Properties

Label 783.2.a.b.1.2
Level $783$
Weight $2$
Character 783.1
Self dual yes
Analytic conductor $6.252$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [783,2,Mod(1,783)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("783.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.25228647827\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 783.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155 q^{2} +0.438447 q^{4} -2.00000 q^{5} +0.561553 q^{7} -2.43845 q^{8} -3.12311 q^{10} -5.12311 q^{11} -2.12311 q^{13} +0.876894 q^{14} -4.68466 q^{16} -0.438447 q^{17} +3.00000 q^{19} -0.876894 q^{20} -8.00000 q^{22} -1.56155 q^{23} -1.00000 q^{25} -3.31534 q^{26} +0.246211 q^{28} -1.00000 q^{29} -9.56155 q^{31} -2.43845 q^{32} -0.684658 q^{34} -1.12311 q^{35} +9.68466 q^{37} +4.68466 q^{38} +4.87689 q^{40} -2.68466 q^{41} +7.80776 q^{43} -2.24621 q^{44} -2.43845 q^{46} +8.00000 q^{47} -6.68466 q^{49} -1.56155 q^{50} -0.930870 q^{52} -10.0000 q^{53} +10.2462 q^{55} -1.36932 q^{56} -1.56155 q^{58} -4.43845 q^{59} -1.43845 q^{61} -14.9309 q^{62} +5.56155 q^{64} +4.24621 q^{65} +6.56155 q^{67} -0.192236 q^{68} -1.75379 q^{70} -3.56155 q^{71} -0.315342 q^{73} +15.1231 q^{74} +1.31534 q^{76} -2.87689 q^{77} +1.43845 q^{79} +9.36932 q^{80} -4.19224 q^{82} -11.5616 q^{83} +0.876894 q^{85} +12.1922 q^{86} +12.4924 q^{88} -2.00000 q^{89} -1.19224 q^{91} -0.684658 q^{92} +12.4924 q^{94} -6.00000 q^{95} +3.68466 q^{97} -10.4384 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 5 q^{4} - 4 q^{5} - 3 q^{7} - 9 q^{8} + 2 q^{10} - 2 q^{11} + 4 q^{13} + 10 q^{14} + 3 q^{16} - 5 q^{17} + 6 q^{19} - 10 q^{20} - 16 q^{22} + q^{23} - 2 q^{25} - 19 q^{26} - 16 q^{28} - 2 q^{29}+ \cdots - 25 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.56155 1.10418 0.552092 0.833783i \(-0.313830\pi\)
0.552092 + 0.833783i \(0.313830\pi\)
\(3\) 0 0
\(4\) 0.438447 0.219224
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 0.561553 0.212247 0.106124 0.994353i \(-0.466156\pi\)
0.106124 + 0.994353i \(0.466156\pi\)
\(8\) −2.43845 −0.862121
\(9\) 0 0
\(10\) −3.12311 −0.987613
\(11\) −5.12311 −1.54467 −0.772337 0.635213i \(-0.780912\pi\)
−0.772337 + 0.635213i \(0.780912\pi\)
\(12\) 0 0
\(13\) −2.12311 −0.588844 −0.294422 0.955676i \(-0.595127\pi\)
−0.294422 + 0.955676i \(0.595127\pi\)
\(14\) 0.876894 0.234360
\(15\) 0 0
\(16\) −4.68466 −1.17116
\(17\) −0.438447 −0.106339 −0.0531695 0.998586i \(-0.516932\pi\)
−0.0531695 + 0.998586i \(0.516932\pi\)
\(18\) 0 0
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) −0.876894 −0.196080
\(21\) 0 0
\(22\) −8.00000 −1.70561
\(23\) −1.56155 −0.325606 −0.162803 0.986659i \(-0.552054\pi\)
−0.162803 + 0.986659i \(0.552054\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −3.31534 −0.650192
\(27\) 0 0
\(28\) 0.246211 0.0465296
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −9.56155 −1.71731 −0.858653 0.512558i \(-0.828698\pi\)
−0.858653 + 0.512558i \(0.828698\pi\)
\(32\) −2.43845 −0.431061
\(33\) 0 0
\(34\) −0.684658 −0.117418
\(35\) −1.12311 −0.189839
\(36\) 0 0
\(37\) 9.68466 1.59215 0.796074 0.605199i \(-0.206907\pi\)
0.796074 + 0.605199i \(0.206907\pi\)
\(38\) 4.68466 0.759952
\(39\) 0 0
\(40\) 4.87689 0.771105
\(41\) −2.68466 −0.419273 −0.209637 0.977779i \(-0.567228\pi\)
−0.209637 + 0.977779i \(0.567228\pi\)
\(42\) 0 0
\(43\) 7.80776 1.19067 0.595336 0.803477i \(-0.297019\pi\)
0.595336 + 0.803477i \(0.297019\pi\)
\(44\) −2.24621 −0.338629
\(45\) 0 0
\(46\) −2.43845 −0.359529
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −6.68466 −0.954951
\(50\) −1.56155 −0.220837
\(51\) 0 0
\(52\) −0.930870 −0.129088
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 10.2462 1.38160
\(56\) −1.36932 −0.182983
\(57\) 0 0
\(58\) −1.56155 −0.205042
\(59\) −4.43845 −0.577837 −0.288918 0.957354i \(-0.593296\pi\)
−0.288918 + 0.957354i \(0.593296\pi\)
\(60\) 0 0
\(61\) −1.43845 −0.184174 −0.0920871 0.995751i \(-0.529354\pi\)
−0.0920871 + 0.995751i \(0.529354\pi\)
\(62\) −14.9309 −1.89622
\(63\) 0 0
\(64\) 5.56155 0.695194
\(65\) 4.24621 0.526678
\(66\) 0 0
\(67\) 6.56155 0.801621 0.400811 0.916161i \(-0.368729\pi\)
0.400811 + 0.916161i \(0.368729\pi\)
\(68\) −0.192236 −0.0233120
\(69\) 0 0
\(70\) −1.75379 −0.209618
\(71\) −3.56155 −0.422679 −0.211339 0.977413i \(-0.567782\pi\)
−0.211339 + 0.977413i \(0.567782\pi\)
\(72\) 0 0
\(73\) −0.315342 −0.0369079 −0.0184540 0.999830i \(-0.505874\pi\)
