\) 11.1958 + 99.3651i 0.420169 + 3.72910i
\(711\) 0 0
\(712\) −1.42429 0.685903i −0.0533776 0.0257053i
\(713\) −3.07818 11.4879i −0.115279 0.430227i
\(714\) 0 0
\(715\) 4.40806 + 2.32973i 0.164852 + 0.0871269i
\(716\) 10.1387 14.8708i 0.378902 0.555748i
\(717\) 0 0
\(718\) −14.4287 + 46.7767i −0.538475 + 1.74569i
\(719\) 27.3782 + 21.8334i 1.02104 + 0.814248i 0.982735 0.185018i \(-0.0592343\pi\)
0.0383000 + 0.999266i \(0.487806\pi\)
\(720\) 0 0
\(721\) 0.621948 2.72493i 0.0231626 0.101482i
\(722\) 17.1651 + 32.4780i 0.638820 + 1.20871i
\(723\) 0 0
\(724\) 17.0975 9.87126i 0.635425 0.366863i
\(725\) 28.6571 + 51.6819i 1.06430 + 1.91942i
\(726\) 0 0
\(727\) −24.5048 18.0854i −0.908833 0.670749i 0.0356307 0.999365i \(-0.488656\pi\)
−0.944464 + 0.328616i \(0.893418\pi\)
\(728\) 0.319450 + 0.200724i 0.0118396 + 0.00743931i
\(729\) 0 0
\(730\) 2.87866 2.29566i 0.106544 0.0849661i
\(731\) 2.13111 + 5.42997i 0.0788218 + 0.200835i
\(732\) 0 0
\(733\) −12.7738 + 2.41693i −0.471809 + 0.0892712i −0.416379 0.909191i \(-0.636701\pi\)
−0.0554309 + 0.998463i \(0.517653\pi\)
\(734\) 10.8046 + 7.36645i 0.398805 + 0.271901i
\(735\) 0 0
\(736\) 35.4392 + 6.70545i 1.30631 + 0.247166i
\(737\) −17.7110 17.7110i −0.652392 0.652392i
\(738\) 0 0
\(739\) 4.48512 0.505351i 0.164988 0.0185896i −0.0290842 0.999577i \(-0.509259\pi\)
0.194072 + 0.980987i \(0.437831\pi\)
\(740\) −13.5043 + 30.9521i −0.496427 + 1.13782i
\(741\) 0 0
\(742\) 0.694763 2.59289i 0.0255055 0.0951879i
\(743\) −3.18401 + 3.69989i −0.116810 + 0.135736i −0.813332 0.581800i \(-0.802349\pi\)
0.696522 + 0.717535i \(0.254730\pi\)
\(744\) 0 0
\(745\) −0.648549 + 8.65429i −0.0237610 + 0.317068i
\(746\) −19.3545 + 55.3121i −0.708620 + 2.02512i
\(747\) 0 0
\(748\) 7.49020 9.39241i 0.273869 0.343420i
\(749\) −0.193965 1.28687i −0.00708733 0.0470213i
\(750\) 0 0
\(751\) 0.361792 9.66910i 0.0132020 0.352830i −0.977004 0.213219i \(-0.931605\pi\)
0.990206 0.139611i \(-0.0445853\pi\)
\(752\) −44.6736 + 19.4909i −1.62908 + 0.710759i
\(753\) 0 0
\(754\) −2.89111 + 2.40214i −0.105288 + 0.0874807i
\(755\) 3.89879i 0.141891i
\(756\) 0 0
\(757\) 11.6705 18.5734i 0.424170 0.675063i −0.564455 0.825464i \(-0.690914\pi\)
0.988625 + 0.150401i \(0.0480564\pi\)
\(758\) −3.78385 3.51090i −0.137436 0.127522i
\(759\) 0 0
\(760\) 6.45369 42.8174i 0.234100 1.55315i
\(761\) 11.0195 + 11.8762i 0.399455 + 0.430510i 0.900463 0.434932i \(-0.143228\pi\)
−0.501008 + 0.865443i \(0.667037\pi\)
\(762\) 0 0
\(763\) 0.192841 + 0.0144514i 0.00698131 + 0.000523177i
\(764\) −14.8311 + 9.31897i −0.536569 + 0.337149i
\(765\) 0 0
\(766\) 17.4436 17.4436i 0.630264 0.630264i
\(767\) −0.724691 + 0.494086i −0.0261671 + 0.0178404i
\(768\) 0 0
\(769\) 13.2235 9.75941i 0.476853 0.351933i −0.328723 0.944426i \(-0.606618\pi\)
0.805576 + 0.592493i \(0.201856\pi\)
