Properties

Label 780.2.g.e.131.9
Level $780$
Weight $2$
Character 780.131
Analytic conductor $6.228$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(131,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.9
Character \(\chi\) \(=\) 780.131
Dual form 780.2.g.e.131.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13428 - 0.844635i) q^{2} +(-0.684863 + 1.59090i) q^{3} +(0.573183 + 1.91611i) q^{4} +1.00000i q^{5} +(2.12056 - 1.22607i) q^{6} +1.35942i q^{7} +(0.968260 - 2.65753i) q^{8} +(-2.06192 - 2.17910i) q^{9} +(0.844635 - 1.13428i) q^{10} -5.65668 q^{11} +(-3.44088 - 0.400393i) q^{12} -1.00000 q^{13} +(1.14821 - 1.54196i) q^{14} +(-1.59090 - 0.684863i) q^{15} +(-3.34292 + 2.19656i) q^{16} -4.77234i q^{17} +(0.498258 + 4.21328i) q^{18} -8.29423i q^{19} +(-1.91611 + 0.573183i) q^{20} +(-2.16269 - 0.931014i) q^{21} +(6.41626 + 4.77783i) q^{22} +3.30446 q^{23} +(3.56474 + 3.36045i) q^{24} -1.00000 q^{25} +(1.13428 + 0.844635i) q^{26} +(4.87886 - 1.78793i) q^{27} +(-2.60478 + 0.779195i) q^{28} +3.90736i q^{29} +(1.22607 + 2.12056i) q^{30} +8.19765i q^{31} +(5.64710 + 0.332035i) q^{32} +(3.87405 - 8.99922i) q^{33} +(-4.03088 + 5.41317i) q^{34} -1.35942 q^{35} +(2.99352 - 5.19989i) q^{36} +3.51765 q^{37} +(-7.00560 + 9.40798i) q^{38} +(0.684863 - 1.59090i) q^{39} +(2.65753 + 0.968260i) q^{40} -1.39380i q^{41} +(1.66673 + 2.88272i) q^{42} -10.0772i q^{43} +(-3.24232 - 10.8388i) q^{44} +(2.17910 - 2.06192i) q^{45} +(-3.74818 - 2.79106i) q^{46} +6.45448 q^{47} +(-1.20506 - 6.82260i) q^{48} +5.15199 q^{49} +(1.13428 + 0.844635i) q^{50} +(7.59231 + 3.26840i) q^{51} +(-0.573183 - 1.91611i) q^{52} -4.68264i q^{53} +(-7.04415 - 2.09284i) q^{54} -5.65668i q^{55} +(3.61269 + 1.31627i) q^{56} +(13.1953 + 5.68042i) q^{57} +(3.30030 - 4.43205i) q^{58} -13.6004 q^{59} +(0.400393 - 3.44088i) q^{60} +0.137755 q^{61} +(6.92402 - 9.29843i) q^{62} +(2.96230 - 2.80301i) q^{63} +(-6.12495 - 5.14636i) q^{64} -1.00000i q^{65} +(-11.9953 + 6.93547i) q^{66} -5.90581i q^{67} +(9.14430 - 2.73542i) q^{68} +(-2.26310 + 5.25706i) q^{69} +(1.54196 + 1.14821i) q^{70} -12.2472 q^{71} +(-7.78750 + 3.36970i) q^{72} -3.48129 q^{73} +(-3.99000 - 2.97113i) q^{74} +(0.684863 - 1.59090i) q^{75} +(15.8926 - 4.75412i) q^{76} -7.68978i q^{77} +(-2.12056 + 1.22607i) q^{78} -12.9548i q^{79} +(-2.19656 - 3.34292i) q^{80} +(-0.496932 + 8.98627i) q^{81} +(-1.17725 + 1.58096i) q^{82} -6.73642 q^{83} +(0.544301 - 4.67759i) q^{84} +4.77234 q^{85} +(-8.51154 + 11.4303i) q^{86} +(-6.21622 - 2.67601i) q^{87} +(-5.47714 + 15.0328i) q^{88} +1.70338i q^{89} +(-4.21328 + 0.498258i) q^{90} -1.35942i q^{91} +(1.89406 + 6.33169i) q^{92} +(-13.0416 - 5.61427i) q^{93} +(-7.32119 - 5.45168i) q^{94} +8.29423 q^{95} +(-4.39573 + 8.75657i) q^{96} +1.74363 q^{97} +(-5.84380 - 4.35155i) q^{98} +(11.6637 + 12.3265i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{4} - 2 q^{6} - 14 q^{12} - 40 q^{13} + 12 q^{16} - 16 q^{18} - 24 q^{21} + 44 q^{22} - 10 q^{24} - 40 q^{25} - 48 q^{28} - 6 q^{30} - 8 q^{33} - 56 q^{34} + 36 q^{36} - 72 q^{37} - 20 q^{42}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13428 0.844635i −0.802057 0.597247i
\(3\) −0.684863 + 1.59090i −0.395406 + 0.918506i
\(4\) 0.573183 + 1.91611i 0.286592 + 0.958053i
\(5\) 1.00000i 0.447214i
\(6\) 2.12056 1.22607i 0.865714 0.500540i
\(7\) 1.35942i 0.513811i 0.966437 + 0.256905i \(0.0827029\pi\)
−0.966437 + 0.256905i \(0.917297\pi\)
\(8\) 0.968260 2.65753i 0.342331 0.939579i
\(9\) −2.06192 2.17910i −0.687308 0.726366i
\(10\) 0.844635 1.13428i 0.267097 0.358691i
\(11\) −5.65668 −1.70555 −0.852777 0.522275i \(-0.825083\pi\)
−0.852777 + 0.522275i \(0.825083\pi\)
\(12\) −3.44088 0.400393i −0.993298 0.115584i
\(13\) −1.00000 −0.277350
\(14\) 1.14821 1.54196i 0.306872 0.412106i
\(15\) −1.59090 0.684863i −0.410769 0.176831i
\(16\) −3.34292 + 2.19656i −0.835730 + 0.549140i
\(17\) 4.77234i 1.15746i −0.815519 0.578731i \(-0.803548\pi\)
0.815519 0.578731i \(-0.196452\pi\)
\(18\) 0.498258 + 4.21328i 0.117441 + 0.993080i
\(19\) 8.29423i 1.90283i −0.307915 0.951414i \(-0.599631\pi\)
0.307915 0.951414i \(-0.400369\pi\)
\(20\) −1.91611 + 0.573183i −0.428454 + 0.128168i
\(21\) −2.16269 0.931014i −0.471939 0.203164i
\(22\) 6.41626 + 4.77783i 1.36795 + 1.01864i
\(23\) 3.30446 0.689027 0.344513 0.938781i \(-0.388044\pi\)
0.344513 + 0.938781i \(0.388044\pi\)
\(24\) 3.56474 + 3.36045i 0.727650 + 0.685949i
\(25\) −1.00000 −0.200000
\(26\) 1.13428 + 0.844635i 0.222451 + 0.165647i
\(27\) 4.87886 1.78793i 0.938938 0.344088i
\(28\) −2.60478 + 0.779195i −0.492258 + 0.147254i
\(29\) 3.90736i 0.725579i 0.931871 + 0.362790i \(0.118176\pi\)
−0.931871 + 0.362790i \(0.881824\pi\)
\(30\) 1.22607 + 2.12056i 0.223848 + 0.387159i
\(31\) 8.19765i 1.47234i 0.676796 + 0.736171i \(0.263368\pi\)
−0.676796 + 0.736171i \(0.736632\pi\)
\(32\) 5.64710 + 0.332035i 0.998276 + 0.0586961i
\(33\) 3.87405 8.99922i 0.674386 1.56656i
\(34\) −4.03088 + 5.41317i −0.691291 + 0.928350i
\(35\) −1.35942 −0.229783
\(36\) 2.99352 5.19989i 0.498920 0.866648i
\(37\) 3.51765 0.578297 0.289149 0.957284i \(-0.406628\pi\)
0.289149 + 0.957284i \(0.406628\pi\)
\(38\) −7.00560 + 9.40798i −1.13646 + 1.52618i
\(39\) 0.684863 1.59090i 0.109666 0.254748i
\(40\) 2.65753 + 0.968260i 0.420193 + 0.153095i
\(41\) 1.39380i 0.217674i −0.994060 0.108837i \(-0.965287\pi\)
0.994060 0.108837i \(-0.0347127\pi\)
\(42\) 1.66673 + 2.88272i 0.257183 + 0.444813i
\(43\) 10.0772i 1.53676i −0.639997 0.768378i \(-0.721064\pi\)
0.639997 0.768378i \(-0.278936\pi\)
\(44\) −3.24232 10.8388i −0.488797 1.63401i
\(45\) 2.17910 2.06192i 0.324841 0.307374i
\(46\) −3.74818 2.79106i −0.552639 0.411519i
\(47\) 6.45448 0.941482 0.470741 0.882271i \(-0.343987\pi\)
0.470741 + 0.882271i \(0.343987\pi\)
\(48\) −1.20506 6.82260i −0.173936 0.984757i
\(49\) 5.15199 0.735998
\(50\) 1.13428 + 0.844635i 0.160411 + 0.119449i
\(51\) 7.59231 + 3.26840i 1.06314 + 0.457667i
\(52\) −0.573183 1.91611i −0.0794862 0.265716i
\(53\) 4.68264i 0.643210i −0.946874 0.321605i \(-0.895778\pi\)
0.946874 0.321605i \(-0.104222\pi\)
\(54\) −7.04415 2.09284i −0.958587 0.284800i
\(55\) 5.65668i 0.762747i
\(56\) 3.61269 + 1.31627i 0.482766 + 0.175894i
\(57\) 13.1953 + 5.68042i 1.74776 + 0.752389i
\(58\) 3.30030 4.43205i 0.433350 0.581956i
\(59\) −13.6004 −1.77062 −0.885310 0.465000i \(-0.846054\pi\)
−0.885310 + 0.465000i \(0.846054\pi\)
\(60\) 0.400393 3.44088i 0.0516905 0.444216i
\(61\) 0.137755 0.0176378 0.00881889 0.999961i \(-0.497193\pi\)
0.00881889 + 0.999961i \(0.497193\pi\)
\(62\) 6.92402 9.29843i 0.879352 1.18090i
\(63\) 2.96230 2.80301i 0.373215 0.353147i
\(64\) −6.12495 5.14636i −0.765618 0.643295i
\(65\) 1.00000i 0.124035i
\(66\) −11.9953 + 6.93547i −1.47652 + 0.853697i
\(67\) 5.90581i 0.721510i −0.932661 0.360755i \(-0.882519\pi\)
0.932661 0.360755i \(-0.117481\pi\)
\(68\) 9.14430 2.73542i 1.10891 0.331719i
\(69\) −2.26310 + 5.25706i −0.272445 + 0.632875i
\(70\) 1.54196 + 1.14821i 0.184299 + 0.137237i
\(71\) −12.2472 −1.45347 −0.726737 0.686915i \(-0.758964\pi\)
