Properties

Label 780.2.g.d.131.26
Level $780$
Weight $2$
Character 780.131
Analytic conductor $6.228$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(131,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.26
Character \(\chi\) \(=\) 780.131
Dual form 780.2.g.d.131.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.995955 + 1.00403i) q^{2} +(1.28760 + 1.15849i) q^{3} +(-0.0161485 + 1.99993i) q^{4} +1.00000i q^{5} +(0.119236 + 2.44659i) q^{6} +0.208113i q^{7} +(-2.02408 + 1.97563i) q^{8} +(0.315820 + 2.98333i) q^{9} +(-1.00403 + 0.995955i) q^{10} +2.52509 q^{11} +(-2.33769 + 2.55641i) q^{12} +1.00000 q^{13} +(-0.208952 + 0.207272i) q^{14} +(-1.15849 + 1.28760i) q^{15} +(-3.99948 - 0.0645918i) q^{16} -5.47450i q^{17} +(-2.68081 + 3.28835i) q^{18} +0.298607i q^{19} +(-1.99993 - 0.0161485i) q^{20} +(-0.241097 + 0.267967i) q^{21} +(2.51487 + 2.53526i) q^{22} +0.0118097 q^{23} +(-4.89494 + 0.198956i) q^{24} -1.00000 q^{25} +(0.995955 + 1.00403i) q^{26} +(-3.04950 + 4.20720i) q^{27} +(-0.416213 - 0.00336072i) q^{28} +3.31988i q^{29} +(-2.44659 + 0.119236i) q^{30} -11.0515i q^{31} +(-3.91845 - 4.07992i) q^{32} +(3.25130 + 2.92528i) q^{33} +(5.49655 - 5.45235i) q^{34} -0.208113 q^{35} +(-5.97157 + 0.583443i) q^{36} -8.22687 q^{37} +(-0.299810 + 0.297399i) q^{38} +(1.28760 + 1.15849i) q^{39} +(-1.97563 - 2.02408i) q^{40} +10.1864i q^{41} +(-0.509168 + 0.0248147i) q^{42} -1.40862i q^{43} +(-0.0407763 + 5.05001i) q^{44} +(-2.98333 + 0.315820i) q^{45} +(0.0117620 + 0.0118573i) q^{46} +12.6976 q^{47} +(-5.07489 - 4.71651i) q^{48} +6.95669 q^{49} +(-0.995955 - 1.00403i) q^{50} +(6.34213 - 7.04895i) q^{51} +(-0.0161485 + 1.99993i) q^{52} +3.88887i q^{53} +(-7.26132 + 1.12840i) q^{54} +2.52509i q^{55} +(-0.411155 - 0.421237i) q^{56} +(-0.345932 + 0.384486i) q^{57} +(-3.33326 + 3.30645i) q^{58} -0.0815526 q^{59} +(-2.55641 - 2.33769i) q^{60} -5.26046 q^{61} +(11.0961 - 11.0068i) q^{62} +(-0.620871 + 0.0657264i) q^{63} +(0.193765 - 7.99765i) q^{64} +1.00000i q^{65} +(0.301082 + 6.17784i) q^{66} -12.3370i q^{67} +(10.9486 + 0.0884047i) q^{68} +(0.0152062 + 0.0136814i) q^{69} +(-0.207272 - 0.208952i) q^{70} +1.76869 q^{71} +(-6.53320 - 5.41454i) q^{72} +6.47719 q^{73} +(-8.19359 - 8.26002i) q^{74} +(-1.28760 - 1.15849i) q^{75} +(-0.597195 - 0.00482205i) q^{76} +0.525504i q^{77} +(0.119236 + 2.44659i) q^{78} -7.40605i q^{79} +(0.0645918 - 3.99948i) q^{80} +(-8.80052 + 1.88439i) q^{81} +(-10.2274 + 10.1452i) q^{82} +7.21026 q^{83} +(-0.532022 - 0.486505i) q^{84} +5.47450 q^{85} +(1.41430 - 1.40292i) q^{86} +(-3.84604 + 4.27468i) q^{87} +(-5.11096 + 4.98864i) q^{88} +12.7672i q^{89} +(-3.28835 - 2.68081i) q^{90} +0.208113i q^{91} +(-0.000190709 + 0.0236187i) q^{92} +(12.8030 - 14.2299i) q^{93} +(12.6462 + 12.7487i) q^{94} -0.298607 q^{95} +(-0.318853 - 9.79277i) q^{96} +8.78578 q^{97} +(6.92855 + 6.98472i) q^{98} +(0.797472 + 7.53316i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 10 q^{6} + 12 q^{9} + 6 q^{10} - 20 q^{12} + 32 q^{13} - 6 q^{16} + 4 q^{18} + 20 q^{21} + 16 q^{22} + 10 q^{24} - 32 q^{25} + 16 q^{28} + 16 q^{33} + 28 q^{34} + 30 q^{36} - 24 q^{37}+ \cdots + 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.995955 + 1.00403i 0.704246 + 0.709956i
\(3\) 1.28760 + 1.15849i 0.743395 + 0.668852i
\(4\) −0.0161485 + 1.99993i −0.00807424 + 0.999967i
\(5\) 1.00000i 0.447214i
\(6\) 0.119236 + 2.44659i 0.0486780 + 0.998815i
\(7\) 0.208113i 0.0786595i 0.999226 + 0.0393298i \(0.0125223\pi\)
−0.999226 + 0.0393298i \(0.987478\pi\)
\(8\) −2.02408 + 1.97563i −0.715619 + 0.698491i
\(9\) 0.315820 + 2.98333i 0.105273 + 0.994443i
\(10\) −1.00403 + 0.995955i −0.317502 + 0.314949i
\(11\) 2.52509 0.761342 0.380671 0.924711i \(-0.375693\pi\)
0.380671 + 0.924711i \(0.375693\pi\)
\(12\) −2.33769 + 2.55641i −0.674833 + 0.737971i
\(13\) 1.00000 0.277350
\(14\) −0.208952 + 0.207272i −0.0558448 + 0.0553957i
\(15\) −1.15849 + 1.28760i −0.299120 + 0.332457i
\(16\) −3.99948 0.0645918i −0.999870 0.0161479i
\(17\) 5.47450i 1.32776i −0.747839 0.663880i \(-0.768909\pi\)
0.747839 0.663880i \(-0.231091\pi\)
\(18\) −2.68081 + 3.28835i −0.631872 + 0.775072i
\(19\) 0.298607i 0.0685052i 0.999413 + 0.0342526i \(0.0109051\pi\)
−0.999413 + 0.0342526i \(0.989095\pi\)
\(20\) −1.99993 0.0161485i −0.447199 0.00361091i
\(21\) −0.241097 + 0.267967i −0.0526116 + 0.0584751i
\(22\) 2.51487 + 2.53526i 0.536172 + 0.540519i
\(23\) 0.0118097 0.00246250 0.00123125 0.999999i \(-0.499608\pi\)
0.00123125 + 0.999999i \(0.499608\pi\)
\(24\) −4.89494 + 0.198956i −0.999175 + 0.0406117i
\(25\) −1.00000 −0.200000
\(26\) 0.995955 + 1.00403i 0.195323 + 0.196906i
\(27\) −3.04950 + 4.20720i −0.586876 + 0.809677i
\(28\) −0.416213 0.00336072i −0.0786569 0.000635116i
\(29\) 3.31988i 0.616487i 0.951308 + 0.308243i \(0.0997411\pi\)
−0.951308 + 0.308243i \(0.900259\pi\)
\(30\) −2.44659 + 0.119236i −0.446683 + 0.0217694i
\(31\) 11.0515i 1.98491i −0.122598 0.992456i \(-0.539123\pi\)
0.122598 0.992456i \(-0.460877\pi\)
\(32\) −3.91845 4.07992i −0.692690 0.721235i
\(33\) 3.25130 + 2.92528i 0.565978 + 0.509225i
\(34\) 5.49655 5.45235i 0.942651 0.935070i
\(35\) −0.208113 −0.0351776
\(36\) −5.97157 + 0.583443i −0.995261 + 0.0972405i
\(37\) −8.22687 −1.35249 −0.676245 0.736677i \(-0.736394\pi\)
−0.676245 + 0.736677i \(0.736394\pi\)
\(38\) −0.299810 + 0.297399i −0.0486357 + 0.0482445i
\(39\) 1.28760 + 1.15849i 0.206181 + 0.185506i
\(40\) −1.97563 2.02408i −0.312375 0.320034i
\(41\) 10.1864i 1.59085i 0.606054 + 0.795423i \(0.292751\pi\)
−0.606054 + 0.795423i \(0.707249\pi\)
\(42\) −0.509168 + 0.0248147i −0.0785663 + 0.00382898i
\(43\) 1.40862i 0.214813i −0.994215 0.107406i \(-0.965745\pi\)
0.994215 0.107406i \(-0.0342546\pi\)
\(44\) −0.0407763 + 5.05001i −0.00614726 + 0.761317i
\(45\) −2.98333 + 0.315820i −0.444729 + 0.0470797i
\(46\) 0.0117620 + 0.0118573i 0.00173421 + 0.00174827i
\(47\) 12.6976 1.85213 0.926065 0.377364i \(-0.123169\pi\)
0.926065 + 0.377364i \(0.123169\pi\)
\(48\) −5.07489 4.71651i −0.732498 0.680769i
\(49\) 6.95669 0.993813
\(50\) −0.995955 1.00403i −0.140849 0.141991i
\(51\) 6.34213 7.04895i 0.888075 0.987051i
\(52\) −0.0161485 + 1.99993i −0.00223939 + 0.277341i
\(53\) 3.88887i 0.534177i 0.963672 + 0.267088i \(0.0860616\pi\)
−0.963672 + 0.267088i \(0.913938\pi\)
\(54\) −7.26132 + 1.12840i −0.988140 + 0.153556i
\(55\) 2.52509i 0.340482i
\(56\) −0.411155 0.421237i −0.0549430 0.0562902i
\(57\) −0.345932 + 0.384486i −0.0458199 + 0.0509265i
\(58\) −3.33326 + 3.30645i −0.437678 + 0.434158i
\(59\) −0.0815526 −0.0106172 −0.00530862 0.999986i \(-0.501690\pi\)
−0.00530862 + 0.999986i \(0.501690\pi\)
\(60\) −2.55641 2.33769i −0.330031 0.301794i
\(61\) −5.26046 −0.673532 −0.336766 0.941588i \(-0.609333\pi\)
−0.336766 + 0.941588i \(0.609333\pi\)
\(62\) 11.0961 11.0068i 1.40920 1.39787i
\(63\) −0.620871 + 0.0657264i −0.0782224 + 0.00828075i
\(64\) 0.193765 7.99765i 0.0242206 0.999707i
\(65\) 1.00000i 0.124035i
\(66\) 0.301082 + 6.17784i 0.0370606 + 0.760439i
\(67\) 12.3370i 1.50721i −0.657328 0.753604i \(-0.728313\pi\)
0.657328 0.753604i \(-0.271687\pi\)
