Properties

Label 780.2.g.e.131.1
Level $780$
Weight $2$
Character 780.131
Analytic conductor $6.228$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(131,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.1
Character \(\chi\) \(=\) 780.131
Dual form 780.2.g.e.131.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41093 - 0.0963462i) q^{2} +(1.70974 + 0.277108i) q^{3} +(1.98143 + 0.271875i) q^{4} +1.00000i q^{5} +(-2.38562 - 0.555706i) q^{6} +4.66235i q^{7} +(-2.76947 - 0.574500i) q^{8} +(2.84642 + 0.947565i) q^{9} +(0.0963462 - 1.41093i) q^{10} +5.03741 q^{11} +(3.31240 + 1.01391i) q^{12} -1.00000 q^{13} +(0.449199 - 6.57823i) q^{14} +(-0.277108 + 1.70974i) q^{15} +(3.85217 + 1.07741i) q^{16} -6.55169i q^{17} +(-3.92480 - 1.61119i) q^{18} +0.699987i q^{19} +(-0.271875 + 1.98143i) q^{20} +(-1.29197 + 7.97140i) q^{21} +(-7.10742 - 0.485335i) q^{22} -5.65505 q^{23} +(-4.57587 - 1.74969i) q^{24} -1.00000 q^{25} +(1.41093 + 0.0963462i) q^{26} +(4.60406 + 2.40886i) q^{27} +(-1.26758 + 9.23814i) q^{28} +5.09126i q^{29} +(0.555706 - 2.38562i) q^{30} +6.88919i q^{31} +(-5.33133 - 1.89128i) q^{32} +(8.61266 + 1.39591i) q^{33} +(-0.631231 + 9.24397i) q^{34} -4.66235 q^{35} +(5.38238 + 2.65141i) q^{36} -1.52653 q^{37} +(0.0674411 - 0.987632i) q^{38} +(-1.70974 - 0.277108i) q^{39} +(0.574500 - 2.76947i) q^{40} -6.16631i q^{41} +(2.59090 - 11.1226i) q^{42} -0.390638i q^{43} +(9.98130 + 1.36955i) q^{44} +(-0.947565 + 2.84642i) q^{45} +(7.97886 + 0.544842i) q^{46} -0.483058 q^{47} +(6.28765 + 2.90955i) q^{48} -14.7375 q^{49} +(1.41093 + 0.0963462i) q^{50} +(1.81553 - 11.2017i) q^{51} +(-1.98143 - 0.271875i) q^{52} -0.793745i q^{53} +(-6.26392 - 3.84231i) q^{54} +5.03741i q^{55} +(2.67852 - 12.9122i) q^{56} +(-0.193972 + 1.19680i) q^{57} +(0.490524 - 7.18341i) q^{58} -6.19480 q^{59} +(-1.01391 + 3.31240i) q^{60} +9.05980 q^{61} +(0.663747 - 9.72015i) q^{62} +(-4.41788 + 13.2710i) q^{63} +(7.33990 + 3.18212i) q^{64} -1.00000i q^{65} +(-12.0174 - 2.79932i) q^{66} +1.64274i q^{67} +(1.78124 - 12.9818i) q^{68} +(-9.66866 - 1.56706i) q^{69} +(6.57823 + 0.449199i) q^{70} +11.9195 q^{71} +(-7.33870 - 4.25952i) q^{72} +10.7627 q^{73} +(2.15383 + 0.147076i) q^{74} +(-1.70974 - 0.277108i) q^{75} +(-0.190309 + 1.38698i) q^{76} +23.4862i q^{77} +(2.38562 + 0.555706i) q^{78} -13.0445i q^{79} +(-1.07741 + 3.85217i) q^{80} +(7.20424 + 5.39434i) q^{81} +(-0.594101 + 8.70022i) q^{82} -2.16081 q^{83} +(-4.72719 + 15.4436i) q^{84} +6.55169 q^{85} +(-0.0376365 + 0.551162i) q^{86} +(-1.41083 + 8.70474i) q^{87} +(-13.9509 - 2.89399i) q^{88} +7.02840i q^{89} +(1.61119 - 3.92480i) q^{90} -4.66235i q^{91} +(-11.2051 - 1.53747i) q^{92} +(-1.90905 + 11.7787i) q^{93} +(0.681560 + 0.0465408i) q^{94} -0.699987 q^{95} +(-8.59109 - 4.71096i) q^{96} +5.31043 q^{97} +(20.7935 + 1.41990i) q^{98} +(14.3386 + 4.77327i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{4} - 2 q^{6} - 14 q^{12} - 40 q^{13} + 12 q^{16} - 16 q^{18} - 24 q^{21} + 44 q^{22} - 10 q^{24} - 40 q^{25} - 48 q^{28} - 6 q^{30} - 8 q^{33} - 56 q^{34} + 36 q^{36} - 72 q^{37} - 20 q^{42}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41093 0.0963462i −0.997677 0.0681271i
\(3\) 1.70974 + 0.277108i 0.987119 + 0.159988i
\(4\) 1.98143 + 0.271875i 0.990717 + 0.135938i
\(5\) 1.00000i 0.447214i
\(6\) −2.38562 0.555706i −0.973926 0.226866i
\(7\) 4.66235i 1.76220i 0.472929 + 0.881101i \(0.343197\pi\)
−0.472929 + 0.881101i \(0.656803\pi\)
\(8\) −2.76947 0.574500i −0.979155 0.203116i
\(9\) 2.84642 + 0.947565i 0.948807 + 0.315855i
\(10\) 0.0963462 1.41093i 0.0304673 0.446175i
\(11\) 5.03741 1.51884 0.759418 0.650603i \(-0.225484\pi\)
0.759418 + 0.650603i \(0.225484\pi\)
\(12\) 3.31240 + 1.01391i 0.956207 + 0.292690i
\(13\) −1.00000 −0.277350
\(14\) 0.449199 6.57823i 0.120054 1.75811i
\(15\) −0.277108 + 1.70974i −0.0715490 + 0.441453i
\(16\) 3.85217 + 1.07741i 0.963042 + 0.269351i
\(17\) 6.55169i 1.58902i −0.607251 0.794510i \(-0.707728\pi\)
0.607251 0.794510i \(-0.292272\pi\)
\(18\) −3.92480 1.61119i −0.925085 0.379761i
\(19\) 0.699987i 0.160588i 0.996771 + 0.0802941i \(0.0255859\pi\)
−0.996771 + 0.0802941i \(0.974414\pi\)
\(20\) −0.271875 + 1.98143i −0.0607931 + 0.443062i
\(21\) −1.29197 + 7.97140i −0.281932 + 1.73950i
\(22\) −7.10742 0.485335i −1.51531 0.103474i
\(23\) −5.65505 −1.17916 −0.589580 0.807710i \(-0.700707\pi\)
−0.589580 + 0.807710i \(0.700707\pi\)
\(24\) −4.57587 1.74969i −0.934046 0.357153i
\(25\) −1.00000 −0.200000
\(26\) 1.41093 + 0.0963462i 0.276706 + 0.0188950i
\(27\) 4.60406 + 2.40886i 0.886053 + 0.463585i
\(28\) −1.26758 + 9.23814i −0.239549 + 1.74584i
\(29\) 5.09126i 0.945424i 0.881217 + 0.472712i \(0.156725\pi\)
−0.881217 + 0.472712i \(0.843275\pi\)
\(30\) 0.555706 2.38562i 0.101458 0.435553i
\(31\) 6.88919i 1.23733i 0.785653 + 0.618667i \(0.212327\pi\)
−0.785653 + 0.618667i \(0.787673\pi\)
\(32\) −5.33133 1.89128i −0.942454 0.334335i
\(33\) 8.61266 + 1.39591i 1.49927 + 0.242996i
\(34\) −0.631231 + 9.24397i −0.108255 + 1.58533i
\(35\) −4.66235 −0.788080
\(36\) 5.38238 + 2.65141i 0.897063 + 0.441902i
\(37\) −1.52653 −0.250961 −0.125480 0.992096i \(-0.540047\pi\)
−0.125480 + 0.992096i \(0.540047\pi\)
\(38\) 0.0674411 0.987632i 0.0109404 0.160215i
\(39\) −1.70974 0.277108i −0.273778 0.0443728i
\(40\) 0.574500 2.76947i 0.0908364 0.437891i
\(41\) 6.16631i 0.963016i −0.876442 0.481508i \(-0.840089\pi\)
0.876442 0.481508i \(-0.159911\pi\)
\(42\) 2.59090 11.1226i 0.399784 1.71625i
\(43\) 0.390638i 0.0595718i −0.999556 0.0297859i \(-0.990517\pi\)
0.999556 0.0297859i \(-0.00948255\pi\)
\(44\) 9.98130 + 1.36955i 1.50474 + 0.206467i
\(45\) −0.947565 + 2.84642i −0.141255 + 0.424320i
\(46\) 7.97886 + 0.544842i 1.17642 + 0.0803326i
\(47\) −0.483058 −0.0704613 −0.0352306 0.999379i \(-0.511217\pi\)
−0.0352306 + 0.999379i \(0.511217\pi\)
\(48\) 6.28765 + 2.90955i 0.907544 + 0.419957i
\(49\) −14.7375 −2.10535
\(50\) 1.41093 + 0.0963462i 0.199535 + 0.0136254i
\(51\) 1.81553 11.2017i 0.254225 1.56855i
\(52\) −1.98143 0.271875i −0.274776 0.0377023i
\(53\) 0.793745i 0.109029i −0.998513 0.0545146i \(-0.982639\pi\)
0.998513 0.0545146i \(-0.0173612\pi\)
\(54\) −6.26392 3.84231i −0.852411 0.522872i
\(55\) 5.03741i 0.679244i
\(56\) 2.67852 12.9122i 0.357932 1.72547i
\(57\) −0.193972 + 1.19680i −0.0256922 + 0.158520i
\(58\) 0.490524 7.18341i 0.0644090 0.943227i
\(59\) −6.19480 −0.806495 −0.403247 0.915091i \(-0.632119\pi\)
−0.403247 + 0.915091i \(0.632119\pi\)
\(60\) −1.01391 + 3.31240i −0.130895 + 0.427629i
\(61\) 9.05980 1.15999 0.579994 0.814621i \(-0.303055\pi\)
0.579994 + 0.814621i \(0.303055\pi\)
\(62\) 0.663747 9.72015i 0.0842960 1.23446i
\(63\) −4.41788 + 13.2710i −0.556600 + 1.67199i
\(64\) 7.33990 + 3.18212i 0.917487 + 0.397765i
\(65\) 1.00000i 0.124035i
\(66\) −12.0174 2.79932i −1.47923 0.344573i
\(67\) 1.64274i 0.200693i 0.994953 + 0.100346i \(0.0319951\pi\)
−0.994953 + 0.100346i \(0.968005\pi\)
\(68\) 1.78124 12.9818i 0.216007 1.57427i
\(69\) −9.66866 1.56706i −1.16397 0.188652i
\(70\) 6.57823 + 0.449199i 0.786249 + 0.0536896i
\(71\) 11.9195 1.41458 0.707292 0.706921i \(-0.249916\pi\)