−0.726737 + 0.686915i \(0.758964\pi\)
\(72\) −7.78750 + 3.36970i −0.917766 + 0.397123i
\(73\) −3.48129 −0.407454 −0.203727 0.979028i \(-0.565305\pi\)
−0.203727 + 0.979028i \(0.565305\pi\)
\(74\) −3.99000 2.97113i −0.463828 0.345387i
\(75\) 0.684863 1.59090i 0.0790812 0.183701i
\(76\) 15.8926 4.75412i 1.82301 0.545334i
\(77\) 7.68978i 0.876332i
\(78\) −2.12056 + 1.22607i −0.240106 + 0.138825i
\(79\) 12.9548i 1.45753i −0.684766 0.728763i \(-0.740096\pi\)
0.684766 0.728763i \(-0.259904\pi\)
\(80\) −2.19656 3.34292i −0.245583 0.373750i
\(81\) −0.496932 + 8.98627i −0.0552147 + 0.998475i
\(82\) −1.17725 + 1.58096i −0.130005 + 0.174587i
\(83\) −6.73642 −0.739418 −0.369709 0.929148i \(-0.620543\pi\)
−0.369709 + 0.929148i \(0.620543\pi\)
\(84\) 0.544301 4.67759i 0.0593881 0.510367i
\(85\) 4.77234 0.517633
\(86\) −8.51154 + 11.4303i −0.917823 + 1.23257i
\(87\) −6.21622 2.67601i −0.666449 0.286898i
\(88\) −5.47714 + 15.0328i −0.583865 + 1.60250i
\(89\) 1.70338i 0.180558i 0.995917 + 0.0902791i \(0.0287759\pi\)
−0.995917 + 0.0902791i \(0.971224\pi\)
\(90\) −4.21328 + 0.498258i −0.444119 + 0.0525210i
\(91\) 1.35942i 0.142506i
\(92\) 1.89406 + 6.33169i 0.197469 + 0.660124i
\(93\) −13.0416 5.61427i −1.35235 0.582172i
\(94\) −7.32119 5.45168i −0.755123 0.562298i
\(95\) 8.29423 0.850970
\(96\) −4.39573 + 8.75657i −0.448637 + 0.893714i
\(97\) 1.74363 0.177039 0.0885193 0.996074i \(-0.471787\pi\)
0.0885193 + 0.996074i \(0.471787\pi\)
\(98\) −5.84380 4.35155i −0.590313 0.439573i
\(99\) 11.6637 + 12.3265i 1.17224 + 1.23886i
\(100\) −0.573183 1.91611i −0.0573183 0.191611i
\(101\) 10.5717i 1.05193i −0.850507 0.525964i \(-0.823705\pi\)
0.850507 0.525964i \(-0.176295\pi\)
\(102\) −5.85120 10.1200i −0.579355 1.00203i
\(103\) 6.27478i 0.618272i 0.951018 + 0.309136i \(0.100040\pi\)
−0.951018 + 0.309136i \(0.899960\pi\)
\(104\) −0.968260 + 2.65753i −0.0949457 + 0.260592i
\(105\) 0.931014 2.16269i 0.0908577 0.211057i
\(106\) −3.95512 + 5.31143i −0.384156 + 0.515892i
\(107\) 2.98999 0.289053 0.144527 0.989501i \(-0.453834\pi\)
0.144527 + 0.989501i \(0.453834\pi\)
\(108\) 6.22235 + 8.32360i 0.598746 + 0.800939i
\(109\) −11.6540 −1.11625 −0.558123 0.829758i \(-0.688478\pi\)
−0.558123 + 0.829758i \(0.688478\pi\)
\(110\) −4.77783 + 6.41626i −0.455548 + 0.611767i
\(111\) −2.40911 + 5.59622i −0.228662 + 0.531170i
\(112\) −2.98604 4.54442i −0.282154 0.429407i
\(113\) 10.0075i 0.941425i 0.882287 + 0.470713i \(0.156003\pi\)
−0.882287 + 0.470713i \(0.843997\pi\)
\(114\) −10.1693 17.5884i −0.952441 1.64730i
\(115\) 3.30446i 0.308142i
\(116\) −7.48692 + 2.23964i −0.695143 + 0.207945i
\(117\) 2.06192 + 2.17910i 0.190625 + 0.201458i
\(118\) 15.4267 + 11.4874i 1.42014 + 1.05750i
\(119\) 6.48759 0.594716
\(120\) −3.36045 + 3.56474i −0.306766 + 0.325415i
\(121\) 20.9981 1.90891
\(122\) −0.156253 0.116353i −0.0141465 0.0105341i
\(123\) 2.21739 + 0.954560i 0.199935 + 0.0860698i
\(124\) −15.7076 + 4.69875i −1.41058 + 0.421961i
\(125\) 1.00000i 0.0894427i
\(126\) −5.72760 + 0.677340i −0.510255 + 0.0603423i
\(127\) 2.40673i 0.213562i 0.994283 + 0.106781i \(0.0340544\pi\)
−0.994283 + 0.106781i \(0.965946\pi\)
\(128\) 2.60061 + 11.0108i 0.229864 + 0.973223i
\(129\) 16.0318 + 6.90149i 1.41152 + 0.607642i
\(130\) −0.844635 + 1.13428i −0.0740794 + 0.0994830i
\(131\) −15.1268 −1.32163 −0.660816 0.750548i \(-0.729790\pi\)
−0.660816 + 0.750548i \(0.729790\pi\)
\(132\) 19.4640 + 2.26490i 1.69412 + 0.197134i
\(133\) 11.2753 0.977694
\(134\) −4.98825 + 6.69884i −0.430920 + 0.578692i
\(135\) 1.78793 + 4.87886i 0.153881 + 0.419906i
\(136\) −12.6826 4.62086i −1.08753 0.396236i
\(137\) 15.0055i 1.28201i −0.767538 0.641004i \(-0.778518\pi\)
0.767538 0.641004i \(-0.221482\pi\)
\(138\) 7.00728 4.05148i 0.596500 0.344885i
\(139\) 11.5491i 0.979584i −0.871839 0.489792i \(-0.837073\pi\)
0.871839 0.489792i \(-0.162927\pi\)
\(140\) −0.779195 2.60478i −0.0658540 0.220144i
\(141\) −4.42043 + 10.2684i −0.372268 + 0.864758i
\(142\) 13.8918 + 10.3444i 1.16577 + 0.868084i
\(143\) 5.65668 0.473036
\(144\) 11.6794 + 2.75541i 0.973281 + 0.229618i
\(145\) −3.90736 −0.324489
\(146\) 3.94875 + 2.94042i 0.326801 + 0.243351i
\(147\) −3.52841 + 8.19630i −0.291018 + 0.676019i
\(148\) 2.01626 + 6.74018i 0.165735 + 0.554039i
\(149\) 7.77947i 0.637319i −0.947869 0.318659i \(-0.896767\pi\)
0.947869 0.318659i \(-0.103233\pi\)
\(150\) −2.12056 + 1.22607i −0.173143 + 0.100108i
\(151\) 14.2684i 1.16114i −0.814209 0.580572i \(-0.802829\pi\)
0.814209 0.580572i \(-0.197171\pi\)
\(152\) −22.0422 8.03097i −1.78786 0.651398i
\(153\) −10.3994 + 9.84020i −0.840741 + 0.795533i
\(154\) −6.49506 + 8.72237i −0.523387 + 0.702869i
\(155\) −8.19765 −0.658451
\(156\) 3.44088 + 0.400393i 0.275491 + 0.0320571i
\(157\) 6.63498 0.529529 0.264764 0.964313i \(-0.414706\pi\)
0.264764 + 0.964313i \(0.414706\pi\)
\(158\) −10.9421 + 14.6943i −0.870503 + 1.16902i
\(159\) 7.44962 + 3.20697i 0.590793 + 0.254329i
\(160\) −0.332035 + 5.64710i −0.0262497 + 0.446443i
\(161\) 4.49213i 0.354029i
\(162\) 8.15378 9.77322i 0.640621 0.767857i
\(163\) 12.2961i 0.963106i −0.876417 0.481553i \(-0.840073\pi\)
0.876417 0.481553i \(-0.159927\pi\)
\(164\) 2.67066 0.798901i 0.208544 0.0623837i
\(165\) 8.99922 + 3.87405i 0.700588 + 0.301595i
\(166\) 7.64099 + 5.68982i 0.593056 + 0.441615i
\(167\) −11.2076 −0.867272 −0.433636 0.901088i \(-0.642770\pi\)
−0.433636 + 0.901088i \(0.642770\pi\)
\(168\) −4.56825 + 4.84597i −0.352448 + 0.373874i
\(169\) 1.00000 0.0769231
\(170\) −5.41317 4.03088i −0.415171 0.309155i
\(171\) −18.0739 + 17.1021i −1.38215 + 1.30783i
\(172\) 19.3089 5.77607i 1.47229 0.440421i
\(173\) 18.4036i 1.39920i −0.714537 0.699598i \(-0.753362\pi\)
0.714537 0.699598i \(-0.246638\pi\)
\(174\) 4.79069 + 8.28579i 0.363181 + 0.628144i
\(175\) 1.35942i 0.102762i
\(176\) 18.9098 12.4252i 1.42538 0.936588i
\(177\) 9.31441 21.6369i 0.700114 1.62633i
\(178\) 1.43874 1.93211i 0.107838 0.144818i
\(179\) 13.4896 1.00826 0.504130 0.863628i \(-0.331813\pi\)
0.504130 + 0.863628i \(0.331813\pi\)
\(180\) 5.19989 + 2.99352i 0.387577 + 0.223124i
\(181\) −8.44917 −0.628022 −0.314011 0.949419i \(-0.601673\pi\)
−0.314011 + 0.949419i \(0.601673\pi\)
\(182\) −1.14821 + 1.54196i −0.0851110 + 0.114298i
\(183\) −0.0943436 + 0.219155i −0.00697408 + 0.0162004i
\(184\) 3.19957 8.78169i 0.235875 0.647395i
\(185\) 3.51765i 0.258622i
\(186\) 10.0509 + 17.3836i 0.736965 + 1.27463i
\(187\) 26.9956i 1.97411i
\(188\) 3.69960 + 12.3675i 0.269821 + 0.901990i
\(189\) 2.43054 + 6.63240i 0.176796 + 0.482436i
\(190\) −9.40798 7.00560i −0.682527 0.508240i
\(191\) 4.49024 0.324902 0.162451 0.986717i \(-0.448060\pi\)
0.162451 + 0.986717i \(0.448060\pi\)
\(192\) 12.3821 6.21962i 0.893601 0.448863i
\(193\) −25.9580 −1.86850 −0.934248 0.356624i \(-0.883928\pi\)
−0.934248 + 0.356624i \(0.883928\pi\)
\(194\) −1.97776 1.47273i −0.141995 0.105736i
\(195\) 1.59090 + 0.684863i 0.113927 + 0.0490441i
\(196\) 2.95303 + 9.87175i 0.210931 + 0.705125i
\(197\) 18.5921i 1.32463i 0.749225 + 0.662316i \(0.230426\pi\)
−0.749225 + 0.662316i \(0.769574\pi\)
