Properties

Label 783.2.a.e.1.3
Level $783$
Weight $2$
Character 783.1
Self dual yes
Analytic conductor $6.252$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(1,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.25228647827\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 783.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.801938 q^{2} -1.35690 q^{4} +1.69202 q^{5} -4.29590 q^{7} -2.69202 q^{8} +1.35690 q^{10} +3.96077 q^{11} -2.24698 q^{13} -3.44504 q^{14} +0.554958 q^{16} -5.80194 q^{17} -1.19806 q^{19} -2.29590 q^{20} +3.17629 q^{22} -7.04892 q^{23} -2.13706 q^{25} -1.80194 q^{26} +5.82908 q^{28} -1.00000 q^{29} +1.64310 q^{31} +5.82908 q^{32} -4.65279 q^{34} -7.26875 q^{35} -7.13706 q^{37} -0.960771 q^{38} -4.55496 q^{40} -10.8509 q^{41} +4.96615 q^{43} -5.37435 q^{44} -5.65279 q^{46} +0.740939 q^{47} +11.4547 q^{49} -1.71379 q^{50} +3.04892 q^{52} +0.445042 q^{53} +6.70171 q^{55} +11.5646 q^{56} -0.801938 q^{58} -1.18060 q^{59} +11.6136 q^{61} +1.31767 q^{62} +3.56465 q^{64} -3.80194 q^{65} -14.4819 q^{67} +7.87263 q^{68} -5.82908 q^{70} +12.7778 q^{71} +8.53750 q^{73} -5.72348 q^{74} +1.62565 q^{76} -17.0151 q^{77} +8.57002 q^{79} +0.939001 q^{80} -8.70171 q^{82} +6.17092 q^{83} -9.81700 q^{85} +3.98254 q^{86} -10.6625 q^{88} -7.51573 q^{89} +9.65279 q^{91} +9.56465 q^{92} +0.594187 q^{94} -2.02715 q^{95} +6.64071 q^{97} +9.18598 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + q^{7} - 3 q^{8} - q^{11} - 2 q^{13} - 10 q^{14} + 2 q^{16} - 13 q^{17} - 8 q^{19} + 7 q^{20} + 17 q^{22} - 12 q^{23} - q^{25} - q^{26} + 7 q^{28} - 3 q^{29} + 9 q^{31} + 7 q^{32} + 4 q^{34}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.801938 0.567056 0.283528 0.958964i \(-0.408495\pi\)
0.283528 + 0.958964i \(0.408495\pi\)
\(3\) 0 0
\(4\) −1.35690 −0.678448
\(5\) 1.69202 0.756695 0.378348 0.925664i \(-0.376492\pi\)
0.378348 + 0.925664i \(0.376492\pi\)
\(6\) 0 0
\(7\) −4.29590 −1.62370 −0.811848 0.583869i \(-0.801538\pi\)
−0.811848 + 0.583869i \(0.801538\pi\)
\(8\) −2.69202 −0.951773
\(9\) 0 0
\(10\) 1.35690 0.429088
\(11\) 3.96077 1.19422 0.597109 0.802160i \(-0.296316\pi\)
0.597109 + 0.802160i \(0.296316\pi\)
\(12\) 0 0
\(13\) −2.24698 −0.623200 −0.311600 0.950213i \(-0.600865\pi\)
−0.311600 + 0.950213i \(0.600865\pi\)
\(14\) −3.44504 −0.920726
\(15\) 0 0
\(16\) 0.554958 0.138740
\(17\) −5.80194 −1.40718 −0.703588 0.710608i \(-0.748420\pi\)
−0.703588 + 0.710608i \(0.748420\pi\)
\(18\) 0 0
\(19\) −1.19806 −0.274854 −0.137427 0.990512i \(-0.543883\pi\)
−0.137427 + 0.990512i \(0.543883\pi\)
\(20\) −2.29590 −0.513378
\(21\) 0 0
\(22\) 3.17629 0.677188
\(23\) −7.04892 −1.46980 −0.734900 0.678175i \(-0.762771\pi\)
−0.734900 + 0.678175i \(0.762771\pi\)
\(24\) 0 0
\(25\) −2.13706 −0.427413
\(26\) −1.80194 −0.353389
\(27\) 0 0
\(28\) 5.82908 1.10159
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 1.64310 0.295110 0.147555 0.989054i \(-0.452860\pi\)
0.147555 + 0.989054i \(0.452860\pi\)
\(32\) 5.82908 1.03045
\(33\) 0 0
\(34\) −4.65279 −0.797947
\(35\) −7.26875 −1.22864
\(36\) 0 0
\(37\) −7.13706 −1.17333 −0.586663 0.809831i \(-0.699559\pi\)
−0.586663 + 0.809831i \(0.699559\pi\)
\(38\) −0.960771 −0.155858
\(39\) 0 0
\(40\) −4.55496 −0.720202
\(41\) −10.8509 −1.69462 −0.847309 0.531100i \(-0.821779\pi\)
−0.847309 + 0.531100i \(0.821779\pi\)
\(42\) 0 0
\(43\) 4.96615 0.757330 0.378665 0.925534i \(-0.376383\pi\)
0.378665 + 0.925534i \(0.376383\pi\)
\(44\) −5.37435 −0.810214
\(45\) 0 0
\(46\) −5.65279 −0.833459
\(47\) 0.740939 0.108077 0.0540385 0.998539i \(-0.482791\pi\)
0.0540385 + 0.998539i \(0.482791\pi\)
\(48\) 0 0
\(49\) 11.4547 1.63639
\(50\) −1.71379 −0.242367
\(51\) 0 0
\(52\) 3.04892 0.422809
\(53\) 0.445042 0.0611312 0.0305656 0.999533i \(-0.490269\pi\)
0.0305656 + 0.999533i \(0.490269\pi\)
\(54\) 0 0
\(55\) 6.70171 0.903658
\(56\) 11.5646 1.54539
\(57\) 0 0
\(58\) −0.801938 −0.105300
\(59\) −1.18060 −0.153702 −0.0768508 0.997043i \(-0.524487\pi\)
−0.0768508 + 0.997043i \(0.524487\pi\)
\(60\) 0 0
\(61\) 11.6136 1.48696 0.743482 0.668756i \(-0.233173\pi\)
0.743482 + 0.668756i \(0.233173\pi\)
\(62\) 1.31767 0.167344
\(63\) 0 0
\(64\) 3.56465 0.445581
\(65\) −3.80194 −0.471572
\(66\) 0 0
\(67\) −14.4819 −1.76924 −0.884621 0.466310i \(-0.845583\pi\)
−0.884621 + 0.466310i \(0.845583\pi\)
\(68\) 7.87263 0.954696
\(69\) 0 0
\(70\) −5.82908 −0.696709
\(71\) 12.7778 1.51644 0.758221 0.651997i \(-0.226069\pi\)