0.707292 + 0.706921i \(0.249916\pi\)
\(72\) −7.33870 4.25952i −0.864874 0.501989i
\(73\) 10.7627 1.25968 0.629840 0.776725i \(-0.283121\pi\)
0.629840 + 0.776725i \(0.283121\pi\)
\(74\) 2.15383 + 0.147076i 0.250378 + 0.0170972i
\(75\) −1.70974 0.277108i −0.197424 0.0319977i
\(76\) −0.190309 + 1.38698i −0.0218300 + 0.159097i
\(77\) 23.4862i 2.67650i
\(78\) 2.38562 + 0.555706i 0.270118 + 0.0629213i
\(79\) 13.0445i 1.46762i −0.679354 0.733810i \(-0.737740\pi\)
0.679354 0.733810i \(-0.262260\pi\)
\(80\) −1.07741 + 3.85217i −0.120458 + 0.430685i
\(81\) 7.20424 + 5.39434i 0.800471 + 0.599371i
\(82\) −0.594101 + 8.70022i −0.0656074 + 0.960778i
\(83\) −2.16081 −0.237180 −0.118590 0.992943i \(-0.537837\pi\)
−0.118590 + 0.992943i \(0.537837\pi\)
\(84\) −4.72719 + 15.4436i −0.515778 + 1.68503i
\(85\) 6.55169 0.710631
\(86\) −0.0376365 + 0.551162i −0.00405845 + 0.0594334i
\(87\) −1.41083 + 8.70474i −0.151257 + 0.933246i
\(88\) −13.9509 2.89399i −1.48718 0.308501i
\(89\) 7.02840i 0.745009i 0.928030 + 0.372505i \(0.121501\pi\)
−0.928030 + 0.372505i \(0.878499\pi\)
\(90\) 1.61119 3.92480i 0.169834 0.413710i
\(91\) 4.66235i 0.488747i
\(92\) −11.2051 1.53747i −1.16821 0.160292i
\(93\) −1.90905 + 11.7787i −0.197959 + 1.22140i
\(94\) 0.681560 + 0.0465408i 0.0702976 + 0.00480032i
\(95\) −0.699987 −0.0718172
\(96\) −8.59109 4.71096i −0.876825 0.480810i
\(97\) 5.31043 0.539193 0.269596 0.962973i \(-0.413110\pi\)
0.269596 + 0.962973i \(0.413110\pi\)
\(98\) 20.7935 + 1.41990i 2.10046 + 0.143432i
\(99\) 14.3386 + 4.77327i 1.44108 + 0.479732i
\(100\) −1.98143 0.271875i −0.198143 0.0271875i
\(101\) 0.169975i 0.0169131i −0.999964 0.00845657i \(-0.997308\pi\)
0.999964 0.00845657i \(-0.00269184\pi\)
\(102\) −3.64082 + 15.6299i −0.360495 + 1.54759i
\(103\) 19.6851i 1.93963i −0.243843 0.969815i \(-0.578408\pi\)
0.243843 0.969815i \(-0.421592\pi\)
\(104\) 2.76947 + 0.574500i 0.271569 + 0.0563344i
\(105\) −7.97140 1.29197i −0.777929 0.126084i
\(106\) −0.0764743 + 1.11992i −0.00742784 + 0.108776i
\(107\) −5.80500 −0.561191 −0.280595 0.959826i \(-0.590532\pi\)
−0.280595 + 0.959826i \(0.590532\pi\)
\(108\) 8.46775 + 6.02472i 0.814809 + 0.579729i
\(109\) −14.2735 −1.36715 −0.683575 0.729880i \(-0.739576\pi\)
−0.683575 + 0.729880i \(0.739576\pi\)
\(110\) 0.485335 7.10742i 0.0462749 0.677666i
\(111\) −2.60998 0.423015i −0.247728 0.0401508i
\(112\) −5.02324 + 17.9601i −0.474651 + 1.69707i
\(113\) 10.5746i 0.994776i 0.867528 + 0.497388i \(0.165708\pi\)
−0.867528 + 0.497388i \(0.834292\pi\)
\(114\) 0.388987 1.66990i 0.0364320 0.156401i
\(115\) 5.65505i 0.527336i
\(116\) −1.38419 + 10.0880i −0.128519 + 0.936648i
\(117\) −2.84642 0.947565i −0.263152 0.0876024i
\(118\) 8.74042 + 0.596846i 0.804621 + 0.0549441i
\(119\) 30.5463 2.80017
\(120\) 1.74969 4.57587i 0.159724 0.417718i
\(121\) 14.3755 1.30686
\(122\) −12.7827 0.872877i −1.15729 0.0790266i
\(123\) 1.70873 10.5428i 0.154071 0.950611i
\(124\) −1.87300 + 13.6505i −0.168200 + 1.22585i
\(125\) 1.00000i 0.0894427i
\(126\) 7.51192 18.2988i 0.669215 1.63019i
\(127\) 0.0692154i 0.00614187i −0.999995 0.00307093i \(-0.999022\pi\)
0.999995 0.00307093i \(-0.000977510\pi\)
\(128\) −10.0495 5.19691i −0.888257 0.459346i
\(129\) 0.108249 0.667890i 0.00953079 0.0588044i
\(130\) −0.0963462 + 1.41093i −0.00845012 + 0.123747i
\(131\) −1.07164 −0.0936293 −0.0468147 0.998904i \(-0.514907\pi\)
−0.0468147 + 0.998904i \(0.514907\pi\)
\(132\) 16.6859 + 5.10747i 1.45232 + 0.444548i
\(133\) −3.26358 −0.282989
\(134\) 0.158272 2.31779i 0.0136726 0.200226i
\(135\) −2.40886 + 4.60406i −0.207321 + 0.396255i
\(136\) −3.76395 + 18.1447i −0.322756 + 1.55590i
\(137\) 19.0915i 1.63110i 0.578688 + 0.815549i \(0.303565\pi\)
−0.578688 + 0.815549i \(0.696435\pi\)
\(138\) 13.4908 + 3.14255i 1.14841 + 0.267511i
\(139\) 0.101483i 0.00860771i 0.999991 + 0.00430385i \(0.00136996\pi\)
−0.999991 + 0.00430385i \(0.998630\pi\)
\(140\) −9.23814 1.26758i −0.780765 0.107130i
\(141\) −0.825904 0.133859i −0.0695536 0.0112730i
\(142\) −16.8176 1.14840i −1.41130 0.0963715i
\(143\) −5.03741 −0.421249
\(144\) 9.94398 + 6.71693i 0.828665 + 0.559744i
\(145\) −5.09126 −0.422806
\(146\) −15.1854 1.03695i −1.25675 0.0858183i
\(147\) −25.1973 4.08387i −2.07823 0.336832i
\(148\) −3.02473 0.415027i −0.248631 0.0341150i
\(149\) 10.7234i 0.878497i −0.898366 0.439249i \(-0.855245\pi\)
0.898366 0.439249i \(-0.144755\pi\)
\(150\) 2.38562 + 0.555706i 0.194785 + 0.0453732i
\(151\) 15.8824i 1.29249i −0.763129 0.646246i \(-0.776338\pi\)
0.763129 0.646246i \(-0.223662\pi\)
\(152\) 0.402143 1.93859i 0.0326181 0.157241i
\(153\) 6.20816 18.6489i 0.501900 1.50767i
\(154\) 2.26280 33.1373i 0.182342 2.67028i
\(155\) −6.88919 −0.553353
\(156\) −3.31240 1.01391i −0.265204 0.0811775i
\(157\) 5.44604 0.434641 0.217321 0.976100i \(-0.430268\pi\)
0.217321 + 0.976100i \(0.430268\pi\)
\(158\) −1.25679 + 18.4048i −0.0999847 + 1.46421i
\(159\) 0.219953 1.35710i 0.0174434 0.107625i
\(160\) 1.89128 5.33133i 0.149519 0.421478i
\(161\) 26.3658i 2.07792i
\(162\) −9.64494 8.30513i −0.757778 0.652512i
\(163\) 1.85125i 0.145001i −0.997368 0.0725004i \(-0.976902\pi\)
0.997368 0.0725004i \(-0.0230979\pi\)
\(164\) 1.67647 12.2181i 0.130910 0.954077i
\(165\) −1.39591 + 8.61266i −0.108671 + 0.670495i
\(166\) 3.04875 + 0.208186i 0.236629 + 0.0161583i
\(167\) −2.96476 −0.229420 −0.114710 0.993399i \(-0.536594\pi\)
−0.114710 + 0.993399i \(0.536594\pi\)
\(168\) 8.15765 21.3343i 0.629376 1.64598i
\(169\) 1.00000 0.0769231
\(170\) −9.24397 0.631231i −0.708980 0.0484132i
\(171\) −0.663284 + 1.99246i −0.0507226 + 0.152367i
\(172\) 0.106205 0.774024i 0.00809804 0.0590188i
\(173\) 14.4696i 1.10011i −0.835130 0.550053i \(-0.814608\pi\)
0.835130 0.550053i \(-0.185392\pi\)
\(174\) 2.82925 12.1458i 0.214485 0.920773i
\(175\) 4.66235i 0.352440i
\(176\) 19.4049 + 5.42733i 1.46270 + 0.409101i
\(177\) −10.5915 1.71663i −0.796106 0.129030i
\(178\) 0.677160 9.91657i 0.0507553 0.743278i
\(179\) 7.47837 0.558959 0.279480 0.960152i \(-0.409838\pi\)
0.279480 + 0.960152i \(0.409838\pi\)
\(180\) −2.65141 + 5.38238i −0.197624 + 0.401179i
\(181\) 9.12919 0.678567 0.339284 0.940684i \(-0.389815\pi\)
0.339284 + 0.940684i \(0.389815\pi\)
\(182\) −0.449199 + 6.57823i −0.0332969 + 0.487611i
\(183\) 15.4899 + 2.51054i 1.14505 + 0.185585i
\(184\) 15.6615 + 3.24882i 1.15458 + 0.239507i
\(185\) 1.52653i 0.112233i
\(186\) 3.82836 16.4350i 0.280709 1.20507i
\(187\) 33.0036i 2.41346i
\(188\) −0.957148 0.131331i −0.0698072 0.00957833i
\(189\) −11.2309 + 21.4657i −0.816929 + 1.56140i
\(190\) 0.987632 + 0.0674411i 0.0716503 + 0.00489269i
\(191\) −15.8608 −1.14765 −0.573824 0.818979i \(-0.694541\pi\)
−0.573824 + 0.818979i \(0.694541\pi\)
\(192\) 11.6675 + 7.47454i 0.842031 + 0.539428i
\(193\) 9.13915 0.657850 0.328925 0.944356i \(-0.393314\pi\)
0.328925 + 0.944356i \(0.393314\pi\)
\(194\) −7.49264 0.511640i −0.537940 0.0367336i
\(195\) 0.277108 1.70974i 0.0198441 0.122437i
\(196\) −29.2014 4.00675i −2.08581 0.286197i
\(197\) 23.5638i 1.67885i −0.543475 0.839425i \(-0.682892\pi\)
0.543475 0.839425i \(-0.317108\pi\)