\(68\) 10.9486 + 0.0884047i 1.32772 + 0.0107207i
\(69\) 0.0152062 + 0.0136814i 0.00183061 + 0.00164705i
\(70\) −0.207272 0.208952i −0.0247737 0.0249745i
\(71\) 1.76869 0.209905 0.104953 0.994477i \(-0.466531\pi\)
0.104953 + 0.994477i \(0.466531\pi\)
\(72\) −6.53320 5.41454i −0.769945 0.638110i
\(73\) 6.47719 0.758098 0.379049 0.925377i \(-0.376251\pi\)
0.379049 + 0.925377i \(0.376251\pi\)
\(74\) −8.19359 8.26002i −0.952486 0.960208i
\(75\) −1.28760 1.15849i −0.148679 0.133770i
\(76\) −0.597195 0.00482205i −0.0685030 0.000553127i
\(77\) 0.525504i 0.0598868i
\(78\) 0.119236 + 2.44659i 0.0135008 + 0.277021i
\(79\) 7.40605i 0.833245i −0.909080 0.416623i \(-0.863214\pi\)
0.909080 0.416623i \(-0.136786\pi\)
\(80\) 0.0645918 3.99948i 0.00722158 0.447155i
\(81\) −8.80052 + 1.88439i −0.977835 + 0.209377i
\(82\) −10.2274 + 10.1452i −1.12943 + 1.12035i
\(83\) 7.21026 0.791429 0.395714 0.918374i \(-0.370497\pi\)
0.395714 + 0.918374i \(0.370497\pi\)
\(84\) −0.532022 0.486505i −0.0580484 0.0530820i
\(85\) 5.47450 0.593792
\(86\) 1.41430 1.40292i 0.152508 0.151281i
\(87\) −3.84604 + 4.27468i −0.412338 + 0.458293i
\(88\) −5.11096 + 4.98864i −0.544831 + 0.531791i
\(89\) 12.7672i 1.35332i 0.736296 + 0.676660i \(0.236573\pi\)
−0.736296 + 0.676660i \(0.763427\pi\)
\(90\) −3.28835 2.68081i −0.346623 0.282582i
\(91\) 0.208113i 0.0218162i
\(92\) −0.000190709 0.0236187i −1.98828e−5 0.00246242i
\(93\) 12.8030 14.2299i 1.32761 1.47557i
\(94\) 12.6462 + 12.7487i 1.30436 + 1.31493i
\(95\) −0.298607 −0.0306365
\(96\) −0.318853 9.79277i −0.0325428 0.999470i
\(97\) 8.78578 0.892060 0.446030 0.895018i \(-0.352837\pi\)
0.446030 + 0.895018i \(0.352837\pi\)
\(98\) 6.92855 + 6.98472i 0.699889 + 0.705563i
\(99\) 0.797472 + 7.53316i 0.0801490 + 0.757111i
\(100\) 0.0161485 1.99993i 0.00161485 0.199993i
\(101\) 9.80391i 0.975525i −0.872976 0.487763i \(-0.837813\pi\)
0.872976 0.487763i \(-0.162187\pi\)
\(102\) 13.3938 0.652758i 1.32619 0.0646327i
\(103\) 3.34007i 0.329107i 0.986368 + 0.164554i \(0.0526184\pi\)
−0.986368 + 0.164554i \(0.947382\pi\)
\(104\) −2.02408 + 1.97563i −0.198477 + 0.193727i
\(105\) −0.267967 0.241097i −0.0261509 0.0235286i
\(106\) −3.90453 + 3.87313i −0.379242 + 0.376192i
\(107\) 7.32200 0.707845 0.353922 0.935275i \(-0.384848\pi\)
0.353922 + 0.935275i \(0.384848\pi\)
\(108\) −8.36489 6.16674i −0.804912 0.593394i
\(109\) −9.87309 −0.945670 −0.472835 0.881151i \(-0.656769\pi\)
−0.472835 + 0.881151i \(0.656769\pi\)
\(110\) −2.53526 + 2.51487i −0.241727 + 0.239784i
\(111\) −10.5929 9.53072i −1.00543 0.904616i
\(112\) 0.0134424 0.832345i 0.00127019 0.0786493i
\(113\) 11.6443i 1.09540i 0.836674 + 0.547701i \(0.184497\pi\)
−0.836674 + 0.547701i \(0.815503\pi\)
\(114\) −0.730568 + 0.0356048i −0.0684240 + 0.00333469i
\(115\) 0.0118097i 0.00110126i
\(116\) −6.63955 0.0536110i −0.616467 0.00497766i
\(117\) 0.315820 + 2.98333i 0.0291976 + 0.275809i
\(118\) −0.0812227 0.0818811i −0.00747715 0.00753777i
\(119\) 1.13932 0.104441
\(120\) −0.198956 4.89494i −0.0181621 0.446845i
\(121\) −4.62394 −0.420358
\(122\) −5.23917 5.28165i −0.474333 0.478178i
\(123\) −11.8008 + 13.1160i −1.06404 + 1.18263i
\(124\) 22.1023 + 0.178465i 1.98485 + 0.0160267i
\(125\) 1.00000i 0.0894427i
\(126\) −0.684351 0.557912i −0.0609668 0.0497028i
\(127\) 6.82558i 0.605672i −0.953043 0.302836i \(-0.902067\pi\)
0.953043 0.302836i \(-0.0979335\pi\)
\(128\) 8.22286 7.77075i 0.726805 0.686844i
\(129\) 1.63187 1.81374i 0.143678 0.159691i
\(130\) −1.00403 + 0.995955i −0.0880592 + 0.0873510i
\(131\) −1.73842 −0.151886 −0.0759432 0.997112i \(-0.524197\pi\)
−0.0759432 + 0.997112i \(0.524197\pi\)
\(132\) −5.90287 + 6.45514i −0.513779 + 0.561848i
\(133\) −0.0621442 −0.00538859
\(134\) 12.3867 12.2871i 1.07005 1.06145i
\(135\) −4.20720 3.04950i −0.362098 0.262459i
\(136\) 10.8156 + 11.0808i 0.927429 + 0.950170i
\(137\) 19.8462i 1.69558i −0.530335 0.847788i \(-0.677934\pi\)
0.530335 0.847788i \(-0.322066\pi\)
\(138\) 0.00140815 + 0.0288935i 0.000119869 + 0.00245958i
\(139\) 5.56298i 0.471846i 0.971772 + 0.235923i \(0.0758113\pi\)
−0.971772 + 0.235923i \(0.924189\pi\)
\(140\) 0.00336072 0.416213i 0.000284032 0.0351765i
\(141\) 16.3494 + 14.7100i 1.37686 + 1.23880i
\(142\) 1.76154 + 1.77582i 0.147825 + 0.149023i
\(143\) 2.52509 0.211158
\(144\) −1.07042 11.9522i −0.0892014 0.996014i
\(145\) −3.31988 −0.275701
\(146\) 6.45099 + 6.50329i 0.533888 + 0.538216i
\(147\) 8.95742 + 8.05923i 0.738796 + 0.664714i
\(148\) 0.132851 16.4532i 0.0109203 1.35245i
\(149\) 9.64297i 0.789983i 0.918685 + 0.394991i \(0.129252\pi\)
−0.918685 + 0.394991i \(0.870748\pi\)
\(150\) −0.119236 2.44659i −0.00973559 0.199763i
\(151\) 0.566350i 0.0460889i −0.999734 0.0230445i \(-0.992664\pi\)
0.999734 0.0230445i \(-0.00733593\pi\)
\(152\) −0.589938 0.604404i −0.0478503 0.0490236i
\(153\) 16.3322 1.72895i 1.32038 0.139778i
\(154\) −0.527622 + 0.523379i −0.0425170 + 0.0421750i
\(155\) 11.0515 0.887680
\(156\) −2.33769 + 2.55641i −0.187165 + 0.204676i
\(157\) −6.81815 −0.544147 −0.272074 0.962276i \(-0.587709\pi\)
−0.272074 + 0.962276i \(0.587709\pi\)
\(158\) 7.43589 7.37609i 0.591567 0.586810i
\(159\) −4.50520 + 5.00730i −0.357285 + 0.397105i
\(160\) 4.07992 3.91845i 0.322546 0.309780i
\(161\) 0.00245776i 0.000193699i
\(162\) −10.6569 6.95921i −0.837285 0.546767i
\(163\) 9.97769i 0.781513i −0.920494 0.390756i \(-0.872213\pi\)
0.920494 0.390756i \(-0.127787\pi\)
\(164\) −20.3721 0.164495i −1.59079 0.0128449i
\(165\) −2.92528 + 3.25130i −0.227732 + 0.253113i
\(166\) 7.18109 + 7.23931i 0.557361 + 0.561880i
\(167\) −14.2261 −1.10085 −0.550426 0.834884i \(-0.685535\pi\)
−0.550426 + 0.834884i \(0.685535\pi\)
\(168\) −0.0414054 1.01870i −0.00319450 0.0785946i
\(169\) 1.00000 0.0769231
\(170\) 5.45235 + 5.49655i 0.418176 + 0.421566i
\(171\) −0.890844 + 0.0943061i −0.0681245 + 0.00721177i
\(172\) 2.81715 + 0.0227471i 0.214806 + 0.00173445i
\(173\) 2.62887i 0.199869i 0.994994 + 0.0999346i \(0.0318633\pi\)
−0.994994 + 0.0999346i \(0.968137\pi\)
\(174\) −8.12238 + 0.395850i −0.615756 + 0.0300093i
\(175\) 0.208113i 0.0157319i
\(176\) −10.0990 0.163100i −0.761243 0.0122941i
\(177\) −0.105007 0.0944775i −0.00789281 0.00710136i
\(178\) −12.8186 + 12.7155i −0.960797 + 0.953071i
\(179\) 12.9002 0.964210 0.482105 0.876113i \(-0.339872\pi\)
0.482105 + 0.876113i \(0.339872\pi\)
\(180\) −0.583443 5.97157i −0.0434873 0.445094i
\(181\) −12.7040 −0.944278 −0.472139 0.881524i \(-0.656518\pi\)
−0.472139 + 0.881524i \(0.656518\pi\)
\(182\) −0.208952 + 0.207272i −0.0154886 + 0.0153640i
\(183\) −6.77335 6.09416i −0.500701 0.450494i
\(184\) −0.0239038 + 0.0233317i −0.00176221 + 0.00172003i
\(185\) 8.22687i 0.604852i
\(186\) 27.0385 1.31774i 1.98256 0.0966215i
\(187\) 13.8236i 1.01088i
\(188\) −0.205046 + 25.3943i −0.0149545 + 1.85207i
\(189\) −0.875576 0.634641i −0.0636888 0.0461634i
\(190\) −0.297399 0.299810i −0.0215756 0.0217505i
\(191\) −25.1309 −1.81841 −0.909204 0.416351i \(-0.863309\pi\)
−0.909204 + 0.416351i \(0.863309\pi\)
\(192\) 9.51466 10.0733i 0.686662 0.726977i
\(193\) 19.6770 1.41638 0.708190 0.706021i \(-0.249512\pi\)
0.708190 + 0.706021i \(0.249512\pi\)