0.758221 + 0.651997i \(0.226069\pi\)
\(72\) 0 0
\(73\) 8.53750 0.999239 0.499619 0.866245i \(-0.333473\pi\)
0.499619 + 0.866245i \(0.333473\pi\)
\(74\) −5.72348 −0.665341
\(75\) 0 0
\(76\) 1.62565 0.186474
\(77\) −17.0151 −1.93905
\(78\) 0 0
\(79\) 8.57002 0.964203 0.482101 0.876115i \(-0.339874\pi\)
0.482101 + 0.876115i \(0.339874\pi\)
\(80\) 0.939001 0.104984
\(81\) 0 0
\(82\) −8.70171 −0.960943
\(83\) 6.17092 0.677346 0.338673 0.940904i \(-0.390022\pi\)
0.338673 + 0.940904i \(0.390022\pi\)
\(84\) 0 0
\(85\) −9.81700 −1.06480
\(86\) 3.98254 0.429449
\(87\) 0 0
\(88\) −10.6625 −1.13662
\(89\) −7.51573 −0.796666 −0.398333 0.917241i \(-0.630411\pi\)
−0.398333 + 0.917241i \(0.630411\pi\)
\(90\) 0 0
\(91\) 9.65279 1.01189
\(92\) 9.56465 0.997183
\(93\) 0 0
\(94\) 0.594187 0.0612857
\(95\) −2.02715 −0.207981
\(96\) 0 0
\(97\) 6.64071 0.674262 0.337131 0.941458i \(-0.390543\pi\)
0.337131 + 0.941458i \(0.390543\pi\)
\(98\) 9.18598 0.927924
\(99\) 0 0
\(100\) 2.89977 0.289977
\(101\) 1.65519 0.164697 0.0823486 0.996604i \(-0.473758\pi\)
0.0823486 + 0.996604i \(0.473758\pi\)
\(102\) 0 0
\(103\) −4.59419 −0.452679 −0.226339 0.974049i \(-0.572676\pi\)
−0.226339 + 0.974049i \(0.572676\pi\)
\(104\) 6.04892 0.593145
\(105\) 0 0
\(106\) 0.356896 0.0346648
\(107\) −17.1129 −1.65437 −0.827183 0.561932i \(-0.810058\pi\)
−0.827183 + 0.561932i \(0.810058\pi\)
\(108\) 0 0
\(109\) −10.1588 −0.973040 −0.486520 0.873669i \(-0.661734\pi\)
−0.486520 + 0.873669i \(0.661734\pi\)
\(110\) 5.37435 0.512425
\(111\) 0 0
\(112\) −2.38404 −0.225271
\(113\) −15.5211 −1.46010 −0.730051 0.683392i \(-0.760504\pi\)
−0.730051 + 0.683392i \(0.760504\pi\)
\(114\) 0 0
\(115\) −11.9269 −1.11219
\(116\) 1.35690 0.125985
\(117\) 0 0
\(118\) −0.946771 −0.0871573
\(119\) 24.9245 2.28483
\(120\) 0 0
\(121\) 4.68771 0.426155
\(122\) 9.31336 0.843192
\(123\) 0 0
\(124\) −2.22952 −0.200217
\(125\) −12.0761 −1.08012
\(126\) 0 0
\(127\) 12.0151 1.06616 0.533082 0.846063i \(-0.321034\pi\)
0.533082 + 0.846063i \(0.321034\pi\)
\(128\) −8.79954 −0.777777
\(129\) 0 0
\(130\) −3.04892 −0.267408
\(131\) 17.1903 1.50192 0.750961 0.660346i \(-0.229590\pi\)
0.750961 + 0.660346i \(0.229590\pi\)
\(132\) 0 0
\(133\) 5.14675 0.446280
\(134\) −11.6136 −1.00326
\(135\) 0 0
\(136\) 15.6189 1.33931
\(137\) −2.76809 −0.236494 −0.118247 0.992984i \(-0.537727\pi\)
−0.118247 + 0.992984i \(0.537727\pi\)
\(138\) 0 0
\(139\) −0.625646 −0.0530666 −0.0265333 0.999648i \(-0.508447\pi\)
−0.0265333 + 0.999648i \(0.508447\pi\)
\(140\) 9.86294 0.833570
\(141\) 0 0
\(142\) 10.2470 0.859907
\(143\) −8.89977 −0.744236
\(144\) 0 0
\(145\) −1.69202 −0.140515
\(146\) 6.84654 0.566624
\(147\) 0 0
\(148\) 9.68425 0.796041
\(149\) 13.0911 1.07247 0.536234 0.844070i \(-0.319847\pi\)
0.536234 + 0.844070i \(0.319847\pi\)
\(150\) 0 0
\(151\) 14.9095 1.21331 0.606657 0.794963i \(-0.292510\pi\)
0.606657 + 0.794963i \(0.292510\pi\)
\(152\) 3.22521 0.261599
\(153\) 0 0
\(154\) −13.6450 −1.09955
\(155\) 2.78017 0.223308
\(156\) 0 0
\(157\) −4.49396 −0.358657 −0.179328 0.983789i \(-0.557392\pi\)
−0.179328 + 0.983789i \(0.557392\pi\)
\(158\) 6.87263 0.546757
\(159\) 0 0
\(160\) 9.86294 0.779734
\(161\) 30.2814 2.38651
\(162\) 0 0
\(163\) 13.8834 1.08743 0.543715 0.839270i \(-0.317017\pi\)
0.543715 + 0.839270i \(0.317017\pi\)
\(164\) 14.7235 1.14971
\(165\) 0 0
\(166\) 4.94869 0.384093
\(167\) 16.8538 1.30419 0.652095 0.758138i \(-0.273890\pi\)
0.652095 + 0.758138i \(0.273890\pi\)
\(168\) 0 0
\(169\) −7.95108 −0.611622
\(170\) −7.87263 −0.603803
\(171\) 0 0
\(172\) −6.73855 −0.513809
\(173\) −8.16421 −0.620713 −0.310357 0.950620i \(-0.600448\pi\)
−0.310357 + 0.950620i \(0.600448\pi\)
\(174\) 0 0
\(175\) 9.18060 0.693988
\(176\) 2.19806 0.165685
\(177\) 0 0
\(178\) −6.02715 −0.451754
\(179\) −9.88769 −0.739041 −0.369520 0.929223i \(-0.620478\pi\)
−0.369520 + 0.929223i \(0.620478\pi\)
\(180\) 0 0
\(181\) −22.9952 −1.70922 −0.854610 0.519270i \(-0.826204\pi\)
−0.854610 + 0.519270i \(0.826204\pi\)
\(182\) 7.74094 0.573797
\(183\) 0 0
\(184\) 18.9758 1.39892
\(185\) −12.0761 −0.887850
\(186\) 0 0
\(187\) −22.9801 −1.68047
\(188\) −1.00538 −0.0733246
\(189\) 0 0
\(190\) −1.62565 −0.117937
\(191\) 5.05861 0.366028 0.183014 0.983110i \(-0.441415\pi\)
0.183014 + 0.983110i \(0.441415\pi\)
\(192\) 0 0
\(193\) −6.31229 −0.454369 −0.227184 0.973852i \(-0.572952\pi\)
−0.227184 + 0.973852i \(0.572952\pi\)
\(194\) 5.32544 0.382344
\(195\) 0 0
\(196\) −15.5429 −1.11021