\(198\) −2.81849 23.8332i −0.200301 1.69375i
\(199\) 24.0803i 1.70701i 0.521085 + 0.853505i \(0.325528\pi\)
−0.521085 + 0.853505i \(0.674472\pi\)
\(200\) −0.968260 + 2.65753i −0.0684663 + 0.187916i
\(201\) 9.39555 + 4.04467i 0.662711 + 0.285289i
\(202\) −8.92926 + 11.9913i −0.628261 + 0.843706i
\(203\) −5.31173 −0.372811
\(204\) −1.91081 + 16.4211i −0.133784 + 1.14970i
\(205\) 1.39380 0.0973470
\(206\) 5.29990 7.11736i 0.369261 0.495890i
\(207\) −6.81354 7.20073i −0.473574 0.500485i
\(208\) 3.34292 2.19656i 0.231790 0.152304i
\(209\) 46.9178i 3.24538i
\(210\) −2.88272 + 1.66673i −0.198926 + 0.115016i
\(211\) 15.3530i 1.05694i −0.848951 0.528472i \(-0.822765\pi\)
0.848951 0.528472i \(-0.177235\pi\)
\(212\) 8.97244 2.68401i 0.616230 0.184339i
\(213\) 8.38766 19.4841i 0.574713 1.33503i
\(214\) −3.39149 2.52545i −0.231837 0.172636i
\(215\) 10.0772 0.687258
\(216\) −0.0274805 14.6969i −0.00186981 0.999998i
\(217\) −11.1440 −0.756505
\(218\) 13.2189 + 9.84334i 0.895294 + 0.666675i
\(219\) 2.38420 5.53838i 0.161110 0.374249i
\(220\) 10.8388 3.24232i 0.730752 0.218597i
\(221\) 4.77234i 0.321022i
\(222\) 7.45937 4.31287i 0.500640 0.289461i
\(223\) 4.22199i 0.282725i −0.989958 0.141363i \(-0.954852\pi\)
0.989958 0.141363i \(-0.0451483\pi\)
\(224\) −0.451374 + 7.67676i −0.0301587 + 0.512925i
\(225\) 2.06192 + 2.17910i 0.137462 + 0.145273i
\(226\) 8.45267 11.3513i 0.562263 0.755077i
\(227\) 14.1803 0.941181 0.470591 0.882352i \(-0.344041\pi\)
0.470591 + 0.882352i \(0.344041\pi\)
\(228\) −3.32095 + 28.5395i −0.219936 + 1.89007i
\(229\) −12.0315 −0.795061 −0.397531 0.917589i \(-0.630133\pi\)
−0.397531 + 0.917589i \(0.630133\pi\)
\(230\) 2.79106 3.74818i 0.184037 0.247148i
\(231\) 12.2337 + 5.26645i 0.804917 + 0.346507i
\(232\) 10.3839 + 3.78334i 0.681739 + 0.248389i
\(233\) 16.9405i 1.10981i 0.831915 + 0.554903i \(0.187245\pi\)
−0.831915 + 0.554903i \(0.812755\pi\)
\(234\) −0.498258 4.21328i −0.0325722 0.275431i
\(235\) 6.45448i 0.421044i
\(236\) −7.79552 26.0598i −0.507445 1.69635i
\(237\) 20.6097 + 8.87225i 1.33875 + 0.576314i
\(238\) −7.35875 5.47965i −0.476997 0.355193i
\(239\) 8.12221 0.525382 0.262691 0.964880i \(-0.415390\pi\)
0.262691 + 0.964880i \(0.415390\pi\)
\(240\) 6.82260 1.20506i 0.440397 0.0777864i
\(241\) −13.3860 −0.862270 −0.431135 0.902288i \(-0.641887\pi\)
−0.431135 + 0.902288i \(0.641887\pi\)
\(242\) −23.8177 17.7357i −1.53106 1.14009i
\(243\) −13.9559 6.94494i −0.895273 0.445518i
\(244\) 0.0789591 + 0.263954i 0.00505484 + 0.0168979i
\(245\) 5.15199i 0.329148i
\(246\) −1.70889 2.95562i −0.108955 0.188444i
\(247\) 8.29423i 0.527749i
\(248\) 21.7855 + 7.93745i 1.38338 + 0.504029i
\(249\) 4.61353 10.7170i 0.292370 0.679160i
\(250\) −0.844635 + 1.13428i −0.0534194 + 0.0717382i
\(251\) −5.94055 −0.374964 −0.187482 0.982268i \(-0.560033\pi\)
−0.187482 + 0.982268i \(0.560033\pi\)
\(252\) 7.06881 + 4.06944i 0.445293 + 0.256351i
\(253\) −18.6923 −1.17517
\(254\) 2.03281 2.72990i 0.127550 0.171289i
\(255\) −3.26840 + 7.59231i −0.204675 + 0.475449i
\(256\) 6.35025 14.6859i 0.396891 0.917866i
\(257\) 5.13694i 0.320434i −0.987082 0.160217i \(-0.948781\pi\)
0.987082 0.160217i \(-0.0512194\pi\)
\(258\) −12.3553 21.3692i −0.769207 1.33039i
\(259\) 4.78194i 0.297136i
\(260\) 1.91611 0.573183i 0.118832 0.0355473i
\(261\) 8.51453 8.05669i 0.527036 0.498697i
\(262\) 17.1580 + 12.7766i 1.06002 + 0.789341i
\(263\) −7.66000 −0.472336 −0.236168 0.971712i \(-0.575892\pi\)
−0.236168 + 0.971712i \(0.575892\pi\)
\(264\) −20.1646 19.0090i −1.24105 1.16992i
\(265\) 4.68264 0.287652
\(266\) −12.7894 9.52353i −0.784166 0.583925i
\(267\) −2.70991 1.16658i −0.165844 0.0713938i
\(268\) 11.3162 3.38511i 0.691244 0.206779i
\(269\) 21.2926i 1.29824i 0.760688 + 0.649118i \(0.224862\pi\)
−0.760688 + 0.649118i \(0.775138\pi\)
\(270\) 2.09284 7.04415i 0.127366 0.428693i
\(271\) 16.0089i 0.972473i −0.873827 0.486237i \(-0.838369\pi\)
0.873827 0.486237i \(-0.161631\pi\)
\(272\) 10.4827 + 15.9535i 0.635608 + 0.967326i
\(273\) 2.16269 + 0.931014i 0.130892 + 0.0563475i
\(274\) −12.6742 + 17.0205i −0.765675 + 1.02824i
\(275\) 5.65668 0.341111
\(276\) −11.3702 1.32308i −0.684409 0.0796401i
\(277\) −21.2760 −1.27835 −0.639176 0.769060i \(-0.720725\pi\)
−0.639176 + 0.769060i \(0.720725\pi\)
\(278\) −9.75480 + 13.0999i −0.585054 + 0.785682i
\(279\) 17.8635 16.9029i 1.06946 1.01195i
\(280\) −1.31627 + 3.61269i −0.0786620 + 0.215900i
\(281\) 10.3372i 0.616666i −0.951278 0.308333i \(-0.900229\pi\)
0.951278 0.308333i \(-0.0997712\pi\)
\(282\) 13.6871 7.91362i 0.815054 0.471249i
\(283\) 16.6477i 0.989605i 0.869005 + 0.494803i \(0.164760\pi\)
−0.869005 + 0.494803i \(0.835240\pi\)
\(284\) −7.01989 23.4669i −0.416554 1.39251i
\(285\) −5.68042 + 13.1953i −0.336479 + 0.781622i
\(286\) −6.41626 4.77783i −0.379402 0.282519i
\(287\) 1.89475 0.111844
\(288\) −10.9204 12.9902i −0.643488 0.765456i
\(289\) −5.77520 −0.339717
\(290\) 4.43205 + 3.30030i 0.260259 + 0.193800i
\(291\) −1.19415 + 2.77394i −0.0700021 + 0.162611i
\(292\) −1.99541 6.67051i −0.116773 0.390362i
\(293\) 13.3543i 0.780164i −0.920780 0.390082i \(-0.872447\pi\)
0.920780 0.390082i \(-0.127553\pi\)
\(294\) 10.9251 6.31668i 0.637164 0.368396i
\(295\) 13.6004i 0.791846i
\(296\) 3.40599 9.34825i 0.197969 0.543356i
\(297\) −27.5982 + 10.1138i −1.60141 + 0.586860i
\(298\) −6.57081 + 8.82410i −0.380637 + 0.511166i
\(299\) −3.30446 −0.191102
\(300\) 3.44088 + 0.400393i 0.198660 + 0.0231167i
\(301\) 13.6991 0.789602
\(302\) −12.0516 + 16.1843i −0.693490 + 0.931305i
\(303\) 16.8186 + 7.24019i 0.966202 + 0.415938i
\(304\) 18.2188 + 27.7270i 1.04492 + 1.59025i
\(305\) 0.137755i 0.00788785i
\(306\) 20.1072 2.37786i 1.14945 0.135933i
\(307\) 0.385659i 0.0220107i −0.999939 0.0110053i \(-0.996497\pi\)
0.999939 0.0110053i \(-0.00350318\pi\)
\(308\) 14.7344 4.40766i 0.839573 0.251150i
\(309\) −9.98255 4.29737i −0.567887 0.244469i
\(310\) 9.29843 + 6.92402i 0.528115 + 0.393258i
\(311\) 7.86268 0.445852 0.222926 0.974835i \(-0.428439\pi\)
0.222926 + 0.974835i \(0.428439\pi\)
\(312\) −3.56474 3.36045i −0.201814 0.190248i
\(313\) −17.2936 −0.977495 −0.488747 0.872425i \(-0.662546\pi\)
−0.488747 + 0.872425i \(0.662546\pi\)
\(314\) −7.52592 5.60413i −0.424712 0.316260i
\(315\) 2.80301 + 2.96230i 0.157932 + 0.166907i
\(316\) 24.8227 7.42546i 1.39639 0.417715i
\(317\) 8.28922i 0.465569i 0.972528 + 0.232785i \(0.0747837\pi\)
−0.972528 + 0.232785i \(0.925216\pi\)
\(318\) −5.74123 9.92981i −0.321952 0.556836i
\(319\) 22.1027i 1.23751i
\(320\) 5.14636 6.12495i 0.287690 0.342395i
\(321\) −2.04773 + 4.75677i −0.114293 + 0.265497i
\(322\) 3.79421 5.09533i 0.211443 0.283952i
\(323\) −39.5829 −2.20245
\(324\) −17.5035 + 4.19860i −0.972415 + 0.233256i
\(325\) 1.00000 0.0554700
\(326\) −10.3857 + 13.9472i −0.575212 + 0.772466i
\(327\) 7.98137 18.5403i 0.441371 1.02528i
\(328\) −3.70406 1.34956i −0.204522 0.0745168i
\(329\) 8.77432i 0.483744i
\(330\) −6.93547 11.9953i −0.381785 0.660320i
\(331\) 6.81354i 0.374506i 0.982312 + 0.187253i \(0.0599584\pi\)