\(194\) 8.75023 + 8.82117i 0.628230 + 0.633323i
\(195\) −1.15849 + 1.28760i −0.0829609 + 0.0922068i
\(196\) −0.112340 + 13.9129i −0.00802428 + 0.993780i
\(197\) 11.7538i 0.837425i −0.908119 0.418712i \(-0.862482\pi\)
0.908119 0.418712i \(-0.137518\pi\)
\(198\) −6.76927 + 8.30338i −0.481071 + 0.590095i
\(199\) 9.07048i 0.642989i 0.946911 + 0.321495i \(0.104185\pi\)
−0.946911 + 0.321495i \(0.895815\pi\)
\(200\) 2.02408 1.97563i 0.143124 0.139698i
\(201\) 14.2923 15.8851i 1.00810 1.12045i
\(202\) 9.84341 9.76425i 0.692580 0.687010i
\(203\) −0.690912 −0.0484925
\(204\) 13.9950 + 12.7977i 0.979848 + 0.896016i
\(205\) −10.1864 −0.711448
\(206\) −3.35353 + 3.32656i −0.233652 + 0.231773i
\(207\) 0.00372975 + 0.0352323i 0.000259235 + 0.00244882i
\(208\) −3.99948 0.0645918i −0.277314 0.00447863i
\(209\) 0.754009i 0.0521559i
\(210\) −0.0248147 0.509168i −0.00171237 0.0351359i
\(211\) 19.4794i 1.34102i 0.741902 + 0.670508i \(0.233924\pi\)
−0.741902 + 0.670508i \(0.766076\pi\)
\(212\) −7.77748 0.0627992i −0.534159 0.00431307i
\(213\) 2.27736 + 2.04900i 0.156042 + 0.140395i
\(214\) 7.29238 + 7.35150i 0.498497 + 0.502538i
\(215\) 1.40862 0.0960672
\(216\) −2.13947 14.5404i −0.145573 0.989348i
\(217\) 2.29997 0.156132
\(218\) −9.83315 9.91287i −0.665985 0.671384i
\(219\) 8.34003 + 7.50374i 0.563567 + 0.507056i
\(220\) −5.05001 0.0407763i −0.340471 0.00274914i
\(221\) 5.47450i 0.368254i
\(222\) −0.980941 20.1278i −0.0658364 1.35089i
\(223\) 6.68238i 0.447485i −0.974648 0.223742i \(-0.928173\pi\)
0.974648 0.223742i \(-0.0718275\pi\)
\(224\) 0.849087 0.815482i 0.0567320 0.0544867i
\(225\) −0.315820 2.98333i −0.0210547 0.198889i
\(226\) −11.6912 + 11.5972i −0.777687 + 0.771433i
\(227\) −6.87009 −0.455984 −0.227992 0.973663i \(-0.573216\pi\)
−0.227992 + 0.973663i \(0.573216\pi\)
\(228\) −0.763361 0.698051i −0.0505548 0.0462296i
\(229\) 10.3393 0.683238 0.341619 0.939838i \(-0.389025\pi\)
0.341619 + 0.939838i \(0.389025\pi\)
\(230\) −0.0118573 + 0.0117620i −0.000781848 + 0.000775560i
\(231\) −0.608790 + 0.676639i −0.0400554 + 0.0445196i
\(232\) −6.55886 6.71969i −0.430610 0.441169i
\(233\) 12.0890i 0.791974i −0.918256 0.395987i \(-0.870403\pi\)
0.918256 0.395987i \(-0.129597\pi\)
\(234\) −2.68081 + 3.28835i −0.175250 + 0.214966i
\(235\) 12.6976i 0.828298i
\(236\) 0.00131695 0.163100i 8.57261e−5 0.0106169i
\(237\) 8.57980 9.53601i 0.557318 0.619431i
\(238\) 1.13471 + 1.14391i 0.0735522 + 0.0741485i
\(239\) 27.2110 1.76013 0.880066 0.474851i \(-0.157498\pi\)
0.880066 + 0.474851i \(0.157498\pi\)
\(240\) 4.71651 5.07489i 0.304449 0.327583i
\(241\) 2.36214 0.152159 0.0760795 0.997102i \(-0.475760\pi\)
0.0760795 + 0.997102i \(0.475760\pi\)
\(242\) −4.60524 4.64257i −0.296036 0.298436i
\(243\) −13.5146 7.76894i −0.866960 0.498378i
\(244\) 0.0849483 10.5206i 0.00543826 0.673510i
\(245\) 6.95669i 0.444447i
\(246\) −24.9219 + 1.21459i −1.58896 + 0.0774392i
\(247\) 0.298607i 0.0189999i
\(248\) 21.8337 + 22.3691i 1.38644 + 1.42044i
\(249\) 9.28392 + 8.35299i 0.588345 + 0.529349i
\(250\) 1.00403 0.995955i 0.0635004 0.0629897i
\(251\) −6.53665 −0.412590 −0.206295 0.978490i \(-0.566141\pi\)
−0.206295 + 0.978490i \(0.566141\pi\)
\(252\) −0.121422 1.24276i −0.00764889 0.0782867i
\(253\) 0.0298206 0.00187480
\(254\) 6.85308 6.79797i 0.430001 0.426543i
\(255\) 7.04895 + 6.34213i 0.441423 + 0.397159i
\(256\) 15.9917 + 0.516667i 0.999478 + 0.0322917i
\(257\) 7.67420i 0.478704i −0.970933 0.239352i \(-0.923065\pi\)
0.970933 0.239352i \(-0.0769349\pi\)
\(258\) 3.44631 0.167959i 0.214558 0.0104566i
\(259\) 1.71212i 0.106386i
\(260\) −1.99993 0.0161485i −0.124031 0.00100149i
\(261\) −9.90430 + 1.04848i −0.613061 + 0.0648996i
\(262\) −1.73139 1.74542i −0.106965 0.107833i
\(263\) −15.8615 −0.978062 −0.489031 0.872266i \(-0.662650\pi\)
−0.489031 + 0.872266i \(0.662650\pi\)
\(264\) −12.3601 + 0.502381i −0.760714 + 0.0309194i
\(265\) −3.88887 −0.238891
\(266\) −0.0618928 0.0623946i −0.00379489 0.00382566i
\(267\) −14.7906 + 16.4390i −0.905171 + 1.00605i
\(268\) 24.6733 + 0.199224i 1.50716 + 0.0121696i
\(269\) 19.0683i 1.16262i 0.813683 + 0.581308i \(0.197459\pi\)
−0.813683 + 0.581308i \(0.802541\pi\)
\(270\) −1.12840 7.26132i −0.0686723 0.441910i
\(271\) 29.7746i 1.80868i −0.426817 0.904338i \(-0.640365\pi\)
0.426817 0.904338i \(-0.359635\pi\)
\(272\) −0.353607 + 21.8951i −0.0214406 + 1.32759i
\(273\) −0.241097 + 0.267967i −0.0145918 + 0.0162181i
\(274\) 19.9262 19.7659i 1.20378 1.19410i
\(275\) −2.52509 −0.152268
\(276\) −0.0276075 + 0.0301905i −0.00166178 + 0.00181725i
\(277\) −30.3793 −1.82532 −0.912658 0.408724i \(-0.865974\pi\)
−0.912658 + 0.408724i \(0.865974\pi\)
\(278\) −5.58539 + 5.54048i −0.334990 + 0.332296i
\(279\) 32.9704 3.49029i 1.97388 0.208958i
\(280\) 0.421237 0.411155i 0.0251738 0.0245712i
\(281\) 31.1314i 1.85714i −0.371154 0.928571i \(-0.621038\pi\)
0.371154 0.928571i \(-0.378962\pi\)
\(282\) 1.51401 + 31.0657i 0.0901579 + 1.84993i
\(283\) 6.05544i 0.359958i −0.983670 0.179979i \(-0.942397\pi\)
0.983670 0.179979i \(-0.0576030\pi\)
\(284\) −0.0285617 + 3.53727i −0.00169482 + 0.209898i
\(285\) −0.384486 0.345932i −0.0227750 0.0204913i
\(286\) 2.51487 + 2.53526i 0.148707 + 0.149913i
\(287\) −2.11992 −0.125135
\(288\) 10.9342 12.9785i 0.644306 0.764768i
\(289\) −12.9701 −0.762947
\(290\) −3.30645 3.33326i −0.194162 0.195736i
\(291\) 11.3126 + 10.1782i 0.663153 + 0.596657i
\(292\) −0.104597 + 12.9540i −0.00612106 + 0.758074i
\(293\) 12.4677i 0.728371i −0.931326 0.364185i \(-0.881347\pi\)
0.931326 0.364185i \(-0.118653\pi\)
\(294\) 0.829489 + 17.0201i 0.0483768 + 0.992635i
\(295\) 0.0815526i 0.00474817i
\(296\) 16.6518 16.2533i 0.967867 0.944702i
\(297\) −7.70024 + 10.6236i −0.446813 + 0.616441i
\(298\) −9.68182 + 9.60396i −0.560853 + 0.556343i
\(299\) 0.0118097 0.000682974
\(300\) 2.33769 2.55641i 0.134967 0.147594i
\(301\) 0.293153 0.0168971
\(302\) 0.568632 0.564059i 0.0327211 0.0324579i
\(303\) 11.3577 12.6235i 0.652482 0.725201i
\(304\) 0.0192876 1.19427i 0.00110622 0.0684963i
\(305\) 5.26046i 0.301213i
\(306\) 18.0021 + 14.6761i 1.02911 + 0.838975i
\(307\) 13.1547i 0.750776i 0.926868 + 0.375388i \(0.122490\pi\)
−0.926868 + 0.375388i \(0.877510\pi\)
\(308\) −1.05097 0.00848609i −0.0598848 0.000483540i
\(309\) −3.86943 + 4.30067i −0.220124 + 0.244657i
\(310\) 11.0068 + 11.0961i 0.625145 + 0.630213i
\(311\) −10.0408 −0.569362 −0.284681 0.958622i \(-0.591888\pi\)
−0.284681 + 0.958622i \(0.591888\pi\)
\(312\) −4.89494 + 0.198956i −0.277121 + 0.0112637i
\(313\) −22.8593 −1.29208 −0.646042 0.763302i \(-0.723577\pi\)
−0.646042 + 0.763302i \(0.723577\pi\)
\(314\) −6.79056 6.84562i −0.383214 0.386320i
\(315\) −0.0657264 0.620871i −0.00370326 0.0349821i
\(316\) 14.8116 + 0.119596i 0.833218 + 0.00672782i
\(317\) 5.23245i 0.293884i −0.989145 0.146942i \(-0.953057\pi\)
0.989145 0.146942i \(-0.0469431\pi\)
\(318\) −9.51444 + 0.463693i −0.533544 + 0.0260026i
\(319\) 8.38299i 0.469357i
\(320\) 7.99765 + 0.193765i 0.447082 + 0.0108318i
\(321\) 9.42780 + 8.48244i 0.526208 + 0.473444i
\(322\) −0.00246767 + 0.00244782i −0.000137518 + 0.000136412i