−0.0184540 + 0.999830i \(0.505874\pi\)
\(74\) 15.1231 1.75803
\(75\) 0 0
\(76\) 1.31534 0.150880
\(77\) −2.87689 −0.327853
\(78\) 0 0
\(79\) 1.43845 0.161838 0.0809190 0.996721i \(-0.474214\pi\)
0.0809190 + 0.996721i \(0.474214\pi\)
\(80\) 9.36932 1.04752
\(81\) 0 0
\(82\) −4.19224 −0.462955
\(83\) −11.5616 −1.26905 −0.634523 0.772904i \(-0.718803\pi\)
−0.634523 + 0.772904i \(0.718803\pi\)
\(84\) 0 0
\(85\) 0.876894 0.0951125
\(86\) 12.1922 1.31472
\(87\) 0 0
\(88\) 12.4924 1.33170
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) −1.19224 −0.124980
\(92\) −0.684658 −0.0713806
\(93\) 0 0
\(94\) 12.4924 1.28849
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 3.68466 0.374120 0.187060 0.982348i \(-0.440104\pi\)
0.187060 + 0.982348i \(0.440104\pi\)
\(98\) −10.4384 −1.05444
\(99\) 0 0
\(100\) −0.438447 −0.0438447
\(101\) 7.80776 0.776902 0.388451 0.921469i \(-0.373010\pi\)
0.388451 + 0.921469i \(0.373010\pi\)
\(102\) 0 0
\(103\) 4.56155 0.449463 0.224732 0.974421i \(-0.427849\pi\)
0.224732 + 0.974421i \(0.427849\pi\)
\(104\) 5.17708 0.507655
\(105\) 0 0
\(106\) −15.6155 −1.51671
\(107\) 1.12311 0.108575 0.0542874 0.998525i \(-0.482711\pi\)
0.0542874 + 0.998525i \(0.482711\pi\)
\(108\) 0 0
\(109\) 19.5616 1.87366 0.936828 0.349789i \(-0.113747\pi\)
0.936828 + 0.349789i \(0.113747\pi\)
\(110\) 16.0000 1.52554
\(111\) 0 0
\(112\) −2.63068 −0.248576
\(113\) 1.80776 0.170060 0.0850301 0.996378i \(-0.472901\pi\)
0.0850301 + 0.996378i \(0.472901\pi\)
\(114\) 0 0
\(115\) 3.12311 0.291231
\(116\) −0.438447 −0.0407088
\(117\) 0 0
\(118\) −6.93087 −0.638038
\(119\) −0.246211 −0.0225701
\(120\) 0 0
\(121\) 15.2462 1.38602
\(122\) −2.24621 −0.203362
\(123\) 0 0
\(124\) −4.19224 −0.376474
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −20.4924 −1.81841 −0.909204 0.416350i \(-0.863309\pi\)
−0.909204 + 0.416350i \(0.863309\pi\)
\(128\) 13.5616 1.19868
\(129\) 0 0
\(130\) 6.63068 0.581549
\(131\) −1.75379 −0.153229 −0.0766146 0.997061i \(-0.524411\pi\)
−0.0766146 + 0.997061i \(0.524411\pi\)
\(132\) 0 0
\(133\) 1.68466 0.146078
\(134\) 10.2462 0.885138
\(135\) 0 0
\(136\) 1.06913 0.0916772
\(137\) −16.6847 −1.42547 −0.712733 0.701435i \(-0.752543\pi\)
−0.712733 + 0.701435i \(0.752543\pi\)
\(138\) 0 0
\(139\) −5.68466 −0.482166 −0.241083 0.970504i \(-0.577503\pi\)
−0.241083 + 0.970504i \(0.577503\pi\)
\(140\) −0.492423 −0.0416173
\(141\) 0 0
\(142\) −5.56155 −0.466715
\(143\) 10.8769 0.909572
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) −0.492423 −0.0407532
\(147\) 0 0
\(148\) 4.24621 0.349036
\(149\) −18.2462 −1.49479 −0.747394 0.664381i \(-0.768695\pi\)
−0.747394 + 0.664381i \(0.768695\pi\)
\(150\) 0 0
\(151\) −12.5616 −1.02224 −0.511122 0.859508i \(-0.670770\pi\)
−0.511122 + 0.859508i \(0.670770\pi\)
\(152\) −7.31534 −0.593353
\(153\) 0 0
\(154\) −4.49242 −0.362010
\(155\) 19.1231 1.53600
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 2.24621 0.178699
\(159\) 0 0
\(160\) 4.87689 0.385552
\(161\) −0.876894 −0.0691090
\(162\) 0 0
\(163\) −2.12311 −0.166294 −0.0831472 0.996537i \(-0.526497\pi\)
−0.0831472 + 0.996537i \(0.526497\pi\)
\(164\) −1.17708 −0.0919146
\(165\) 0 0
\(166\) −18.0540 −1.40126
\(167\) 21.5616 1.66848 0.834242 0.551399i \(-0.185906\pi\)
0.834242 + 0.551399i \(0.185906\pi\)
\(168\) 0 0
\(169\) −8.49242 −0.653263
\(170\) 1.36932 0.105022
\(171\) 0 0
\(172\) 3.42329 0.261024
\(173\) 14.2462 1.08312 0.541560 0.840662i \(-0.317834\pi\)
0.541560 + 0.840662i \(0.317834\pi\)
\(174\) 0 0
\(175\) −0.561553 −0.0424494
\(176\) 24.0000 1.80907
\(177\) 0 0
\(178\) −3.12311 −0.234087
\(179\) −0.684658 −0.0511738 −0.0255869 0.999673i \(-0.508145\pi\)
−0.0255869 + 0.999673i \(0.508145\pi\)
\(180\) 0 0
\(181\) 4.12311 0.306468 0.153234 0.988190i \(-0.451031\pi\)
0.153234 + 0.988190i \(0.451031\pi\)
\(182\) −1.86174 −0.138001
\(183\) 0 0
\(184\) 3.80776 0.280712
\(185\) −19.3693 −1.42406
\(186\) 0 0
\(187\) 2.24621 0.164259
\(188\) 3.50758 0.255816
\(189\) 0 0
\(190\) −9.36932 −0.679722
\(191\) 15.6155 1.12990 0.564950 0.825125i \(-0.308895\pi\)
0.564950 + 0.825125i \(0.308895\pi\)
\(192\) 0 0
\(193\) 0.807764 0.0581441 0.0290721 0.999577i \(-0.490745\pi\)
0.0290721 + 0.999577i \(0.490745\pi\)
\(194\) 5.75379 0.413098
\(195\) 0 0
\(196\) −2.93087 −0.209348
\(197\) −23.3693 −1.66499 −0.832497 0.554029i \(-0.813090\pi\)
−0.832497 + 0.554029i \(0.813090\pi\)
\(198\) 0 0