−0.982312 + 0.187253i \(0.940042\pi\)
\(332\) −3.86120 12.9077i −0.211911 0.708402i
\(333\) −7.25312 7.66529i −0.397469 0.420056i
\(334\) 12.7126 + 9.46635i 0.695602 + 0.517976i
\(335\) 5.90581 0.322669
\(336\) 9.27475 1.63818i 0.505979 0.0893701i
\(337\) 28.7934 1.56848 0.784239 0.620459i \(-0.213054\pi\)
0.784239 + 0.620459i \(0.213054\pi\)
\(338\) −1.13428 0.844635i −0.0616967 0.0459421i
\(339\) −15.9209 6.85376i −0.864705 0.372245i
\(340\) 2.73542 + 9.14430i 0.148349 + 0.495919i
\(341\) 46.3715i 2.51116i
\(342\) 34.9459 4.13267i 1.88966 0.223469i
\(343\) 16.5196i 0.891975i
\(344\) −26.7804 9.75733i −1.44390 0.526080i
\(345\) −5.25706 2.26310i −0.283030 0.121841i
\(346\) −15.5443 + 20.8748i −0.835666 + 1.12224i
\(347\) −5.74855 −0.308598 −0.154299 0.988024i \(-0.549312\pi\)
−0.154299 + 0.988024i \(0.549312\pi\)
\(348\) 1.56448 13.4448i 0.0838650 0.720716i
\(349\) −36.1146 −1.93317 −0.966584 0.256348i \(-0.917481\pi\)
−0.966584 + 0.256348i \(0.917481\pi\)
\(350\) −1.14821 + 1.54196i −0.0613744 + 0.0824212i
\(351\) −4.87886 + 1.78793i −0.260414 + 0.0954328i
\(352\) −31.9439 1.87822i −1.70261 0.100109i
\(353\) 10.2793i 0.547112i −0.961856 0.273556i \(-0.911800\pi\)
0.961856 0.273556i \(-0.0881999\pi\)
\(354\) −28.8404 + 16.6750i −1.53285 + 0.886266i
\(355\) 12.2472i 0.650014i
\(356\) −3.26386 + 0.976350i −0.172984 + 0.0517465i
\(357\) −4.44311 + 10.3211i −0.235154 + 0.546251i
\(358\) −15.3010 11.3938i −0.808683 0.602181i
\(359\) −0.828840 −0.0437445 −0.0218722 0.999761i \(-0.506963\pi\)
−0.0218722 + 0.999761i \(0.506963\pi\)
\(360\) −3.36970 7.78750i −0.177599 0.410437i
\(361\) −49.7943 −2.62075
\(362\) 9.58373 + 7.13647i 0.503710 + 0.375084i
\(363\) −14.3808 + 33.4058i −0.754796 + 1.75335i
\(364\) 2.60478 0.779195i 0.136528 0.0408409i
\(365\) 3.48129i 0.182219i
\(366\) 0.292118 0.168897i 0.0152693 0.00882841i
\(367\) 14.8157i 0.773374i −0.922211 0.386687i \(-0.873619\pi\)
0.922211 0.386687i \(-0.126381\pi\)
\(368\) −11.0465 + 7.25843i −0.575840 + 0.378372i
\(369\) −3.03722 + 2.87390i −0.158111 + 0.149609i
\(370\) 2.97113 3.99000i 0.154462 0.207430i
\(371\) 6.36566 0.330489
\(372\) 3.28228 28.2072i 0.170178 1.46247i
\(373\) −7.15263 −0.370349 −0.185175 0.982706i \(-0.559285\pi\)
−0.185175 + 0.982706i \(0.559285\pi\)
\(374\) 22.8014 30.6206i 1.17903 1.58335i
\(375\) 1.59090 + 0.684863i 0.0821537 + 0.0353662i
\(376\) 6.24961 17.1530i 0.322299 0.884597i
\(377\) 3.90736i 0.201239i
\(378\) 2.84504 9.57593i 0.146333 0.492533i
\(379\) 26.4875i 1.36057i 0.732946 + 0.680287i \(0.238145\pi\)
−0.732946 + 0.680287i \(0.761855\pi\)
\(380\) 4.75412 + 15.8926i 0.243881 + 0.815275i
\(381\) −3.82886 1.64828i −0.196158 0.0844439i
\(382\) −5.09319 3.79261i −0.260590 0.194047i
\(383\) 18.6316 0.952029 0.476015 0.879437i \(-0.342081\pi\)
0.476015 + 0.879437i \(0.342081\pi\)
\(384\) −19.2981 3.40355i −0.984801 0.173687i
\(385\) 7.68978 0.391908
\(386\) 29.4436 + 21.9250i 1.49864 + 1.11595i
\(387\) −21.9592 + 20.7784i −1.11625 + 1.05622i
\(388\) 0.999418 + 3.34097i 0.0507378 + 0.169612i
\(389\) 8.15991i 0.413724i 0.978370 + 0.206862i \(0.0663251\pi\)
−0.978370 + 0.206862i \(0.933675\pi\)
\(390\) −1.22607 2.12056i −0.0620843 0.107379i
\(391\) 15.7700i 0.797522i
\(392\) 4.98846 13.6916i 0.251955 0.691529i
\(393\) 10.3598 24.0652i 0.522581 1.21393i
\(394\) 15.7035 21.0886i 0.791132 1.06243i
\(395\) 12.9548 0.651825
\(396\) −16.9334 + 29.4141i −0.850935 + 1.47811i
\(397\) 27.2220 1.36623 0.683115 0.730310i \(-0.260625\pi\)
0.683115 + 0.730310i \(0.260625\pi\)
\(398\) 20.3391 27.3139i 1.01951 1.36912i
\(399\) −7.72205 + 17.9379i −0.386586 + 0.898018i
\(400\) 3.34292 2.19656i 0.167146 0.109828i
\(401\) 2.22007i 0.110865i 0.998462 + 0.0554325i \(0.0176538\pi\)
−0.998462 + 0.0554325i \(0.982346\pi\)
\(402\) −7.24092 12.5236i −0.361144 0.624621i
\(403\) 8.19765i 0.408354i
\(404\) 20.2566 6.05954i 1.00780 0.301474i
\(405\) −8.98627 0.496932i −0.446531 0.0246928i
\(406\) 6.02499 + 4.48648i 0.299015 + 0.222660i
\(407\) −19.8982 −0.986317
\(408\) 16.0372 17.0121i 0.793960 0.842227i
\(409\) 6.75656 0.334090 0.167045 0.985949i \(-0.446577\pi\)
0.167045 + 0.985949i \(0.446577\pi\)
\(410\) −1.58096 1.17725i −0.0780778 0.0581402i
\(411\) 23.8723 + 10.2767i 1.17753 + 0.506913i
\(412\) −12.0231 + 3.59660i −0.592338 + 0.177192i
\(413\) 18.4886i 0.909764i
\(414\) 1.64647 + 13.9226i 0.0809197 + 0.684258i
\(415\) 6.73642i 0.330678i
\(416\) −5.64710 0.332035i −0.276872 0.0162794i
\(417\) 18.3735 + 7.90957i 0.899754 + 0.387333i
\(418\) 39.6285 53.2180i 1.93829 2.60298i
\(419\) 29.4908 1.44072 0.720360 0.693600i \(-0.243977\pi\)
0.720360 + 0.693600i \(0.243977\pi\)
\(420\) 4.67759 + 0.544301i 0.228243 + 0.0265592i
\(421\) −21.7440 −1.05974 −0.529870 0.848079i \(-0.677759\pi\)
−0.529870 + 0.848079i \(0.677759\pi\)
\(422\) −12.9677 + 17.4146i −0.631257 + 0.847729i
\(423\) −13.3086 14.0649i −0.647089 0.683861i
\(424\) −12.4443 4.53401i −0.604347 0.220191i
\(425\) 4.77234i 0.231492i
\(426\) −25.9709 + 15.0159i −1.25829 + 0.727522i
\(427\) 0.187267i 0.00906248i
\(428\) 1.71381 + 5.72913i 0.0828402 + 0.276928i
\(429\) −3.87405 + 8.99922i −0.187041 + 0.434486i
\(430\) −11.4303 8.51154i −0.551220 0.410463i
\(431\) 25.7919 1.24235 0.621177 0.783670i \(-0.286655\pi\)
0.621177 + 0.783670i \(0.286655\pi\)
\(432\) −12.3824 + 16.6936i −0.595746 + 0.803173i
\(433\) 15.1646 0.728763 0.364382 0.931250i \(-0.381280\pi\)
0.364382 + 0.931250i \(0.381280\pi\)
\(434\) 12.6404 + 9.41262i 0.606760 + 0.451820i
\(435\) 2.67601 6.21622i 0.128305 0.298045i
\(436\) −6.67985 22.3302i −0.319907 1.06942i
\(437\) 27.4079i 1.31110i
\(438\) −7.38226 + 4.26829i −0.352738 + 0.203947i
\(439\) 6.02706i 0.287656i −0.989603 0.143828i \(-0.954059\pi\)
0.989603 0.143828i \(-0.0459412\pi\)
\(440\) −15.0328 5.47714i −0.716661 0.261112i
\(441\) −10.6230 11.2267i −0.505858 0.534604i
\(442\) 4.03088 5.41317i 0.191730 0.257478i
\(443\) −10.8589 −0.515921 −0.257961 0.966155i \(-0.583050\pi\)
−0.257961 + 0.966155i \(0.583050\pi\)
\(444\) −12.1038 1.40844i −0.574422 0.0668417i
\(445\) −1.70338 −0.0807481
\(446\) −3.56604 + 4.78891i −0.168857 + 0.226762i
\(447\) 12.3764 + 5.32787i 0.585381 + 0.252000i
\(448\) 6.99605 8.32635i 0.330532 0.393383i
\(449\) 18.2223i 0.859963i −0.902838 0.429981i \(-0.858520\pi\)
0.902838 0.429981i \(-0.141480\pi\)
\(450\) −0.498258 4.21328i −0.0234881 0.198616i
\(451\) 7.88426i 0.371255i
\(452\) −19.1754 + 5.73612i −0.901935 + 0.269805i
\(453\) 22.6996 + 9.77189i 1.06652 + 0.459124i
\(454\) −16.0845 11.9772i −0.754881 0.562118i
\(455\) 1.35942 0.0637304
\(456\) 27.8724 29.5668i 1.30524 1.38459i
\(457\) −12.1375 −0.567768 −0.283884 0.958859i \(-0.591623\pi\)
−0.283884 + 0.958859i \(0.591623\pi\)
\(458\) 13.6471 + 10.1622i 0.637685 + 0.474848i
\(459\) −8.53261 23.2836i −0.398268 1.08678i
\(460\) −6.33169 + 1.89406i −0.295216 + 0.0883109i
\(461\) 17.8100i 0.829493i 0.909937 + 0.414746i \(0.136130\pi\)
−0.909937 + 0.414746i \(0.863870\pi\)
\(462\) −9.42819 16.3066i −0.438639 0.758653i
\(463\) 12.9656i 0.602564i 0.953535 + 0.301282i \(0.0974145\pi\)