\(198\) −19.7708 8.11621i −1.40505 0.576794i
\(199\) 1.29778i 0.0919972i −0.998942 0.0459986i \(-0.985353\pi\)
0.998942 0.0459986i \(-0.0146470\pi\)
\(200\) 2.76947 + 0.574500i 0.195831 + 0.0406233i
\(201\) −0.455216 + 2.80866i −0.0321085 + 0.198108i
\(202\) −0.0163764 + 0.239822i −0.00115224 + 0.0168738i
\(203\) −23.7372 −1.66603
\(204\) 6.64281 21.7018i 0.465090 1.51943i
\(205\) 6.16631 0.430674
\(206\) −1.89658 + 27.7742i −0.132141 + 1.93512i
\(207\) −16.0967 5.35853i −1.11879 0.372443i
\(208\) −3.85217 1.07741i −0.267100 0.0747046i
\(209\) 3.52612i 0.243907i
\(210\) 11.1226 + 2.59090i 0.767532 + 0.178789i
\(211\) 7.56242i 0.520618i −0.965525 0.260309i \(-0.916176\pi\)
0.965525 0.260309i \(-0.0838245\pi\)
\(212\) 0.215799 1.57275i 0.0148212 0.108017i
\(213\) 20.3793 + 3.30299i 1.39636 + 0.226317i
\(214\) 8.19044 + 0.559290i 0.559887 + 0.0382323i
\(215\) 0.390638 0.0266413
\(216\) −11.3669 9.31628i −0.773421 0.633893i
\(217\) −32.1198 −2.18043
\(218\) 20.1388 + 1.37520i 1.36397 + 0.0931400i
\(219\) 18.4014 + 2.98243i 1.24345 + 0.201534i
\(220\) −1.36955 + 9.98130i −0.0923348 + 0.672939i
\(221\) 6.55169i 0.440715i
\(222\) 3.64173 + 0.848305i 0.244417 + 0.0569345i
\(223\) 25.8560i 1.73144i 0.500525 + 0.865722i \(0.333140\pi\)
−0.500525 + 0.865722i \(0.666860\pi\)
\(224\) 8.81782 24.8565i 0.589165 1.66079i
\(225\) −2.84642 0.947565i −0.189761 0.0631710i
\(226\) 1.01882 14.9200i 0.0677712 0.992465i
\(227\) −3.44287 −0.228512 −0.114256 0.993451i \(-0.536448\pi\)
−0.114256 + 0.993451i \(0.536448\pi\)
\(228\) −0.709722 + 2.31864i −0.0470025 + 0.153556i
\(229\) 17.3504 1.14654 0.573272 0.819365i \(-0.305674\pi\)
0.573272 + 0.819365i \(0.305674\pi\)
\(230\) −0.544842 + 7.97886i −0.0359258 + 0.526111i
\(231\) −6.50820 + 40.1552i −0.428208 + 2.64202i
\(232\) 2.92493 14.1001i 0.192031 0.925716i
\(233\) 16.6488i 1.09070i −0.838209 0.545349i \(-0.816397\pi\)
0.838209 0.545349i \(-0.183603\pi\)
\(234\) 3.92480 + 1.61119i 0.256572 + 0.105327i
\(235\) 0.483058i 0.0315112i
\(236\) −12.2746 1.68421i −0.799008 0.109633i
\(237\) 3.61473 22.3027i 0.234802 1.44872i
\(238\) −43.0986 2.94302i −2.79367 0.190768i
\(239\) −26.9359 −1.74234 −0.871169 0.490983i \(-0.836638\pi\)
−0.871169 + 0.490983i \(0.836638\pi\)
\(240\) −2.90955 + 6.28765i −0.187811 + 0.405866i
\(241\) −10.9600 −0.705996 −0.352998 0.935624i \(-0.614838\pi\)
−0.352998 + 0.935624i \(0.614838\pi\)
\(242\) −20.2828 1.38502i −1.30383 0.0890328i
\(243\) 10.8226 + 11.2193i 0.694268 + 0.719717i
\(244\) 17.9514 + 2.46313i 1.14922 + 0.157686i
\(245\) 14.7375i 0.941543i
\(246\) −3.42666 + 14.7105i −0.218476 + 0.937906i
\(247\) 0.699987i 0.0445391i
\(248\) 3.95784 19.0794i 0.251323 1.21154i
\(249\) −3.69442 0.598777i −0.234124 0.0379460i
\(250\) −0.0963462 + 1.41093i −0.00609347 + 0.0892349i
\(251\) 19.2428 1.21460 0.607299 0.794474i \(-0.292253\pi\)
0.607299 + 0.794474i \(0.292253\pi\)
\(252\) −12.3618 + 25.0945i −0.778720 + 1.58081i
\(253\) −28.4868 −1.79095
\(254\) −0.00666864 + 0.0976579i −0.000418428 + 0.00612760i
\(255\) 11.2017 + 1.81553i 0.701477 + 0.113693i
\(256\) 13.6784 + 8.30069i 0.854900 + 0.518793i
\(257\) 1.20455i 0.0751375i −0.999294 0.0375687i \(-0.988039\pi\)
0.999294 0.0375687i \(-0.0119613\pi\)
\(258\) −0.217080 + 0.931915i −0.0135148 + 0.0580185i
\(259\) 7.11723i 0.442243i
\(260\) 0.271875 1.98143i 0.0168610 0.122883i
\(261\) −4.82430 + 14.4919i −0.298617 + 0.897025i
\(262\) 1.51200 + 0.103248i 0.0934118 + 0.00637869i
\(263\) 9.66287 0.595838 0.297919 0.954591i \(-0.403707\pi\)
0.297919 + 0.954591i \(0.403707\pi\)
\(264\) −23.0505 8.81389i −1.41866 0.542457i
\(265\) 0.793745 0.0487594
\(266\) 4.60468 + 0.314434i 0.282331 + 0.0192792i
\(267\) −1.94763 + 12.0167i −0.119193 + 0.735413i
\(268\) −0.446620 + 3.25498i −0.0272817 + 0.198830i
\(269\) 14.4066i 0.878385i −0.898393 0.439193i \(-0.855265\pi\)
0.898393 0.439193i \(-0.144735\pi\)
\(270\) 3.84231 6.26392i 0.233835 0.381210i
\(271\) 5.47269i 0.332442i −0.986089 0.166221i \(-0.946843\pi\)
0.986089 0.166221i \(-0.0531566\pi\)
\(272\) 7.05883 25.2382i 0.428005 1.53029i
\(273\) 1.29197 7.97140i 0.0781938 0.482451i
\(274\) 1.83939 26.9367i 0.111122 1.62731i
\(275\) −5.03741 −0.303767
\(276\) −18.7318 5.73369i −1.12752 0.345128i
\(277\) 1.64011 0.0985444 0.0492722 0.998785i \(-0.484310\pi\)
0.0492722 + 0.998785i \(0.484310\pi\)
\(278\) 0.00977754 0.143186i 0.000586418 0.00858771i
\(279\) −6.52795 + 19.6095i −0.390818 + 1.17399i
\(280\) 12.9122 + 2.67852i 0.771653 + 0.160072i
\(281\) 23.9044i 1.42602i −0.701156 0.713008i \(-0.747333\pi\)
0.701156 0.713008i \(-0.252667\pi\)
\(282\) 1.15239 + 0.268438i 0.0686241 + 0.0159853i
\(283\) 19.7669i 1.17502i 0.809218 + 0.587509i \(0.199891\pi\)
−0.809218 + 0.587509i \(0.800109\pi\)
\(284\) 23.6177 + 3.24062i 1.40145 + 0.192295i
\(285\) −1.19680 0.193972i −0.0708921 0.0114899i
\(286\) 7.10742 + 0.485335i 0.420271 + 0.0286985i
\(287\) 28.7495 1.69703
\(288\) −13.3831 10.4352i −0.788606 0.614898i
\(289\) −25.9247 −1.52498
\(290\) 7.18341 + 0.490524i 0.421824 + 0.0288046i
\(291\) 9.07946 + 1.47156i 0.532247 + 0.0862646i
\(292\) 21.3256 + 2.92611i 1.24799 + 0.171238i
\(293\) 24.9188i 1.45577i 0.685700 + 0.727884i \(0.259496\pi\)
−0.685700 + 0.727884i \(0.740504\pi\)
\(294\) 35.1580 + 8.18971i 2.05046 + 0.477634i
\(295\) 6.19480i 0.360675i
\(296\) 4.22769 + 0.876994i 0.245729 + 0.0509742i
\(297\) 23.1926 + 12.1344i 1.34577 + 0.704109i
\(298\) −1.03316 + 15.1300i −0.0598494 + 0.876456i
\(299\) 5.65505 0.327040
\(300\) −3.31240 1.01391i −0.191241 0.0585380i
\(301\) 1.82129 0.104977
\(302\) −1.53021 + 22.4089i −0.0880537 + 1.28949i
\(303\) 0.0471014 0.290613i 0.00270590 0.0166953i
\(304\) −0.754170 + 2.69647i −0.0432546 + 0.154653i
\(305\) 9.05980i 0.518763i
\(306\) −10.5560 + 25.7141i −0.603447 + 1.46998i
\(307\) 1.88922i 0.107824i 0.998546 + 0.0539118i \(0.0171690\pi\)
−0.998546 + 0.0539118i \(0.982831\pi\)
\(308\) −6.38530 + 46.5363i −0.363836 + 2.65165i
\(309\) 5.45490 33.6564i 0.310318 1.91465i
\(310\) 9.72015 + 0.663747i 0.552067 + 0.0376983i
\(311\) 11.9419 0.677161 0.338581 0.940937i \(-0.390053\pi\)
0.338581 + 0.940937i \(0.390053\pi\)
\(312\) 4.57587 + 1.74969i 0.259058 + 0.0990565i
\(313\) 9.16738 0.518171 0.259086 0.965854i \(-0.416579\pi\)
0.259086 + 0.965854i \(0.416579\pi\)
\(314\) −7.68397 0.524705i −0.433632 0.0296108i
\(315\) −13.2710 4.41788i −0.747737 0.248919i
\(316\) 3.54647 25.8468i 0.199505 1.45400i
\(317\) 28.1638i 1.58184i −0.611920 0.790920i \(-0.709603\pi\)
0.611920 0.790920i \(-0.290397\pi\)
\(318\) −0.441089 + 1.89358i −0.0247350 + 0.106186i
\(319\) 25.6468i 1.43594i
\(320\) −3.18212 + 7.33990i −0.177886 + 0.410313i
\(321\) −9.92504 1.60861i −0.553962 0.0897840i
\(322\) −2.54024 + 37.2002i −0.141562 + 2.07309i
\(323\) 4.58610 0.255178
\(324\) 12.8081 + 12.6472i 0.711564 + 0.702622i
\(325\) 1.00000 0.0554700
\(326\) −0.178361 + 2.61197i −0.00987848 + 0.144664i
\(327\) −24.4039 3.95529i −1.34954 0.218728i
\(328\) −3.54254 + 17.0774i −0.195604 + 0.942941i
\(329\) 2.25218i 0.124167i
\(330\) 2.79932 12.0174i 0.154098 0.661534i