\(199\) −17.6847 −1.25363 −0.626816 0.779167i \(-0.715642\pi\)
−0.626816 + 0.779167i \(0.715642\pi\)
\(200\) 2.43845 0.172424
\(201\) 0 0
\(202\) 12.1922 0.857843
\(203\) −0.561553 −0.0394133
\(204\) 0 0
\(205\) 5.36932 0.375009
\(206\) 7.12311 0.496290
\(207\) 0 0
\(208\) 9.94602 0.689633
\(209\) −15.3693 −1.06312
\(210\) 0 0
\(211\) −13.9309 −0.959041 −0.479520 0.877531i \(-0.659189\pi\)
−0.479520 + 0.877531i \(0.659189\pi\)
\(212\) −4.38447 −0.301127
\(213\) 0 0
\(214\) 1.75379 0.119887
\(215\) −15.6155 −1.06497
\(216\) 0 0
\(217\) −5.36932 −0.364493
\(218\) 30.5464 2.06886
\(219\) 0 0
\(220\) 4.49242 0.302879
\(221\) 0.930870 0.0626171
\(222\) 0 0
\(223\) 19.1231 1.28058 0.640289 0.768134i \(-0.278815\pi\)
0.640289 + 0.768134i \(0.278815\pi\)
\(224\) −1.36932 −0.0914913
\(225\) 0 0
\(226\) 2.82292 0.187778
\(227\) 6.93087 0.460018 0.230009 0.973189i \(-0.426124\pi\)
0.230009 + 0.973189i \(0.426124\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 4.87689 0.321573
\(231\) 0 0
\(232\) 2.43845 0.160092
\(233\) −14.4924 −0.949430 −0.474715 0.880140i \(-0.657449\pi\)
−0.474715 + 0.880140i \(0.657449\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) −1.94602 −0.126675
\(237\) 0 0
\(238\) −0.384472 −0.0249216
\(239\) 5.56155 0.359747 0.179873 0.983690i \(-0.442431\pi\)
0.179873 + 0.983690i \(0.442431\pi\)
\(240\) 0 0
\(241\) −18.8078 −1.21151 −0.605757 0.795649i \(-0.707130\pi\)
−0.605757 + 0.795649i \(0.707130\pi\)
\(242\) 23.8078 1.53042
\(243\) 0 0
\(244\) −0.630683 −0.0403753
\(245\) 13.3693 0.854134
\(246\) 0 0
\(247\) −6.36932 −0.405270
\(248\) 23.3153 1.48053
\(249\) 0 0
\(250\) 18.7386 1.18514
\(251\) 19.6155 1.23812 0.619061 0.785343i \(-0.287514\pi\)
0.619061 + 0.785343i \(0.287514\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) −32.0000 −2.00786
\(255\) 0 0
\(256\) 10.0540 0.628373
\(257\) −10.4924 −0.654499 −0.327250 0.944938i \(-0.606122\pi\)
−0.327250 + 0.944938i \(0.606122\pi\)
\(258\) 0 0
\(259\) 5.43845 0.337929
\(260\) 1.86174 0.115460
\(261\) 0 0
\(262\) −2.73863 −0.169193
\(263\) −10.0000 −0.616626 −0.308313 0.951285i \(-0.599764\pi\)
−0.308313 + 0.951285i \(0.599764\pi\)
\(264\) 0 0
\(265\) 20.0000 1.22859
\(266\) 2.63068 0.161298
\(267\) 0 0
\(268\) 2.87689 0.175734
\(269\) 22.6847 1.38311 0.691554 0.722325i \(-0.256926\pi\)
0.691554 + 0.722325i \(0.256926\pi\)
\(270\) 0 0
\(271\) −19.2462 −1.16912 −0.584562 0.811349i \(-0.698734\pi\)
−0.584562 + 0.811349i \(0.698734\pi\)
\(272\) 2.05398 0.124541
\(273\) 0 0
\(274\) −26.0540 −1.57398
\(275\) 5.12311 0.308935
\(276\) 0 0
\(277\) −15.1771 −0.911902 −0.455951 0.890005i \(-0.650701\pi\)
−0.455951 + 0.890005i \(0.650701\pi\)
\(278\) −8.87689 −0.532401
\(279\) 0 0
\(280\) 2.73863 0.163665
\(281\) −24.7386 −1.47578 −0.737892 0.674919i \(-0.764178\pi\)
−0.737892 + 0.674919i \(0.764178\pi\)
\(282\) 0 0
\(283\) 16.8769 1.00323 0.501614 0.865092i \(-0.332740\pi\)
0.501614 + 0.865092i \(0.332740\pi\)
\(284\) −1.56155 −0.0926611
\(285\) 0 0
\(286\) 16.9848 1.00433
\(287\) −1.50758 −0.0889895
\(288\) 0 0
\(289\) −16.8078 −0.988692
\(290\) 3.12311 0.183395
\(291\) 0 0
\(292\) −0.138261 −0.00809109
\(293\) −16.2462 −0.949114 −0.474557 0.880225i \(-0.657392\pi\)
−0.474557 + 0.880225i \(0.657392\pi\)
\(294\) 0 0
\(295\) 8.87689 0.516833
\(296\) −23.6155 −1.37262
\(297\) 0 0
\(298\) −28.4924 −1.65052
\(299\) 3.31534 0.191731
\(300\) 0 0
\(301\) 4.38447 0.252717
\(302\) −19.6155 −1.12875
\(303\) 0 0
\(304\) −14.0540 −0.806051
\(305\) 2.87689 0.164730
\(306\) 0 0
\(307\) −8.49242 −0.484688 −0.242344 0.970190i \(-0.577916\pi\)
−0.242344 + 0.970190i \(0.577916\pi\)
\(308\) −1.26137 −0.0718730
\(309\) 0 0
\(310\) 29.8617 1.69603
\(311\) −10.2462 −0.581009 −0.290505 0.956874i \(-0.593823\pi\)
−0.290505 + 0.956874i \(0.593823\pi\)
\(312\) 0 0
\(313\) 32.8617 1.85746 0.928728 0.370763i \(-0.120904\pi\)
0.928728 + 0.370763i \(0.120904\pi\)
\(314\) −28.1080 −1.58622
\(315\) 0 0
\(316\) 0.630683 0.0354787
\(317\) −22.6847 −1.27410 −0.637049 0.770824i \(-0.719845\pi\)
−0.637049 + 0.770824i \(0.719845\pi\)
\(318\) 0 0
\(319\) 5.12311 0.286839
\(320\) −11.1231 −0.621801
\(321\) 0 0
\(322\) −1.36932 −0.0763090
\(323\) −1.31534 −0.0731876
\(324\) 0 0
\(325\) 2.12311 0.117769
\(326\) −3.31534 −0.183620
\(327\) 0 0
\(328\) 6.54640 0.361464
\(329\) 4.49242 0.247675
\(330\) 0 0
\(331\) 4.80776 0.264259 0.132129 0.991232i \(-0.457819\pi\)
0.132129 + 0.991232i \(0.457819\pi\)