\(770\) 11.7915 0.883652i 0.424937 0.0318446i
\(771\) 0 0
\(772\) 0.394588 2.08545i 0.0142015 0.0750570i
\(773\) −2.74554 4.36951i −0.0987504 0.157160i 0.793695 0.608316i \(-0.208155\pi\)
−0.892445 + 0.451156i \(0.851012\pi\)
\(774\) 0 0
\(775\) −17.9742 6.28944i −0.645651 0.225923i
\(776\) −15.0258 4.63486i −0.539396 0.166382i
\(777\) 0 0
\(778\) 7.88406 20.0883i 0.282657 0.720199i
\(779\) −6.58661 21.3533i −0.235990 0.765060i
\(780\) 0 0
\(781\) 26.5526 35.9775i 0.950128 1.28738i
\(782\) −45.3691 −1.62239
\(783\) 0 0
\(784\) −33.4915 −1.19613
\(785\) 9.00623 12.2030i 0.321446 0.435544i
\(786\) 0 0
\(787\) −3.92570 12.7268i −0.139936 0.453661i 0.858292 0.513161i \(-0.171526\pi\)
−0.998228 + 0.0594998i \(0.981049\pi\)
\(788\) −5.48330 + 13.9712i −0.195335 + 0.497704i
\(789\) 0 0
\(790\) 79.3521 + 24.4769i 2.82322 + 0.870848i
\(791\) −10.1572 3.55417i −0.361150 0.126372i
\(792\) 0 0
\(793\) −1.57581 2.50789i −0.0559586 0.0890576i
\(794\) 2.93546 15.5143i 0.104176 0.550581i
\(795\) 0 0
\(796\) −17.5769 + 1.31720i −0.622995 + 0.0466870i
\(797\) 14.4981 10.7001i 0.513551 0.379018i −0.305994 0.952034i \(-0.598989\pi\)
0.819544 + 0.573016i \(0.194227\pi\)
\(798\) 0 0
\(799\) 30.7051 20.9344i 1.08627 0.740604i
\(800\) 40.8356 40.8356i 1.44376 1.44376i
\(801\) 0 0
\(802\) −30.9448 + 19.4439i −1.09270 + 0.686588i
\(803\) −1.64188 0.123042i −0.0579407 0.00434205i
\(804\) 0 0
\(805\) −10.2281 11.0233i −0.360495 0.388521i
\(806\) 0.180526 1.19771i 0.00635876 0.0421876i
\(807\) 0 0
\(808\) −17.5416 16.2762i −0.617111 0.572595i
\(809\) −9.46657 + 15.0660i −0.332827 + 0.529691i −0.970651 0.240491i \(-0.922692\pi\)
0.637825 + 0.770182i \(0.279834\pi\)
\(810\) 0 0
\(811\) 20.1055i 0.705999i −0.935623 0.353000i \(-0.885162\pi\)
0.935623 0.353000i \(-0.114838\pi\)
\(812\) −0.934356 + 2.85278i −0.0327895 + 0.100113i
\(813\) 0 0
\(814\) 41.1030 17.9331i 1.44066 0.628554i
\(815\) −0.0224165 + 0.599094i −0.000785216 + 0.0209853i
\(816\) 0 0
\(817\) 1.44517 + 9.58809i 0.0505602 + 0.335445i
\(818\) 25.5652 32.0578i 0.893866 1.12087i
\(819\) 0 0
\(820\) 4.72671 13.5082i 0.165064 0.471725i
\(821\) −1.06487 + 14.2097i −0.0371643 + 0.495923i 0.947301 + 0.320344i \(0.103799\pi\)
−0.984465 + 0.175579i \(0.943820\pi\)
\(822\) 0 0
\(823\) −14.4511 + 16.7925i −0.503734 + 0.585349i −0.951054 0.309024i \(-0.899997\pi\)
0.447320 + 0.894374i \(0.352378\pi\)
\(824\) −2.25296 + 8.40816i −0.0784856 + 0.292912i
\(825\) 0 0
\(826\) −0.831835 + 1.90659i −0.0289432 + 0.0663386i
\(827\) 44.4380 5.00696i 1.54526 0.174109i 0.702221 0.711959i \(-0.252192\pi\)
0.843040 + 0.537850i \(0.180763\pi\)
\(828\) 0 0
\(829\) −11.9822 11.9822i −0.416158 0.416158i 0.467719 0.883877i \(-0.345076\pi\)
−0.883877 + 0.467719i \(0.845076\pi\)
\(830\) 47.9823 + 9.07874i 1.66549 + 0.315128i
\(831\) 0 0