\(331\) 32.9408i 1.81059i −0.424782 0.905296i \(-0.639649\pi\)
0.424782 0.905296i \(-0.360351\pi\)
\(332\) −4.28150 0.587470i −0.234978 0.0322416i
\(333\) −4.34516 1.44649i −0.238113 0.0792672i
\(334\) 4.18306 + 0.285643i 0.228887 + 0.0156297i
\(335\) −1.64274 −0.0897525
\(336\) −13.5653 + 29.3152i −0.740049 + 1.59928i
\(337\) −7.16724 −0.390425 −0.195212 0.980761i \(-0.562540\pi\)
−0.195212 + 0.980761i \(0.562540\pi\)
\(338\) −1.41093 0.0963462i −0.0767444 0.00524054i
\(339\) −2.93031 + 18.0798i −0.159153 + 0.981963i
\(340\) 12.9818 + 1.78124i 0.704035 + 0.0966015i
\(341\) 34.7037i 1.87931i
\(342\) 1.12781 2.74731i 0.0609850 0.148558i
\(343\) 36.0748i 1.94786i
\(344\) −0.224422 + 1.08186i −0.0121000 + 0.0583300i
\(345\) 1.56706 9.66866i 0.0843676 0.520543i
\(346\) −1.39409 + 20.4156i −0.0749469 + 1.09755i
\(347\) 24.0269 1.28983 0.644916 0.764253i \(-0.276892\pi\)
0.644916 + 0.764253i \(0.276892\pi\)
\(348\) −5.16207 + 16.8643i −0.276716 + 0.904022i
\(349\) −10.7310 −0.574417 −0.287208 0.957868i \(-0.592727\pi\)
−0.287208 + 0.957868i \(0.592727\pi\)
\(350\) −0.449199 + 6.57823i −0.0240107 + 0.351621i
\(351\) −4.60406 2.40886i −0.245747 0.128575i
\(352\) −26.8561 9.52717i −1.43143 0.507800i
\(353\) 12.0331i 0.640459i 0.947340 + 0.320229i \(0.103760\pi\)
−0.947340 + 0.320229i \(0.896240\pi\)
\(354\) 14.7785 + 3.44249i 0.785466 + 0.182966i
\(355\) 11.9195i 0.632622i
\(356\) −1.91085 + 13.9263i −0.101275 + 0.738094i
\(357\) 52.2262 + 8.46462i 2.76410 + 0.447995i
\(358\) −10.5514 0.720512i −0.557661 0.0380803i
\(359\) −10.3443 −0.545951 −0.272975 0.962021i \(-0.588008\pi\)
−0.272975 + 0.962021i \(0.588008\pi\)
\(360\) 4.25952 7.33870i 0.224496 0.386783i
\(361\) 18.5100 0.974211
\(362\) −12.8806 0.879563i −0.676991 0.0462288i
\(363\) 24.5784 + 3.98356i 1.29003 + 0.209083i
\(364\) 1.26758 9.23814i 0.0664390 0.484210i
\(365\) 10.7627i 0.563346i
\(366\) −21.6132 5.03459i −1.12974 0.263162i
\(367\) 11.6121i 0.606146i −0.952967 0.303073i \(-0.901987\pi\)
0.952967 0.303073i \(-0.0980126\pi\)
\(368\) −21.7842 6.09278i −1.13558 0.317608i
\(369\) 5.84298 17.5519i 0.304173 0.913717i
\(370\) −0.147076 + 2.15383i −0.00764611 + 0.111972i
\(371\) 3.70071 0.192131
\(372\) −6.98500 + 22.8197i −0.362155 + 1.18315i
\(373\) 35.0545 1.81505 0.907525 0.419997i \(-0.137969\pi\)
0.907525 + 0.419997i \(0.137969\pi\)
\(374\) −3.17977 + 46.5657i −0.164422 + 2.40785i
\(375\) 0.277108 1.70974i 0.0143098 0.0882906i
\(376\) 1.33781 + 0.277517i 0.0689925 + 0.0143118i
\(377\) 5.09126i 0.262213i
\(378\) 17.9142 29.2046i 0.921405 1.50212i
\(379\) 8.91238i 0.457798i −0.973450 0.228899i \(-0.926487\pi\)
0.973450 0.228899i \(-0.0735126\pi\)
\(380\) −1.38698 0.190309i −0.0711505 0.00976265i
\(381\) 0.0191801 0.118340i 0.000982628 0.00606276i
\(382\) 22.3784 + 1.52813i 1.14498 + 0.0781858i
\(383\) 29.8922 1.52742 0.763710 0.645559i \(-0.223376\pi\)
0.763710 + 0.645559i \(0.223376\pi\)
\(384\) −15.7419 11.6702i −0.803325 0.595540i
\(385\) −23.4862 −1.19697
\(386\) −12.8947 0.880522i −0.656322 0.0448174i
\(387\) 0.370155 1.11192i 0.0188160 0.0565221i
\(388\) 10.5223 + 1.44377i 0.534188 + 0.0732965i
\(389\) 14.5837i 0.739424i 0.929146 + 0.369712i \(0.120544\pi\)
−0.929146 + 0.369712i \(0.879456\pi\)
\(390\) −0.555706 + 2.38562i −0.0281393 + 0.120801i
\(391\) 37.0501i 1.87371i
\(392\) 40.8150 + 8.46668i 2.06147 + 0.427632i
\(393\) −1.83222 0.296959i −0.0924233 0.0149796i
\(394\) −2.27028 + 33.2468i −0.114375 + 1.67495i
\(395\) 13.0445 0.656340
\(396\) 27.1133 + 13.3562i 1.36249 + 0.671176i
\(397\) −7.65512 −0.384200 −0.192100 0.981375i \(-0.561530\pi\)
−0.192100 + 0.981375i \(0.561530\pi\)
\(398\) −0.125036 + 1.83107i −0.00626750 + 0.0917834i
\(399\) −5.57988 0.904365i −0.279343 0.0452749i
\(400\) −3.85217 1.07741i −0.192608 0.0538703i
\(401\) 4.25810i 0.212639i −0.994332 0.106320i \(-0.966093\pi\)
0.994332 0.106320i \(-0.0339067\pi\)
\(402\) 0.912881 3.91896i 0.0455304 0.195460i
\(403\) 6.88919i 0.343175i
\(404\) 0.0462119 0.336794i 0.00229913 0.0167561i
\(405\) −5.39434 + 7.20424i −0.268047 + 0.357982i
\(406\) 33.4915 + 2.28699i 1.66216 + 0.113502i
\(407\) −7.68978 −0.381168
\(408\) −11.4634 + 29.9797i −0.567524 + 1.48422i
\(409\) −24.7154 −1.22210 −0.611049 0.791593i \(-0.709252\pi\)
−0.611049 + 0.791593i \(0.709252\pi\)
\(410\) −8.70022 0.594101i −0.429673 0.0293405i
\(411\) −5.29041 + 32.6415i −0.260957 + 1.61009i
\(412\) 5.35189 39.0047i 0.263669 1.92162i
\(413\) 28.8823i 1.42121i
\(414\) 22.1949 + 9.11135i 1.09082 + 0.447798i
\(415\) 2.16081i 0.106070i
\(416\) 5.33133 + 1.89128i 0.261390 + 0.0927278i
\(417\) −0.0281218 + 0.173510i −0.00137713 + 0.00849683i
\(418\) 0.339729 4.97510i 0.0166167 0.243340i
\(419\) −2.59833 −0.126937 −0.0634683 0.997984i \(-0.520216\pi\)
−0.0634683 + 0.997984i \(0.520216\pi\)
\(420\) −15.4436 4.72719i −0.753568 0.230663i
\(421\) −16.6272 −0.810358 −0.405179 0.914237i \(-0.632791\pi\)
−0.405179 + 0.914237i \(0.632791\pi\)
\(422\) −0.728610 + 10.6700i −0.0354682 + 0.519409i
\(423\) −1.37499 0.457729i −0.0668542 0.0222555i
\(424\) −0.456006 + 2.19825i −0.0221456 + 0.106756i
\(425\) 6.55169i 0.317804i
\(426\) −28.4354 6.62374i −1.37770 0.320921i
\(427\) 42.2399i 2.04413i
\(428\) −11.5022 1.57824i −0.555981 0.0762869i
\(429\) −8.61266 1.39591i −0.415823 0.0673950i
\(430\) −0.551162 0.0376365i −0.0265794 0.00181499i
\(431\) −35.5765 −1.71366 −0.856829 0.515600i \(-0.827569\pi\)
−0.856829 + 0.515600i \(0.827569\pi\)
\(432\) 15.1403 + 14.2398i 0.728439 + 0.685111i
\(433\) 0.306543 0.0147315 0.00736576 0.999973i \(-0.497655\pi\)
0.00736576 + 0.999973i \(0.497655\pi\)
\(434\) 45.3187 + 3.09462i 2.17537 + 0.148546i
\(435\) −8.70474 1.41083i −0.417360 0.0676441i
\(436\) −28.2820 3.88060i −1.35446 0.185847i
\(437\) 3.95846i 0.189359i
\(438\) −25.6757 5.98090i −1.22683 0.285779i
\(439\) 24.1138i 1.15089i 0.817840 + 0.575445i \(0.195171\pi\)
−0.817840 + 0.575445i \(0.804829\pi\)
\(440\) 2.89399 13.9509i 0.137966 0.665085i
\(441\) −41.9491 13.9647i −1.99758 0.664987i
\(442\) 0.631231 9.24397i 0.0300246 0.439691i
\(443\) −39.8814 −1.89482 −0.947411 0.320018i \(-0.896311\pi\)
−0.947411 + 0.320018i \(0.896311\pi\)
\(444\) −5.05649 1.54776i −0.239971 0.0734537i
\(445\) −7.02840 −0.333178
\(446\) 2.49113 36.4809i 0.117958 1.72742i
\(447\) 2.97155 18.3343i 0.140549 0.867181i
\(448\) −14.8361 + 34.2212i −0.700942 + 1.61680i
\(449\) 16.8351i 0.794498i 0.917711 + 0.397249i \(0.130035\pi\)
−0.917711 + 0.397249i \(0.869965\pi\)
\(450\) 3.92480 + 1.61119i 0.185017 + 0.0759521i
\(451\) 31.0622i 1.46266i
\(452\) −2.87498 + 20.9529i −0.135227 + 0.985542i
\(453\) 4.40114 27.1548i 0.206784 1.27584i
\(454\) 4.85765 + 0.331708i 0.227981 + 0.0155678i
\(455\) 4.66235 0.218574
\(456\) 1.22476 3.20305i 0.0573546 0.149997i
\(457\) 26.4440 1.23700 0.618499 0.785785i \(-0.287741\pi\)
0.618499 + 0.785785i \(0.287741\pi\)
\(458\) −24.4801 1.67164i −1.14388 0.0781107i
\(459\) 15.7821 30.1644i 0.736645 1.40795i
\(460\) 1.53747 11.2051i 0.0716848 0.522441i
\(461\) 2.38547i 0.111102i 0.998456 + 0.0555512i \(0.0176916\pi\)
−0.998456 + 0.0555512i \(0.982308\pi\)