\(332\) −5.06913 −0.278205
\(333\) 0 0
\(334\) 33.6695 1.84231
\(335\) −13.1231 −0.716992
\(336\) 0 0
\(337\) −31.9309 −1.73939 −0.869693 0.493594i \(-0.835683\pi\)
−0.869693 + 0.493594i \(0.835683\pi\)
\(338\) −13.2614 −0.721323
\(339\) 0 0
\(340\) 0.384472 0.0208509
\(341\) 48.9848 2.65268
\(342\) 0 0
\(343\) −7.68466 −0.414933
\(344\) −19.0388 −1.02650
\(345\) 0 0
\(346\) 22.2462 1.19596
\(347\) 26.0540 1.39865 0.699325 0.714804i \(-0.253484\pi\)
0.699325 + 0.714804i \(0.253484\pi\)
\(348\) 0 0
\(349\) 14.8078 0.792641 0.396321 0.918112i \(-0.370287\pi\)
0.396321 + 0.918112i \(0.370287\pi\)
\(350\) −0.876894 −0.0468720
\(351\) 0 0
\(352\) 12.4924 0.665848
\(353\) 14.7386 0.784458 0.392229 0.919868i \(-0.371704\pi\)
0.392229 + 0.919868i \(0.371704\pi\)
\(354\) 0 0
\(355\) 7.12311 0.378055
\(356\) −0.876894 −0.0464753
\(357\) 0 0
\(358\) −1.06913 −0.0565053
\(359\) 7.75379 0.409229 0.204615 0.978843i \(-0.434406\pi\)
0.204615 + 0.978843i \(0.434406\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 6.43845 0.338397
\(363\) 0 0
\(364\) −0.522732 −0.0273986
\(365\) 0.630683 0.0330115
\(366\) 0 0
\(367\) −7.68466 −0.401136 −0.200568 0.979680i \(-0.564279\pi\)
−0.200568 + 0.979680i \(0.564279\pi\)
\(368\) 7.31534 0.381339
\(369\) 0 0
\(370\) −30.2462 −1.57243
\(371\) −5.61553 −0.291544
\(372\) 0 0
\(373\) 12.5616 0.650413 0.325206 0.945643i \(-0.394566\pi\)
0.325206 + 0.945643i \(0.394566\pi\)
\(374\) 3.50758 0.181373
\(375\) 0 0
\(376\) −19.5076 −1.00603
\(377\) 2.12311 0.109346
\(378\) 0 0
\(379\) −0.315342 −0.0161980 −0.00809900 0.999967i \(-0.502578\pi\)
−0.00809900 + 0.999967i \(0.502578\pi\)
\(380\) −2.63068 −0.134951
\(381\) 0 0
\(382\) 24.3845 1.24762
\(383\) −30.7386 −1.57067 −0.785335 0.619071i \(-0.787509\pi\)
−0.785335 + 0.619071i \(0.787509\pi\)
\(384\) 0 0
\(385\) 5.75379 0.293240
\(386\) 1.26137 0.0642019
\(387\) 0 0
\(388\) 1.61553 0.0820160
\(389\) −15.3153 −0.776519 −0.388259 0.921550i \(-0.626924\pi\)
−0.388259 + 0.921550i \(0.626924\pi\)
\(390\) 0 0
\(391\) 0.684658 0.0346247
\(392\) 16.3002 0.823284
\(393\) 0 0
\(394\) −36.4924 −1.83846
\(395\) −2.87689 −0.144752
\(396\) 0 0
\(397\) 21.8078 1.09450 0.547250 0.836969i \(-0.315675\pi\)
0.547250 + 0.836969i \(0.315675\pi\)
\(398\) −27.6155 −1.38424
\(399\) 0 0
\(400\) 4.68466 0.234233
\(401\) −11.7538 −0.586956 −0.293478 0.955966i \(-0.594813\pi\)
−0.293478 + 0.955966i \(0.594813\pi\)
\(402\) 0 0
\(403\) 20.3002 1.01122
\(404\) 3.42329 0.170315
\(405\) 0 0
\(406\) −0.876894 −0.0435195
\(407\) −49.6155 −2.45935
\(408\) 0 0
\(409\) −12.3153 −0.608954 −0.304477 0.952520i \(-0.598482\pi\)
−0.304477 + 0.952520i \(0.598482\pi\)
\(410\) 8.38447 0.414080
\(411\) 0 0
\(412\) 2.00000 0.0985329
\(413\) −2.49242 −0.122644
\(414\) 0 0
\(415\) 23.1231 1.13507
\(416\) 5.17708 0.253827
\(417\) 0 0
\(418\) −24.0000 −1.17388
\(419\) 28.6847 1.40134 0.700669 0.713487i \(-0.252885\pi\)
0.700669 + 0.713487i \(0.252885\pi\)
\(420\) 0 0
\(421\) 21.9309 1.06885 0.534423 0.845217i \(-0.320529\pi\)
0.534423 + 0.845217i \(0.320529\pi\)
\(422\) −21.7538 −1.05896
\(423\) 0 0
\(424\) 24.3845 1.18421
\(425\) 0.438447 0.0212678
\(426\) 0 0
\(427\) −0.807764 −0.0390904
\(428\) 0.492423 0.0238021
\(429\) 0 0
\(430\) −24.3845 −1.17592
\(431\) 33.8078 1.62846 0.814231 0.580541i \(-0.197159\pi\)
0.814231 + 0.580541i \(0.197159\pi\)
\(432\) 0 0
\(433\) 4.24621 0.204060 0.102030 0.994781i \(-0.467466\pi\)
0.102030 + 0.994781i \(0.467466\pi\)
\(434\) −8.38447 −0.402468
\(435\) 0 0
\(436\) 8.57671 0.410750
\(437\) −4.68466 −0.224098
\(438\) 0 0
\(439\) −19.1231 −0.912696 −0.456348 0.889801i \(-0.650843\pi\)
−0.456348 + 0.889801i \(0.650843\pi\)
\(440\) −24.9848 −1.19111
\(441\) 0 0
\(442\) 1.45360 0.0691408
\(443\) −29.6155 −1.40708 −0.703538 0.710658i \(-0.748398\pi\)
−0.703538 + 0.710658i \(0.748398\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) 29.8617 1.41399
\(447\) 0 0
\(448\) 3.12311 0.147553
\(449\) −21.3693 −1.00848 −0.504240 0.863563i \(-0.668227\pi\)
−0.504240 + 0.863563i \(0.668227\pi\)
\(450\) 0 0
\(451\) 13.7538 0.647641
\(452\) 0.792609 0.0372812
\(453\) 0 0
\(454\) 10.8229 0.507945
\(455\) 2.38447 0.111786
\(456\) 0 0
\(457\) −22.6847 −1.06114 −0.530572 0.847640i \(-0.678023\pi\)
−0.530572 + 0.847640i \(0.678023\pi\)
\(458\) −9.36932 −0.437799
\(459\) 0 0
\(460\) 1.36932 0.0638447
\(461\) 17.3153 0.806456 0.403228 0.915100i \(-0.367888\pi\)