\(832\) −0.285965 0.194968i −0.00991406 0.00675929i
\(833\) 25.0907 4.74742i 0.869341 0.164488i
\(834\) 0 0
\(835\) −21.0327 53.5906i −0.727868 1.85458i
\(836\) 15.6128 12.4508i 0.539979 0.430619i
\(837\) 0 0
\(838\) 30.4026 + 19.1032i 1.05024 + 0.659909i
\(839\) −7.71941 5.69718i −0.266504 0.196689i 0.452368 0.891831i \(-0.350579\pi\)
−0.718872 + 0.695143i \(0.755341\pi\)
\(840\) 0 0
\(841\) 23.3809 + 17.1561i 0.806240 + 0.591589i
\(842\) −17.4658 + 10.0839i −0.601911 + 0.347514i
\(843\) 0 0
\(844\) −0.480974 0.910047i −0.0165558 0.0313251i
\(845\) −11.4179 + 50.0250i −0.392787 + 1.72091i
\(846\) 0 0
\(847\) 0.587199 + 0.468275i 0.0201764 + 0.0160901i
\(848\) −4.14977 + 13.4532i −0.142504 + 0.461986i
\(849\) 0 0
\(850\) −40.9211 + 60.0202i −1.40358 + 2.05868i
\(851\) −50.4212 26.6484i −1.72842 0.913494i
\(852\) 0 0
\(853\) 1.46139 + 5.45398i 0.0500370 + 0.186741i 0.986421 0.164237i \(-0.0525161\pi\)
−0.936384 + 0.350977i \(0.885849\pi\)
\(854\) −6.32882 3.04780i −0.216568 0.104293i
\(855\) 0 0
\(856\) 0.453804 + 4.02762i 0.0155107 + 0.137661i
\(857\) −30.7559 45.1106i −1.05060 1.54095i −0.823695 0.567033i \(-0.808091\pi\)
−0.226907 0.973916i \(-0.572861\pi\)
\(858\) 0 0
\(859\) 35.5018 + 30.5518i 1.21131 + 1.04241i 0.997855 + 0.0654604i \(0.0208516\pi\)
0.213452 + 0.976954i \(0.431529\pi\)
\(860\) −2.90171 + 5.49030i −0.0989475 + 0.187218i
\(861\) 0 0
\(862\) 34.1545 29.3923i 1.16331 1.00111i
\(863\) 0.932385 + 4.08505i 0.0317388 + 0.139057i 0.988315 0.152426i \(-0.0487086\pi\)
−0.956576 + 0.291483i \(0.905851\pi\)
\(864\) 0 0
\(865\) 20.9052 + 26.2143i 0.710799 + 0.891313i
\(866\) −19.4218 + 20.9318i −0.659981 + 0.711290i
\(867\) 0 0
\(868\) −0.386826 0.886615i −0.0131297 0.0300937i
\(869\) −18.5671 32.1592i −0.629846 1.09092i
\(870\) 0 0
\(871\) −1.62200 + 2.80939i −0.0549594 + 0.0951925i
\(872\) −0.598481 0.0674326i −0.0202671 0.00228356i
\(873\) 0 0
\(874\) −73.5251 16.7816i −2.48702 0.567647i
\(875\) −12.9605 + 1.95348i −0.438145 + 0.0660398i
\(876\) 0 0
\(877\) −15.7253 + 14.5910i −0.531006 + 0.492702i −0.899495 0.436930i \(-0.856066\pi\)
0.368489 + 0.929632i \(0.379875\pi\)
\(878\) 5.27636 + 27.8862i 0.178068 + 0.941115i
\(879\) 0 0
\(880\) −61.9733 + 2.31888i −2.08912 + 0.0781693i
\(881\) 5.61368 1.96431i 0.189130 0.0661794i −0.234052 0.972224i \(-0.575199\pi\)
0.423182 + 0.906045i \(0.360913\pi\)
\(882\) 0 0
\(883\) −3.41041 + 7.08180i −0.114770 + 0.238321i −0.950439 0.310911i \(-0.899366\pi\)
0.835669 + 0.549233i \(0.185080\pi\)
\(884\) −1.42610 0.622201i −0.0479649 0.0209269i
\(885\) 0 0
\(886\) 1.24757 + 16.6477i 0.0419129 + 0.559289i
\(887\) 17.1389 + 4.59235i 0.575467 + 0.154196i 0.534803 0.844977i \(-0.320386\pi\)
0.0406644 + 0.999173i \(0.487053\pi\)
\(888\) 0 0
\(889\) 0.0923016 + 2.46681i 0.00309570 + 0.0827343i