\(197\) 4.53319 0.322976 0.161488 0.986875i \(-0.448371\pi\)
0.161488 + 0.986875i \(0.448371\pi\)
\(198\) 0 0
\(199\) −4.49934 −0.318949 −0.159475 0.987202i \(-0.550980\pi\)
−0.159475 + 0.987202i \(0.550980\pi\)
\(200\) 5.75302 0.406800
\(201\) 0 0
\(202\) 1.32736 0.0933924
\(203\) 4.29590 0.301513
\(204\) 0 0
\(205\) −18.3599 −1.28231
\(206\) −3.68425 −0.256694
\(207\) 0 0
\(208\) −1.24698 −0.0864625
\(209\) −4.74525 −0.328236
\(210\) 0 0
\(211\) −15.0411 −1.03548 −0.517738 0.855539i \(-0.673226\pi\)
−0.517738 + 0.855539i \(0.673226\pi\)
\(212\) −0.603875 −0.0414743
\(213\) 0 0
\(214\) −13.7235 −0.938118
\(215\) 8.40283 0.573068
\(216\) 0 0
\(217\) −7.05861 −0.479169
\(218\) −8.14675 −0.551768
\(219\) 0 0
\(220\) −9.09352 −0.613085
\(221\) 13.0368 0.876952
\(222\) 0 0
\(223\) 17.0532 1.14197 0.570984 0.820961i \(-0.306562\pi\)
0.570984 + 0.820961i \(0.306562\pi\)
\(224\) −25.0411 −1.67313
\(225\) 0 0
\(226\) −12.4470 −0.827960
\(227\) −17.3884 −1.15411 −0.577053 0.816707i \(-0.695797\pi\)
−0.577053 + 0.816707i \(0.695797\pi\)
\(228\) 0 0
\(229\) 24.6843 1.63118 0.815591 0.578629i \(-0.196412\pi\)
0.815591 + 0.578629i \(0.196412\pi\)
\(230\) −9.56465 −0.630674
\(231\) 0 0
\(232\) 2.69202 0.176740
\(233\) 11.1618 0.731235 0.365617 0.930765i \(-0.380858\pi\)
0.365617 + 0.930765i \(0.380858\pi\)
\(234\) 0 0
\(235\) 1.25368 0.0817814
\(236\) 1.60196 0.104278
\(237\) 0 0
\(238\) 19.9879 1.29562
\(239\) −12.4209 −0.803440 −0.401720 0.915763i \(-0.631587\pi\)
−0.401720 + 0.915763i \(0.631587\pi\)
\(240\) 0 0
\(241\) −16.1715 −1.04170 −0.520849 0.853649i \(-0.674385\pi\)
−0.520849 + 0.853649i \(0.674385\pi\)
\(242\) 3.75925 0.241654
\(243\) 0 0
\(244\) −15.7584 −1.00883
\(245\) 19.3817 1.23825
\(246\) 0 0
\(247\) 2.69202 0.171289
\(248\) −4.42327 −0.280878
\(249\) 0 0
\(250\) −9.68425 −0.612486
\(251\) −8.75063 −0.552335 −0.276167 0.961110i \(-0.589064\pi\)
−0.276167 + 0.961110i \(0.589064\pi\)
\(252\) 0 0
\(253\) −27.9191 −1.75526
\(254\) 9.63533 0.604575
\(255\) 0 0
\(256\) −14.1860 −0.886624
\(257\) −26.0368 −1.62413 −0.812067 0.583565i \(-0.801657\pi\)
−0.812067 + 0.583565i \(0.801657\pi\)
\(258\) 0 0
\(259\) 30.6601 1.90513
\(260\) 5.15883 0.319937
\(261\) 0 0
\(262\) 13.7855 0.851674
\(263\) 11.9379 0.736125 0.368062 0.929801i \(-0.380021\pi\)
0.368062 + 0.929801i \(0.380021\pi\)
\(264\) 0 0
\(265\) 0.753020 0.0462577
\(266\) 4.12737 0.253066
\(267\) 0 0
\(268\) 19.6504 1.20034
\(269\) −10.7289 −0.654150 −0.327075 0.944998i \(-0.606063\pi\)
−0.327075 + 0.944998i \(0.606063\pi\)
\(270\) 0 0
\(271\) −0.572417 −0.0347718 −0.0173859 0.999849i \(-0.505534\pi\)
−0.0173859 + 0.999849i \(0.505534\pi\)
\(272\) −3.21983 −0.195231
\(273\) 0 0
\(274\) −2.21983 −0.134105
\(275\) −8.46442 −0.510424
\(276\) 0 0
\(277\) 27.7603 1.66796 0.833978 0.551798i \(-0.186058\pi\)
0.833978 + 0.551798i \(0.186058\pi\)
\(278\) −0.501729 −0.0300917
\(279\) 0 0
\(280\) 19.5676 1.16939
\(281\) −29.6243 −1.76724 −0.883619 0.468206i \(-0.844901\pi\)
−0.883619 + 0.468206i \(0.844901\pi\)
\(282\) 0 0
\(283\) 2.00969 0.119464 0.0597318 0.998214i \(-0.480975\pi\)
0.0597318 + 0.998214i \(0.480975\pi\)
\(284\) −17.3381 −1.02883
\(285\) 0 0
\(286\) −7.13706 −0.422023
\(287\) 46.6142 2.75155
\(288\) 0 0
\(289\) 16.6625 0.980146
\(290\) −1.35690 −0.0796797
\(291\) 0 0
\(292\) −11.5845 −0.677931
\(293\) −20.9729 −1.22525 −0.612624 0.790375i \(-0.709886\pi\)
−0.612624 + 0.790375i \(0.709886\pi\)
\(294\) 0 0
\(295\) −1.99761 −0.116305
\(296\) 19.2131 1.11674
\(297\) 0 0
\(298\) 10.4983 0.608149
\(299\) 15.8388 0.915980
\(300\) 0 0
\(301\) −21.3341 −1.22967
\(302\) 11.9565 0.688017
\(303\) 0 0
\(304\) −0.664874 −0.0381332
\(305\) 19.6504 1.12518
\(306\) 0 0
\(307\) −17.4644 −0.996747 −0.498374 0.866962i \(-0.666069\pi\)
−0.498374 + 0.866962i \(0.666069\pi\)
\(308\) 23.0877 1.31554
\(309\) 0 0
\(310\) 2.22952 0.126628
\(311\) 18.0054 1.02099 0.510496 0.859880i \(-0.329462\pi\)
0.510496 + 0.859880i \(0.329462\pi\)
\(312\) 0 0
\(313\) 22.2161 1.25573 0.627864 0.778323i \(-0.283929\pi\)
0.627864 + 0.778323i \(0.283929\pi\)
\(314\) −3.60388 −0.203378
\(315\) 0 0
\(316\) −11.6286 −0.654162
\(317\) −16.1521 −0.907194 −0.453597 0.891207i \(-0.649859\pi\)
−0.453597 + 0.891207i \(0.649859\pi\)
\(318\) 0 0
\(319\) −3.96077 −0.221761
\(320\) 6.03146 0.337169
\(321\) 0 0
\(322\) 24.2838 1.35328
\(323\) 6.95108 0.386769
\(324\) 0 0
\(325\) 4.80194 0.266364
\(326\) 11.1336 0.616633