0.403228 + 0.915100i \(0.367888\pi\)
\(462\) 0 0
\(463\) −31.0540 −1.44320 −0.721600 0.692310i \(-0.756593\pi\)
−0.721600 + 0.692310i \(0.756593\pi\)
\(464\) 4.68466 0.217480
\(465\) 0 0
\(466\) −22.6307 −1.04835
\(467\) 14.2462 0.659236 0.329618 0.944114i \(-0.393080\pi\)
0.329618 + 0.944114i \(0.393080\pi\)
\(468\) 0 0
\(469\) 3.68466 0.170142
\(470\) −24.9848 −1.15246
\(471\) 0 0
\(472\) 10.8229 0.498165
\(473\) −40.0000 −1.83920
\(474\) 0 0
\(475\) −3.00000 −0.137649
\(476\) −0.107951 −0.00494791
\(477\) 0 0
\(478\) 8.68466 0.397227
\(479\) 25.1231 1.14790 0.573952 0.818889i \(-0.305410\pi\)
0.573952 + 0.818889i \(0.305410\pi\)
\(480\) 0 0
\(481\) −20.5616 −0.937526
\(482\) −29.3693 −1.33774
\(483\) 0 0
\(484\) 6.68466 0.303848
\(485\) −7.36932 −0.334623
\(486\) 0 0
\(487\) 33.0540 1.49782 0.748909 0.662673i \(-0.230578\pi\)
0.748909 + 0.662673i \(0.230578\pi\)
\(488\) 3.50758 0.158781
\(489\) 0 0
\(490\) 20.8769 0.943122
\(491\) 26.7386 1.20670 0.603349 0.797477i \(-0.293833\pi\)
0.603349 + 0.797477i \(0.293833\pi\)
\(492\) 0 0
\(493\) 0.438447 0.0197467
\(494\) −9.94602 −0.447493
\(495\) 0 0
\(496\) 44.7926 2.01125
\(497\) −2.00000 −0.0897123
\(498\) 0 0
\(499\) 38.7386 1.73418 0.867090 0.498152i \(-0.165988\pi\)
0.867090 + 0.498152i \(0.165988\pi\)
\(500\) 5.26137 0.235295
\(501\) 0 0
\(502\) 30.6307 1.36711
\(503\) 38.7386 1.72727 0.863635 0.504117i \(-0.168182\pi\)
0.863635 + 0.504117i \(0.168182\pi\)
\(504\) 0 0
\(505\) −15.6155 −0.694882
\(506\) 12.4924 0.555356
\(507\) 0 0
\(508\) −8.98485 −0.398638
\(509\) −20.0000 −0.886484 −0.443242 0.896402i \(-0.646172\pi\)
−0.443242 + 0.896402i \(0.646172\pi\)
\(510\) 0 0
\(511\) −0.177081 −0.00783360
\(512\) −11.4233 −0.504843
\(513\) 0 0
\(514\) −16.3845 −0.722688
\(515\) −9.12311 −0.402012
\(516\) 0 0
\(517\) −40.9848 −1.80251
\(518\) 8.49242 0.373136
\(519\) 0 0
\(520\) −10.3542 −0.454060
\(521\) −1.12311 −0.0492042 −0.0246021 0.999697i \(-0.507832\pi\)
−0.0246021 + 0.999697i \(0.507832\pi\)
\(522\) 0 0
\(523\) 13.1922 0.576856 0.288428 0.957502i \(-0.406867\pi\)
0.288428 + 0.957502i \(0.406867\pi\)
\(524\) −0.768944 −0.0335915
\(525\) 0 0
\(526\) −15.6155 −0.680869
\(527\) 4.19224 0.182617
\(528\) 0 0
\(529\) −20.5616 −0.893981
\(530\) 31.2311 1.35659
\(531\) 0 0
\(532\) 0.738634 0.0320238
\(533\) 5.69981 0.246886
\(534\) 0 0
\(535\) −2.24621 −0.0971122
\(536\) −16.0000 −0.691095
\(537\) 0 0
\(538\) 35.4233 1.52721
\(539\) 34.2462 1.47509
\(540\) 0 0
\(541\) −24.8078 −1.06657 −0.533285 0.845936i \(-0.679042\pi\)
−0.533285 + 0.845936i \(0.679042\pi\)
\(542\) −30.0540 −1.29093
\(543\) 0 0
\(544\) 1.06913 0.0458386
\(545\) −39.1231 −1.67585
\(546\) 0 0
\(547\) −23.9309 −1.02321 −0.511605 0.859221i \(-0.670949\pi\)
−0.511605 + 0.859221i \(0.670949\pi\)
\(548\) −7.31534 −0.312496
\(549\) 0 0
\(550\) 8.00000 0.341121
\(551\) −3.00000 −0.127804
\(552\) 0 0
\(553\) 0.807764 0.0343496
\(554\) −23.6998 −1.00691
\(555\) 0 0
\(556\) −2.49242 −0.105702
\(557\) 4.49242 0.190350 0.0951750 0.995461i \(-0.469659\pi\)
0.0951750 + 0.995461i \(0.469659\pi\)
\(558\) 0 0
\(559\) −16.5767 −0.701120
\(560\) 5.26137 0.222333
\(561\) 0 0
\(562\) −38.6307 −1.62954
\(563\) −28.7386 −1.21119 −0.605595 0.795773i \(-0.707065\pi\)
−0.605595 + 0.795773i \(0.707065\pi\)
\(564\) 0 0
\(565\) −3.61553 −0.152106
\(566\) 26.3542 1.10775
\(567\) 0 0
\(568\) 8.68466 0.364400
\(569\) 32.3002 1.35409 0.677047 0.735940i \(-0.263259\pi\)
0.677047 + 0.735940i \(0.263259\pi\)
\(570\) 0 0
\(571\) −13.4384 −0.562382 −0.281191 0.959652i \(-0.590729\pi\)
−0.281191 + 0.959652i \(0.590729\pi\)
\(572\) 4.76894 0.199400
\(573\) 0 0
\(574\) −2.35416 −0.0982608
\(575\) 1.56155 0.0651213
\(576\) 0 0
\(577\) −16.1771 −0.673461 −0.336730 0.941601i \(-0.609321\pi\)
−0.336730 + 0.941601i \(0.609321\pi\)
\(578\) −26.2462 −1.09170
\(579\) 0 0
\(580\) 0.876894 0.0364111
\(581\) −6.49242 −0.269351
\(582\) 0 0
\(583\) 51.2311 2.12177
\(584\) 0.768944 0.0318191
\(585\) 0 0
\(586\) −25.3693 −1.04800
\(587\) 32.4924 1.34111 0.670553 0.741862i \(-0.266057\pi\)
0.670553 + 0.741862i \(0.266057\pi\)
\(588\) 0 0
\(589\) −28.6847 −1.18193
\(590\) 13.8617 0.570679
\(591\) 0 0
\(592\) −45.3693 −1.86467
\(593\) 2.00000 0.0821302 0.0410651 0.999156i \(-0.486925\pi\)
0.0410651 + 0.999156i \(0.486925\pi\)
\(594\) 0 0
\(595\) 0.492423 0.0201874
\(596\) −8.00000 −0.327693
\(597\) 0 0
\(598\) 5.17708 0.211707
\(599\) 27.1231 1.10822 0.554110 0.832443i \(-0.313059\pi\)