\(890\) 2.78427 + 5.78160i 0.0933289 + 0.193800i
\(891\) 0 0
\(892\) −15.5008 + 3.53795i −0.519004 + 0.118459i
\(893\) 57.5040 22.5687i 1.92430 0.755232i
\(894\) 0 0
\(895\) 67.6944 20.8809i 2.26277 0.697973i
\(896\) −6.59430 0.246741i −0.220300 0.00824305i
\(897\) 0 0
\(898\) −2.33308 1.34701i −0.0778560 0.0449502i
\(899\) −9.30290 + 0.885362i −0.310269 + 0.0295285i
\(900\) 0 0
\(901\) 1.20187 10.6669i 0.0400402 0.355367i
\(902\) −16.8024 + 8.88031i −0.559458 + 0.295682i
\(903\) 0 0
\(904\) 31.1977 + 12.2442i 1.03762 + 0.407236i
\(905\) 76.8395 + 11.5817i 2.55423 + 0.384989i
\(906\) 0 0
\(907\) 4.87330 + 5.66288i 0.161815 + 0.188033i 0.833026 0.553234i \(-0.186606\pi\)
−0.671211 + 0.741267i \(0.734225\pi\)
\(908\) 11.5570 5.56555i 0.383532 0.184699i
\(909\) 0 0
\(910\) −0.505813 1.44553i −0.0167676 0.0479189i
\(911\) 24.1576 6.47302i 0.800378 0.214461i 0.164628 0.986356i \(-0.447358\pi\)
0.635750 + 0.771895i \(0.280691\pi\)
\(912\) 0 0
\(913\) −12.9674 17.5702i −0.429159 0.581490i
\(914\) 14.8225 + 20.0837i 0.490283 + 0.664310i
\(915\) 0 0
\(916\) −7.52266 + 2.01569i −0.248556 + 0.0666003i
\(917\) −3.14124 8.97715i −0.103733 0.296452i
\(918\) 0 0
\(919\) 31.6896 15.2609i 1.04534 0.503410i 0.169260 0.985572i \(-0.445862\pi\)
0.876082 + 0.482161i \(0.160148\pi\)
\(920\) 30.5486 + 35.4981i 1.00716 + 1.17034i
\(921\) 0 0
\(922\) −59.4251 8.95689i −1.95706 0.294980i
\(923\) −5.39097 2.11580i −0.177446 0.0696425i
\(924\) 0 0
\(925\) −80.7319 + 42.6681i −2.65445 + 1.40292i
\(926\) 3.05892 27.1486i 0.100522 0.892160i
\(927\) 0 0
\(928\) 9.82184 26.5836i 0.322418 0.872648i
\(929\) 4.85046 + 2.80041i 0.159138 + 0.0918786i 0.577454 0.816423i \(-0.304046\pi\)
−0.418316 + 0.908302i \(0.637379\pi\)
\(930\) 0 0
\(931\) 42.4180 + 1.58717i 1.39019 + 0.0520174i
\(932\) −24.5018 + 7.55779i −0.802582 + 0.247564i
\(933\) 0 0
\(934\) −1.80720 + 0.709272i −0.0591333 + 0.0232081i
\(935\) 46.0995 10.5219i 1.50762 0.344103i
\(936\) 0 0
\(937\) −10.7173 22.2548i −0.350120 0.727033i 0.649319 0.760516i \(-0.275054\pi\)
−0.999439 + 0.0334837i \(0.989340\pi\)
\(938\) 0.287672 + 7.68819i 0.00939282 + 0.251028i
\(939\) 0 0
\(940\) 38.2145 + 10.2396i 1.24642 + 0.333977i
\(941\) −0.708850 9.45895i −0.0231079 0.308353i −0.996767 0.0803450i \(-0.974398\pi\)
0.973659 0.228008i \(-0.0732212\pi\)
\(942\) 0 0
\(943\) 22.1521 + 9.66487i 0.721373 + 0.314732i
\(944\) 4.73359 9.82940i 0.154065 0.319920i
\(945\) 0 0
\(946\) 7.78376 2.72365i 0.253072 0.0885536i
\(947\) 59.3770 2.22173i 1.92949 0.0721966i 0.954999 0.296609i \(-0.0958557\pi\)
0.974494 + 0.224412i \(0.0720462\pi\)
\(948\) 0 0
\(949\) 0.0396449 + 0.209528i 0.00128693 + 0.00680158i
\(950\) −88.5177 + 82.1324i −2.87189 + 2.66473i
\(951\) 0 0
\(952\) 3.53808 0.533280i 0.114670 0.0172837i
\(953\) 15.1319 + 3.45376i 0.490170 + 0.111878i 0.460460 0.887680i \(-0.347684\pi\)