\(323\) 1.63472 0.0909585
\(324\) −3.62654 17.6309i −0.201475 0.979494i
\(325\) −1.00000 −0.0554700
\(326\) 10.0179 9.93733i 0.554840 0.550378i
\(327\) −12.7126 11.4378i −0.703007 0.632514i
\(328\) −20.1245 20.6180i −1.11119 1.13844i
\(329\) 2.64253i 0.145688i
\(330\) −6.17784 + 0.301082i −0.340079 + 0.0165740i
\(331\) 28.7723i 1.58147i 0.612159 + 0.790735i \(0.290301\pi\)
−0.612159 + 0.790735i \(0.709699\pi\)
\(332\) −0.116435 + 14.4201i −0.00639018 + 0.791403i
\(333\) −2.59821 24.5435i −0.142381 1.34497i
\(334\) −14.1686 14.2835i −0.775271 0.781556i
\(335\) 12.3370 0.674044
\(336\) 0.981569 1.05615i 0.0535490 0.0576179i
\(337\) −28.0835 −1.52981 −0.764903 0.644145i \(-0.777213\pi\)
−0.764903 + 0.644145i \(0.777213\pi\)
\(338\) 0.995955 + 1.00403i 0.0541728 + 0.0546120i
\(339\) −13.4897 + 14.9932i −0.732662 + 0.814317i
\(340\) −0.0884047 + 10.9486i −0.00479442 + 0.593773i
\(341\) 27.9061i 1.51120i
\(342\) −0.981926 0.800509i −0.0530965 0.0432865i
\(343\) 2.90458i 0.156832i
\(344\) 2.78292 + 2.85116i 0.150045 + 0.153724i
\(345\) −0.0136814 + 0.0152062i −0.000736582 + 0.000818674i
\(346\) −2.63946 + 2.61823i −0.141898 + 0.140757i
\(347\) 22.4514 1.20526 0.602628 0.798023i \(-0.294120\pi\)
0.602628 + 0.798023i \(0.294120\pi\)
\(348\) −8.48696 7.76085i −0.454949 0.416025i
\(349\) −21.8617 −1.17023 −0.585114 0.810951i \(-0.698950\pi\)
−0.585114 + 0.810951i \(0.698950\pi\)
\(350\) 0.208952 0.207272i 0.0111690 0.0110791i
\(351\) −3.04950 + 4.20720i −0.162770 + 0.224564i
\(352\) −9.89442 10.3022i −0.527374 0.549107i
\(353\) 7.20477i 0.383471i 0.981447 + 0.191736i \(0.0614116\pi\)
−0.981447 + 0.191736i \(0.938588\pi\)
\(354\) −0.00972401 0.199525i −0.000516826 0.0106047i
\(355\) 1.76869i 0.0938724i
\(356\) −25.5336 0.206171i −1.35328 0.0109270i
\(357\) 1.46698 + 1.31988i 0.0776409 + 0.0698556i
\(358\) 12.8481 + 12.9522i 0.679041 + 0.684546i
\(359\) −21.8194 −1.15159 −0.575793 0.817596i \(-0.695306\pi\)
−0.575793 + 0.817596i \(0.695306\pi\)
\(360\) 5.41454 6.53320i 0.285371 0.344330i
\(361\) 18.9108 0.995307
\(362\) −12.6526 12.7551i −0.665004 0.670395i
\(363\) −5.95378 5.35677i −0.312492 0.281158i
\(364\) −0.416213 0.00336072i −0.0218155 0.000176149i
\(365\) 6.47719i 0.339032i
\(366\) −0.627236 12.8702i −0.0327862 0.672734i
\(367\) 0.193078i 0.0100786i 0.999987 + 0.00503930i \(0.00160406\pi\)
−0.999987 + 0.00503930i \(0.998396\pi\)
\(368\) −0.0472328 0.000762812i −0.00246218 3.97643e-5i
\(369\) −30.3894 + 3.21706i −1.58201 + 0.167474i
\(370\) 8.26002 8.19359i 0.429418 0.425965i
\(371\) −0.809325 −0.0420181
\(372\) 28.2522 + 25.8350i 1.46481 + 1.33948i
\(373\) 7.40910 0.383629 0.191814 0.981431i \(-0.438563\pi\)
0.191814 + 0.981431i \(0.438563\pi\)
\(374\) 13.8793 13.7676i 0.717680 0.711908i
\(375\) 1.15849 1.28760i 0.0598240 0.0664913i
\(376\) −25.7008 + 25.0857i −1.32542 + 1.29370i
\(377\) 3.31988i 0.170983i
\(378\) −0.234836 1.51118i −0.0120786 0.0777266i
\(379\) 25.8698i 1.32884i 0.747359 + 0.664420i \(0.231321\pi\)
−0.747359 + 0.664420i \(0.768679\pi\)
\(380\) 0.00482205 0.597195i 0.000247366 0.0306355i
\(381\) 7.90734 8.78861i 0.405105 0.450254i
\(382\) −25.0292 25.2322i −1.28061 1.29099i
\(383\) −11.2119 −0.572904 −0.286452 0.958095i \(-0.592476\pi\)
−0.286452 + 0.958095i \(0.592476\pi\)
\(384\) 19.5900 0.479547i 0.999701 0.0244718i
\(385\) −0.525504 −0.0267822
\(386\) 19.5974 + 19.7563i 0.997481 + 1.00557i
\(387\) 4.20238 0.444871i 0.213619 0.0226141i
\(388\) −0.141877 + 17.5710i −0.00720271 + 0.892031i
\(389\) 20.2983i 1.02916i 0.857441 + 0.514582i \(0.172053\pi\)
−0.857441 + 0.514582i \(0.827947\pi\)
\(390\) −2.44659 + 0.119236i −0.123888 + 0.00603776i
\(391\) 0.0646523i 0.00326961i
\(392\) −14.0809 + 13.7438i −0.711191 + 0.694169i
\(393\) −2.23839 2.01393i −0.112912 0.101590i
\(394\) 11.8012 11.7063i 0.594535 0.589753i
\(395\) 7.40605 0.372639
\(396\) −15.0787 + 1.47324i −0.757734 + 0.0740333i
\(397\) −5.53330 −0.277708 −0.138854 0.990313i \(-0.544342\pi\)
−0.138854 + 0.990313i \(0.544342\pi\)
\(398\) −9.10703 + 9.03379i −0.456494 + 0.452823i
\(399\) −0.0800168 0.0719932i −0.00400585 0.00360417i
\(400\) 3.99948 + 0.0645918i 0.199974 + 0.00322959i
\(401\) 23.4222i 1.16965i 0.811161 + 0.584823i \(0.198836\pi\)
−0.811161 + 0.584823i \(0.801164\pi\)
\(402\) 30.1836 1.47102i 1.50542 0.0733679i
\(403\) 11.0515i 0.550516i
\(404\) 19.6072 + 0.158318i 0.975494 + 0.00787662i
\(405\) −1.88439 8.80052i −0.0936361 0.437301i
\(406\) −0.688117 0.693696i −0.0341507 0.0344276i
\(407\) −20.7736 −1.02971
\(408\) 1.08918 + 26.7973i 0.0539226 + 1.32666i
\(409\) −15.3701 −0.760004 −0.380002 0.924986i \(-0.624077\pi\)
−0.380002 + 0.924986i \(0.624077\pi\)
\(410\) −10.1452 10.2274i −0.501035 0.505097i
\(411\) 22.9916 25.5540i 1.13409 1.26048i
\(412\) −6.67993 0.0539371i −0.329097 0.00265729i
\(413\) 0.0169722i 0.000835147i
\(414\) −0.0316596 + 0.0388346i −0.00155599 + 0.00190862i
\(415\) 7.21026i 0.353938i
\(416\) −3.91845 4.07992i −0.192118 0.200035i
\(417\) −6.44464 + 7.16289i −0.315595 + 0.350768i
\(418\) −0.757047 + 0.750959i −0.0370284 + 0.0367306i
\(419\) −27.3974 −1.33845 −0.669226 0.743059i \(-0.733374\pi\)
−0.669226 + 0.743059i \(0.733374\pi\)
\(420\) 0.486505 0.532022i 0.0237390 0.0259600i
\(421\) −7.39446 −0.360384 −0.180192 0.983631i \(-0.557672\pi\)
−0.180192 + 0.983631i \(0.557672\pi\)
\(422\) −19.5579 + 19.4006i −0.952062 + 0.944406i
\(423\) 4.01014 + 37.8810i 0.194980 + 1.84184i
\(424\) −7.68296 7.87136i −0.373118 0.382267i
\(425\) 5.47450i 0.265552i
\(426\) 0.210892 + 4.32725i 0.0102177 + 0.209656i
\(427\) 1.09477i 0.0529797i
\(428\) −0.118239 + 14.6435i −0.00571531 + 0.707822i
\(429\) 3.25130 + 2.92528i 0.156974 + 0.141234i
\(430\) 1.40292 + 1.41430i 0.0676550 + 0.0682035i
\(431\) 23.1528 1.11523 0.557615 0.830100i \(-0.311716\pi\)
0.557615 + 0.830100i \(0.311716\pi\)
\(432\) 12.4681 16.6297i 0.599874 0.800094i
\(433\) −22.9010 −1.10055 −0.550276 0.834983i \(-0.685477\pi\)
−0.550276 + 0.834983i \(0.685477\pi\)
\(434\) 2.29067 + 2.30924i 0.109956 + 0.110847i
\(435\) −4.27468 3.84604i −0.204955 0.184403i
\(436\) 0.159435 19.7455i 0.00763557 0.945640i
\(437\) 0.00352647i 0.000168694i
\(438\) 0.772316 + 15.8470i 0.0369027 + 0.757200i
\(439\) 29.2978i 1.39831i −0.714972 0.699153i \(-0.753561\pi\)
0.714972 0.699153i \(-0.246439\pi\)
\(440\) −4.98864 5.11096i −0.237824 0.243656i
\(441\) 2.19706 + 20.7541i 0.104622 + 0.988290i
\(442\) 5.49655 5.45235i 0.261444 0.259342i
\(443\) −33.4752 −1.59046 −0.795228 0.606310i \(-0.792649\pi\)
−0.795228 + 0.606310i \(0.792649\pi\)
\(444\) 19.2319 21.0312i 0.912704 0.998098i
\(445\) −12.7672 −0.605223
\(446\) 6.70930 6.65534i 0.317695 0.315140i
\(447\) −11.1712 + 12.4163i −0.528382 + 0.587270i
\(448\) 1.66442 + 0.0403251i 0.0786364 + 0.00190518i
\(449\) 29.8314i 1.40783i −0.710284 0.703916i \(-0.751433\pi\)
0.710284 0.703916i \(-0.248567\pi\)
\(450\) 2.68081 3.28835i 0.126374 0.155014i
\(451\) 25.7215i 1.21118i
\(452\) −23.2878 0.188038i −1.09537 0.00884454i
\(453\) 0.656109 0.729231i 0.0308267 0.0342623i
\(454\) −6.84230 6.89777i −0.321125 0.323729i
\(455\) −0.208113 −0.00975651