\(327\) 0 0
\(328\) 29.2107 1.61289
\(329\) −3.18300 −0.175484
\(330\) 0 0
\(331\) −16.2687 −0.894211 −0.447106 0.894481i \(-0.647545\pi\)
−0.447106 + 0.894481i \(0.647545\pi\)
\(332\) −8.37329 −0.459544
\(333\) 0 0
\(334\) 13.5157 0.739548
\(335\) −24.5036 −1.33878
\(336\) 0 0
\(337\) 9.18060 0.500099 0.250050 0.968233i \(-0.419553\pi\)
0.250050 + 0.968233i \(0.419553\pi\)
\(338\) −6.37627 −0.346824
\(339\) 0 0
\(340\) 13.3207 0.722414
\(341\) 6.50796 0.352426
\(342\) 0 0
\(343\) −19.1371 −1.03330
\(344\) −13.3690 −0.720807
\(345\) 0 0
\(346\) −6.54719 −0.351979
\(347\) −6.53750 −0.350951 −0.175476 0.984484i \(-0.556146\pi\)
−0.175476 + 0.984484i \(0.556146\pi\)
\(348\) 0 0
\(349\) −22.1987 −1.18827 −0.594133 0.804367i \(-0.702505\pi\)
−0.594133 + 0.804367i \(0.702505\pi\)
\(350\) 7.36227 0.393530
\(351\) 0 0
\(352\) 23.0877 1.23058
\(353\) −17.2959 −0.920568 −0.460284 0.887772i \(-0.652252\pi\)
−0.460284 + 0.887772i \(0.652252\pi\)
\(354\) 0 0
\(355\) 21.6203 1.14748
\(356\) 10.1981 0.540496
\(357\) 0 0
\(358\) −7.92931 −0.419077
\(359\) −27.9627 −1.47581 −0.737907 0.674902i \(-0.764186\pi\)
−0.737907 + 0.674902i \(0.764186\pi\)
\(360\) 0 0
\(361\) −17.5646 −0.924455
\(362\) −18.4407 −0.969223
\(363\) 0 0
\(364\) −13.0978 −0.686513
\(365\) 14.4456 0.756119
\(366\) 0 0
\(367\) −26.0151 −1.35798 −0.678988 0.734150i \(-0.737581\pi\)
−0.678988 + 0.734150i \(0.737581\pi\)
\(368\) −3.91185 −0.203919
\(369\) 0 0
\(370\) −9.68425 −0.503460
\(371\) −1.91185 −0.0992585
\(372\) 0 0
\(373\) 5.76032 0.298258 0.149129 0.988818i \(-0.452353\pi\)
0.149129 + 0.988818i \(0.452353\pi\)
\(374\) −18.4286 −0.952923
\(375\) 0 0
\(376\) −1.99462 −0.102865
\(377\) 2.24698 0.115725
\(378\) 0 0
\(379\) 24.6122 1.26425 0.632123 0.774868i \(-0.282184\pi\)
0.632123 + 0.774868i \(0.282184\pi\)
\(380\) 2.75063 0.141104
\(381\) 0 0
\(382\) 4.05669 0.207558
\(383\) −8.89307 −0.454415 −0.227207 0.973846i \(-0.572959\pi\)
−0.227207 + 0.973846i \(0.572959\pi\)
\(384\) 0 0
\(385\) −28.7899 −1.46727
\(386\) −5.06206 −0.257652
\(387\) 0 0
\(388\) −9.01075 −0.457452
\(389\) −22.4590 −1.13872 −0.569359 0.822089i \(-0.692809\pi\)
−0.569359 + 0.822089i \(0.692809\pi\)
\(390\) 0 0
\(391\) 40.8974 2.06827
\(392\) −30.8364 −1.55747
\(393\) 0 0
\(394\) 3.63533 0.183146
\(395\) 14.5007 0.729608
\(396\) 0 0
\(397\) 9.63342 0.483487 0.241744 0.970340i \(-0.422281\pi\)
0.241744 + 0.970340i \(0.422281\pi\)
\(398\) −3.60819 −0.180862
\(399\) 0 0
\(400\) −1.18598 −0.0592990
\(401\) −11.8116 −0.589844 −0.294922 0.955521i \(-0.595294\pi\)
−0.294922 + 0.955521i \(0.595294\pi\)
\(402\) 0 0
\(403\) −3.69202 −0.183913
\(404\) −2.24591 −0.111738
\(405\) 0 0
\(406\) 3.44504 0.170975
\(407\) −28.2683 −1.40121
\(408\) 0 0
\(409\) −12.5254 −0.619342 −0.309671 0.950844i \(-0.600219\pi\)
−0.309671 + 0.950844i \(0.600219\pi\)
\(410\) −14.7235 −0.727141
\(411\) 0 0
\(412\) 6.23383 0.307119
\(413\) 5.07175 0.249565
\(414\) 0 0
\(415\) 10.4413 0.512544
\(416\) −13.0978 −0.642174
\(417\) 0 0
\(418\) −3.80540 −0.186128
\(419\) −30.9541 −1.51221 −0.756103 0.654453i \(-0.772899\pi\)
−0.756103 + 0.654453i \(0.772899\pi\)
\(420\) 0 0
\(421\) 31.6625 1.54313 0.771567 0.636148i \(-0.219473\pi\)
0.771567 + 0.636148i \(0.219473\pi\)
\(422\) −12.0621 −0.587172
\(423\) 0 0
\(424\) −1.19806 −0.0581830
\(425\) 12.3991 0.601445
\(426\) 0 0
\(427\) −49.8907 −2.41438
\(428\) 23.2204 1.12240
\(429\) 0 0
\(430\) 6.73855 0.324962
\(431\) 7.59658 0.365914 0.182957 0.983121i \(-0.441433\pi\)
0.182957 + 0.983121i \(0.441433\pi\)
\(432\) 0 0
\(433\) 18.5418 0.891063 0.445531 0.895266i \(-0.353015\pi\)
0.445531 + 0.895266i \(0.353015\pi\)
\(434\) −5.66056 −0.271716
\(435\) 0 0
\(436\) 13.7845 0.660157
\(437\) 8.44504 0.403981
\(438\) 0 0
\(439\) −14.2422 −0.679743 −0.339871 0.940472i \(-0.610384\pi\)
−0.339871 + 0.940472i \(0.610384\pi\)
\(440\) −18.0411 −0.860078
\(441\) 0 0
\(442\) 10.4547 0.497281
\(443\) −33.1758 −1.57623 −0.788115 0.615528i \(-0.788943\pi\)
−0.788115 + 0.615528i \(0.788943\pi\)
\(444\) 0 0
\(445\) −12.7168 −0.602833
\(446\) 13.6756 0.647560
\(447\) 0 0
\(448\) −15.3134 −0.723488
\(449\) −31.5599 −1.48940 −0.744701 0.667398i \(-0.767408\pi\)
−0.744701 + 0.667398i \(0.767408\pi\)
\(450\) 0 0
\(451\) −42.9778 −2.02374
\(452\) 21.0605 0.990604
\(453\) 0 0
\(454\) −13.9444 −0.654442
\(455\) 16.3327 0.765690
\(456\) 0 0
\(457\) 30.3706 1.42068 0.710339 0.703860i \(-0.248542\pi\)
0.710339 + 0.703860i \(0.248542\pi\)