0.554110 + 0.832443i \(0.313059\pi\)
\(600\) 0 0
\(601\) −9.50758 −0.387822 −0.193911 0.981019i \(-0.562117\pi\)
−0.193911 + 0.981019i \(0.562117\pi\)
\(602\) 6.84658 0.279046
\(603\) 0 0
\(604\) −5.50758 −0.224100
\(605\) −30.4924 −1.23969
\(606\) 0 0
\(607\) −7.00000 −0.284121 −0.142061 0.989858i \(-0.545373\pi\)
−0.142061 + 0.989858i \(0.545373\pi\)
\(608\) −7.31534 −0.296676
\(609\) 0 0
\(610\) 4.49242 0.181893
\(611\) −16.9848 −0.687133
\(612\) 0 0
\(613\) −21.0000 −0.848182 −0.424091 0.905620i \(-0.639406\pi\)
−0.424091 + 0.905620i \(0.639406\pi\)
\(614\) −13.2614 −0.535185
\(615\) 0 0
\(616\) 7.01515 0.282649
\(617\) −1.50758 −0.0606928 −0.0303464 0.999539i \(-0.509661\pi\)
−0.0303464 + 0.999539i \(0.509661\pi\)
\(618\) 0 0
\(619\) −43.3542 −1.74255 −0.871275 0.490794i \(-0.836707\pi\)
−0.871275 + 0.490794i \(0.836707\pi\)
\(620\) 8.38447 0.336728
\(621\) 0 0
\(622\) −16.0000 −0.641542
\(623\) −1.12311 −0.0449963
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 51.3153 2.05097
\(627\) 0 0
\(628\) −7.89205 −0.314927
\(629\) −4.24621 −0.169308
\(630\) 0 0
\(631\) −21.4384 −0.853451 −0.426726 0.904381i \(-0.640333\pi\)
−0.426726 + 0.904381i \(0.640333\pi\)
\(632\) −3.50758 −0.139524
\(633\) 0 0
\(634\) −35.4233 −1.40684
\(635\) 40.9848 1.62643
\(636\) 0 0
\(637\) 14.1922 0.562317
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) −27.1231 −1.07213
\(641\) 24.3002 0.959800 0.479900 0.877323i \(-0.340673\pi\)
0.479900 + 0.877323i \(0.340673\pi\)
\(642\) 0 0
\(643\) 33.3693 1.31596 0.657979 0.753037i \(-0.271412\pi\)
0.657979 + 0.753037i \(0.271412\pi\)
\(644\) −0.384472 −0.0151503
\(645\) 0 0
\(646\) −2.05398 −0.0808126
\(647\) 39.8617 1.56713 0.783563 0.621312i \(-0.213400\pi\)
0.783563 + 0.621312i \(0.213400\pi\)
\(648\) 0 0
\(649\) 22.7386 0.892569
\(650\) 3.31534 0.130038
\(651\) 0 0
\(652\) −0.930870 −0.0364557
\(653\) 22.9309 0.897354 0.448677 0.893694i \(-0.351895\pi\)
0.448677 + 0.893694i \(0.351895\pi\)
\(654\) 0 0
\(655\) 3.50758 0.137052
\(656\) 12.5767 0.491038
\(657\) 0 0
\(658\) 7.01515 0.273479
\(659\) −9.61553 −0.374568 −0.187284 0.982306i \(-0.559968\pi\)
−0.187284 + 0.982306i \(0.559968\pi\)
\(660\) 0 0
\(661\) −11.9309 −0.464057 −0.232029 0.972709i \(-0.574536\pi\)
−0.232029 + 0.972709i \(0.574536\pi\)
\(662\) 7.50758 0.291790
\(663\) 0 0
\(664\) 28.1922 1.09407
\(665\) −3.36932 −0.130657
\(666\) 0 0
\(667\) 1.56155 0.0604636
\(668\) 9.45360 0.365771
\(669\) 0 0
\(670\) −20.4924 −0.791691
\(671\) 7.36932 0.284489
\(672\) 0 0
\(673\) −28.6155 −1.10305 −0.551524 0.834159i \(-0.685953\pi\)
−0.551524 + 0.834159i \(0.685953\pi\)
\(674\) −49.8617 −1.92060
\(675\) 0 0
\(676\) −3.72348 −0.143211
\(677\) −16.0540 −0.617004 −0.308502 0.951224i \(-0.599828\pi\)
−0.308502 + 0.951224i \(0.599828\pi\)
\(678\) 0 0
\(679\) 2.06913 0.0794059
\(680\) −2.13826 −0.0819986
\(681\) 0 0
\(682\) 76.4924 2.92905
\(683\) 26.7386 1.02313 0.511563 0.859246i \(-0.329067\pi\)
0.511563 + 0.859246i \(0.329067\pi\)
\(684\) 0 0
\(685\) 33.3693 1.27498
\(686\) −12.0000 −0.458162
\(687\) 0 0
\(688\) −36.5767 −1.39447
\(689\) 21.2311 0.808839
\(690\) 0 0
\(691\) −28.1080 −1.06928 −0.534638 0.845081i \(-0.679552\pi\)
−0.534638 + 0.845081i \(0.679552\pi\)
\(692\) 6.24621 0.237445
\(693\) 0 0
\(694\) 40.6847 1.54437
\(695\) 11.3693 0.431263
\(696\) 0 0
\(697\) 1.17708 0.0445851
\(698\) 23.1231 0.875222
\(699\) 0 0
\(700\) −0.246211 −0.00930591
\(701\) 11.6155 0.438712 0.219356 0.975645i \(-0.429604\pi\)
0.219356 + 0.975645i \(0.429604\pi\)
\(702\) 0 0
\(703\) 29.0540 1.09579
\(704\) −28.4924 −1.07385
\(705\) 0 0
\(706\) 23.0152 0.866187
\(707\) 4.38447 0.164895
\(708\) 0 0
\(709\) −22.1231 −0.830851 −0.415425 0.909627i \(-0.636367\pi\)
−0.415425 + 0.909627i \(0.636367\pi\)
\(710\) 11.1231 0.417443
\(711\) 0 0
\(712\) 4.87689 0.182769
\(713\) 14.9309 0.559165
\(714\) 0 0
\(715\) −21.7538 −0.813546
\(716\) −0.300187 −0.0112185
\(717\) 0 0
\(718\) 12.1080 0.451865
\(719\) −19.8617 −0.740718 −0.370359 0.928889i \(-0.620765\pi\)
−0.370359 + 0.928889i \(0.620765\pi\)
\(720\) 0 0
\(721\) 2.56155 0.0953972
\(722\) −15.6155 −0.581150
\(723\) 0 0
\(724\) 1.80776 0.0671850
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) 34.4384 1.27725 0.638626 0.769518i \(-0.279503\pi\)
0.638626 + 0.769518i \(0.279503\pi\)
\(728\) 2.90720 0.107748
\(729\) 0 0
\(730\) 0.984845 0.0364507
\(731\) −3.42329 −0.126615