−0.953535 + 0.301282i \(0.902586\pi\)
\(464\) −8.58276 13.0620i −0.398444 0.606389i
\(465\) 5.61427 13.0416i 0.260355 0.604791i
\(466\) 14.3085 19.2152i 0.662828 0.890128i
\(467\) −2.27821 −0.105423 −0.0527116 0.998610i \(-0.516786\pi\)
−0.0527116 + 0.998610i \(0.516786\pi\)
\(468\) −2.99352 + 5.19989i −0.138376 + 0.240365i
\(469\) 8.02845 0.370720
\(470\) 5.45168 7.32119i 0.251467 0.337701i
\(471\) −4.54405 + 10.5556i −0.209379 + 0.486376i
\(472\) −13.1687 + 36.1435i −0.606139 + 1.66364i
\(473\) 57.0034i 2.62102i
\(474\) −15.8834 27.4713i −0.729549 1.26180i
\(475\) 8.29423i 0.380566i
\(476\) 3.71858 + 12.4309i 0.170441 + 0.569770i
\(477\) −10.2039 + 9.65526i −0.467206 + 0.442084i
\(478\) −9.21286 6.86030i −0.421387 0.313783i
\(479\) 15.4134 0.704257 0.352128 0.935952i \(-0.385458\pi\)
0.352128 + 0.935952i \(0.385458\pi\)
\(480\) −8.75657 4.39573i −0.399681 0.200637i
\(481\) −3.51765 −0.160391
\(482\) 15.1835 + 11.3063i 0.691590 + 0.514988i
\(483\) −7.14653 3.07649i −0.325178 0.139985i
\(484\) 12.0357 + 40.2345i 0.547079 + 1.82884i
\(485\) 1.74363i 0.0791740i
\(486\) 9.96399 + 19.6652i 0.451976 + 0.892030i
\(487\) 25.7958i 1.16892i 0.811422 + 0.584460i \(0.198694\pi\)
−0.811422 + 0.584460i \(0.801306\pi\)
\(488\) 0.133383 0.366089i 0.00603796 0.0165721i
\(489\) 19.5619 + 8.42115i 0.884619 + 0.380818i
\(490\) 4.35155 5.84380i 0.196583 0.263996i
\(491\) −1.92741 −0.0869826 −0.0434913 0.999054i \(-0.513848\pi\)
−0.0434913 + 0.999054i \(0.513848\pi\)
\(492\) −0.558066 + 4.79589i −0.0251596 + 0.216216i
\(493\) 18.6473 0.839830
\(494\) 7.00560 9.40798i 0.315197 0.423285i
\(495\) −12.3265 + 11.6637i −0.554033 + 0.524242i
\(496\) −18.0066 27.4041i −0.808521 1.23048i
\(497\) 16.6490i 0.746811i
\(498\) −14.2850 + 8.25930i −0.640124 + 0.370108i
\(499\) 4.99764i 0.223725i −0.993724 0.111863i \(-0.964318\pi\)
0.993724 0.111863i \(-0.0356817\pi\)
\(500\) 1.91611 0.573183i 0.0856909 0.0256335i
\(501\) 7.67569 17.8302i 0.342925 0.796595i
\(502\) 6.73824 + 5.01759i 0.300743 + 0.223946i
\(503\) 7.88807 0.351712 0.175856 0.984416i \(-0.443731\pi\)
0.175856 + 0.984416i \(0.443731\pi\)
\(504\) −4.58082 10.5865i −0.204046 0.471558i
\(505\) 10.5717 0.470436
\(506\) 21.2023 + 15.7881i 0.942555 + 0.701868i
\(507\) −0.684863 + 1.59090i −0.0304158 + 0.0706543i
\(508\) −4.61154 + 1.37950i −0.204604 + 0.0612052i
\(509\) 12.5772i 0.557473i 0.960368 + 0.278737i \(0.0899157\pi\)
−0.960368 + 0.278737i \(0.910084\pi\)
\(510\) 10.1200 5.85120i 0.448122 0.259096i
\(511\) 4.73252i 0.209354i
\(512\) −19.6072 + 11.2942i −0.866522 + 0.499139i
\(513\) −14.8295 40.4664i −0.654740 1.78664i
\(514\) −4.33884 + 5.82673i −0.191378 + 0.257006i
\(515\) −6.27478 −0.276500
\(516\) −4.03483 + 34.6744i −0.177624 + 1.52646i
\(517\) −36.5109 −1.60575
\(518\) 4.03900 5.42406i 0.177463 0.238320i
\(519\) 29.2782 + 12.6039i 1.28517 + 0.553251i
\(520\) −2.65753 0.968260i −0.116540 0.0424610i
\(521\) 0.945921i 0.0414416i −0.999785 0.0207208i \(-0.993404\pi\)
0.999785 0.0207208i \(-0.00659610\pi\)
\(522\) −16.4628 + 1.94688i −0.720558 + 0.0852125i
\(523\) 8.61075i 0.376522i −0.982119 0.188261i \(-0.939715\pi\)
0.982119 0.188261i \(-0.0602850\pi\)
\(524\) −8.67041 28.9845i −0.378769 1.26619i
\(525\) 2.16269 + 0.931014i 0.0943877 + 0.0406328i
\(526\) 8.68859 + 6.46991i 0.378840 + 0.282101i
\(527\) 39.1219 1.70418
\(528\) 6.81665 + 38.5933i 0.296657 + 1.67956i
\(529\) −12.0806 −0.525242
\(530\) −5.31143 3.95512i −0.230714 0.171800i
\(531\) 28.0430 + 29.6366i 1.21696 + 1.28612i
\(532\) 6.46282 + 21.6047i 0.280199 + 0.936682i
\(533\) 1.39380i 0.0603720i
\(534\) 2.08846 + 3.61212i 0.0903765 + 0.156312i
\(535\) 2.98999i 0.129268i
\(536\) −15.6949 5.71836i −0.677915 0.246995i
\(537\) −9.23854 + 21.4606i −0.398672 + 0.926094i
\(538\) 17.9845 24.1518i 0.775368 1.04126i
\(539\) −29.1432 −1.25528
\(540\) −8.32360 + 6.22235i −0.358191 + 0.267767i
\(541\) −20.9269 −0.899718 −0.449859 0.893100i \(-0.648526\pi\)
−0.449859 + 0.893100i \(0.648526\pi\)
\(542\) −13.5217 + 18.1586i −0.580807 + 0.779979i
\(543\) 5.78653 13.4418i 0.248324 0.576842i
\(544\) 1.58458 26.9499i 0.0679384 1.15547i
\(545\) 11.6540i 0.499201i
\(546\) −1.66673 2.88272i −0.0713297 0.123369i
\(547\) 6.00845i 0.256903i 0.991716 + 0.128451i \(0.0410006\pi\)
−0.991716 + 0.128451i \(0.958999\pi\)
\(548\) 28.7521 8.60091i 1.22823 0.367413i
\(549\) −0.284041 0.300182i −0.0121226 0.0128115i
\(550\) −6.41626 4.77783i −0.273590 0.203727i
\(551\) 32.4086 1.38065
\(552\) 11.7795 + 11.1045i 0.501370 + 0.472637i
\(553\) 17.6109 0.748893
\(554\) 24.1330 + 17.9705i 1.02531 + 0.763493i
\(555\) −5.59622 2.40911i −0.237546 0.102261i
\(556\) 22.1293 6.61977i 0.938493 0.280741i
\(557\) 23.8570i 1.01085i −0.862870 0.505426i \(-0.831335\pi\)
0.862870 0.505426i \(-0.168665\pi\)
\(558\) −34.5390 + 4.08455i −1.46215 + 0.172913i
\(559\) 10.0772i 0.426219i
\(560\) 4.54442 2.98604i 0.192037 0.126183i
\(561\) −42.9473 18.4883i −1.81324 0.780576i
\(562\) −8.73117 + 11.7253i −0.368302 + 0.494602i
\(563\) 14.1284 0.595439 0.297720 0.954653i \(-0.403774\pi\)
0.297720 + 0.954653i \(0.403774\pi\)
\(564\) −22.2091 2.58433i −0.935172 0.108820i
\(565\) −10.0075 −0.421018
\(566\) 14.0613 18.8832i 0.591039 0.793720i
\(567\) −12.2161 0.675538i −0.513027 0.0283699i
\(568\) −11.8585 + 32.5473i −0.497570 + 1.36565i
\(569\) 16.8467i 0.706250i 0.935576 + 0.353125i \(0.114881\pi\)
−0.935576 + 0.353125i \(0.885119\pi\)
\(570\) 17.5884 10.1693i 0.736697 0.425944i
\(571\) 6.39696i 0.267705i 0.991001 + 0.133852i \(0.0427348\pi\)
−0.991001 + 0.133852i \(0.957265\pi\)
\(572\) 3.24232 + 10.8388i 0.135568 + 0.453193i
\(573\) −3.07520 + 7.14352i −0.128468 + 0.298425i
\(574\) −2.14918 1.60037i −0.0897049 0.0667982i
\(575\) −3.30446 −0.137805
\(576\) 1.41476 + 23.9583i 0.0589482 + 0.998261i
\(577\) 15.4704 0.644039 0.322020 0.946733i \(-0.395638\pi\)
0.322020 + 0.946733i \(0.395638\pi\)
\(578\) 6.55069 + 4.87793i 0.272473 + 0.202895i
\(579\) 17.7777 41.2965i 0.738815 1.71623i
\(580\) −2.23964 7.48692i −0.0929958 0.310878i
\(581\) 9.15760i 0.379921i
\(582\) 3.69746 2.13780i 0.153265 0.0886148i
\(583\) 26.4882i 1.09703i
\(584\) −3.37079 + 9.25163i −0.139484 + 0.382835i
\(585\) −2.17910 + 2.06192i −0.0900946 + 0.0852501i
\(586\) −11.2795 + 15.1475i −0.465951 + 0.625736i
\(587\) 29.8379 1.23154 0.615771 0.787925i \(-0.288845\pi\)
0.615771 + 0.787925i \(0.288845\pi\)
\(588\) −17.7274 2.06282i −0.731065 0.0850693i
\(589\) 67.9932 2.80161
\(590\) −11.4874 + 15.4267i −0.472928 + 0.635106i
\(591\) −29.5781 12.7330i −1.21668 0.523767i
\(592\) −11.7592 + 7.72672i −0.483301 + 0.317566i
\(593\) 28.8555i 1.18495i −0.805587 0.592477i \(-0.798150\pi\)
0.805587 0.592477i \(-0.201850\pi\)
\(594\) 39.8465 + 11.8385i 1.63492 + 0.485741i
\(595\) 6.48759i 0.265965i
\(596\) 14.9063 4.45906i 0.610585 0.182650i
\(597\) −38.3094 16.4917i −1.56790 0.674962i
\(598\) 3.74818 + 2.79106i 0.153274 + 0.114135i
\(599\) −18.4307 −0.753057 −0.376529 0.926405i \(-0.622882\pi\)
−0.376529 + 0.926405i \(0.622882\pi\)