\(458\) 19.7952 0.924970
\(459\) 0 0
\(460\) 16.1836 0.754564
\(461\) −3.40044 −0.158374 −0.0791871 0.996860i \(-0.525232\pi\)
−0.0791871 + 0.996860i \(0.525232\pi\)
\(462\) 0 0
\(463\) −7.77538 −0.361353 −0.180676 0.983543i \(-0.557829\pi\)
−0.180676 + 0.983543i \(0.557829\pi\)
\(464\) −0.554958 −0.0257633
\(465\) 0 0
\(466\) 8.95108 0.414651
\(467\) −17.5415 −0.811726 −0.405863 0.913934i \(-0.633029\pi\)
−0.405863 + 0.913934i \(0.633029\pi\)
\(468\) 0 0
\(469\) 62.2127 2.87271
\(470\) 1.00538 0.0463746
\(471\) 0 0
\(472\) 3.17821 0.146289
\(473\) 19.6698 0.904417
\(474\) 0 0
\(475\) 2.56033 0.117476
\(476\) −33.8200 −1.55014
\(477\) 0 0
\(478\) −9.96077 −0.455595
\(479\) 14.2204 0.649748 0.324874 0.945757i \(-0.394678\pi\)
0.324874 + 0.945757i \(0.394678\pi\)
\(480\) 0 0
\(481\) 16.0368 0.731217
\(482\) −12.9685 −0.590701
\(483\) 0 0
\(484\) −6.36073 −0.289124
\(485\) 11.2362 0.510211
\(486\) 0 0
\(487\) −41.3672 −1.87453 −0.937263 0.348624i \(-0.886649\pi\)
−0.937263 + 0.348624i \(0.886649\pi\)
\(488\) −31.2640 −1.41525
\(489\) 0 0
\(490\) 15.5429 0.702156
\(491\) −3.49694 −0.157815 −0.0789074 0.996882i \(-0.525143\pi\)
−0.0789074 + 0.996882i \(0.525143\pi\)
\(492\) 0 0
\(493\) 5.80194 0.261306
\(494\) 2.15883 0.0971305
\(495\) 0 0
\(496\) 0.911854 0.0409435
\(497\) −54.8920 −2.46224
\(498\) 0 0
\(499\) −6.56571 −0.293922 −0.146961 0.989142i \(-0.546949\pi\)
−0.146961 + 0.989142i \(0.546949\pi\)
\(500\) 16.3860 0.732802
\(501\) 0 0
\(502\) −7.01746 −0.313204
\(503\) 12.4450 0.554897 0.277448 0.960741i \(-0.410511\pi\)
0.277448 + 0.960741i \(0.410511\pi\)
\(504\) 0 0
\(505\) 2.80061 0.124625
\(506\) −22.3894 −0.995331
\(507\) 0 0
\(508\) −16.3032 −0.723337
\(509\) 21.7157 0.962532 0.481266 0.876575i \(-0.340177\pi\)
0.481266 + 0.876575i \(0.340177\pi\)
\(510\) 0 0
\(511\) −36.6762 −1.62246
\(512\) 6.22282 0.275012
\(513\) 0 0
\(514\) −20.8799 −0.920974
\(515\) −7.77346 −0.342540
\(516\) 0 0
\(517\) 2.93469 0.129067
\(518\) 24.5875 1.08031
\(519\) 0 0
\(520\) 10.2349 0.448830
\(521\) 20.9855 0.919393 0.459696 0.888076i \(-0.347958\pi\)
0.459696 + 0.888076i \(0.347958\pi\)
\(522\) 0 0
\(523\) 34.3183 1.50063 0.750316 0.661079i \(-0.229901\pi\)
0.750316 + 0.661079i \(0.229901\pi\)
\(524\) −23.3254 −1.01898
\(525\) 0 0
\(526\) 9.57348 0.417424
\(527\) −9.53319 −0.415272
\(528\) 0 0
\(529\) 26.6872 1.16031
\(530\) 0.603875 0.0262307
\(531\) 0 0
\(532\) −6.98361 −0.302778
\(533\) 24.3817 1.05609
\(534\) 0 0
\(535\) −28.9554 −1.25185
\(536\) 38.9855 1.68392
\(537\) 0 0
\(538\) −8.60388 −0.370939
\(539\) 45.3696 1.95421
\(540\) 0 0
\(541\) −28.5187 −1.22612 −0.613058 0.790038i \(-0.710061\pi\)
−0.613058 + 0.790038i \(0.710061\pi\)
\(542\) −0.459042 −0.0197176
\(543\) 0 0
\(544\) −33.8200 −1.45002
\(545\) −17.1890 −0.736294
\(546\) 0 0
\(547\) 10.4722 0.447758 0.223879 0.974617i \(-0.428128\pi\)
0.223879 + 0.974617i \(0.428128\pi\)
\(548\) 3.75600 0.160449
\(549\) 0 0
\(550\) −6.78794 −0.289439
\(551\) 1.19806 0.0510392
\(552\) 0 0
\(553\) −36.8159 −1.56557
\(554\) 22.2620 0.945824
\(555\) 0 0
\(556\) 0.848936 0.0360029
\(557\) −15.6819 −0.664462 −0.332231 0.943198i \(-0.607801\pi\)
−0.332231 + 0.943198i \(0.607801\pi\)
\(558\) 0 0
\(559\) −11.1588 −0.471968
\(560\) −4.03385 −0.170461
\(561\) 0 0
\(562\) −23.7569 −1.00212
\(563\) 25.6732 1.08200 0.540999 0.841023i \(-0.318046\pi\)
0.540999 + 0.841023i \(0.318046\pi\)
\(564\) 0 0
\(565\) −26.2620 −1.10485
\(566\) 1.61165 0.0677425
\(567\) 0 0
\(568\) −34.3980 −1.44331
\(569\) 33.7066 1.41305 0.706527 0.707686i \(-0.250261\pi\)
0.706527 + 0.707686i \(0.250261\pi\)
\(570\) 0 0
\(571\) 17.0121 0.711933 0.355967 0.934499i \(-0.384152\pi\)
0.355967 + 0.934499i \(0.384152\pi\)
\(572\) 12.0761 0.504926
\(573\) 0 0
\(574\) 37.3817 1.56028
\(575\) 15.0640 0.628212
\(576\) 0 0
\(577\) 45.0398 1.87503 0.937516 0.347942i \(-0.113119\pi\)
0.937516 + 0.347942i \(0.113119\pi\)
\(578\) 13.3623 0.555797
\(579\) 0 0
\(580\) 2.29590 0.0953319
\(581\) −26.5096 −1.09980
\(582\) 0 0
\(583\) 1.76271 0.0730040
\(584\) −22.9831 −0.951049
\(585\) 0 0
\(586\) −16.8189 −0.694783
\(587\) 21.9614 0.906442 0.453221 0.891398i \(-0.350275\pi\)
0.453221 + 0.891398i \(0.350275\pi\)
\(588\) 0 0
\(589\) −1.96854 −0.0811123
\(590\) −1.60196 −0.0659515
\(591\) 0 0
\(592\) −3.96077 −0.162787
\(593\) 41.4663 1.70282 0.851409 0.524502i \(-0.175748\pi\)
0.851409 + 0.524502i \(0.175748\pi\)
\(594\) 0 0
\(595\) 42.1728 1.72892