\(462\) 13.0514 56.0291i 0.607206 2.60671i
\(463\) 17.2209i 0.800324i 0.916444 + 0.400162i \(0.131046\pi\)
−0.916444 + 0.400162i \(0.868954\pi\)
\(464\) −5.48536 + 19.6124i −0.254651 + 0.910483i
\(465\) −11.7787 1.90905i −0.546225 0.0885300i
\(466\) −1.60405 + 23.4902i −0.0743060 + 1.08816i
\(467\) −29.3709 −1.35912 −0.679561 0.733619i \(-0.737830\pi\)
−0.679561 + 0.733619i \(0.737830\pi\)
\(468\) −5.38238 2.65141i −0.248801 0.122561i
\(469\) −7.65902 −0.353661
\(470\) −0.0465408 + 0.681560i −0.00214677 + 0.0314380i
\(471\) 9.31131 + 1.50914i 0.429043 + 0.0695375i
\(472\) 17.1563 + 3.55891i 0.789683 + 0.163812i
\(473\) 1.96781i 0.0904798i
\(474\) −7.24891 + 31.1192i −0.332953 + 1.42935i
\(475\) 0.699987i 0.0321176i
\(476\) 60.5254 + 8.30477i 2.77418 + 0.380649i
\(477\) 0.752125 2.25933i 0.0344374 0.103448i
\(478\) 38.0046 + 2.59517i 1.73829 + 0.118700i
\(479\) −8.14856 −0.372317 −0.186159 0.982520i \(-0.559604\pi\)
−0.186159 + 0.982520i \(0.559604\pi\)
\(480\) 4.71096 8.59109i 0.215025 0.392128i
\(481\) 1.52653 0.0696040
\(482\) 15.4638 + 1.05595i 0.704356 + 0.0480974i
\(483\) 7.30617 45.0787i 0.332442 2.05115i
\(484\) 28.4841 + 3.90834i 1.29473 + 0.177652i
\(485\) 5.31043i 0.241134i
\(486\) −14.1889 16.8723i −0.643623 0.765343i
\(487\) 28.9133i 1.31019i 0.755548 + 0.655093i \(0.227371\pi\)
−0.755548 + 0.655093i \(0.772629\pi\)
\(488\) −25.0908 5.20485i −1.13581 0.235613i
\(489\) 0.512995 3.16515i 0.0231984 0.143133i
\(490\) −1.41990 + 20.7935i −0.0641446 + 0.939355i
\(491\) −3.40523 −0.153676 −0.0768379 0.997044i \(-0.524482\pi\)
−0.0768379 + 0.997044i \(0.524482\pi\)
\(492\) 6.25207 20.4253i 0.281865 0.920843i
\(493\) 33.3564 1.50230
\(494\) −0.0674411 + 0.987632i −0.00303432 + 0.0444356i
\(495\) −4.77327 + 14.3386i −0.214543 + 0.644472i
\(496\) −7.42245 + 26.5383i −0.333278 + 1.19161i
\(497\) 55.5729i 2.49278i
\(498\) 5.15487 + 1.20078i 0.230995 + 0.0538080i
\(499\) 35.3026i 1.58036i −0.612874 0.790180i \(-0.709987\pi\)
0.612874 0.790180i \(-0.290013\pi\)
\(500\) 0.271875 1.98143i 0.0121586 0.0886125i
\(501\) −5.06897 0.821558i −0.226465 0.0367045i
\(502\) −27.1503 1.85398i −1.21178 0.0827470i
\(503\) 6.76294 0.301544 0.150772 0.988569i \(-0.451824\pi\)
0.150772 + 0.988569i \(0.451824\pi\)
\(504\) 19.8594 34.2156i 0.884606 1.52408i
\(505\) 0.169975 0.00756378
\(506\) 40.1928 + 2.74459i 1.78679 + 0.122012i
\(507\) 1.70974 + 0.277108i 0.0759322 + 0.0123068i
\(508\) 0.0188179 0.137146i 0.000834911 0.00608486i
\(509\) 8.84100i 0.391870i −0.980617 0.195935i \(-0.937226\pi\)
0.980617 0.195935i \(-0.0627742\pi\)
\(510\) −15.6299 3.64082i −0.692102 0.161218i
\(511\) 50.1795i 2.21981i
\(512\) −18.4995 13.0295i −0.817570 0.575830i
\(513\) −1.68617 + 3.22279i −0.0744462 + 0.142290i
\(514\) −0.116053 + 1.69953i −0.00511890 + 0.0749629i
\(515\) 19.6851 0.867429
\(516\) 0.396071 1.29395i 0.0174361 0.0569630i
\(517\) −2.43336 −0.107019
\(518\) −0.685719 + 10.0419i −0.0301287 + 0.441216i
\(519\) 4.00965 24.7393i 0.176004 1.08593i
\(520\) −0.574500 + 2.76947i −0.0251935 + 0.121449i
\(521\) 6.96646i 0.305206i −0.988288 0.152603i \(-0.951234\pi\)
0.988288 0.152603i \(-0.0487656\pi\)
\(522\) 8.20298 19.9822i 0.359035 0.874597i
\(523\) 20.1239i 0.879955i −0.898009 0.439977i \(-0.854986\pi\)
0.898009 0.439977i \(-0.145014\pi\)
\(524\) −2.12338 0.291351i −0.0927602 0.0127277i
\(525\) 1.29197 7.97140i 0.0563863 0.347900i
\(526\) −13.6336 0.930981i −0.594454 0.0405927i
\(527\) 45.1358 1.96615
\(528\) 31.6735 + 14.6566i 1.37841 + 0.637846i
\(529\) 8.97957 0.390416
\(530\) −1.11992 0.0764743i −0.0486461 0.00332183i
\(531\) −17.6330 5.86998i −0.765208 0.254735i
\(532\) −6.46658 0.887287i −0.280362 0.0384688i
\(533\) 6.16631i 0.267093i
\(534\) 3.90573 16.7671i 0.169017 0.725584i
\(535\) 5.80500i 0.250972i
\(536\) 0.943754 4.54952i 0.0407640 0.196509i
\(537\) 12.7861 + 2.07232i 0.551759 + 0.0894270i
\(538\) −1.38802 + 20.3267i −0.0598418 + 0.876344i
\(539\) −74.2387 −3.19769
\(540\) −6.02472 + 8.46775i −0.259263 + 0.364394i
\(541\) 32.7478 1.40794 0.703969 0.710231i \(-0.251409\pi\)
0.703969 + 0.710231i \(0.251409\pi\)
\(542\) −0.527273 + 7.72157i −0.0226483 + 0.331670i
\(543\) 15.6085 + 2.52977i 0.669826 + 0.108563i
\(544\) −12.3911 + 34.9292i −0.531265 + 1.49758i
\(545\) 14.2735i 0.611409i
\(546\) −2.59090 + 11.1226i −0.110880 + 0.476003i
\(547\) 34.5794i 1.47851i −0.673426 0.739254i \(-0.735178\pi\)
0.673426 0.739254i \(-0.264822\pi\)
\(548\) −5.19051 + 37.8286i −0.221727 + 1.61596i
\(549\) 25.7880 + 8.58475i 1.10061 + 0.366388i
\(550\) 7.10742 + 0.485335i 0.303061 + 0.0206948i
\(551\) −3.56382 −0.151824
\(552\) 25.8768 + 9.89456i 1.10139 + 0.421141i
\(553\) 60.8180 2.58624
\(554\) −2.31407 0.158018i −0.0983154 0.00671354i
\(555\) 0.423015 2.60998i 0.0179560 0.110787i
\(556\) −0.0275908 + 0.201083i −0.00117011 + 0.00852780i
\(557\) 34.1118i 1.44536i −0.691181 0.722681i \(-0.742909\pi\)
0.691181 0.722681i \(-0.257091\pi\)
\(558\) 11.0998 27.0387i 0.469891 1.14464i
\(559\) 0.390638i 0.0165222i
\(560\) −17.9601 5.02324i −0.758955 0.212271i
\(561\) 9.14555 56.4275i 0.386126 2.38237i
\(562\) −2.30310 + 33.7273i −0.0971502 + 1.42270i
\(563\) −10.5450 −0.444419 −0.222210 0.974999i \(-0.571327\pi\)
−0.222210 + 0.974999i \(0.571327\pi\)
\(564\) −1.60008 0.489776i −0.0673756 0.0206233i
\(565\) −10.5746 −0.444878
\(566\) 1.90446 27.8896i 0.0800505 1.17229i
\(567\) −25.1503 + 33.5887i −1.05621 + 1.41059i
\(568\) −33.0107 6.84775i −1.38510 0.287325i
\(569\) 21.9273i 0.919238i 0.888116 + 0.459619i \(0.152014\pi\)
−0.888116 + 0.459619i \(0.847986\pi\)
\(570\) 1.66990 + 0.388987i 0.0699446 + 0.0162929i
\(571\) 9.37041i 0.392139i −0.980590 0.196070i \(-0.937182\pi\)
0.980590 0.196070i \(-0.0628179\pi\)
\(572\) −9.98130 1.36955i −0.417339 0.0572636i
\(573\) −27.1178 4.39515i −1.13286 0.183610i
\(574\) −40.5634 2.76990i −1.69309 0.115614i
\(575\) 5.65505 0.235832
\(576\) 17.8772 + 16.0127i 0.744883 + 0.667195i
\(577\) −24.8818 −1.03584 −0.517921 0.855429i \(-0.673294\pi\)
−0.517921 + 0.855429i \(0.673294\pi\)
\(578\) 36.5779 + 2.49775i 1.52144 + 0.103893i
\(579\) 15.6256 + 2.53253i 0.649376 + 0.105248i
\(580\) −10.0880 1.38419i −0.418882 0.0574753i
\(581\) 10.0744i 0.417958i
\(582\) −12.6687 2.95104i −0.525134 0.122325i
\(583\) 3.99842i 0.165598i
\(584\) −29.8070 6.18317i −1.23342 0.255862i
\(585\) 0.947565 2.84642i 0.0391770 0.117685i
\(586\) 2.40083 35.1586i 0.0991773 1.45239i
\(587\) −9.18323 −0.379032 −0.189516 0.981878i \(-0.560692\pi\)
−0.189516 + 0.981878i \(0.560692\pi\)
\(588\) −48.8164 14.9424i −2.01316 0.616216i
\(589\) −4.82234 −0.198701
\(590\) −0.596846 + 8.74042i −0.0245718 + 0.359837i
\(591\) 6.52971 40.2879i 0.268596 1.65722i
\(592\) −5.88047 1.64470i −0.241686 0.0675966i
\(593\) 10.7692i 0.442238i 0.975247 + 0.221119i \(0.0709709\pi\)
−0.975247 + 0.221119i \(0.929029\pi\)
\(594\) −31.5539 19.3553i −1.29467 0.794156i
\(595\) 30.5463i 1.25228i
\(596\) 2.91543 21.2478i 0.119421 0.870342i
\(597\) 0.359625 2.21887i 0.0147185 0.0908121i
\(598\) −7.97886 0.544842i −0.326280 0.0222803i
\(599\) 2.31068 0.0944120 0.0472060 0.998885i \(-0.484968\pi\)