\(456\) −0.0594097 1.46166i −0.00278211 0.0684487i
\(457\) 15.0930 0.706022 0.353011 0.935619i \(-0.385158\pi\)
0.353011 + 0.935619i \(0.385158\pi\)
\(458\) 10.2974 + 10.3809i 0.481168 + 0.485069i
\(459\) 23.0323 + 16.6945i 1.07506 + 0.779231i
\(460\) −0.0236187 0.000190709i −0.00110123 8.89186e-6i
\(461\) 12.6833i 0.590719i 0.955386 + 0.295360i \(0.0954394\pi\)
−0.955386 + 0.295360i \(0.904561\pi\)
\(462\) −1.28569 + 0.0626591i −0.0598158 + 0.00291517i
\(463\) 40.0604i 1.86176i −0.365322 0.930881i \(-0.619041\pi\)
0.365322 0.930881i \(-0.380959\pi\)
\(464\) 0.214437 13.2778i 0.00995499 0.616406i
\(465\) 14.2299 + 12.8030i 0.659897 + 0.593727i
\(466\) 12.1377 12.0401i 0.562266 0.557745i
\(467\) 22.6244 1.04693 0.523467 0.852046i \(-0.324638\pi\)
0.523467 + 0.852046i \(0.324638\pi\)
\(468\) −5.97157 + 0.583443i −0.276036 + 0.0269697i
\(469\) 2.56750 0.118556
\(470\) −12.7487 + 12.6462i −0.588055 + 0.583326i
\(471\) −8.77903 7.89873i −0.404517 0.363954i
\(472\) 0.165069 0.161118i 0.00759790 0.00741605i
\(473\) 3.55689i 0.163546i
\(474\) 18.1195 0.883069i 0.832258 0.0405607i
\(475\) 0.298607i 0.0137010i
\(476\) −0.0183982 + 2.27856i −0.000843281 + 0.104438i
\(477\) −11.6018 + 1.22818i −0.531209 + 0.0562346i
\(478\) 27.1009 + 27.3206i 1.23957 + 1.24962i
\(479\) −34.2532 −1.56507 −0.782533 0.622609i \(-0.786073\pi\)
−0.782533 + 0.622609i \(0.786073\pi\)
\(480\) 9.79277 0.318853i 0.446977 0.0145536i
\(481\) −8.22687 −0.375113
\(482\) 2.35259 + 2.37166i 0.107157 + 0.108026i
\(483\) −0.00284729 + 0.00316461i −0.000129556 + 0.000143995i
\(484\) 0.0746696 9.24758i 0.00339407 0.420345i
\(485\) 8.78578i 0.398942i
\(486\) −5.65966 21.3065i −0.256727 0.966484i
\(487\) 10.2210i 0.463156i −0.972816 0.231578i \(-0.925611\pi\)
0.972816 0.231578i \(-0.0743888\pi\)
\(488\) 10.6476 10.3927i 0.481992 0.470456i
\(489\) 11.5590 12.8473i 0.522717 0.580973i
\(490\) −6.98472 + 6.92855i −0.315537 + 0.313000i
\(491\) −12.1968 −0.550432 −0.275216 0.961382i \(-0.588749\pi\)
−0.275216 + 0.961382i \(0.588749\pi\)
\(492\) −26.0405 23.8126i −1.17400 1.07356i
\(493\) 18.1747 0.818546
\(494\) −0.299810 + 0.297399i −0.0134891 + 0.0133806i
\(495\) −7.53316 + 0.797472i −0.338591 + 0.0358437i
\(496\) −0.713838 + 44.2003i −0.0320523 + 1.98465i
\(497\) 0.368088i 0.0165110i
\(498\) 0.859724 + 17.6405i 0.0385251 + 0.790491i
\(499\) 12.7371i 0.570192i −0.958499 0.285096i \(-0.907974\pi\)
0.958499 0.285096i \(-0.0920255\pi\)
\(500\) 1.99993 + 0.0161485i 0.0894398 + 0.000722182i
\(501\) −18.3176 16.4808i −0.818368 0.736307i
\(502\) −6.51021 6.56298i −0.290565 0.292920i
\(503\) −3.38096 −0.150750 −0.0753748 0.997155i \(-0.524015\pi\)
−0.0753748 + 0.997155i \(0.524015\pi\)
\(504\) 1.12684 1.35965i 0.0501934 0.0605635i
\(505\) 9.80391 0.436268
\(506\) 0.0296999 + 0.0299407i 0.00132032 + 0.00133103i
\(507\) 1.28760 + 1.15849i 0.0571843 + 0.0514502i
\(508\) 13.6507 + 0.110223i 0.605653 + 0.00489034i
\(509\) 26.5081i 1.17495i 0.809242 + 0.587476i \(0.199878\pi\)
−0.809242 + 0.587476i \(0.800122\pi\)
\(510\) 0.652758 + 13.3938i 0.0289046 + 0.593088i
\(511\) 1.34799i 0.0596316i
\(512\) 15.4082 + 16.5707i 0.680953 + 0.732327i
\(513\) −1.25630 0.910602i −0.0554671 0.0402041i
\(514\) 7.70512 7.64316i 0.339858 0.337125i
\(515\) −3.34007 −0.147181
\(516\) 3.60101 + 3.29292i 0.158526 + 0.144963i
\(517\) 32.0624 1.41010
\(518\) 1.71902 1.70520i 0.0755295 0.0749221i
\(519\) −3.04551 + 3.38493i −0.133683 + 0.148582i
\(520\) −1.97563 2.02408i −0.0866371 0.0887616i
\(521\) 35.9519i 1.57508i 0.616262 + 0.787541i \(0.288646\pi\)
−0.616262 + 0.787541i \(0.711354\pi\)
\(522\) −10.9169 8.89997i −0.477822 0.389541i
\(523\) 2.02905i 0.0887243i −0.999016 0.0443622i \(-0.985874\pi\)
0.999016 0.0443622i \(-0.0141256\pi\)
\(524\) 0.0280728 3.47672i 0.00122637 0.151881i
\(525\) 0.241097 0.267967i 0.0105223 0.0116950i
\(526\) −15.7973 15.9254i −0.688797 0.694381i
\(527\) −60.5015 −2.63549
\(528\) −12.8145 11.9096i −0.557681 0.518298i
\(529\) −22.9999 −0.999994
\(530\) −3.87313 3.90453i −0.168238 0.169602i
\(531\) −0.0257559 0.243298i −0.00111771 0.0105582i
\(532\) 0.00100353 0.124284i 4.35087e−5 0.00538841i
\(533\) 10.1864i 0.441221i
\(534\) −31.2360 + 1.52231i −1.35172 + 0.0658769i
\(535\) 7.32200i 0.316558i
\(536\) 24.3734 + 24.9711i 1.05277 + 1.07859i
\(537\) 16.6103 + 14.9448i 0.716789 + 0.644914i
\(538\) −19.1452 + 18.9912i −0.825406 + 0.818768i
\(539\) 17.5662 0.756631
\(540\) 6.16674 8.36489i 0.265374 0.359968i
\(541\) 36.2826 1.55991 0.779954 0.625836i \(-0.215242\pi\)
0.779954 + 0.625836i \(0.215242\pi\)
\(542\) 29.8945 29.6541i 1.28408 1.27375i
\(543\) −16.3576 14.7174i −0.701972 0.631582i
\(544\) −22.3355 + 21.4515i −0.957628 + 0.919726i
\(545\) 9.87309i 0.422917i
\(546\) −0.509168 + 0.0248147i −0.0217904 + 0.00106197i
\(547\) 23.2624i 0.994627i −0.867571 0.497313i \(-0.834320\pi\)
0.867571 0.497313i \(-0.165680\pi\)
\(548\) 39.6911 + 0.320486i 1.69552 + 0.0136905i
\(549\) −1.66136 15.6937i −0.0709050 0.669790i
\(550\) −2.51487 2.53526i −0.107234 0.108104i
\(551\) −0.991341 −0.0422325
\(552\) −0.0578079 + 0.00234962i −0.00246047 + 0.000100006i
\(553\) 1.54130 0.0655427
\(554\) −30.2564 30.5017i −1.28547 1.29589i
\(555\) 9.53072 10.5929i 0.404557 0.449644i
\(556\) −11.1256 0.0898337i −0.471831 0.00380980i
\(557\) 1.98101i 0.0839380i 0.999119 + 0.0419690i \(0.0133631\pi\)
−0.999119 + 0.0419690i \(0.986637\pi\)
\(558\) 36.3413 + 29.6270i 1.53845 + 1.25421i
\(559\) 1.40862i 0.0595784i
\(560\) 0.832345 + 0.0134424i 0.0351730 + 0.000568046i
\(561\) 16.0144 17.7992i 0.676129 0.751483i
\(562\) 31.2568 31.0054i 1.31849 1.30789i
\(563\) −28.8589 −1.21626 −0.608129 0.793838i \(-0.708080\pi\)
−0.608129 + 0.793838i \(0.708080\pi\)
\(564\) −29.6830 + 32.4601i −1.24988 + 1.36682i
\(565\) −11.6443 −0.489879
\(566\) 6.07984 6.03094i 0.255555 0.253499i
\(567\) −0.392167 1.83151i −0.0164695 0.0769160i
\(568\) −3.57996 + 3.49428i −0.150212 + 0.146617i
\(569\) 8.04926i 0.337443i −0.985664 0.168721i \(-0.946036\pi\)
0.985664 0.168721i \(-0.0539638\pi\)
\(570\) −0.0356048 0.730568i −0.00149132 0.0306001i
\(571\) 6.64396i 0.278041i 0.990290 + 0.139020i \(0.0443954\pi\)
−0.990290 + 0.139020i \(0.955605\pi\)
\(572\) −0.0407763 + 5.05001i −0.00170494 + 0.211151i
\(573\) −32.3585 29.1138i −1.35180 1.21625i
\(574\) −2.11135 2.12847i −0.0881260 0.0888405i
\(575\) −0.0118097 −0.000492500
\(576\) 23.9208 1.94775i 0.996701 0.0811564i
\(577\) 12.1203 0.504575 0.252288 0.967652i \(-0.418817\pi\)
0.252288 + 0.967652i \(0.418817\pi\)
\(578\) −12.9176 13.0224i −0.537303 0.541659i
\(579\) 25.3361 + 22.7955i 1.05293 + 0.947350i
\(580\) 0.0536110 6.63955i 0.00222608 0.275692i
\(581\) 1.50055i 0.0622534i
\(582\) 1.04758 + 21.4952i 0.0434237 + 0.891003i
\(583\) 9.81972i 0.406691i
\(584\) −13.1103 + 12.7965i −0.542509 + 0.529525i
\(585\) −2.98333 + 0.315820i −0.123346 + 0.0130575i
\(586\) 12.5179 12.4173i 0.517111 0.512953i
\(587\) 22.0128 0.908565 0.454282 0.890858i \(-0.349896\pi\)
0.454282 + 0.890858i \(0.349896\pi\)
\(588\) −16.2626 + 17.7841i −0.670657 + 0.733405i
\(589\) 3.30007 0.135977
\(590\) 0.0818811 0.0812227i 0.00337099 0.00334388i