\(732\) 0 0
\(733\) 9.61553 0.355158 0.177579 0.984107i \(-0.443174\pi\)
0.177579 + 0.984107i \(0.443174\pi\)
\(734\) −12.0000 −0.442928
\(735\) 0 0
\(736\) 3.80776 0.140356
\(737\) −33.6155 −1.23824
\(738\) 0 0
\(739\) 23.8078 0.875783 0.437891 0.899028i \(-0.355725\pi\)
0.437891 + 0.899028i \(0.355725\pi\)
\(740\) −8.49242 −0.312188
\(741\) 0 0
\(742\) −8.76894 −0.321918
\(743\) 13.1231 0.481440 0.240720 0.970595i \(-0.422616\pi\)
0.240720 + 0.970595i \(0.422616\pi\)
\(744\) 0 0
\(745\) 36.4924 1.33698
\(746\) 19.6155 0.718176
\(747\) 0 0
\(748\) 0.984845 0.0360095
\(749\) 0.630683 0.0230447
\(750\) 0 0
\(751\) 24.8617 0.907218 0.453609 0.891201i \(-0.350136\pi\)
0.453609 + 0.891201i \(0.350136\pi\)
\(752\) −37.4773 −1.36666
\(753\) 0 0
\(754\) 3.31534 0.120738
\(755\) 25.1231 0.914323
\(756\) 0 0
\(757\) 14.3153 0.520300 0.260150 0.965568i \(-0.416228\pi\)
0.260150 + 0.965568i \(0.416228\pi\)
\(758\) −0.492423 −0.0178856
\(759\) 0 0
\(760\) 14.6307 0.530711
\(761\) 22.4924 0.815350 0.407675 0.913127i \(-0.366340\pi\)
0.407675 + 0.913127i \(0.366340\pi\)
\(762\) 0 0
\(763\) 10.9848 0.397678
\(764\) 6.84658 0.247701
\(765\) 0 0
\(766\) −48.0000 −1.73431
\(767\) 9.42329 0.340255
\(768\) 0 0
\(769\) 44.8078 1.61581 0.807905 0.589313i \(-0.200602\pi\)
0.807905 + 0.589313i \(0.200602\pi\)
\(770\) 8.98485 0.323791
\(771\) 0 0
\(772\) 0.354162 0.0127466
\(773\) 36.0540 1.29677 0.648386 0.761312i \(-0.275444\pi\)
0.648386 + 0.761312i \(0.275444\pi\)
\(774\) 0 0
\(775\) 9.56155 0.343461
\(776\) −8.98485 −0.322537
\(777\) 0 0
\(778\) −23.9157 −0.857420
\(779\) −8.05398 −0.288564
\(780\) 0 0
\(781\) 18.2462 0.652901
\(782\) 1.06913 0.0382320
\(783\) 0 0
\(784\) 31.3153 1.11841
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) 44.8078 1.59722 0.798612 0.601846i \(-0.205568\pi\)
0.798612 + 0.601846i \(0.205568\pi\)
\(788\) −10.2462 −0.365006
\(789\) 0 0
\(790\) −4.49242 −0.159833
\(791\) 1.01515 0.0360948
\(792\) 0 0
\(793\) 3.05398 0.108450
\(794\) 34.0540 1.20853
\(795\) 0 0
\(796\) −7.75379 −0.274826
\(797\) −9.80776 −0.347409 −0.173704 0.984798i \(-0.555574\pi\)
−0.173704 + 0.984798i \(0.555574\pi\)
\(798\) 0 0
\(799\) −3.50758 −0.124089
\(800\) 2.43845 0.0862121
\(801\) 0 0
\(802\) −18.3542 −0.648108
\(803\) 1.61553 0.0570107
\(804\) 0 0
\(805\) 1.75379 0.0618129
\(806\) 31.6998 1.11658
\(807\) 0 0
\(808\) −19.0388 −0.669783
\(809\) 48.2462 1.69625 0.848123 0.529799i \(-0.177733\pi\)
0.848123 + 0.529799i \(0.177733\pi\)
\(810\) 0 0
\(811\) 43.2311 1.51805 0.759024 0.651063i \(-0.225677\pi\)
0.759024 + 0.651063i \(0.225677\pi\)
\(812\) −0.246211 −0.00864032
\(813\) 0 0
\(814\) −77.4773 −2.71558
\(815\) 4.24621 0.148738
\(816\) 0 0
\(817\) 23.4233 0.819477
\(818\) −19.2311 −0.672398
\(819\) 0 0
\(820\) 2.35416 0.0822109
\(821\) 5.36932 0.187390 0.0936952 0.995601i \(-0.470132\pi\)
0.0936952 + 0.995601i \(0.470132\pi\)
\(822\) 0 0
\(823\) −9.49242 −0.330885 −0.165443 0.986219i \(-0.552905\pi\)
−0.165443 + 0.986219i \(0.552905\pi\)
\(824\) −11.1231 −0.387492
\(825\) 0 0
\(826\) −3.89205 −0.135422
\(827\) −43.6155 −1.51666 −0.758330 0.651871i \(-0.773985\pi\)
−0.758330 + 0.651871i \(0.773985\pi\)
\(828\) 0 0
\(829\) 17.9309 0.622765 0.311382 0.950285i \(-0.399208\pi\)
0.311382 + 0.950285i \(0.399208\pi\)
\(830\) 36.1080 1.25333
\(831\) 0 0
\(832\) −11.8078 −0.409361
\(833\) 2.93087 0.101549
\(834\) 0 0
\(835\) −43.1231 −1.49234
\(836\) −6.73863 −0.233061
\(837\) 0 0
\(838\) 44.7926 1.54734
\(839\) 26.2462 0.906120 0.453060 0.891480i \(-0.350332\pi\)
0.453060 + 0.891480i \(0.350332\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 34.2462 1.18020
\(843\) 0 0
\(844\) −6.10795 −0.210244
\(845\) 16.9848 0.584296
\(846\) 0 0
\(847\) 8.56155 0.294178
\(848\) 46.8466 1.60872
\(849\) 0 0
\(850\) 0.684658 0.0234836
\(851\) −15.1231 −0.518413
\(852\) 0 0
\(853\) 11.0540 0.378481 0.189240 0.981931i \(-0.439397\pi\)
0.189240 + 0.981931i \(0.439397\pi\)
\(854\) −1.26137 −0.0431631
\(855\) 0 0
\(856\) −2.73863 −0.0936046
\(857\) −37.1231 −1.26810 −0.634051 0.773292i \(-0.718609\pi\)
−0.634051 + 0.773292i \(0.718609\pi\)
\(858\) 0 0
\(859\) 33.7926 1.15299 0.576494 0.817101i \(-0.304420\pi\)
0.576494 + 0.817101i \(0.304420\pi\)
\(860\) −6.84658 −0.233467
\(861\) 0 0
\(862\) 52.7926 1.79812
\(863\) 50.5464 1.72062 0.860310 0.509772i \(-0.170270\pi\)
0.860310 + 0.509772i \(0.170270\pi\)
\(864\) 0 0
\(865\) −28.4924 −0.968771