0.0472060 + 0.998885i \(0.484968\pi\)
\(600\) 4.57587 + 1.74969i 0.186809 + 0.0714307i
\(601\) −0.0150889 −0.000615489 −0.000307744 1.00000i \(-0.500098\pi\)
−0.000307744 1.00000i \(0.500098\pi\)
\(602\) −2.56971 0.175475i −0.104734 0.00715181i
\(603\) −1.55660 + 4.67593i −0.0633898 + 0.190419i
\(604\) 4.31803 31.4700i 0.175698 1.28049i
\(605\) 14.3755i 0.584447i
\(606\) −0.0944561 + 0.405496i −0.00383702 + 0.0164721i
\(607\) 27.8774i 1.13151i 0.824574 + 0.565754i \(0.191415\pi\)
−0.824574 + 0.565754i \(0.808585\pi\)
\(608\) 1.32387 3.73186i 0.0536902 0.151347i
\(609\) −40.5845 6.57778i −1.64457 0.266545i
\(610\) 0.872877 12.7827i 0.0353418 0.517557i
\(611\) 0.483058 0.0195424
\(612\) 17.3712 35.2637i 0.702190 1.42545i
\(613\) −1.84020 −0.0743249 −0.0371625 0.999309i \(-0.511832\pi\)
−0.0371625 + 0.999309i \(0.511832\pi\)
\(614\) 0.182019 2.66556i 0.00734570 0.107573i
\(615\) 10.5428 + 1.70873i 0.425126 + 0.0689028i
\(616\) 13.4928 65.0441i 0.543640 2.62070i
\(617\) 29.3158i 1.18021i −0.807327 0.590105i \(-0.799086\pi\)
0.807327 0.590105i \(-0.200914\pi\)
\(618\) −10.9391 + 46.9612i −0.440036 + 1.88906i
\(619\) 39.7422i 1.59737i −0.601748 0.798686i \(-0.705529\pi\)
0.601748 0.798686i \(-0.294471\pi\)
\(620\) −13.6505 1.87300i −0.548216 0.0752214i
\(621\) −26.0362 13.6222i −1.04480 0.546640i
\(622\) −16.8491 1.15055i −0.675588 0.0461330i
\(623\) −32.7689 −1.31286
\(624\) −6.28765 2.90955i −0.251707 0.116475i
\(625\) 1.00000 0.0400000
\(626\) −12.9345 0.883243i −0.516967 0.0353015i
\(627\) −0.977117 + 6.02875i −0.0390223 + 0.240765i
\(628\) 10.7910 + 1.48064i 0.430607 + 0.0590841i
\(629\) 10.0014i 0.398782i
\(630\) 18.2988 + 7.51192i 0.729041 + 0.299282i
\(631\) 31.0663i 1.23673i −0.785891 0.618365i \(-0.787795\pi\)
0.785891 0.618365i \(-0.212205\pi\)
\(632\) −7.49406 + 36.1263i −0.298098 + 1.43703i
\(633\) 2.09561 12.9298i 0.0832929 0.513912i
\(634\) −2.71348 + 39.7372i −0.107766 + 1.57816i
\(635\) 0.0692154 0.00274673
\(636\) 0.804784 2.62920i 0.0319117 0.104255i
\(637\) 14.7375 0.583920
\(638\) 2.47097 36.1858i 0.0978267 1.43261i
\(639\) 33.9279 + 11.2945i 1.34217 + 0.446804i
\(640\) 5.19691 10.0495i 0.205426 0.397241i
\(641\) 37.1590i 1.46769i 0.679316 + 0.733846i \(0.262277\pi\)
−0.679316 + 0.733846i \(0.737723\pi\)
\(642\) 13.8485 + 3.22588i 0.546558 + 0.127315i
\(643\) 34.6620i 1.36694i 0.729981 + 0.683468i \(0.239529\pi\)
−0.729981 + 0.683468i \(0.760471\pi\)
\(644\) 7.16820 52.2421i 0.282467 2.05863i
\(645\) 0.667890 + 0.108249i 0.0262981 + 0.00426230i
\(646\) −6.47066 0.441854i −0.254585 0.0173845i
\(647\) 44.5213 1.75031 0.875157 0.483840i \(-0.160758\pi\)
0.875157 + 0.483840i \(0.160758\pi\)
\(648\) −16.8529 19.0783i −0.662043 0.749466i
\(649\) −31.2058 −1.22493
\(650\) −1.41093 0.0963462i −0.0553411 0.00377901i
\(651\) −54.9165 8.90065i −2.15235 0.348844i
\(652\) 0.503308 3.66812i 0.0197111 0.143655i
\(653\) 4.45001i 0.174142i −0.996202 0.0870711i \(-0.972249\pi\)
0.996202 0.0870711i \(-0.0277507\pi\)
\(654\) 34.0511 + 7.93186i 1.33150 + 0.310160i
\(655\) 1.07164i 0.0418723i
\(656\) 6.64362 23.7537i 0.259390 0.927425i
\(657\) 30.6352 + 10.1984i 1.19519 + 0.397876i
\(658\) −0.216989 + 3.17767i −0.00845913 + 0.123878i
\(659\) 28.0983 1.09455 0.547277 0.836951i \(-0.315664\pi\)
0.547277 + 0.836951i \(0.315664\pi\)
\(660\) −5.10747 + 16.6859i −0.198808 + 0.649498i
\(661\) −33.8444 −1.31639 −0.658197 0.752845i \(-0.728681\pi\)
−0.658197 + 0.752845i \(0.728681\pi\)
\(662\) −3.17372 + 46.4771i −0.123350 + 1.80638i
\(663\) −1.81553 + 11.2017i −0.0705092 + 0.435038i
\(664\) 5.98429 + 1.24138i 0.232235 + 0.0481751i
\(665\) 3.26358i 0.126556i
\(666\) 5.99135 + 2.45953i 0.232160 + 0.0953050i
\(667\) 28.7913i 1.11481i
\(668\) −5.87448 0.806044i −0.227290 0.0311868i
\(669\) −7.16490 + 44.2070i −0.277011 + 1.70914i
\(670\) 2.31779 + 0.158272i 0.0895440 + 0.00611457i
\(671\) 45.6379 1.76183
\(672\) 21.9641 40.0547i 0.847284 1.54514i
\(673\) −13.3369 −0.514098 −0.257049 0.966398i \(-0.582750\pi\)
−0.257049 + 0.966398i \(0.582750\pi\)
\(674\) 10.1125 + 0.690537i 0.389518 + 0.0265985i
\(675\) −4.60406 2.40886i −0.177211 0.0927169i
\(676\) 1.98143 + 0.271875i 0.0762090 + 0.0104567i
\(677\) 16.6664i 0.640543i 0.947326 + 0.320272i \(0.103774\pi\)
−0.947326 + 0.320272i \(0.896226\pi\)
\(678\) 5.87638 25.2270i 0.225681 0.968839i
\(679\) 24.7591i 0.950166i
\(680\) −18.1447 3.76395i −0.695818 0.144341i
\(681\) −5.88642 0.954048i −0.225568 0.0365592i
\(682\) 3.34357 48.9644i 0.128032 1.87494i
\(683\) 11.2952 0.432198 0.216099 0.976371i \(-0.430667\pi\)
0.216099 + 0.976371i \(0.430667\pi\)
\(684\) −1.85595 + 3.76760i −0.0709641 + 0.144058i
\(685\) −19.0915 −0.729449
\(686\) −3.47567 + 50.8989i −0.132702 + 1.94333i
\(687\) 29.6646 + 4.80792i 1.13178 + 0.183434i
\(688\) 0.420876 1.50480i 0.0160457 0.0573701i
\(689\) 0.793745i 0.0302393i
\(690\) −3.14255 + 13.4908i −0.119635 + 0.513586i
\(691\) 29.7699i 1.13250i 0.824234 + 0.566250i \(0.191606\pi\)
−0.824234 + 0.566250i \(0.808394\pi\)
\(692\) 3.93393 28.6706i 0.149546 1.08989i
\(693\) −22.2547 + 66.8515i −0.845385 + 2.53948i
\(694\) −33.9002 2.31490i −1.28684 0.0878725i
\(695\) −0.101483 −0.00384948
\(696\) 8.90812 23.2970i 0.337661 0.883069i
\(697\) −40.3998 −1.53025
\(698\) 15.1407 + 1.03389i 0.573082 + 0.0391333i
\(699\) 4.61351 28.4651i 0.174499 1.07665i
\(700\) 1.26758 9.23814i 0.0479099 0.349169i
\(701\) 17.6604i 0.667023i 0.942746 + 0.333511i \(0.108234\pi\)
−0.942746 + 0.333511i \(0.891766\pi\)
\(702\) 6.26392 + 3.84231i 0.236416 + 0.145019i
\(703\) 1.06855i 0.0403013i
\(704\) 36.9741 + 16.0296i 1.39351 + 0.604139i
\(705\) 0.133859 0.825904i 0.00504143 0.0311053i
\(706\) 1.15935 16.9779i 0.0436326 0.638971i
\(707\) 0.792482 0.0298043
\(708\) −20.5197 6.28095i −0.771176 0.236053i
\(709\) −19.8003 −0.743617 −0.371809 0.928309i \(-0.621262\pi\)
−0.371809 + 0.928309i \(0.621262\pi\)
\(710\) 1.14840 16.8176i 0.0430986 0.631152i
\(711\) 12.3605 37.1301i 0.463555 1.39249i
\(712\) 4.03782 19.4649i 0.151324 0.729479i
\(713\) 38.9587i 1.45901i
\(714\) −72.8718 16.9748i −2.72716 0.635264i
\(715\) 5.03741i 0.188388i
\(716\) 14.8179 + 2.03318i 0.553771 + 0.0759836i
\(717\) −46.0534 7.46415i −1.71990 0.278754i
\(718\) 14.5950 + 0.996633i 0.544682 + 0.0371940i
\(719\) 28.2461 1.05340 0.526701 0.850050i \(-0.323429\pi\)
0.526701 + 0.850050i \(0.323429\pi\)
\(720\) −6.71693 + 9.94398i −0.250325 + 0.370590i
\(721\) 91.7787 3.41802
\(722\) −26.1163 1.78337i −0.971948 0.0663702i
\(723\) −18.7388 3.03710i −0.696902 0.112951i
\(724\) 18.0889 + 2.48200i 0.672268 + 0.0922428i
\(725\) 5.09126i 0.189085i
\(726\) −34.2945 7.98855i −1.27279 0.296483i
\(727\) 6.45726i 0.239486i −0.992805 0.119743i \(-0.961793\pi\)
0.992805 0.119743i \(-0.0382071\pi\)
\(728\) −2.67852 + 12.9122i −0.0992725 + 0.478559i
\(729\) 15.3948 + 22.1811i 0.570179 + 0.821521i
\(730\) 1.03695 15.1854i 0.0383791 0.562037i
\(731\) −2.55934 −0.0946607
\(732\) 30.0097 + 9.18579i 1.10919 + 0.339517i
\(733\) −21.9265 −0.809872 −0.404936 0.914345i \(-0.632706\pi\)
−0.404936 + 0.914345i \(0.632706\pi\)