\(596\) −17.7633 −0.727613
\(597\) 0 0
\(598\) 12.7017 0.519412
\(599\) 28.3752 1.15938 0.579690 0.814837i \(-0.303174\pi\)
0.579690 + 0.814837i \(0.303174\pi\)
\(600\) 0 0
\(601\) −1.00192 −0.0408691 −0.0204346 0.999791i \(-0.506505\pi\)
−0.0204346 + 0.999791i \(0.506505\pi\)
\(602\) −17.1086 −0.697294
\(603\) 0 0
\(604\) −20.2306 −0.823171
\(605\) 7.93171 0.322470
\(606\) 0 0
\(607\) 43.9571 1.78416 0.892081 0.451876i \(-0.149245\pi\)
0.892081 + 0.451876i \(0.149245\pi\)
\(608\) −6.98361 −0.283223
\(609\) 0 0
\(610\) 15.7584 0.638039
\(611\) −1.66487 −0.0673536
\(612\) 0 0
\(613\) 19.0479 0.769336 0.384668 0.923055i \(-0.374316\pi\)
0.384668 + 0.923055i \(0.374316\pi\)
\(614\) −14.0054 −0.565211
\(615\) 0 0
\(616\) 45.8049 1.84553
\(617\) −38.5297 −1.55115 −0.775574 0.631256i \(-0.782540\pi\)
−0.775574 + 0.631256i \(0.782540\pi\)
\(618\) 0 0
\(619\) −34.1715 −1.37347 −0.686734 0.726908i \(-0.740956\pi\)
−0.686734 + 0.726908i \(0.740956\pi\)
\(620\) −3.77240 −0.151503
\(621\) 0 0
\(622\) 14.4392 0.578959
\(623\) 32.2868 1.29354
\(624\) 0 0
\(625\) −9.74764 −0.389906
\(626\) 17.8159 0.712068
\(627\) 0 0
\(628\) 6.09783 0.243330
\(629\) 41.4088 1.65108
\(630\) 0 0
\(631\) 12.0175 0.478407 0.239204 0.970969i \(-0.423114\pi\)
0.239204 + 0.970969i \(0.423114\pi\)
\(632\) −23.0707 −0.917703
\(633\) 0 0
\(634\) −12.9530 −0.514429
\(635\) 20.3297 0.806761
\(636\) 0 0
\(637\) −25.7385 −1.01980
\(638\) −3.17629 −0.125751
\(639\) 0 0
\(640\) −14.8890 −0.588540
\(641\) 0.263373 0.0104026 0.00520131 0.999986i \(-0.498344\pi\)
0.00520131 + 0.999986i \(0.498344\pi\)
\(642\) 0 0
\(643\) 23.3515 0.920894 0.460447 0.887687i \(-0.347689\pi\)
0.460447 + 0.887687i \(0.347689\pi\)
\(644\) −41.0887 −1.61912
\(645\) 0 0
\(646\) 5.57434 0.219319
\(647\) 21.7380 0.854607 0.427304 0.904108i \(-0.359464\pi\)
0.427304 + 0.904108i \(0.359464\pi\)
\(648\) 0 0
\(649\) −4.67610 −0.183553
\(650\) 3.85086 0.151043
\(651\) 0 0
\(652\) −18.8383 −0.737765
\(653\) −12.0339 −0.470921 −0.235461 0.971884i \(-0.575660\pi\)
−0.235461 + 0.971884i \(0.575660\pi\)
\(654\) 0 0
\(655\) 29.0863 1.13650
\(656\) −6.02177 −0.235111
\(657\) 0 0
\(658\) −2.55257 −0.0995094
\(659\) −29.8877 −1.16426 −0.582130 0.813096i \(-0.697780\pi\)
−0.582130 + 0.813096i \(0.697780\pi\)
\(660\) 0 0
\(661\) −23.1696 −0.901192 −0.450596 0.892728i \(-0.648789\pi\)
−0.450596 + 0.892728i \(0.648789\pi\)
\(662\) −13.0465 −0.507068
\(663\) 0 0
\(664\) −16.6122 −0.644680
\(665\) 8.70841 0.337698
\(666\) 0 0
\(667\) 7.04892 0.272935
\(668\) −22.8689 −0.884824
\(669\) 0 0
\(670\) −19.6504 −0.759161
\(671\) 45.9987 1.77576
\(672\) 0 0
\(673\) −34.6504 −1.33567 −0.667837 0.744307i \(-0.732780\pi\)
−0.667837 + 0.744307i \(0.732780\pi\)
\(674\) 7.36227 0.283584
\(675\) 0 0
\(676\) 10.7888 0.414954
\(677\) 9.32304 0.358314 0.179157 0.983821i \(-0.442663\pi\)
0.179157 + 0.983821i \(0.442663\pi\)
\(678\) 0 0
\(679\) −28.5278 −1.09480
\(680\) 26.4276 1.01345
\(681\) 0 0
\(682\) 5.21898 0.199845
\(683\) 18.8049 0.719550 0.359775 0.933039i \(-0.382853\pi\)
0.359775 + 0.933039i \(0.382853\pi\)
\(684\) 0 0
\(685\) −4.68366 −0.178953
\(686\) −15.3467 −0.585941
\(687\) 0 0
\(688\) 2.75600 0.105072
\(689\) −1.00000 −0.0380970
\(690\) 0 0
\(691\) 5.52840 0.210310 0.105155 0.994456i \(-0.466466\pi\)
0.105155 + 0.994456i \(0.466466\pi\)
\(692\) 11.0780 0.421122
\(693\) 0 0
\(694\) −5.24267 −0.199009
\(695\) −1.05861 −0.0401552
\(696\) 0 0
\(697\) 62.9560 2.38463
\(698\) −17.8019 −0.673813
\(699\) 0 0
\(700\) −12.4571 −0.470835
\(701\) 14.1787 0.535522 0.267761 0.963485i \(-0.413716\pi\)
0.267761 + 0.963485i \(0.413716\pi\)
\(702\) 0 0
\(703\) 8.55065 0.322494
\(704\) 14.1188 0.532120
\(705\) 0 0
\(706\) −13.8702 −0.522013
\(707\) −7.11051 −0.267418
\(708\) 0 0
\(709\) −22.9584 −0.862220 −0.431110 0.902299i \(-0.641878\pi\)
−0.431110 + 0.902299i \(0.641878\pi\)
\(710\) 17.3381 0.650688
\(711\) 0 0
\(712\) 20.2325 0.758245
\(713\) −11.5821 −0.433753
\(714\) 0 0
\(715\) −15.0586 −0.563160
\(716\) 13.4166 0.501401
\(717\) 0 0
\(718\) −22.4243 −0.836869
\(719\) 10.8562 0.404869 0.202435 0.979296i \(-0.435115\pi\)
0.202435 + 0.979296i \(0.435115\pi\)
\(720\) 0 0
\(721\) 19.7362 0.735013
\(722\) −14.0858 −0.524217
\(723\) 0 0
\(724\) 31.2021 1.15962
\(725\) 2.13706 0.0793685
\(726\) 0 0
\(727\) −23.8049 −0.882876 −0.441438 0.897292i \(-0.645531\pi\)
−0.441438 + 0.897292i \(0.645531\pi\)
\(728\) −25.9855 −0.963088
\(729\) 0 0