\(591\) 13.6166 15.1342i 0.560114 0.622538i
\(592\) 32.9032 + 0.531389i 1.35231 + 0.0218399i
\(593\) 3.11888i 0.128077i 0.997947 + 0.0640386i \(0.0203981\pi\)
−0.997947 + 0.0640386i \(0.979602\pi\)
\(594\) −18.3354 + 2.84931i −0.752312 + 0.116909i
\(595\) 1.13932i 0.0467074i
\(596\) −19.2853 0.155719i −0.789957 0.00637851i
\(597\) −10.5080 + 11.6791i −0.430065 + 0.477995i
\(598\) 0.0117620 + 0.0118573i 0.000480982 + 0.000484882i
\(599\) 10.2086 0.417113 0.208556 0.978010i \(-0.433124\pi\)
0.208556 + 0.978010i \(0.433124\pi\)
\(600\) 4.89494 0.198956i 0.199835 0.00812234i
\(601\) 19.8334 0.809023 0.404511 0.914533i \(-0.367442\pi\)
0.404511 + 0.914533i \(0.367442\pi\)
\(602\) 0.291967 + 0.294334i 0.0118997 + 0.0119962i
\(603\) 36.8054 3.89628i 1.49883 0.158669i
\(604\) 1.13266 + 0.00914569i 0.0460874 + 0.000372133i
\(605\) 4.62394i 0.187990i
\(606\) 23.9861 1.16898i 0.974369 0.0474866i
\(607\) 16.0637i 0.652007i −0.945369 0.326004i \(-0.894298\pi\)
0.945369 0.326004i \(-0.105702\pi\)
\(608\) 1.21829 1.17008i 0.0494084 0.0474529i
\(609\) −0.889618 0.800412i −0.0360491 0.0324343i
\(610\) 5.28165 5.23917i 0.213848 0.212128i
\(611\) 12.6976 0.513688
\(612\) 3.19406 + 32.6913i 0.129112 + 1.32147i
\(613\) −20.5282 −0.829126 −0.414563 0.910021i \(-0.636066\pi\)
−0.414563 + 0.910021i \(0.636066\pi\)
\(614\) −13.2077 + 13.1014i −0.533018 + 0.528731i
\(615\) −13.1160 11.8008i −0.528887 0.475854i
\(616\) −1.03820 1.06366i −0.0418304 0.0428561i
\(617\) 9.34473i 0.376205i 0.982149 + 0.188102i \(0.0602337\pi\)
−0.982149 + 0.188102i \(0.939766\pi\)
\(618\) −8.17178 + 0.398258i −0.328717 + 0.0160203i
\(619\) 25.9117i 1.04148i 0.853716 + 0.520739i \(0.174343\pi\)
−0.853716 + 0.520739i \(0.825657\pi\)
\(620\) −0.178465 + 22.1023i −0.00716734 + 0.887651i
\(621\) −0.0360137 + 0.0496859i −0.00144518 + 0.00199383i
\(622\) −10.0002 10.0813i −0.400971 0.404222i
\(623\) −2.65703 −0.106451
\(624\) −5.07489 4.71651i −0.203158 0.188811i
\(625\) 1.00000 0.0400000
\(626\) −22.7668 22.9514i −0.909945 0.917322i
\(627\) −0.873509 + 0.970861i −0.0348846 + 0.0387724i
\(628\) 0.110103 13.6358i 0.00439357 0.544129i
\(629\) 45.0380i 1.79578i
\(630\) 0.557912 0.684351i 0.0222278 0.0272652i
\(631\) 37.3810i 1.48811i 0.668117 + 0.744056i \(0.267101\pi\)
−0.668117 + 0.744056i \(0.732899\pi\)
\(632\) 14.6316 + 14.9904i 0.582014 + 0.596286i
\(633\) −22.5666 + 25.0816i −0.896942 + 0.996905i
\(634\) 5.25354 5.21129i 0.208645 0.206967i
\(635\) 6.82558 0.270865
\(636\) −9.94152 9.09096i −0.394207 0.360480i
\(637\) 6.95669 0.275634
\(638\) −8.41676 + 8.34908i −0.333223 + 0.330543i
\(639\) 0.558588 + 5.27659i 0.0220974 + 0.208739i
\(640\) 7.77075 + 8.22286i 0.307166 + 0.325037i
\(641\) 28.4005i 1.12175i −0.827899 0.560877i \(-0.810464\pi\)
0.827899 0.560877i \(-0.189536\pi\)
\(642\) 0.873047 + 17.9139i 0.0344564 + 0.707006i
\(643\) 3.09069i 0.121885i −0.998141 0.0609425i \(-0.980589\pi\)
0.998141 0.0609425i \(-0.0194106\pi\)
\(644\) −0.00491537 3.96891e-5i −0.000193693 1.56397e-6i
\(645\) 1.81374 + 1.63187i 0.0714159 + 0.0642548i
\(646\) 1.62811 + 1.64131i 0.0640572 + 0.0645765i
\(647\) 25.0811 0.986041 0.493021 0.870018i \(-0.335893\pi\)
0.493021 + 0.870018i \(0.335893\pi\)
\(648\) 14.0901 21.2007i 0.553509 0.832843i
\(649\) −0.205927 −0.00808335
\(650\) −0.995955 1.00403i −0.0390646 0.0393813i
\(651\) 2.96144 + 2.66449i 0.116068 + 0.104429i
\(652\) 19.9547 + 0.161124i 0.781487 + 0.00631012i
\(653\) 4.64808i 0.181893i 0.995856 + 0.0909467i \(0.0289893\pi\)
−0.995856 + 0.0909467i \(0.971011\pi\)
\(654\) −1.17723 24.1554i −0.0460333 0.944549i
\(655\) 1.73842i 0.0679256i
\(656\) 0.657957 40.7402i 0.0256889 1.59064i
\(657\) 2.04563 + 19.3236i 0.0798075 + 0.753886i
\(658\) −2.65318 + 2.63184i −0.103432 + 0.102600i
\(659\) −16.9122 −0.658808 −0.329404 0.944189i \(-0.606848\pi\)
−0.329404 + 0.944189i \(0.606848\pi\)
\(660\) −6.45514 5.90287i −0.251266 0.229769i
\(661\) 48.0774 1.86999 0.934997 0.354655i \(-0.115402\pi\)
0.934997 + 0.354655i \(0.115402\pi\)
\(662\) −28.8882 + 28.6559i −1.12277 + 1.11374i
\(663\) 6.34213 7.04895i 0.246308 0.273759i
\(664\) −14.5941 + 14.2448i −0.566361 + 0.552806i
\(665\) 0.0621442i 0.00240985i
\(666\) 22.0547 27.0529i 0.854601 1.04828i
\(667\) 0.0392069i 0.00151810i
\(668\) 0.229730 28.4513i 0.00888854 1.10082i
\(669\) 7.74144 8.60422i 0.299301 0.332658i
\(670\) 12.2871 + 12.3867i 0.474693 + 0.478542i
\(671\) −13.2831 −0.512788
\(672\) 2.03801 0.0663576i 0.0786178 0.00255980i
\(673\) 34.1142 1.31501 0.657503 0.753452i \(-0.271613\pi\)
0.657503 + 0.753452i \(0.271613\pi\)
\(674\) −27.9699 28.1967i −1.07736 1.08609i
\(675\) 3.04950 4.20720i 0.117375 0.161935i
\(676\) −0.0161485 + 1.99993i −0.000621095 + 0.0769206i
\(677\) 1.62392i 0.0624122i 0.999513 + 0.0312061i \(0.00993482\pi\)
−0.999513 + 0.0312061i \(0.990065\pi\)
\(678\) −28.4888 + 1.38842i −1.09410 + 0.0533220i
\(679\) 1.82844i 0.0701690i
\(680\) −11.0808 + 10.8156i −0.424929 + 0.414759i
\(681\) −8.84592 7.95891i −0.338976 0.304986i
\(682\) 28.0185 27.7932i 1.07288 1.06426i
\(683\) 39.4425 1.50922 0.754612 0.656171i \(-0.227825\pi\)
0.754612 + 0.656171i \(0.227825\pi\)
\(684\) −0.174220 1.78315i −0.00666148 0.0681806i
\(685\) 19.8462 0.758285
\(686\) −2.91628 + 2.89283i −0.111344 + 0.110449i
\(687\) 13.3128 + 11.9779i 0.507916 + 0.456986i
\(688\) −0.0909854 + 5.63375i −0.00346879 + 0.214785i
\(689\) 3.88887i 0.148154i
\(690\) −0.0288935 + 0.00140815i −0.00109996 + 5.36072e-5i
\(691\) 14.1104i 0.536784i −0.963310 0.268392i \(-0.913508\pi\)
0.963310 0.268392i \(-0.0864923\pi\)
\(692\) −5.25756 0.0424522i −0.199863 0.00161379i
\(693\) −1.56775 + 0.165965i −0.0595540 + 0.00630448i
\(694\) 22.3606 + 22.5419i 0.848797 + 0.855678i
\(695\) −5.56298 −0.211016
\(696\) −0.660510 16.2506i −0.0250366 0.615978i
\(697\) 55.7653 2.11226
\(698\) −21.7732 21.9498i −0.824129 0.830810i
\(699\) 14.0049 15.5657i 0.529714 0.588750i
\(700\) 0.416213 + 0.00336072i 0.0157314 + 0.000127023i
\(701\) 21.9599i 0.829414i −0.909955 0.414707i \(-0.863884\pi\)
0.909955 0.414707i \(-0.136116\pi\)
\(702\) −7.26132 + 1.12840i −0.274061 + 0.0425888i
\(703\) 2.45660i 0.0926526i
\(704\) 0.489273 20.1948i 0.0184402 0.761119i
\(705\) −14.7100 + 16.3494i −0.554009 + 0.615753i
\(706\) −7.23380 + 7.17562i −0.272248 + 0.270058i
\(707\) 2.04033 0.0767344
\(708\) 0.190645 0.208481i 0.00716486 0.00783521i
\(709\) −27.5190 −1.03350 −0.516748 0.856137i \(-0.672858\pi\)
−0.516748 + 0.856137i \(0.672858\pi\)
\(710\) −1.77582 + 1.76154i −0.0666452 + 0.0661093i
\(711\) 22.0947 2.33898i 0.828615 0.0877185i
\(712\) −25.2233 25.8418i −0.945282 0.968461i
\(713\) 0.130516i 0.00488785i
\(714\) 0.135848 + 2.78744i 0.00508397 + 0.104317i
\(715\) 2.52509i 0.0944329i
\(716\) −0.208319 + 25.7997i −0.00778526 + 0.964178i
\(717\) 35.0368 + 31.5236i 1.30847 + 1.17727i
\(718\) −21.7312 21.9073i −0.811000 0.817575i
\(719\) −7.97499 −0.297417 −0.148708 0.988881i \(-0.547512\pi\)
−0.148708 + 0.988881i \(0.547512\pi\)
\(720\) 11.9522 1.07042i 0.445431 0.0398921i
\(721\) −0.695114 −0.0258874
\(722\) 18.8343 + 18.9870i 0.700941 + 0.706624i