\(734\) −1.11878 + 16.3838i −0.0412949 + 0.604738i
\(735\) 4.08387 25.1973i 0.150636 0.929415i
\(736\) 30.1489 + 10.6953i 1.11130 + 0.394234i
\(737\) 8.27516i 0.304819i
\(738\) −9.93509 + 24.2015i −0.365716 + 0.890871i
\(739\) 52.2170i 1.92083i 0.278567 + 0.960417i \(0.410140\pi\)
−0.278567 + 0.960417i \(0.589860\pi\)
\(740\) 0.415027 3.02473i 0.0152567 0.111191i
\(741\) 0.193972 1.19680i 0.00712574 0.0439654i
\(742\) −5.22144 0.356550i −0.191685 0.0130894i
\(743\) −21.9568 −0.805518 −0.402759 0.915306i \(-0.631949\pi\)
−0.402759 + 0.915306i \(0.631949\pi\)
\(744\) 12.0539 31.5240i 0.441918 1.15573i
\(745\) 10.7234 0.392876
\(746\) −49.4593 3.37736i −1.81083 0.123654i
\(747\) −6.15057 2.04751i −0.225038 0.0749144i
\(748\) 8.97285 65.3944i 0.328080 2.39106i
\(749\) 27.0649i 0.988931i
\(750\) −0.555706 + 2.38562i −0.0202915 + 0.0871106i
\(751\) 26.2721i 0.958684i 0.877628 + 0.479342i \(0.159125\pi\)
−0.877628 + 0.479342i \(0.840875\pi\)
\(752\) −1.86082 0.520450i −0.0678572 0.0189788i
\(753\) 32.9003 + 5.33235i 1.19895 + 0.194321i
\(754\) −0.490524 + 7.18341i −0.0178638 + 0.261604i
\(755\) 15.8824 0.578020
\(756\) −28.0893 + 39.4796i −1.02160 + 1.43586i
\(757\) 38.6203 1.40368 0.701840 0.712335i \(-0.252362\pi\)
0.701840 + 0.712335i \(0.252362\pi\)
\(758\) −0.858674 + 12.5747i −0.0311885 + 0.456735i
\(759\) −48.7050 7.89392i −1.76788 0.286531i
\(760\) 1.93859 + 0.402143i 0.0703201 + 0.0145872i
\(761\) 43.9828i 1.59438i 0.603731 + 0.797188i \(0.293680\pi\)
−0.603731 + 0.797188i \(0.706320\pi\)
\(762\) −0.0384634 + 0.165122i −0.00139338 + 0.00598173i
\(763\) 66.5479i 2.40920i
\(764\) −31.4271 4.31216i −1.13699 0.156008i
\(765\) 18.6489 + 6.20816i 0.674252 + 0.224456i
\(766\) −42.1757 2.88000i −1.52387 0.104059i
\(767\) 6.19480 0.223681
\(768\) 21.0863 + 17.9824i 0.760887 + 0.648885i
\(769\) −7.07498 −0.255130 −0.127565 0.991830i \(-0.540716\pi\)
−0.127565 + 0.991830i \(0.540716\pi\)
\(770\) 33.1373 + 2.26280i 1.19418 + 0.0815457i
\(771\) 0.333789 2.05946i 0.0120211 0.0741696i
\(772\) 18.1086 + 2.48471i 0.651744 + 0.0894266i
\(773\) 8.39439i 0.301925i 0.988539 + 0.150963i \(0.0482373\pi\)
−0.988539 + 0.150963i \(0.951763\pi\)
\(774\) −0.629392 + 1.53318i −0.0226230 + 0.0551089i
\(775\) 6.88919i 0.247467i
\(776\) −14.7071 3.05084i −0.527953 0.109519i
\(777\) 1.97224 12.1686i 0.0707538 0.436547i
\(778\) 1.40509 20.5766i 0.0503748 0.737706i
\(779\) 4.31634 0.154649
\(780\) 1.01391 3.31240i 0.0363037 0.118603i
\(781\) 60.0434 2.14852
\(782\) 3.56964 52.2751i 0.127650 1.86935i
\(783\) −12.2641 + 23.4405i −0.438284 + 0.837695i
\(784\) −56.7712 15.8782i −2.02754 0.567080i
\(785\) 5.44604i 0.194378i
\(786\) 2.55652 + 0.595515i 0.0911880 + 0.0212413i
\(787\) 10.1504i 0.361823i 0.983499 + 0.180911i \(0.0579048\pi\)
−0.983499 + 0.180911i \(0.942095\pi\)
\(788\) 6.40641 46.6901i 0.228219 1.66327i
\(789\) 16.5210 + 2.67766i 0.588163 + 0.0953271i
\(790\) −18.4048 1.25679i −0.654815 0.0447145i
\(791\) −49.3025 −1.75300
\(792\) −36.9680 21.4569i −1.31360 0.762439i
\(793\) −9.05980 −0.321723
\(794\) 10.8008 + 0.737542i 0.383307 + 0.0261744i
\(795\) 1.35710 + 0.219953i 0.0481313 + 0.00780093i
\(796\) 0.352834 2.57147i 0.0125059 0.0911432i
\(797\) 12.4302i 0.440301i 0.975466 + 0.220150i \(0.0706548\pi\)
−0.975466 + 0.220150i \(0.929345\pi\)
\(798\) 7.78568 + 1.81359i 0.275610 + 0.0642005i
\(799\) 3.16485i 0.111964i
\(800\) 5.33133 + 1.89128i 0.188491 + 0.0668670i
\(801\) −6.65987 + 20.0058i −0.235315 + 0.706870i
\(802\) −0.410252 + 6.00787i −0.0144865 + 0.212145i
\(803\) 54.2162 1.91325
\(804\) −1.66559 + 5.44141i −0.0587407 + 0.191904i
\(805\) 26.3658 0.929272
\(806\) −0.663747 + 9.72015i −0.0233795 + 0.342378i
\(807\) 3.99218 24.6315i 0.140531 0.867071i
\(808\) −0.0976506 + 0.470740i −0.00343533 + 0.0165606i
\(809\) 26.1598i 0.919728i 0.887989 + 0.459864i \(0.152102\pi\)
−0.887989 + 0.459864i \(0.847898\pi\)
\(810\) 8.30513 9.64494i 0.291812 0.338889i
\(811\) 36.6442i 1.28675i 0.765550 + 0.643376i \(0.222467\pi\)
−0.765550 + 0.643376i \(0.777533\pi\)
\(812\) −47.0338 6.45356i −1.65056 0.226476i
\(813\) 1.51653 9.35688i 0.0531869 0.328160i
\(814\) 10.8497 + 0.740881i 0.380283 + 0.0259679i
\(815\) 1.85125 0.0648463
\(816\) 19.0625 41.1948i 0.667320 1.44210i
\(817\) 0.273442 0.00956652
\(818\) 34.8716 + 2.38124i 1.21926 + 0.0832579i
\(819\) 4.41788 13.2710i 0.154373 0.463727i
\(820\) 12.2181 + 1.67647i 0.426676 + 0.0585447i
\(821\) 53.0153i 1.85025i 0.379667 + 0.925123i \(0.376038\pi\)
−0.379667 + 0.925123i \(0.623962\pi\)
\(822\) 10.6093 45.5451i 0.370041 1.58857i
\(823\) 2.88863i 0.100691i −0.998732 0.0503457i \(-0.983968\pi\)
0.998732 0.0503457i \(-0.0160323\pi\)
\(824\) −11.3091 + 54.5172i −0.393971 + 1.89920i
\(825\) −8.61266 1.39591i −0.299854 0.0485992i
\(826\) −2.78270 + 40.7509i −0.0968226 + 1.41790i
\(827\) −6.34477 −0.220629 −0.110315 0.993897i \(-0.535186\pi\)
−0.110315 + 0.993897i \(0.535186\pi\)
\(828\) −30.4376 14.9939i −1.05778 0.521072i
\(829\) −16.9177 −0.587575 −0.293787 0.955871i \(-0.594916\pi\)
−0.293787 + 0.955871i \(0.594916\pi\)
\(830\) −0.208186 + 3.04875i −0.00722623 + 0.105823i
\(831\) 2.80415 + 0.454486i 0.0972750 + 0.0157659i
\(832\) −7.33990 3.18212i −0.254465 0.110320i
\(833\) 96.5555i 3.34545i
\(834\) 0.0563949 0.242101i 0.00195280 0.00838327i
\(835\) 2.96476i 0.102600i
\(836\) −0.958665 + 6.98678i −0.0331561 + 0.241643i
\(837\) −16.5951 + 31.7183i −0.573609 + 1.09634i
\(838\) 3.66605 + 0.250339i 0.126642 + 0.00864781i
\(839\) −40.0419 −1.38240 −0.691199 0.722664i \(-0.742917\pi\)
−0.691199 + 0.722664i \(0.742917\pi\)
\(840\) 21.3343 + 8.15765i 0.736103 + 0.281466i
\(841\) 3.07903 0.106173
\(842\) 23.4597 + 1.60196i 0.808475 + 0.0552073i
\(843\) 6.62409 40.8703i 0.228146 1.40765i
\(844\) 2.05603 14.9844i 0.0707716 0.515786i
\(845\) 1.00000i 0.0344010i
\(846\) 1.89591 + 0.778297i 0.0651826 + 0.0267584i
\(847\) 67.0235i 2.30296i
\(848\) 0.855185 3.05764i 0.0293672 0.105000i
\(849\) −5.47755 + 33.7962i −0.187989 + 1.15988i
\(850\) 0.631231 9.24397i 0.0216510 0.317066i
\(851\) 8.63263 0.295923
\(852\) 39.4822 + 12.0853i 1.35264 + 0.414035i
\(853\) 11.1409 0.381457 0.190728 0.981643i \(-0.438915\pi\)
0.190728 + 0.981643i \(0.438915\pi\)
\(854\) 4.06966 59.5975i 0.139261 2.03938i
\(855\) −1.99246 0.663284i −0.0681407 0.0226838i
\(856\) 16.0768 + 3.33497i 0.549492 + 0.113987i
\(857\) 21.1520i 0.722539i −0.932461 0.361269i \(-0.882343\pi\)
0.932461 0.361269i \(-0.117657\pi\)
\(858\) 12.0174 + 2.79932i 0.410266 + 0.0955672i
\(859\) 38.5891i 1.31664i −0.752737 0.658321i \(-0.771267\pi\)
0.752737 0.658321i \(-0.228733\pi\)
\(860\) 0.774024 + 0.106205i 0.0263940 + 0.00362155i
\(861\) 49.1541 + 7.96671i 1.67517 + 0.271505i
\(862\) 50.1959 + 3.42766i 1.70968 + 0.116747i
\(863\) 27.3063 0.929517 0.464759 0.885437i \(-0.346141\pi\)
0.464759 + 0.885437i \(0.346141\pi\)
\(864\) −19.9899 21.5500i −0.680072 0.733146i
\(865\) 14.4696 0.491982
\(866\) −0.432510 0.0295342i −0.0146973 0.00100361i
\(867\) −44.3245 7.18394i −1.50534 0.243979i
\(868\) −63.6432 8.73257i −2.16019 0.296403i
\(869\) 65.7105i 2.22908i