\(730\) 11.5845 0.428762
\(731\) −28.8133 −1.06570
\(732\) 0 0
\(733\) 15.9202 0.588027 0.294013 0.955801i \(-0.405009\pi\)
0.294013 + 0.955801i \(0.405009\pi\)
\(734\) −20.8625 −0.770048
\(735\) 0 0
\(736\) −41.0887 −1.51455
\(737\) −57.3594 −2.11286
\(738\) 0 0
\(739\) −8.79523 −0.323538 −0.161769 0.986829i \(-0.551720\pi\)
−0.161769 + 0.986829i \(0.551720\pi\)
\(740\) 16.3860 0.602360
\(741\) 0 0
\(742\) −1.53319 −0.0562851
\(743\) 1.60925 0.0590377 0.0295189 0.999564i \(-0.490602\pi\)
0.0295189 + 0.999564i \(0.490602\pi\)
\(744\) 0 0
\(745\) 22.1505 0.811531
\(746\) 4.61941 0.169129
\(747\) 0 0
\(748\) 31.1817 1.14011
\(749\) 73.5153 2.68619
\(750\) 0 0
\(751\) −26.6708 −0.973233 −0.486616 0.873616i \(-0.661769\pi\)
−0.486616 + 0.873616i \(0.661769\pi\)
\(752\) 0.411190 0.0149946
\(753\) 0 0
\(754\) 1.80194 0.0656227
\(755\) 25.2271 0.918109
\(756\) 0 0
\(757\) −30.0398 −1.09182 −0.545908 0.837845i \(-0.683815\pi\)
−0.545908 + 0.837845i \(0.683815\pi\)
\(758\) 19.7375 0.716898
\(759\) 0 0
\(760\) 5.45712 0.197951
\(761\) −8.17151 −0.296217 −0.148108 0.988971i \(-0.547318\pi\)
−0.148108 + 0.988971i \(0.547318\pi\)
\(762\) 0 0
\(763\) 43.6413 1.57992
\(764\) −6.86400 −0.248331
\(765\) 0 0
\(766\) −7.13169 −0.257678
\(767\) 2.65279 0.0957868
\(768\) 0 0
\(769\) −22.0774 −0.796131 −0.398066 0.917357i \(-0.630318\pi\)
−0.398066 + 0.917357i \(0.630318\pi\)
\(770\) −23.0877 −0.832022
\(771\) 0 0
\(772\) 8.56512 0.308265
\(773\) 9.95944 0.358216 0.179108 0.983829i \(-0.442679\pi\)
0.179108 + 0.983829i \(0.442679\pi\)
\(774\) 0 0
\(775\) −3.51142 −0.126134
\(776\) −17.8769 −0.641745
\(777\) 0 0
\(778\) −18.0108 −0.645717
\(779\) 13.0000 0.465773
\(780\) 0 0
\(781\) 50.6098 1.81096
\(782\) 32.7972 1.17282
\(783\) 0 0
\(784\) 6.35690 0.227032
\(785\) −7.60388 −0.271394
\(786\) 0 0
\(787\) 7.44504 0.265387 0.132694 0.991157i \(-0.457637\pi\)
0.132694 + 0.991157i \(0.457637\pi\)
\(788\) −6.15106 −0.219123
\(789\) 0 0
\(790\) 11.6286 0.413728
\(791\) 66.6771 2.37076
\(792\) 0 0
\(793\) −26.0954 −0.926676
\(794\) 7.72540 0.274164
\(795\) 0 0
\(796\) 6.10513 0.216391
\(797\) −32.1099 −1.13739 −0.568696 0.822548i \(-0.692552\pi\)
−0.568696 + 0.822548i \(0.692552\pi\)
\(798\) 0 0
\(799\) −4.29888 −0.152083
\(800\) −12.4571 −0.440426
\(801\) 0 0
\(802\) −9.47219 −0.334475
\(803\) 33.8151 1.19331
\(804\) 0 0
\(805\) 51.2368 1.80586
\(806\) −2.96077 −0.104289
\(807\) 0 0
\(808\) −4.45580 −0.156754
\(809\) −2.34422 −0.0824185 −0.0412093 0.999151i \(-0.513121\pi\)
−0.0412093 + 0.999151i \(0.513121\pi\)
\(810\) 0 0
\(811\) −23.3351 −0.819407 −0.409704 0.912219i \(-0.634368\pi\)
−0.409704 + 0.912219i \(0.634368\pi\)
\(812\) −5.82908 −0.204561
\(813\) 0 0
\(814\) −22.6694 −0.794562
\(815\) 23.4910 0.822853
\(816\) 0 0
\(817\) −5.94975 −0.208156
\(818\) −10.0446 −0.351201
\(819\) 0 0
\(820\) 24.9124 0.869980
\(821\) 28.1987 0.984140 0.492070 0.870556i \(-0.336240\pi\)
0.492070 + 0.870556i \(0.336240\pi\)
\(822\) 0 0
\(823\) −30.4722 −1.06219 −0.531097 0.847311i \(-0.678220\pi\)
−0.531097 + 0.847311i \(0.678220\pi\)
\(824\) 12.3676 0.430847
\(825\) 0 0
\(826\) 4.06723 0.141517
\(827\) 18.7657 0.652547 0.326274 0.945275i \(-0.394207\pi\)
0.326274 + 0.945275i \(0.394207\pi\)
\(828\) 0 0
\(829\) −29.0465 −1.00883 −0.504414 0.863462i \(-0.668291\pi\)
−0.504414 + 0.863462i \(0.668291\pi\)
\(830\) 8.37329 0.290641
\(831\) 0 0
\(832\) −8.00969 −0.277686
\(833\) −66.4596 −2.30269
\(834\) 0 0
\(835\) 28.5171 0.986873
\(836\) 6.43881 0.222691
\(837\) 0 0
\(838\) −24.8232 −0.857504
\(839\) −49.6872 −1.71539 −0.857697 0.514156i \(-0.828105\pi\)
−0.857697 + 0.514156i \(0.828105\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 25.3913 0.875043
\(843\) 0 0
\(844\) 20.4093 0.702516
\(845\) −13.4534 −0.462811
\(846\) 0 0
\(847\) −20.1379 −0.691947
\(848\) 0.246980 0.00848131
\(849\) 0 0
\(850\) 9.94331 0.341053
\(851\) 50.3086 1.72456
\(852\) 0 0
\(853\) −1.67935 −0.0574998 −0.0287499 0.999587i \(-0.509153\pi\)
−0.0287499 + 0.999587i \(0.509153\pi\)
\(854\) −40.0092 −1.36909
\(855\) 0 0
\(856\) 46.0683 1.57458
\(857\) 48.6926 1.66331 0.831654 0.555294i \(-0.187394\pi\)
0.831654 + 0.555294i \(0.187394\pi\)
\(858\) 0 0
\(859\) 41.9971 1.43292 0.716462 0.697626i \(-0.245760\pi\)
0.716462 + 0.697626i \(0.245760\pi\)
\(860\) −11.4018 −0.388797
\(861\) 0 0
\(862\) 6.09198 0.207494
\(863\) 6.57865 0.223940 0.111970 0.993712i \(-0.464284\pi\)
0.111970 + 0.993712i \(0.464284\pi\)