\(723\) 3.04149 + 2.73651i 0.113114 + 0.101772i
\(724\) 0.205150 25.4071i 0.00762432 0.944247i
\(725\) 3.31988i 0.123297i
\(726\) −0.551341 11.3129i −0.0204622 0.419860i
\(727\) 9.11116i 0.337914i 0.985623 + 0.168957i \(0.0540399\pi\)
−0.985623 + 0.168957i \(0.945960\pi\)
\(728\) −0.411155 0.421237i −0.0152384 0.0156121i
\(729\) −8.40114 25.6597i −0.311153 0.950360i
\(730\) −6.50329 + 6.45099i −0.240698 + 0.238762i
\(731\) −7.71149 −0.285220
\(732\) 12.2973 13.4479i 0.454522 0.497047i
\(733\) 48.7640 1.80114 0.900569 0.434713i \(-0.143150\pi\)
0.900569 + 0.434713i \(0.143150\pi\)
\(734\) −0.193856 + 0.192297i −0.00715535 + 0.00709781i
\(735\) −8.05923 + 8.95742i −0.297269 + 0.330399i
\(736\) −0.0462758 0.0481828i −0.00170575 0.00177604i
\(737\) 31.1521i 1.14750i
\(738\) −33.4964 27.3077i −1.23302 1.00521i
\(739\) 18.2206i 0.670254i −0.942173 0.335127i \(-0.891221\pi\)
0.942173 0.335127i \(-0.108779\pi\)
\(740\) 16.4532 + 0.132851i 0.604832 + 0.00488372i
\(741\) −0.345932 + 0.384486i −0.0127081 + 0.0141245i
\(742\) −0.806051 0.812586i −0.0295911 0.0298310i
\(743\) 42.6780 1.56570 0.782852 0.622208i \(-0.213764\pi\)
0.782852 + 0.622208i \(0.213764\pi\)
\(744\) 2.19877 + 54.0965i 0.0806107 + 1.98328i
\(745\) −9.64297 −0.353291
\(746\) 7.37913 + 7.43896i 0.270169 + 0.272360i
\(747\) 2.27714 + 21.5106i 0.0833163 + 0.787031i
\(748\) 27.6462 + 0.223230i 1.01085 + 0.00816208i
\(749\) 1.52381i 0.0556787i
\(750\) 2.44659 0.119236i 0.0893367 0.00435389i
\(751\) 31.6319i 1.15427i 0.816650 + 0.577133i \(0.195828\pi\)
−0.816650 + 0.577133i \(0.804172\pi\)
\(752\) −50.7836 0.820158i −1.85189 0.0299081i
\(753\) −8.41658 7.57262i −0.306717 0.275961i
\(754\) −3.33326 + 3.30645i −0.121390 + 0.120414i
\(755\) 0.566350 0.0206116
\(756\) 1.28338 1.74085i 0.0466761 0.0633140i
\(757\) −23.8095 −0.865369 −0.432685 0.901545i \(-0.642434\pi\)
−0.432685 + 0.901545i \(0.642434\pi\)
\(758\) −25.9740 + 25.7651i −0.943418 + 0.935831i
\(759\) 0.0383969 + 0.0345467i 0.00139372 + 0.00125397i
\(760\) 0.604404 0.589938i 0.0219240 0.0213993i
\(761\) 19.3812i 0.702569i −0.936269 0.351284i \(-0.885745\pi\)
0.936269 0.351284i \(-0.114255\pi\)
\(762\) 16.6994 0.813856i 0.604954 0.0294829i
\(763\) 2.05472i 0.0743860i
\(764\) 0.405826 50.2602i 0.0146823 1.81835i
\(765\) 1.72895 + 16.3322i 0.0625105 + 0.590493i
\(766\) −11.1666 11.2571i −0.403465 0.406736i
\(767\) −0.0815526 −0.00294469
\(768\) 19.9923 + 19.1914i 0.721409 + 0.692509i
\(769\) −10.8729 −0.392087 −0.196043 0.980595i \(-0.562809\pi\)
−0.196043 + 0.980595i \(0.562809\pi\)
\(770\) −0.523379 0.527622i −0.0188613 0.0190142i
\(771\) 8.89046 9.88129i 0.320182 0.355866i
\(772\) −0.317753 + 39.3527i −0.0114362 + 1.41633i
\(773\) 13.4249i 0.482859i −0.970418 0.241429i \(-0.922384\pi\)
0.970418 0.241429i \(-0.0776162\pi\)
\(774\) 4.63205 + 3.77624i 0.166495 + 0.135734i
\(775\) 11.0515i 0.396983i
\(776\) −17.7831 + 17.3574i −0.638375 + 0.623096i
\(777\) 1.98347 2.20453i 0.0711566 0.0790870i
\(778\) −20.3801 + 20.2162i −0.730660 + 0.724785i
\(779\) −3.04173 −0.108981
\(780\) −2.55641 2.33769i −0.0915340 0.0837027i
\(781\) 4.46610 0.159809
\(782\) 0.0649128 0.0643908i 0.00232128 0.00230261i
\(783\) −13.9674 10.1240i −0.499155 0.361801i
\(784\) −27.8231 0.449345i −0.993683 0.0160480i
\(785\) 6.81815i 0.243350i
\(786\) −0.207282 4.25319i −0.00739352 0.151706i
\(787\) 14.3212i 0.510495i −0.966876 0.255248i \(-0.917843\pi\)
0.966876 0.255248i \(-0.0821570\pi\)
\(788\) 23.5069 + 0.189806i 0.837398 + 0.00676157i
\(789\) −20.4232 18.3753i −0.727087 0.654179i
\(790\) 7.37609 + 7.43589i 0.262429 + 0.264557i
\(791\) −2.42333 −0.0861638
\(792\) −16.4969 13.6722i −0.586192 0.485820i
\(793\) −5.26046 −0.186804
\(794\) −5.51092 5.55559i −0.195575 0.197161i
\(795\) −5.00730 4.50520i −0.177591 0.159783i
\(796\) −18.1404 0.146474i −0.642968 0.00519165i
\(797\) 29.3102i 1.03822i −0.854707 0.519110i \(-0.826263\pi\)
0.854707 0.519110i \(-0.173737\pi\)
\(798\) −0.00740984 0.152041i −0.000262305 0.00538220i
\(799\) 69.5128i 2.45918i
\(800\) 3.91845 + 4.07992i 0.138538 + 0.144247i
\(801\) −38.0888 + 4.03213i −1.34580 + 0.142468i
\(802\) −23.5165 + 23.3274i −0.830398 + 0.823720i
\(803\) 16.3555 0.577172
\(804\) 31.5385 + 28.8402i 1.11228 + 1.01711i
\(805\) −0.00245776 −8.66248e−5
\(806\) 11.0961 11.0068i 0.390842 0.387699i
\(807\) −22.0904 + 24.5524i −0.777619 + 0.864284i
\(808\) 19.3689 + 19.8439i 0.681396 + 0.698104i
\(809\) 22.8065i 0.801834i −0.916114 0.400917i \(-0.868692\pi\)
0.916114 0.400917i \(-0.131308\pi\)
\(810\) 6.95921 10.6569i 0.244522 0.374445i
\(811\) 6.56401i 0.230493i −0.993337 0.115247i \(-0.963234\pi\)
0.993337 0.115247i \(-0.0367659\pi\)
\(812\) 0.0111572 1.38178i 0.000391540 0.0484910i
\(813\) 34.4934 38.3377i 1.20974 1.34456i
\(814\) −20.6895 20.8573i −0.725168 0.731047i
\(815\) 9.97769 0.349503
\(816\) −25.8205 + 27.7825i −0.903898 + 0.972581i
\(817\) 0.420625 0.0147158
\(818\) −15.3080 15.4321i −0.535230 0.539569i
\(819\) −0.620871 + 0.0657264i −0.0216950 + 0.00229667i
\(820\) 0.164495 20.3721i 0.00574440 0.711425i
\(821\) 3.07048i 0.107161i 0.998564 + 0.0535803i \(0.0170633\pi\)
−0.998564 + 0.0535803i \(0.982937\pi\)
\(822\) 48.5555 2.36639i 1.69357 0.0825372i
\(823\) 47.6806i 1.66204i −0.556242 0.831020i \(-0.687757\pi\)
0.556242 0.831020i \(-0.312243\pi\)
\(824\) −6.59875 6.76056i −0.229878 0.235515i
\(825\) −3.25130 2.92528i −0.113196 0.101845i
\(826\) 0.0170406 0.0169035i 0.000592917 0.000588149i
\(827\) 50.9861 1.77296 0.886480 0.462766i \(-0.153143\pi\)
0.886480 + 0.462766i \(0.153143\pi\)
\(828\) −0.0705226 + 0.00689030i −0.00245083 + 0.000239455i
\(829\) 31.4647 1.09282 0.546408 0.837519i \(-0.315995\pi\)
0.546408 + 0.837519i \(0.315995\pi\)
\(830\) −7.23931 + 7.18109i −0.251280 + 0.249259i
\(831\) −39.1164 35.1940i −1.35693 1.22087i
\(832\) 0.193765 7.99765i 0.00671759 0.277269i
\(833\) 38.0844i 1.31954i
\(834\) −13.6103 + 0.663309i −0.471287 + 0.0229685i
\(835\) 14.2261i 0.492316i
\(836\) −1.50797 0.0121761i −0.0521542 0.000421119i
\(837\) 46.4960 + 33.7016i 1.60714 + 1.16490i
\(838\) −27.2866 27.5078i −0.942599 0.950241i
\(839\) −7.13796 −0.246430 −0.123215 0.992380i \(-0.539320\pi\)
−0.123215 + 0.992380i \(0.539320\pi\)
\(840\) 1.01870 0.0414054i 0.0351486 0.00142862i
\(841\) 17.9784 0.619944
\(842\) −7.36454 7.42425i −0.253799 0.255856i
\(843\) 36.0653 40.0847i 1.24215 1.38059i
\(844\) −38.9575 0.314562i −1.34097 0.0108277i
\(845\) 1.00000i 0.0344010i
\(846\) −34.0397 + 41.7541i −1.17031 + 1.43553i
\(847\) 0.962305i 0.0330652i
\(848\) 0.251189 15.5534i 0.00862586 0.534107i
\(849\) 7.01514 7.79697i 0.240759 0.267591i
\(850\) −5.49655 + 5.45235i −0.188530 + 0.187014i
\(851\) −0.0971572 −0.00333050
\(852\) −4.13465 + 4.52149i −0.141651 + 0.154904i
\(853\) −30.0514 −1.02894 −0.514471 0.857508i \(-0.672012\pi\)
−0.514471 + 0.857508i \(0.672012\pi\)
\(854\) 1.09918 1.09034i 0.0376133 0.0373108i
\(855\) −0.0943061 0.890844i −0.00322520 0.0304662i
\(856\) −14.8203 + 14.4656i −0.506547 + 0.494423i
\(857\) 29.7412i 1.01594i 0.861375 + 0.507970i \(0.169604\pi\)
−0.861375 + 0.507970i \(0.830396\pi\)