0.0297101 + 0.999559i \(0.490542\pi\)
\(954\) 0 0
\(955\) −68.5095 7.71917i −2.21692 0.249786i
\(956\) 10.7188 18.5655i 0.346671 0.600452i
\(957\) 0 0
\(958\) −33.9537 58.8096i −1.09700 1.90005i
\(959\) 0.581972 + 1.33390i 0.0187929 + 0.0430737i
\(960\) 0 0
\(961\) −19.0371 + 20.5172i −0.614102 + 0.661844i
\(962\) −3.62131 4.54097i −0.116756 0.146407i
\(963\) 0 0
\(964\) 5.35836 + 23.4765i 0.172581 + 0.756128i
\(965\) 6.33215 5.44925i 0.203839 0.175418i
\(966\) 0 0
\(967\) 20.6198 39.0147i 0.663090 1.25463i −0.291462 0.956582i \(-0.594142\pi\)
0.954552 0.298044i \(-0.0963344\pi\)
\(968\) −1.77296 1.52576i −0.0569851 0.0490397i
\(969\) 0 0
\(970\) 35.9566 + 52.7387i 1.15450 + 1.69334i
\(971\) −5.19866 46.1394i −0.166833 1.48068i −0.746257 0.665658i \(-0.768151\pi\)
0.579424 0.815027i \(-0.303278\pi\)
\(972\) 0 0
\(973\) 1.05598 + 0.508531i 0.0338530 + 0.0163028i
\(974\) 2.21784 + 8.27708i 0.0710641 + 0.265215i
\(975\) 0 0
\(976\) 32.5720 + 17.2148i 1.04260 + 0.551032i
\(977\) 1.40916 2.06686i 0.0450830 0.0661247i −0.803035 0.595931i \(-0.796783\pi\)
0.848119 + 0.529807i \(0.177735\pi\)
\(978\) 0 0
\(979\) 0.845822 2.74209i 0.0270326 0.0876375i
\(980\) 21.2542 + 16.9496i 0.678940 + 0.541437i
\(981\) 0 0
\(982\) −3.84529 + 16.8473i −0.122708 + 0.537619i
\(983\) −28.3854 53.7078i −0.905353 1.71301i −0.671898 0.740643i \(-0.734521\pi\)
−0.233455 0.972368i \(-0.575003\pi\)
\(984\) 0 0
\(985\) −51.1605 + 29.5375i −1.63011 + 0.941143i
\(986\) −5.92261 + 35.1528i −0.188614 + 1.11949i
\(987\) 0 0
\(988\) −2.08099 1.53584i −0.0662051 0.0488616i
\(989\) −8.87984 5.57957i −0.282362 0.177420i
\(990\) 0 0
\(991\) 0.911519 0.726912i 0.0289554 0.0230911i −0.608905 0.793243i \(-0.708391\pi\)
0.637861 + 0.770152i \(0.279820\pi\)
\(992\) 3.33638 + 8.50097i 0.105930 + 0.269906i
\(993\) 0 0
\(994\) −13.4954 + 2.55347i −0.428048 + 0.0809910i
\(995\) −57.3222 39.0816i −1.81724 1.23897i
\(996\) 0 0
\(997\) −22.2279 4.20575i −0.703965 0.133197i −0.178409 0.983956i \(-0.557095\pi\)
−0.525556 + 0.850759i \(0.676143\pi\)
\(998\) −51.0449 51.0449i −1.61580 1.61580i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.be.a.143.7 672
3.2 odd 2 261.2.x.a.56.22 yes 672
9.4 even 3 261.2.x.a.230.7 yes 672
9.5 odd 6 inner 783.2.be.a.665.22 672
29.14 odd 28 inner 783.2.be.a.710.22 672
87.14 even 28 261.2.x.a.101.7 yes 672
261.14 even 84 inner 783.2.be.a.449.7 672
261.130 odd 84 261.2.x.a.14.22 672
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.x.a.14.22 672 261.130 odd 84
261.2.x.a.56.22 yes 672 3.2 odd 2
261.2.x.a.101.7 yes 672 87.14 even 28
261.2.x.a.230.7 yes 672 9.4 even 3
783.2.be.a.143.7 672 1.1 even 1 trivial
783.2.be.a.449.7 672 261.14 even 84 inner
783.2.be.a.665.22 672 9.5 odd 6 inner
783.2.be.a.710.22 672 29.14 odd 28 inner