\(864\) 0 0
\(865\) −13.8140 −0.469691
\(866\) 14.8694 0.505282
\(867\) 0 0
\(868\) 9.57779 0.325091
\(869\) 33.9439 1.15147
\(870\) 0 0
\(871\) 32.5405 1.10259
\(872\) 27.3478 0.926113
\(873\) 0 0
\(874\) 6.77240 0.229080
\(875\) 51.8775 1.75378
\(876\) 0 0
\(877\) 36.0890 1.21864 0.609319 0.792925i \(-0.291443\pi\)
0.609319 + 0.792925i \(0.291443\pi\)
\(878\) −11.4214 −0.385452
\(879\) 0 0
\(880\) 3.71917 0.125373
\(881\) 26.0653 0.878163 0.439081 0.898447i \(-0.355304\pi\)
0.439081 + 0.898447i \(0.355304\pi\)
\(882\) 0 0
\(883\) 11.2567 0.378817 0.189409 0.981898i \(-0.439343\pi\)
0.189409 + 0.981898i \(0.439343\pi\)
\(884\) −17.6896 −0.594967
\(885\) 0 0
\(886\) −26.6049 −0.893810
\(887\) 13.7095 0.460319 0.230160 0.973153i \(-0.426075\pi\)
0.230160 + 0.973153i \(0.426075\pi\)
\(888\) 0 0
\(889\) −51.6155 −1.73113
\(890\) −10.1981 −0.341840
\(891\) 0 0
\(892\) −23.1395 −0.774766
\(893\) −0.887691 −0.0297054
\(894\) 0 0
\(895\) −16.7302 −0.559228
\(896\) 37.8019 1.26287
\(897\) 0 0
\(898\) −25.3090 −0.844574
\(899\) −1.64310 −0.0548006
\(900\) 0 0
\(901\) −2.58211 −0.0860224
\(902\) −34.4655 −1.14758
\(903\) 0 0
\(904\) 41.7832 1.38969
\(905\) −38.9084 −1.29336
\(906\) 0 0
\(907\) −2.36599 −0.0785615 −0.0392808 0.999228i \(-0.512507\pi\)
−0.0392808 + 0.999228i \(0.512507\pi\)
\(908\) 23.5942 0.783001
\(909\) 0 0
\(910\) 13.0978 0.434189
\(911\) 46.9807 1.55654 0.778271 0.627929i \(-0.216097\pi\)
0.778271 + 0.627929i \(0.216097\pi\)
\(912\) 0 0
\(913\) 24.4416 0.808898
\(914\) 24.3554 0.805604
\(915\) 0 0
\(916\) −33.4940 −1.10667
\(917\) −73.8477 −2.43867
\(918\) 0 0
\(919\) 14.4125 0.475425 0.237713 0.971336i \(-0.423602\pi\)
0.237713 + 0.971336i \(0.423602\pi\)
\(920\) 32.1075 1.05855
\(921\) 0 0
\(922\) −2.72694 −0.0898069
\(923\) −28.7114 −0.945047
\(924\) 0 0
\(925\) 15.2524 0.501494
\(926\) −6.23537 −0.204907
\(927\) 0 0
\(928\) −5.82908 −0.191349
\(929\) −41.0447 −1.34663 −0.673317 0.739354i \(-0.735131\pi\)
−0.673317 + 0.739354i \(0.735131\pi\)
\(930\) 0 0
\(931\) −13.7235 −0.449769
\(932\) −15.1454 −0.496105
\(933\) 0 0
\(934\) −14.0672 −0.460294
\(935\) −38.8829 −1.27161
\(936\) 0 0
\(937\) −27.6819 −0.904327 −0.452163 0.891935i \(-0.649348\pi\)
−0.452163 + 0.891935i \(0.649348\pi\)
\(938\) 49.8907 1.62899
\(939\) 0 0
\(940\) −1.70112 −0.0554844
\(941\) −40.8447 −1.33150 −0.665750 0.746175i \(-0.731888\pi\)
−0.665750 + 0.746175i \(0.731888\pi\)
\(942\) 0 0
\(943\) 76.4868 2.49075
\(944\) −0.655186 −0.0213245
\(945\) 0 0
\(946\) 15.7739 0.512855
\(947\) −20.3720 −0.662000 −0.331000 0.943631i \(-0.607386\pi\)
−0.331000 + 0.943631i \(0.607386\pi\)
\(948\) 0 0
\(949\) −19.1836 −0.622726
\(950\) 2.05323 0.0666156
\(951\) 0 0
\(952\) −67.0974 −2.17464
\(953\) −39.9226 −1.29322 −0.646610 0.762821i \(-0.723814\pi\)
−0.646610 + 0.762821i \(0.723814\pi\)
\(954\) 0 0
\(955\) 8.55927 0.276971
\(956\) 16.8538 0.545092
\(957\) 0 0
\(958\) 11.4039 0.368443
\(959\) 11.8914 0.383994
\(960\) 0 0
\(961\) −28.3002 −0.912910
\(962\) 12.8605 0.414641
\(963\) 0 0
\(964\) 21.9430 0.706738
\(965\) −10.6805 −0.343818
\(966\) 0 0
\(967\) −12.6082 −0.405452 −0.202726 0.979236i \(-0.564980\pi\)
−0.202726 + 0.979236i \(0.564980\pi\)
\(968\) −12.6194 −0.405603
\(969\) 0 0
\(970\) 9.01075 0.289318
\(971\) 2.29398 0.0736173 0.0368086 0.999322i \(-0.488281\pi\)
0.0368086 + 0.999322i \(0.488281\pi\)
\(972\) 0 0
\(973\) 2.68771 0.0861640
\(974\) −33.1739 −1.06296
\(975\) 0 0
\(976\) 6.44504 0.206301
\(977\) −22.5399 −0.721115 −0.360558 0.932737i \(-0.617414\pi\)
−0.360558 + 0.932737i \(0.617414\pi\)
\(978\) 0 0
\(979\) −29.7681 −0.951392
\(980\) −26.2989 −0.840087
\(981\) 0 0
\(982\) −2.80433 −0.0894898
\(983\) −0.909935 −0.0290224 −0.0145112 0.999895i \(-0.504619\pi\)
−0.0145112 + 0.999895i \(0.504619\pi\)
\(984\) 0 0
\(985\) 7.67025 0.244395
\(986\) 4.65279 0.148175
\(987\) 0 0
\(988\) −3.65279 −0.116211
\(989\) −35.0060 −1.11313
\(990\) 0 0
\(991\) 55.2605 1.75541 0.877704 0.479203i \(-0.159074\pi\)
0.877704 + 0.479203i \(0.159074\pi\)
\(992\) 9.57779 0.304095
\(993\) 0 0
\(994\) −44.0200 −1.39623
\(995\) −7.61297 −0.241347
\(996\) 0 0
\(997\) 13.6649 0.432771 0.216385 0.976308i \(-0.430573\pi\)
0.216385 + 0.976308i \(0.430573\pi\)
\(998\) −5.26529 −0.166670
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.a.e.1.3 3
3.2 odd 2 783.2.a.f.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.a.e.1.3 3 1.1 even 1 trivial
783.2.a.f.1.1 yes 3 3.2 odd 2