\(600\) −3.56474 3.36045i −0.145530 0.137190i
\(601\) 44.8850 1.83090 0.915448 0.402436i \(-0.131836\pi\)
0.915448 + 0.402436i \(0.131836\pi\)
\(602\) −15.5386 11.5707i −0.633306 0.471587i
\(603\) −12.8693 + 12.1773i −0.524080 + 0.495900i
\(604\) 27.3397 8.17840i 1.11244 0.332774i
\(605\) 20.9981i 0.853692i
\(606\) −12.9617 22.4180i −0.526531 0.910668i
\(607\) 37.1886i 1.50944i −0.656047 0.754720i \(-0.727773\pi\)
0.656047 0.754720i \(-0.272227\pi\)
\(608\) 2.75398 46.8384i 0.111689 1.89955i
\(609\) 3.63781 8.45044i 0.147412 0.342429i
\(610\) 0.116353 0.156253i 0.00471100 0.00632651i
\(611\) −6.45448 −0.261120
\(612\) −24.8156 14.2861i −1.00311 0.577481i
\(613\) 20.8295 0.841297 0.420648 0.907224i \(-0.361803\pi\)
0.420648 + 0.907224i \(0.361803\pi\)
\(614\) −0.325741 + 0.437445i −0.0131458 + 0.0176538i
\(615\) −0.954560 + 2.21739i −0.0384916 + 0.0894138i
\(616\) −20.4358 7.44571i −0.823384 0.299996i
\(617\) 14.7739i 0.594774i −0.954757 0.297387i \(-0.903885\pi\)
0.954757 0.297387i \(-0.0961151\pi\)
\(618\) 7.69330 + 13.3060i 0.309470 + 0.535247i
\(619\) 22.1422i 0.889969i 0.895538 + 0.444984i \(0.146791\pi\)
−0.895538 + 0.444984i \(0.853209\pi\)
\(620\) −4.69875 15.7076i −0.188707 0.630831i
\(621\) 16.1220 5.90814i 0.646953 0.237086i
\(622\) −8.91848 6.64110i −0.357599 0.266284i
\(623\) −2.31561 −0.0927728
\(624\) 1.20506 + 6.82260i 0.0482411 + 0.273122i
\(625\) 1.00000 0.0400000
\(626\) 19.6158 + 14.6068i 0.784007 + 0.583806i
\(627\) −74.6416 32.1323i −2.98090 1.28324i
\(628\) 3.80306 + 12.7133i 0.151758 + 0.507316i
\(629\) 16.7874i 0.669357i
\(630\) −0.677340 5.72760i −0.0269859 0.228193i
\(631\) 18.9284i 0.753528i −0.926309 0.376764i \(-0.877037\pi\)
0.926309 0.376764i \(-0.122963\pi\)
\(632\) −34.4277 12.5436i −1.36946 0.498957i
\(633\) 24.4251 + 10.5147i 0.970810 + 0.417922i
\(634\) 7.00137 9.40230i 0.278060 0.373413i
\(635\) −2.40673 −0.0955080
\(636\) −1.87490 + 16.1124i −0.0743445 + 0.638900i
\(637\) −5.15199 −0.204129
\(638\) −18.6687 + 25.0707i −0.739102 + 0.992557i
\(639\) 25.2528 + 26.6878i 0.998985 + 1.05575i
\(640\) −11.0108 + 2.60061i −0.435238 + 0.102798i
\(641\) 13.1971i 0.521255i 0.965439 + 0.260628i \(0.0839295\pi\)
−0.965439 + 0.260628i \(0.916071\pi\)
\(642\) 6.34044 3.66593i 0.250237 0.144683i
\(643\) 41.2817i 1.62799i 0.580872 + 0.813995i \(0.302712\pi\)
−0.580872 + 0.813995i \(0.697288\pi\)
\(644\) −8.60739 + 2.57481i −0.339179 + 0.101462i
\(645\) −6.90149 + 16.0318i −0.271746 + 0.631251i
\(646\) 44.8981 + 33.4331i 1.76649 + 1.31541i
\(647\) 27.0997 1.06540 0.532699 0.846305i \(-0.321178\pi\)
0.532699 + 0.846305i \(0.321178\pi\)
\(648\) 23.4001 + 10.0217i 0.919244 + 0.393688i
\(649\) 76.9331 3.01989
\(650\) −1.13428 0.844635i −0.0444901 0.0331293i
\(651\) 7.63213 17.7290i 0.299127 0.694855i
\(652\) 23.5606 7.04792i 0.922706 0.276018i
\(653\) 29.0058i 1.13508i 0.823345 + 0.567542i \(0.192105\pi\)
−0.823345 + 0.567542i \(0.807895\pi\)
\(654\) −24.7129 + 14.2885i −0.966350 + 0.558726i
\(655\) 15.1268i 0.591052i
\(656\) 3.06156 + 4.65935i 0.119534 + 0.181917i
\(657\) 7.17815 + 7.58606i 0.280046 + 0.295960i
\(658\) 7.41110 9.95254i 0.288915 0.387990i
\(659\) 8.22195 0.320282 0.160141 0.987094i \(-0.448805\pi\)
0.160141 + 0.987094i \(0.448805\pi\)
\(660\) −2.26490 + 19.4640i −0.0881610 + 0.757635i
\(661\) 42.5145 1.65362 0.826812 0.562479i \(-0.190152\pi\)
0.826812 + 0.562479i \(0.190152\pi\)
\(662\) 5.75495 7.72846i 0.223673 0.300375i
\(663\) −7.59231 3.26840i −0.294861 0.126934i
\(664\) −6.52260 + 17.9022i −0.253126 + 0.694742i
\(665\) 11.2753i 0.437238i
\(666\) 1.75270 + 14.8208i 0.0679156 + 0.574296i
\(667\) 12.9117i 0.499943i
\(668\) −6.42402 21.4750i −0.248553 0.830893i
\(669\) 6.71676 + 2.89148i 0.259685 + 0.111791i
\(670\) −6.69884 4.98825i −0.258799 0.192713i
\(671\) −0.779239 −0.0300822
\(672\) −11.9038 5.97562i −0.459200 0.230515i
\(673\) −23.2736 −0.897131 −0.448566 0.893750i \(-0.648065\pi\)
−0.448566 + 0.893750i \(0.648065\pi\)
\(674\) −32.6598 24.3199i −1.25801 0.936769i
\(675\) −4.87886 + 1.78793i −0.187788 + 0.0688175i
\(676\) 0.573183 + 1.91611i 0.0220455 + 0.0736964i
\(677\) 1.50184i 0.0577205i 0.999583 + 0.0288603i \(0.00918778\pi\)
−0.999583 + 0.0288603i \(0.990812\pi\)
\(678\) 12.2698 + 21.2214i 0.471221 + 0.815004i
\(679\) 2.37032i 0.0909643i
\(680\) 4.62086 12.6826i 0.177202 0.486357i
\(681\) −9.71158 + 22.5595i −0.372149 + 0.864481i
\(682\) −39.1670 + 52.5983i −1.49978 + 2.01409i
\(683\) −42.6820 −1.63318 −0.816591 0.577216i \(-0.804139\pi\)
−0.816591 + 0.577216i \(0.804139\pi\)
\(684\) −43.1291 24.8290i −1.64908 0.949359i
\(685\) 15.0055 0.573331
\(686\) 13.9530 18.7379i 0.532730 0.715415i
\(687\) 8.23991 19.1409i 0.314372 0.730269i
\(688\) 22.1351 + 33.6872i 0.843894 + 1.28431i
\(689\) 4.68264i 0.178394i
\(690\) 4.05148 + 7.00728i 0.154237 + 0.266763i
\(691\) 40.1484i 1.52732i −0.645620 0.763659i \(-0.723401\pi\)
0.645620 0.763659i \(-0.276599\pi\)
\(692\) 35.2632 10.5486i 1.34050 0.400998i
\(693\) −16.7568 + 15.8558i −0.636538 + 0.602310i
\(694\) 6.52047 + 4.85543i 0.247514 + 0.184310i
\(695\) 11.5491 0.438083
\(696\) −13.1305 + 13.9287i −0.497710 + 0.527968i
\(697\) −6.65167 −0.251950
\(698\) 40.9640 + 30.5036i 1.55051 + 1.15458i
\(699\) −26.9506 11.6019i −1.01936 0.438824i
\(700\) 2.60478 0.779195i 0.0984516 0.0294508i
\(701\) 36.0655i 1.36217i 0.732202 + 0.681087i \(0.238493\pi\)
−0.732202 + 0.681087i \(0.761507\pi\)
\(702\) 7.04415 + 2.09284i 0.265864 + 0.0789892i
\(703\) 29.1762i 1.10040i
\(704\) 34.6469 + 29.1113i 1.30580 + 1.09717i
\(705\) −10.2684 4.42043i −0.386731 0.166483i
\(706\) −8.68226 + 11.6596i −0.326761 + 0.438815i
\(707\) 14.3714 0.540492
\(708\) 46.7974 + 5.44551i 1.75875 + 0.204655i
\(709\) −5.83506 −0.219140 −0.109570 0.993979i \(-0.534947\pi\)
−0.109570 + 0.993979i \(0.534947\pi\)
\(710\) −10.3444 + 13.8918i −0.388219 + 0.521348i
\(711\) −28.2297 + 26.7118i −1.05870 + 1.00177i
\(712\) 4.52679 + 1.64932i 0.169649 + 0.0618108i
\(713\) 27.0888i 1.01448i
\(714\) 13.7573 7.95422i 0.514854 0.297679i
\(715\) 5.65668i 0.211548i
\(716\) 7.73202 + 25.8475i 0.288959 + 0.965967i
\(717\) −5.56260 + 12.9216i −0.207739 + 0.482567i
\(718\) 0.940136 + 0.700067i 0.0350856 + 0.0261263i
\(719\) −44.1796 −1.64762 −0.823810 0.566866i \(-0.808156\pi\)
−0.823810 + 0.566866i \(0.808156\pi\)
\(720\) −2.75541 + 11.6794i −0.102688 + 0.435264i
\(721\) −8.53004 −0.317675
\(722\) 56.4807 + 42.0580i 2.10199 + 1.56524i
\(723\) 9.16760 21.2958i 0.340947 0.792000i
\(724\) −4.84292 16.1895i −0.179986 0.601678i
\(725\) 3.90736i 0.145116i
\(726\) 44.5276 25.7450i 1.65257 0.955487i
\(727\) 46.4424i 1.72245i −0.508222 0.861226i \(-0.669697\pi\)
0.508222 0.861226i \(-0.330303\pi\)
\(728\) −3.61269 1.31627i −0.133895 0.0487841i
\(729\) 20.6066 17.4461i 0.763207 0.646154i
\(730\) −2.94042 + 3.94875i −0.108830 + 0.146150i
\(731\) −48.0917 −1.77874
\(732\) −0.474000 0.0551563i −0.0175196 0.00203864i
\(733\) −12.4268 −0.458993 −0.229496 0.973310i \(-0.573708\pi\)
−0.229496 + 0.973310i \(0.573708\pi\)
\(734\) −12.5139 + 16.8052i −0.461895 + 0.620290i