\(870\) 12.1458 + 2.82925i 0.411782 + 0.0959205i
\(871\) 1.64274i 0.0556621i
\(872\) 39.5299 + 8.20011i 1.33865 + 0.277691i
\(873\) 15.1157 + 5.03198i 0.511590 + 0.170307i
\(874\) −0.381383 + 5.58510i −0.0129005 + 0.188919i
\(875\) 4.66235 0.157616
\(876\) 35.6504 + 10.9124i 1.20451 + 0.368695i
\(877\) −47.0015 −1.58713 −0.793564 0.608487i \(-0.791777\pi\)
−0.793564 + 0.608487i \(0.791777\pi\)
\(878\) 2.32328 34.0229i 0.0784068 1.14822i
\(879\) −6.90518 + 42.6046i −0.232906 + 1.43702i
\(880\) −5.42733 + 19.4049i −0.182955 + 0.654141i
\(881\) 6.99986i 0.235831i 0.993024 + 0.117916i \(0.0376213\pi\)
−0.993024 + 0.117916i \(0.962379\pi\)
\(882\) 57.8417 + 23.7448i 1.94763 + 0.799531i
\(883\) 2.57175i 0.0865463i 0.999063 + 0.0432731i \(0.0137786\pi\)
−0.999063 + 0.0432731i \(0.986221\pi\)
\(884\) −1.78124 + 12.9818i −0.0599097 + 0.436624i
\(885\) 1.71663 10.5915i 0.0577039 0.356029i
\(886\) 56.2698 + 3.84242i 1.89042 + 0.129089i
\(887\) 28.0488 0.941787 0.470893 0.882190i \(-0.343932\pi\)
0.470893 + 0.882190i \(0.343932\pi\)
\(888\) 6.98523 + 2.67096i 0.234409 + 0.0896315i
\(889\) 0.322706 0.0108232
\(890\) 9.91657 + 0.677160i 0.332404 + 0.0226985i
\(891\) 36.2907 + 27.1735i 1.21578 + 0.910347i
\(892\) −7.02960 + 51.2319i −0.235368 + 1.71537i
\(893\) 0.338135i 0.0113152i
\(894\) −5.95907 + 25.5820i −0.199301 + 0.855591i
\(895\) 7.47837i 0.249974i
\(896\) 24.2298 46.8542i 0.809461 1.56529i
\(897\) 9.66866 + 1.56706i 0.322827 + 0.0523226i
\(898\) 1.62200 23.7531i 0.0541268 0.792652i
\(899\) −35.0747 −1.16981
\(900\) −5.38238 2.65141i −0.179413 0.0883803i
\(901\) −5.20037 −0.173250
\(902\) −2.99273 + 43.8266i −0.0996470 + 1.45926i
\(903\) 3.11393 + 0.504694i 0.103625 + 0.0167952i
\(904\) 6.07512 29.2861i 0.202055 0.974040i
\(905\) 9.12919i 0.303464i
\(906\) −8.82595 + 37.8894i −0.293223 + 1.25879i
\(907\) 45.0883i 1.49713i −0.663060 0.748567i \(-0.730742\pi\)
0.663060 0.748567i \(-0.269258\pi\)
\(908\) −6.82183 0.936032i −0.226390 0.0310633i
\(909\) 0.161062 0.483820i 0.00534210 0.0160473i
\(910\) −6.57823 0.449199i −0.218066 0.0148908i
\(911\) −42.4273 −1.40568 −0.702839 0.711349i \(-0.748085\pi\)
−0.702839 + 0.711349i \(0.748085\pi\)
\(912\) −2.03665 + 4.40127i −0.0674402 + 0.145741i
\(913\) −10.8849 −0.360237
\(914\) −37.3106 2.54778i −1.23412 0.0842731i
\(915\) −2.51054 + 15.4899i −0.0829960 + 0.512080i
\(916\) 34.3786 + 4.71713i 1.13590 + 0.155858i
\(917\) 4.99634i 0.164994i
\(918\) −25.1736 + 41.0393i −0.830853 + 1.35450i
\(919\) 23.7166i 0.782338i 0.920319 + 0.391169i \(0.127929\pi\)
−0.920319 + 0.391169i \(0.872071\pi\)
\(920\) −3.24882 + 15.6615i −0.107111 + 0.516343i
\(921\) −0.523518 + 3.23008i −0.0172505 + 0.106435i
\(922\) 0.229831 3.36572i 0.00756907 0.110844i
\(923\) −11.9195 −0.392335
\(924\) −23.8128 + 77.7955i −0.783383 + 2.55928i
\(925\) 1.52653 0.0501922
\(926\) 1.65917 24.2975i 0.0545237 0.798465i
\(927\) 18.6529 56.0321i 0.612642 1.84034i
\(928\) 9.62902 27.1432i 0.316088 0.891019i
\(929\) 25.8095i 0.846782i 0.905947 + 0.423391i \(0.139160\pi\)
−0.905947 + 0.423391i \(0.860840\pi\)
\(930\) 16.4350 + 3.82836i 0.538925 + 0.125537i
\(931\) 10.3160i 0.338095i
\(932\) 4.52639 32.9885i 0.148267 1.08057i
\(933\) 20.4175 + 3.30919i 0.668438 + 0.108338i
\(934\) 41.4402 + 2.82977i 1.35596 + 0.0925930i
\(935\) 33.0036 1.07933
\(936\) 7.33870 + 4.25952i 0.239873 + 0.139227i
\(937\) 19.5668 0.639219 0.319610 0.947549i \(-0.396448\pi\)
0.319610 + 0.947549i \(0.396448\pi\)
\(938\) 10.8063 + 0.737918i 0.352839 + 0.0240939i
\(939\) 15.6738 + 2.54035i 0.511496 + 0.0829013i
\(940\) 0.131331 0.957148i 0.00428356 0.0312187i
\(941\) 3.96139i 0.129138i 0.997913 + 0.0645688i \(0.0205672\pi\)
−0.997913 + 0.0645688i \(0.979433\pi\)
\(942\) −12.9922 3.02640i −0.423308 0.0986054i
\(943\) 34.8708i 1.13555i
\(944\) −23.8634 6.67431i −0.776688 0.217230i
\(945\) −21.4657 11.2309i −0.698281 0.365342i
\(946\) −0.189591 + 2.77643i −0.00616412 + 0.0902696i
\(947\) 46.1474 1.49959 0.749794 0.661671i \(-0.230152\pi\)
0.749794 + 0.661671i \(0.230152\pi\)
\(948\) 13.2259 43.2086i 0.429558 1.40335i
\(949\) −10.7627 −0.349372
\(950\) −0.0674411 + 0.987632i −0.00218808 + 0.0320430i
\(951\) 7.80443 48.1529i 0.253076 1.56146i
\(952\) −84.5969 17.5488i −2.74180 0.568761i
\(953\) 15.7481i 0.510133i −0.966924 0.255066i \(-0.917903\pi\)
0.966924 0.255066i \(-0.0820973\pi\)
\(954\) −1.27887 + 3.11529i −0.0414050 + 0.100861i
\(955\) 15.8608i 0.513243i
\(956\) −53.3717 7.32320i −1.72617 0.236849i
\(957\) −7.10693 + 43.8493i −0.229734 + 1.41745i
\(958\) 11.4970 + 0.785083i 0.371452 + 0.0253649i
\(959\) −89.0112 −2.87432
\(960\) −7.47454 + 11.6675i −0.241240 + 0.376568i
\(961\) −16.4609 −0.530997
\(962\) −2.15383 0.147076i −0.0694423 0.00474192i
\(963\) −16.5235 5.50062i −0.532462 0.177255i
\(964\) −21.7165 2.97975i −0.699442 0.0959714i
\(965\) 9.13915i 0.294200i
\(966\) −14.6516 + 62.8988i −0.471409 + 2.02374i
\(967\) 4.57125i 0.147002i −0.997295 0.0735008i \(-0.976583\pi\)
0.997295 0.0735008i \(-0.0234171\pi\)
\(968\) −39.8125 8.25872i −1.27962 0.265445i
\(969\) 7.84104 + 1.27085i 0.251891 + 0.0408254i
\(970\) 0.511640 7.49264i 0.0164278 0.240574i
\(971\) −36.1836 −1.16119 −0.580594 0.814193i \(-0.697180\pi\)
−0.580594 + 0.814193i \(0.697180\pi\)
\(972\) 18.3940 + 25.1726i 0.589987 + 0.807413i
\(973\) −0.473151 −0.0151685
\(974\) 2.78569 40.7946i 0.0892592 1.30714i
\(975\) 1.70974 + 0.277108i 0.0547555 + 0.00887456i
\(976\) 34.8999 + 9.76108i 1.11712 + 0.312444i
\(977\) 37.4974i 1.19965i 0.800132 + 0.599824i \(0.204763\pi\)
−0.800132 + 0.599824i \(0.795237\pi\)
\(978\) −1.02875 + 4.41637i −0.0328958 + 0.141220i
\(979\) 35.4049i 1.13155i
\(980\) 4.00675 29.2014i 0.127991 0.932803i
\(981\) −40.6283 13.5250i −1.29716 0.431822i
\(982\) 4.80453 + 0.328081i 0.153319 + 0.0104695i
\(983\) −13.0053 −0.414803 −0.207402 0.978256i \(-0.566501\pi\)
−0.207402 + 0.978256i \(0.566501\pi\)
\(984\) −10.7891 + 28.2162i −0.343944 + 0.899501i
\(985\) 23.5638 0.750805
\(986\) −47.0635 3.21376i −1.49881 0.102347i
\(987\) 0.624098 3.85065i 0.0198653 0.122568i
\(988\) 0.190309 1.38698i 0.00605454 0.0441257i
\(989\) 2.20908i 0.0702446i
\(990\) 8.11621 19.7708i 0.257950 0.628358i
\(991\) 35.7174i 1.13460i 0.823511 + 0.567301i \(0.192012\pi\)
−0.823511 + 0.567301i \(0.807988\pi\)
\(992\) 13.0294 36.7285i 0.413684 1.16613i
\(993\) 9.12816 56.3202i 0.289673 1.78727i
\(994\) 5.35423 78.4093i 0.169826 2.48699i
\(995\) 1.29778 0.0411424
\(996\) −7.15746 2.19086i −0.226793 0.0694200i
\(997\) −60.1926 −1.90632 −0.953159 0.302469i \(-0.902189\pi\)
−0.953159 + 0.302469i \(0.902189\pi\)
\(998\) −3.40127 + 49.8094i −0.107665 + 1.57669i
\(999\) −7.02826 3.67720i −0.222364 0.116342i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.g.e.131.1 40
3.2 odd 2 inner 780.2.g.e.131.40 yes 40
4.3 odd 2 inner 780.2.g.e.131.39 yes 40
12.11 even 2 inner 780.2.g.e.131.2 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.g.e.131.1 40 1.1 even 1 trivial
780.2.g.e.131.2 yes 40 12.11 even 2 inner
780.2.g.e.131.39 yes 40 4.3 odd 2 inner
780.2.g.e.131.40 yes 40 3.2 odd 2 inner