\(866\) 6.63068 0.225320
\(867\) 0 0
\(868\) −2.35416 −0.0799055
\(869\) −7.36932 −0.249987
\(870\) 0 0
\(871\) −13.9309 −0.472030
\(872\) −47.6998 −1.61532
\(873\) 0 0
\(874\) −7.31534 −0.247445
\(875\) 6.73863 0.227807
\(876\) 0 0
\(877\) 54.2311 1.83125 0.915626 0.402030i \(-0.131695\pi\)
0.915626 + 0.402030i \(0.131695\pi\)
\(878\) −29.8617 −1.00778
\(879\) 0 0
\(880\) −48.0000 −1.61808
\(881\) −52.0540 −1.75374 −0.876871 0.480725i \(-0.840374\pi\)
−0.876871 + 0.480725i \(0.840374\pi\)
\(882\) 0 0
\(883\) −41.6847 −1.40280 −0.701400 0.712768i \(-0.747441\pi\)
−0.701400 + 0.712768i \(0.747441\pi\)
\(884\) 0.408137 0.0137271
\(885\) 0 0
\(886\) −46.2462 −1.55367
\(887\) 7.50758 0.252080 0.126040 0.992025i \(-0.459773\pi\)
0.126040 + 0.992025i \(0.459773\pi\)
\(888\) 0 0
\(889\) −11.5076 −0.385952
\(890\) 6.24621 0.209373
\(891\) 0 0
\(892\) 8.38447 0.280733
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 1.36932 0.0457712
\(896\) 7.61553 0.254417
\(897\) 0 0
\(898\) −33.3693 −1.11355
\(899\) 9.56155 0.318896
\(900\) 0 0
\(901\) 4.38447 0.146068
\(902\) 21.4773 0.715115
\(903\) 0 0
\(904\) −4.40814 −0.146612
\(905\) −8.24621 −0.274113
\(906\) 0 0
\(907\) −35.2462 −1.17033 −0.585166 0.810914i \(-0.698971\pi\)
−0.585166 + 0.810914i \(0.698971\pi\)
\(908\) 3.03882 0.100847
\(909\) 0 0
\(910\) 3.72348 0.123432
\(911\) −29.7538 −0.985787 −0.492894 0.870090i \(-0.664061\pi\)
−0.492894 + 0.870090i \(0.664061\pi\)
\(912\) 0 0
\(913\) 59.2311 1.96026
\(914\) −35.4233 −1.17170
\(915\) 0 0
\(916\) −2.63068 −0.0869202
\(917\) −0.984845 −0.0325224
\(918\) 0 0
\(919\) 59.6155 1.96653 0.983267 0.182168i \(-0.0583115\pi\)
0.983267 + 0.182168i \(0.0583115\pi\)
\(920\) −7.61553 −0.251077
\(921\) 0 0
\(922\) 27.0388 0.890476
\(923\) 7.56155 0.248892
\(924\) 0 0
\(925\) −9.68466 −0.318430
\(926\) −48.4924 −1.59356
\(927\) 0 0
\(928\) 2.43845 0.0800460
\(929\) −48.3542 −1.58645 −0.793224 0.608930i \(-0.791599\pi\)
−0.793224 + 0.608930i \(0.791599\pi\)
\(930\) 0 0
\(931\) −20.0540 −0.657242
\(932\) −6.35416 −0.208137
\(933\) 0 0
\(934\) 22.2462 0.727918
\(935\) −4.49242 −0.146918
\(936\) 0 0
\(937\) −41.9848 −1.37159 −0.685793 0.727797i \(-0.740544\pi\)
−0.685793 + 0.727797i \(0.740544\pi\)
\(938\) 5.75379 0.187868
\(939\) 0 0
\(940\) −7.01515 −0.228809
\(941\) 34.2462 1.11639 0.558197 0.829708i \(-0.311493\pi\)
0.558197 + 0.829708i \(0.311493\pi\)
\(942\) 0 0
\(943\) 4.19224 0.136518
\(944\) 20.7926 0.676742
\(945\) 0 0
\(946\) −62.4621 −2.03082
\(947\) −7.12311 −0.231470 −0.115735 0.993280i \(-0.536922\pi\)
−0.115735 + 0.993280i \(0.536922\pi\)
\(948\) 0 0
\(949\) 0.669503 0.0217330
\(950\) −4.68466 −0.151990
\(951\) 0 0
\(952\) 0.600373 0.0194582
\(953\) −18.4924 −0.599028 −0.299514 0.954092i \(-0.596825\pi\)
−0.299514 + 0.954092i \(0.596825\pi\)
\(954\) 0 0
\(955\) −31.2311 −1.01061
\(956\) 2.43845 0.0788650
\(957\) 0 0
\(958\) 39.2311 1.26750
\(959\) −9.36932 −0.302551
\(960\) 0 0
\(961\) 60.4233 1.94914
\(962\) −32.1080 −1.03520
\(963\) 0 0
\(964\) −8.24621 −0.265593
\(965\) −1.61553 −0.0520057
\(966\) 0 0
\(967\) 17.7386 0.570436 0.285218 0.958463i \(-0.407934\pi\)
0.285218 + 0.958463i \(0.407934\pi\)
\(968\) −37.1771 −1.19492
\(969\) 0 0
\(970\) −11.5076 −0.369486
\(971\) −61.2311 −1.96500 −0.982499 0.186268i \(-0.940361\pi\)
−0.982499 + 0.186268i \(0.940361\pi\)
\(972\) 0 0
\(973\) −3.19224 −0.102338
\(974\) 51.6155 1.65387
\(975\) 0 0
\(976\) 6.73863 0.215698
\(977\) 1.86174 0.0595623 0.0297812 0.999556i \(-0.490519\pi\)
0.0297812 + 0.999556i \(0.490519\pi\)
\(978\) 0 0
\(979\) 10.2462 0.327470
\(980\) 5.86174 0.187246
\(981\) 0 0
\(982\) 41.7538 1.33242
\(983\) −30.4924 −0.972557 −0.486279 0.873804i \(-0.661646\pi\)
−0.486279 + 0.873804i \(0.661646\pi\)
\(984\) 0 0
\(985\) 46.7386 1.48922
\(986\) 0.684658 0.0218040
\(987\) 0 0
\(988\) −2.79261 −0.0888447
\(989\) −12.1922 −0.387691
\(990\) 0 0
\(991\) 23.1922 0.736726 0.368363 0.929682i \(-0.379918\pi\)
0.368363 + 0.929682i \(0.379918\pi\)
\(992\) 23.3153 0.740263
\(993\) 0 0
\(994\) −3.12311 −0.0990589
\(995\) 35.3693 1.12128
\(996\) 0 0
\(997\) −48.3542 −1.53139 −0.765696 0.643203i \(-0.777605\pi\)
−0.765696 + 0.643203i \(0.777605\pi\)
\(998\) 60.4924 1.91485
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.a.b.1.2 2
3.2 odd 2 783.2.a.d.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
783.2.a.b.1.2 2 1.1 even 1 trivial
783.2.a.d.1.1 yes 2 3.2 odd 2