\(735\) −8.19630 3.52841i −0.302325 0.130147i
\(736\) 18.6606 + 1.09720i 0.687839 + 0.0404431i
\(737\) 33.4073i 1.23057i
\(738\) 5.87246 0.694471i 0.216168 0.0255638i
\(739\) 0.412709i 0.0151818i 0.999971 + 0.00759088i \(0.00241627\pi\)
−0.999971 + 0.00759088i \(0.997584\pi\)
\(740\) −6.74018 + 2.01626i −0.247774 + 0.0741190i
\(741\) −13.1953 5.68042i −0.484741 0.208675i
\(742\) −7.22044 5.37666i −0.265071 0.197383i
\(743\) −23.6768 −0.868618 −0.434309 0.900764i \(-0.643007\pi\)
−0.434309 + 0.900764i \(0.643007\pi\)
\(744\) −27.5478 + 29.2225i −1.00995 + 1.07135i
\(745\) 7.77947 0.285018
\(746\) 8.11308 + 6.04136i 0.297041 + 0.221190i
\(747\) 13.8900 + 14.6793i 0.508208 + 0.537088i
\(748\) −51.7264 + 15.4734i −1.89130 + 0.565764i
\(749\) 4.06464i 0.148519i
\(750\) −1.22607 2.12056i −0.0447696 0.0774318i
\(751\) 15.0756i 0.550116i 0.961428 + 0.275058i \(0.0886970\pi\)
−0.961428 + 0.275058i \(0.911303\pi\)
\(752\) −21.5768 + 14.1776i −0.786825 + 0.517005i
\(753\) 4.06846 9.45081i 0.148263 0.344407i
\(754\) −3.30030 + 4.43205i −0.120190 + 0.161406i
\(755\) 14.2684 0.519280
\(756\) −11.3152 + 8.45876i −0.411531 + 0.307642i
\(757\) −25.8699 −0.940256 −0.470128 0.882598i \(-0.655792\pi\)
−0.470128 + 0.882598i \(0.655792\pi\)
\(758\) 22.3723 30.0443i 0.812598 1.09126i
\(759\) 12.8016 29.7375i 0.464670 1.07940i
\(760\) 8.03097 22.0422i 0.291314 0.799554i
\(761\) 26.6769i 0.967038i −0.875334 0.483519i \(-0.839358\pi\)
0.875334 0.483519i \(-0.160642\pi\)
\(762\) 2.95081 + 5.10360i 0.106896 + 0.184884i
\(763\) 15.8426i 0.573540i
\(764\) 2.57373 + 8.60377i 0.0931142 + 0.311273i
\(765\) −9.84020 10.3994i −0.355773 0.375991i
\(766\) −21.1334 15.7369i −0.763582 0.568597i
\(767\) 13.6004 0.491082
\(768\) 19.0147 + 20.1604i 0.686133 + 0.727476i
\(769\) −0.463386 −0.0167101 −0.00835507 0.999965i \(-0.502660\pi\)
−0.00835507 + 0.999965i \(0.502660\pi\)
\(770\) −8.72237 6.49506i −0.314332 0.234066i
\(771\) 8.17236 + 3.51810i 0.294320 + 0.126701i
\(772\) −14.8787 49.7382i −0.535495 1.79012i
\(773\) 15.8657i 0.570649i 0.958431 + 0.285324i \(0.0921013\pi\)
−0.958431 + 0.285324i \(0.907899\pi\)
\(774\) 42.4580 5.02104i 1.52612 0.180478i
\(775\) 8.19765i 0.294468i
\(776\) 1.68828 4.63374i 0.0606059 0.166342i
\(777\) −7.60759 3.27498i −0.272921 0.117489i
\(778\) 6.89215 9.25562i 0.247095 0.331830i
\(779\) −11.5605 −0.414197
\(780\) −0.400393 + 3.44088i −0.0143364 + 0.123203i
\(781\) 69.2785 2.47898
\(782\) −13.3199 + 17.8876i −0.476318 + 0.639658i
\(783\) 6.98610 + 19.0635i 0.249663 + 0.681274i
\(784\) −17.2227 + 11.3166i −0.615096 + 0.404166i
\(785\) 6.63498i 0.236812i
\(786\) −32.0772 + 18.5464i −1.14416 + 0.661529i
\(787\) 50.9731i 1.81699i 0.417891 + 0.908497i \(0.362769\pi\)
−0.417891 + 0.908497i \(0.637231\pi\)
\(788\) −35.6244 + 10.6567i −1.26907 + 0.379628i
\(789\) 5.24605 12.1863i 0.186764 0.433844i
\(790\) −14.6943 10.9421i −0.522801 0.389301i
\(791\) −13.6043 −0.483714
\(792\) 44.0514 19.0613i 1.56530 0.677314i
\(793\) −0.137755 −0.00489184
\(794\) −30.8773 22.9926i −1.09580 0.815978i
\(795\) −3.20697 + 7.44962i −0.113740 + 0.264211i
\(796\) −46.1405 + 13.8024i −1.63541 + 0.489215i
\(797\) 10.2020i 0.361372i −0.983541 0.180686i \(-0.942168\pi\)
0.983541 0.180686i \(-0.0578317\pi\)
\(798\) 23.9099 13.8243i 0.846403 0.489374i
\(799\) 30.8029i 1.08973i
\(800\) −5.64710 0.332035i −0.199655 0.0117392i
\(801\) 3.71184 3.51225i 0.131151 0.124099i
\(802\) 1.87515 2.51818i 0.0662138 0.0889201i
\(803\) 19.6925 0.694934
\(804\) −2.36465 + 20.3212i −0.0833946 + 0.716674i
\(805\) −4.49213 −0.158327
\(806\) −6.92402 + 9.29843i −0.243888 + 0.327523i
\(807\) −33.8745 14.5826i −1.19244 0.513330i
\(808\) −28.0947 10.2362i −0.988369 0.360108i
\(809\) 8.86947i 0.311834i −0.987770 0.155917i \(-0.950167\pi\)
0.987770 0.155917i \(-0.0498332\pi\)
\(810\) 9.77322 + 8.15378i 0.343396 + 0.286495i
\(811\) 6.20238i 0.217795i −0.994053 0.108898i \(-0.965268\pi\)
0.994053 0.108898i \(-0.0347321\pi\)
\(812\) −3.04460 10.1778i −0.106844 0.357172i
\(813\) 25.4686 + 10.9639i 0.893223 + 0.384522i
\(814\) 22.5701 + 16.8067i 0.791083 + 0.589075i
\(815\) 12.2961 0.430714
\(816\) −32.5597 + 5.75096i −1.13982 + 0.201324i
\(817\) −83.5825 −2.92418
\(818\) −7.66383 5.70683i −0.267960 0.199535i
\(819\) −2.96230 + 2.80301i −0.103511 + 0.0979452i
\(820\) 0.798901 + 2.67066i 0.0278988 + 0.0932635i
\(821\) 5.49575i 0.191803i 0.995391 + 0.0959015i \(0.0305734\pi\)
−0.995391 + 0.0959015i \(0.969427\pi\)
\(822\) −18.3978 31.8200i −0.641695 1.10985i
\(823\) 12.1422i 0.423249i −0.977351 0.211625i \(-0.932125\pi\)
0.977351 0.211625i \(-0.0678754\pi\)
\(824\) 16.6754 + 6.07562i 0.580916 + 0.211654i
\(825\) −3.87405 + 8.99922i −0.134877 + 0.313312i
\(826\) −15.6161 + 20.9713i −0.543354 + 0.729683i
\(827\) −17.9733 −0.624994 −0.312497 0.949919i \(-0.601165\pi\)
−0.312497 + 0.949919i \(0.601165\pi\)
\(828\) 9.89195 17.1828i 0.343769 0.597143i
\(829\) 16.3569 0.568099 0.284050 0.958810i \(-0.408322\pi\)
0.284050 + 0.958810i \(0.408322\pi\)
\(830\) −5.68982 + 7.64099i −0.197496 + 0.265223i
\(831\) 14.5712 33.8480i 0.505468 1.17418i
\(832\) 6.12495 + 5.14636i 0.212344 + 0.178418i
\(833\) 24.5870i 0.851890i
\(834\) −14.1600 24.4906i −0.490321 0.848039i
\(835\) 11.2076i 0.387856i
\(836\) −89.8995 + 26.8925i −3.10924 + 0.930097i
\(837\) 14.6568 + 39.9952i 0.506614 + 1.38244i
\(838\) −33.4508 24.9090i −1.15554 0.860466i
\(839\) −2.02715 −0.0699851 −0.0349925 0.999388i \(-0.511141\pi\)
−0.0349925 + 0.999388i \(0.511141\pi\)
\(840\) −4.84597 4.56825i −0.167202 0.157620i
\(841\) 13.7325 0.473535
\(842\) 24.6638 + 18.3658i 0.849971 + 0.632926i
\(843\) 16.4455 + 7.07958i 0.566412 + 0.243834i
\(844\) 29.4180 8.80008i 1.01261 0.302911i
\(845\) 1.00000i 0.0344010i
\(846\) 3.21600 + 27.1945i 0.110568 + 0.934967i
\(847\) 28.5451i 0.980821i
\(848\) 10.2857 + 15.6537i 0.353213 + 0.537551i
\(849\) −26.4849 11.4014i −0.908959 0.391296i
\(850\) 4.03088 5.41317i 0.138258 0.185670i
\(851\) 11.6239 0.398462
\(852\) 42.1412 + 4.90369i 1.44373 + 0.167998i
\(853\) −14.7459 −0.504890 −0.252445 0.967611i \(-0.581235\pi\)
−0.252445 + 0.967611i \(0.581235\pi\)
\(854\) 0.158172 0.212413i 0.00541254 0.00726863i
\(855\) −17.1021 18.0739i −0.584879 0.618116i
\(856\) 2.89509 7.94599i 0.0989520 0.271588i
\(857\) 18.8795i 0.644910i 0.946585 + 0.322455i \(0.104508\pi\)
−0.946585 + 0.322455i \(0.895492\pi\)
\(858\) 11.9953 6.93547i 0.409513 0.236773i
\(859\) 19.5312i 0.666395i 0.942857 + 0.333197i \(0.108128\pi\)
−0.942857 + 0.333197i \(0.891872\pi\)
\(860\) 5.77607 + 19.3089i 0.196962 + 0.658429i
\(861\) −1.29764 + 3.01436i −0.0442236 + 0.102729i
\(862\) −29.2553 21.7848i −0.996439 0.741993i
\(863\) −49.2146 −1.67529 −0.837643 0.546218i \(-0.816067\pi\)
−0.837643 + 0.546218i \(0.816067\pi\)
\(864\) 28.1451 8.47668i 0.957515 0.288383i
\(865\) 18.4036 0.625740
\(866\) −17.2009 12.8085i −0.584510 0.435252i
\(867\) 3.95522 9.18776i 0.134326 0.312033i
\(868\) −6.38756 21.3531i −0.216808 0.724772i
\(869\) 73.2810i 2.48589i
\(870\) −8.28579 + 4.79069i −0.280914 + 0.162420i
\(871\) 5.90581i 0.200111i
\(872\) −11.2841 + 30.9708i −0.382126 + 1.04880i
\(873\) −3.59523 3.79953i −0.121680 0.128595i
\(874\) −23.1497 + 31.0883i −0.783050 + 1.05158i
\(875\) 1.35942 0.0459567
\(876\) 11.9787 + 1.39388i 0.404723 + 0.0470949i
\(877\) 58.8302 1.98655 0.993277 0.115758i \(-0.0369297\pi\)
0.993277 + 0.115758i \(0.0369297\pi\)
\(878\) −5.09067 + 6.83638i −0.171802 + 0.230717i
\(879\) 21.2453 + 9.14584i 0.716586 + 0.308482i
\(880\) 12.4252 + 18.9098i 0.418855 + 0.637451i
\(881\) 25.2912i 0.852082i −0.904704 0.426041i \(-0.859908\pi\)
0.904704 0.426041i \(-0.140092\pi\)
\(882\) 2.56702 + 21.7068i 0.0864361 + 0.730905i
\(883\) 22.2071i 0.747328i −0.927564 0.373664i \(-0.878101\pi\)
0.927564 0.373664i \(-0.121899\pi\)
\(884\) −9.14430 + 2.73542i −0.307556 + 0.0920022i
\(885\) 21.6369 + 9.31441i 0.727315 + 0.313101i
\(886\) 12.3170 + 9.17180i 0.413798 + 0.308133i
\(887\) −20.3831 −0.684398 −0.342199 0.939627i \(-0.611172\pi\)
−0.342199 + 0.939627i \(0.611172\pi\)
\(888\) 12.5395 + 11.8209i 0.420798 + 0.396682i
\(889\) −3.27174 −0.109731
\(890\) 1.93211 + 1.43874i 0.0647646 + 0.0482266i
\(891\) 2.81099 50.8325i 0.0941717 1.70295i
\(892\) 8.08977 2.41997i 0.270866 0.0810266i
\(893\) 53.5349i 1.79148i
\(894\) −9.53815 16.4968i −0.319003 0.551736i
\(895\) 13.4896i 0.450908i
\(896\) −14.9682 + 3.53531i −0.500053 + 0.118106i
\(897\) 2.26310 5.25706i 0.0755627 0.175528i
\(898\) −15.3912 + 20.6692i −0.513610 + 0.689739i
\(899\) −32.0312 −1.06830
\(900\) −2.99352 + 5.19989i −0.0997840 + 0.173330i
\(901\) −22.3471 −0.744491
\(902\) 6.65933 8.94296i 0.221731 0.297768i
\(903\) −9.38200 + 21.7939i −0.312213 + 0.725254i
\(904\) 26.5952 + 9.68984i 0.884543 + 0.322279i
\(905\) 8.44917i 0.280860i
\(906\) −17.4940 30.2569i −0.581199 1.00522i
\(907\) 20.4204i 0.678048i −0.940778 0.339024i \(-0.889903\pi\)
0.940778 0.339024i \(-0.110097\pi\)
\(908\) 8.12793 + 27.1710i 0.269735 + 0.901701i
\(909\) −23.0368 + 21.7981i −0.764084 + 0.722998i
\(910\) −1.54196 1.14821i −0.0511154 0.0380628i
\(911\) 57.9434 1.91975 0.959876 0.280425i \(-0.0904754\pi\)
0.959876 + 0.280425i \(0.0904754\pi\)
\(912\) −56.5882 + 9.99506i −1.87382 + 0.330970i
\(913\) 38.1058 1.26112
\(914\) 13.7673 + 10.2518i 0.455383 + 0.339098i
\(915\) −0.219155 0.0943436i −0.00724504 0.00311890i
\(916\) −6.89623 23.0536i −0.227858 0.761711i
\(917\) 20.5636i 0.679069i
\(918\) −9.98775 + 33.6170i −0.329645 + 1.10953i
\(919\) 32.3596i 1.06745i 0.845660 + 0.533723i \(0.179207\pi\)
−0.845660 + 0.533723i \(0.820793\pi\)
\(920\) 8.78169 + 3.19957i 0.289524 + 0.105487i
\(921\) 0.613544 + 0.264123i 0.0202170 + 0.00870316i
\(922\) 15.0429 20.2015i 0.495412 0.665301i
\(923\) 12.2472 0.403121
\(924\) −3.07894 + 26.4597i −0.101290 + 0.870459i
\(925\) −3.51765 −0.115659
\(926\) 10.9512 14.7067i 0.359879 0.483291i
\(927\) 13.6734 12.9381i 0.449092 0.424944i
\(928\) −1.29738 + 22.0653i −0.0425886 + 0.724328i
\(929\) 31.1862i 1.02319i −0.859228 0.511593i \(-0.829056\pi\)
0.859228 0.511593i \(-0.170944\pi\)
\(930\) −17.3836 + 10.0509i −0.570030 + 0.329581i
\(931\) 42.7318i 1.40048i
\(932\) −32.4597 + 9.70998i −1.06325 + 0.318061i
\(933\) −5.38486 + 12.5087i −0.176292 + 0.409518i
\(934\) 2.58413 + 1.92426i 0.0845554 + 0.0629637i
\(935\) −26.9956 −0.882850
\(936\) 7.78750 3.36970i 0.254542 0.110142i
\(937\) −24.9208 −0.814126 −0.407063 0.913400i \(-0.633447\pi\)
−0.407063 + 0.913400i \(0.633447\pi\)
\(938\) −9.10652 6.78111i −0.297338 0.221411i
\(939\) 11.8438 27.5125i 0.386507 0.897835i
\(940\) −12.3675 + 3.69960i −0.403382 + 0.120668i
\(941\) 15.6493i 0.510153i −0.966921 0.255077i \(-0.917899\pi\)
0.966921 0.255077i \(-0.0821007\pi\)
\(942\) 14.0698 8.13492i 0.458420 0.265050i
\(943\) 4.60574i 0.149983i
\(944\) 45.4651 29.8741i 1.47976 0.972318i
\(945\) −6.63240 + 2.43054i −0.215752 + 0.0790656i
\(946\) 48.1471 64.6578i 1.56540 2.10221i
\(947\) 35.7664 1.16225 0.581126 0.813814i \(-0.302612\pi\)
0.581126 + 0.813814i \(0.302612\pi\)
\(948\) −5.18700 + 44.5759i −0.168466 + 1.44776i
\(949\) 3.48129 0.113007
\(950\) 7.00560 9.40798i 0.227292 0.305235i
\(951\) −13.1873 5.67698i −0.427628 0.184089i
\(952\) 6.28167 17.2410i 0.203590 0.558783i
\(953\) 27.9971i 0.906916i −0.891278 0.453458i \(-0.850190\pi\)
0.891278 0.453458i \(-0.149810\pi\)
\(954\) 19.7293 2.33317i 0.638759 0.0755390i
\(955\) 4.49024i 0.145301i
\(956\) 4.65552 + 15.5630i 0.150570 + 0.503344i
\(957\) 35.1632 + 15.1373i 1.13667 + 0.489321i
\(958\) −17.4831 13.0187i −0.564854 0.420615i
\(959\) 20.3987 0.658709
\(960\) 6.21962 + 12.3821i 0.200738 + 0.399630i
\(961\) −36.2014 −1.16779
\(962\) 3.99000 + 2.97113i 0.128643 + 0.0957930i
\(963\) −6.16513 6.51548i −0.198669 0.209958i
\(964\) −7.67265 25.6490i −0.247119 0.826100i
\(965\) 25.9580i 0.835617i
\(966\) 5.50765 + 9.52581i 0.177206 + 0.306488i
\(967\) 13.4284i 0.431830i −0.976412 0.215915i \(-0.930727\pi\)
0.976412 0.215915i \(-0.0692734\pi\)
\(968\) 20.3316 55.8030i 0.653481 1.79358i
\(969\) 27.1089 62.9724i 0.870862 2.02296i
\(970\) 1.47273 1.97776i 0.0472865 0.0635021i
\(971\) −54.3842 −1.74527 −0.872635 0.488372i \(-0.837591\pi\)
−0.872635 + 0.488372i \(0.837591\pi\)
\(972\) 5.30793 30.7217i 0.170252 0.985401i
\(973\) 15.7001 0.503321
\(974\) 21.7881 29.2597i 0.698134 0.937541i
\(975\) −0.684863 + 1.59090i −0.0219332 + 0.0509496i
\(976\) −0.460506 + 0.302588i −0.0147404 + 0.00968560i
\(977\) 15.8245i 0.506270i 0.967431 + 0.253135i \(0.0814616\pi\)
−0.967431 + 0.253135i \(0.918538\pi\)
\(978\) −15.0759 26.0746i −0.482073 0.833774i
\(979\) 9.63549i 0.307952i
\(980\) −9.87175 + 2.95303i −0.315342 + 0.0943312i
\(981\) 24.0296 + 25.3951i 0.767206 + 0.810804i
\(982\) 2.18622 + 1.62796i 0.0697651 + 0.0519501i
\(983\) 60.3547 1.92502 0.962508 0.271254i \(-0.0874384\pi\)
0.962508 + 0.271254i \(0.0874384\pi\)
\(984\) 4.68378 4.96852i 0.149314 0.158391i
\(985\) −18.5921 −0.592393
\(986\) −21.1512 15.7501i −0.673592 0.501586i
\(987\) −13.9591 6.00921i −0.444322 0.191275i
\(988\) −15.8926 + 4.75412i −0.505612 + 0.151249i
\(989\) 33.2996i 1.05887i
\(990\) 23.8332 2.81849i 0.757469 0.0895775i
\(991\) 11.9648i 0.380076i 0.981777 + 0.190038i \(0.0608611\pi\)
−0.981777 + 0.190038i \(0.939139\pi\)
\(992\) −2.72191 + 46.2929i −0.0864206 + 1.46980i
\(993\) −10.8397 4.66634i −0.343986 0.148082i
\(994\) −14.0624 + 18.8847i −0.446031 + 0.598985i
\(995\) −24.0803 −0.763398
\(996\) 23.1792 + 2.69722i 0.734462 + 0.0854646i
\(997\) 31.5273 0.998478 0.499239 0.866464i \(-0.333613\pi\)
0.499239 + 0.866464i \(0.333613\pi\)
\(998\) −4.22118 + 5.66873i −0.133619 + 0.179440i
\(999\) 17.1621 6.28931i 0.542985 0.198985i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.g.e.131.9 40
3.2 odd 2 inner 780.2.g.e.131.32 yes 40
4.3 odd 2 inner 780.2.g.e.131.31 yes 40
12.11 even 2 inner 780.2.g.e.131.10 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.g.e.131.9 40 1.1 even 1 trivial
780.2.g.e.131.10 yes 40 12.11 even 2 inner
780.2.g.e.131.31 yes 40 4.3 odd 2 inner
780.2.g.e.131.32 yes 40 3.2 odd 2 inner