\(858\) 0.301082 + 6.17784i 0.0102788 + 0.210908i
\(859\) 40.6794i 1.38796i 0.719993 + 0.693981i \(0.244145\pi\)
−0.719993 + 0.693981i \(0.755855\pi\)
\(860\) −0.0227471 + 2.81715i −0.000775669 + 0.0960641i
\(861\) −2.72961 2.45590i −0.0930249 0.0836970i
\(862\) 23.0591 + 23.2461i 0.785397 + 0.791764i
\(863\) −28.9035 −0.983888 −0.491944 0.870627i \(-0.663714\pi\)
−0.491944 + 0.870627i \(0.663714\pi\)
\(864\) 29.1144 4.04400i 0.990491 0.137580i
\(865\) −2.62887 −0.0893842
\(866\) −22.8084 22.9933i −0.775059 0.781343i
\(867\) −16.7003 15.0257i −0.567171 0.510299i
\(868\) −0.0371410 + 4.59979i −0.00126065 + 0.156127i
\(869\) 18.7009i 0.634385i
\(870\) −0.395850 8.12238i −0.0134206 0.275374i
\(871\) 12.3370i 0.418025i
\(872\) 19.9839 19.5056i 0.676740 0.660542i
\(873\) 2.77472 + 26.2109i 0.0939101 + 0.887103i
\(874\) −0.00354068 + 0.00351221i −0.000119765 + 0.000118802i
\(875\) 0.208113 0.00703552
\(876\) −15.1417 + 16.5583i −0.511590 + 0.559454i
\(877\) 46.9152 1.58421 0.792107 0.610382i \(-0.208984\pi\)
0.792107 + 0.610382i \(0.208984\pi\)
\(878\) 29.4158 29.1792i 0.992735 0.984752i
\(879\) 14.4437 16.0534i 0.487173 0.541468i
\(880\) 0.163100 10.0990i 0.00549809 0.340438i
\(881\) 33.9403i 1.14348i 0.820436 + 0.571738i \(0.193731\pi\)
−0.820436 + 0.571738i \(0.806269\pi\)
\(882\) −18.6495 + 22.8761i −0.627963 + 0.770277i
\(883\) 55.2438i 1.85910i 0.368695 + 0.929550i \(0.379805\pi\)
−0.368695 + 0.929550i \(0.620195\pi\)
\(884\) 10.9486 + 0.0884047i 0.368242 + 0.00297337i
\(885\) 0.0944775 0.105007i 0.00317583 0.00352977i
\(886\) −33.3398 33.6101i −1.12007 1.12915i
\(887\) 39.4863 1.32582 0.662909 0.748700i \(-0.269321\pi\)
0.662909 + 0.748700i \(0.269321\pi\)
\(888\) 40.2700 1.63679i 1.35137 0.0549269i
\(889\) 1.42050 0.0476419
\(890\) −12.7155 12.8186i −0.426226 0.429682i
\(891\) −22.2221 + 4.75825i −0.744467 + 0.159407i
\(892\) 13.3643 + 0.107910i 0.447470 + 0.00361310i
\(893\) 3.79158i 0.126881i
\(894\) −23.5924 + 1.14979i −0.789046 + 0.0384548i
\(895\) 12.9002i 0.431208i
\(896\) 1.61720 + 1.71129i 0.0540268 + 0.0571701i
\(897\) 0.0152062 + 0.0136814i 0.000507720 + 0.000456809i
\(898\) 29.9516 29.7107i 0.999498 0.991460i
\(899\) 36.6898 1.22367
\(900\) 5.97157 0.583443i 0.199052 0.0194481i
\(901\) 21.2896 0.709259
\(902\) −25.8251 + 25.6175i −0.859883 + 0.852968i
\(903\) 0.377464 + 0.339614i 0.0125612 + 0.0113016i
\(904\) −23.0048 23.5689i −0.765129 0.783891i
\(905\) 12.7040i 0.422294i
\(906\) 1.38562 0.0675294i 0.0460343 0.00224351i
\(907\) 4.88820i 0.162310i 0.996701 + 0.0811551i \(0.0258609\pi\)
−0.996701 + 0.0811551i \(0.974139\pi\)
\(908\) 0.110942 13.7397i 0.00368172 0.455969i
\(909\) 29.2483 3.09627i 0.970105 0.102697i
\(910\) −0.207272 0.208952i −0.00687099 0.00692669i
\(911\) −3.88505 −0.128718 −0.0643588 0.997927i \(-0.520500\pi\)
−0.0643588 + 0.997927i \(0.520500\pi\)
\(912\) 1.40838 1.51540i 0.0466362 0.0501799i
\(913\) 18.2065 0.602548
\(914\) 15.0320 + 15.1538i 0.497213 + 0.501244i
\(915\) 6.09416 6.77335i 0.201467 0.223920i
\(916\) −0.166963 + 20.6779i −0.00551663 + 0.683216i
\(917\) 0.361788i 0.0119473i
\(918\) 6.17743 + 39.7520i 0.203886 + 1.31201i
\(919\) 17.3023i 0.570751i 0.958416 + 0.285376i \(0.0921183\pi\)
−0.958416 + 0.285376i \(0.907882\pi\)
\(920\) −0.0233317 0.0239038i −0.000769222 0.000788085i
\(921\) −15.2395 + 16.9379i −0.502158 + 0.558123i
\(922\) −12.7344 + 12.6320i −0.419384 + 0.416012i
\(923\) 1.76869 0.0582172
\(924\) −1.34340 1.22847i −0.0441947 0.0404136i
\(925\) 8.22687 0.270498
\(926\) 40.2218 39.8983i 1.32177 1.31114i
\(927\) −9.96454 + 1.05486i −0.327279 + 0.0346462i
\(928\) 13.5449 13.0088i 0.444632 0.427034i
\(929\) 9.17907i 0.301155i −0.988598 0.150578i \(-0.951887\pi\)
0.988598 0.150578i \(-0.0481134\pi\)
\(930\) 1.31774 + 27.0385i 0.0432105 + 0.886628i
\(931\) 2.07732i 0.0680813i
\(932\) 24.1771 + 0.195218i 0.791948 + 0.00639458i
\(933\) −12.9285 11.6321i −0.423261 0.380819i
\(934\) 22.5329 + 22.7156i 0.737300 + 0.743277i
\(935\) 13.8236 0.452079
\(936\) −6.53320 5.41454i −0.213544 0.176980i
\(937\) −31.1561 −1.01783 −0.508913 0.860818i \(-0.669952\pi\)
−0.508913 + 0.860818i \(0.669952\pi\)
\(938\) 2.55712 + 2.57785i 0.0834928 + 0.0841697i
\(939\) −29.4336 26.4822i −0.960529 0.864213i
\(940\) −25.3943 0.205046i −0.828271 0.00668787i
\(941\) 43.3144i 1.41201i 0.708208 + 0.706004i \(0.249504\pi\)
−0.708208 + 0.706004i \(0.750496\pi\)
\(942\) −0.812969 16.6812i −0.0264880 0.543502i
\(943\) 0.120298i 0.00391746i
\(944\) 0.326168 + 0.00526763i 0.0106159 + 0.000171447i
\(945\) 0.634641 0.875576i 0.0206449 0.0284825i
\(946\) 3.57122 3.54250i 0.116110 0.115177i
\(947\) 52.7472 1.71405 0.857027 0.515271i \(-0.172309\pi\)
0.857027 + 0.515271i \(0.172309\pi\)
\(948\) 18.9329 + 17.3130i 0.614911 + 0.562301i
\(949\) 6.47719 0.210259
\(950\) 0.299810 0.297399i 0.00972713 0.00964891i
\(951\) 6.06173 6.73730i 0.196565 0.218472i
\(952\) −2.30606 + 2.25087i −0.0747399 + 0.0729511i
\(953\) 36.8574i 1.19393i 0.802268 + 0.596964i \(0.203627\pi\)
−0.802268 + 0.596964i \(0.796373\pi\)
\(954\) −12.7880 10.4253i −0.414026 0.337532i
\(955\) 25.1309i 0.813217i
\(956\) −0.439416 + 54.4202i −0.0142117 + 1.76008i
\(957\) −9.71157 + 10.7939i −0.313931 + 0.348918i
\(958\) −34.1146 34.3912i −1.10219 1.11113i
\(959\) 4.13027 0.133373
\(960\) 10.0733 + 9.51466i 0.325114 + 0.307084i
\(961\) −91.1362 −2.93988
\(962\) −8.19359 8.26002i −0.264172 0.266314i
\(963\) 2.31243 + 21.8439i 0.0745172 + 0.703911i
\(964\) −0.0381450 + 4.72413i −0.00122857 + 0.152154i
\(965\) 19.6770i 0.633425i
\(966\) −0.00601313 0.000293054i −0.000193469 9.42887e-6i
\(967\) 7.75515i 0.249389i −0.992195 0.124694i \(-0.960205\pi\)
0.992195 0.124694i \(-0.0397951\pi\)
\(968\) 9.35921 9.13520i 0.300816 0.293617i
\(969\) 2.10487 + 1.89381i 0.0676181 + 0.0608378i
\(970\) −8.82117 + 8.75023i −0.283231 + 0.280953i
\(971\) 33.9405 1.08920 0.544602 0.838695i \(-0.316681\pi\)
0.544602 + 0.838695i \(0.316681\pi\)
\(972\) 15.7556 26.9028i 0.505361 0.862908i
\(973\) −1.15773 −0.0371152
\(974\) 10.2621 10.1796i 0.328820 0.326176i
\(975\) −1.28760 1.15849i −0.0412362 0.0371012i
\(976\) 21.0391 + 0.339782i 0.673444 + 0.0108762i
\(977\) 33.6692i 1.07717i −0.842570 0.538587i \(-0.818958\pi\)
0.842570 0.538587i \(-0.181042\pi\)
\(978\) 24.4113 1.18970i 0.780586 0.0380425i
\(979\) 32.2383i 1.03034i
\(980\) −13.9129 0.112340i −0.444432 0.00358857i
\(981\) −3.11812 29.4547i −0.0995539 0.940416i
\(982\) −12.1474 12.2459i −0.387640 0.390783i
\(983\) −19.8583 −0.633380 −0.316690 0.948529i \(-0.602572\pi\)
−0.316690 + 0.948529i \(0.602572\pi\)
\(984\) −2.02664 49.8617i −0.0646070 1.58953i
\(985\) 11.7538 0.374508
\(986\) 18.1012 + 18.2479i 0.576458 + 0.581132i
\(987\) −3.06134 + 3.40252i −0.0974435 + 0.108304i
\(988\) −0.597195 0.00482205i −0.0189993 0.000153410i
\(989\) 0.0166354i 0.000528976i
\(990\) −8.30338 6.76927i −0.263899 0.215141i
\(991\) 45.4986i 1.44531i 0.691208 + 0.722656i \(0.257079\pi\)
−0.691208 + 0.722656i \(0.742921\pi\)
\(992\) −45.0894 + 43.3048i −1.43159 + 1.37493i
\(993\) −33.3323 + 37.0472i −1.05777 + 1.17566i
\(994\) −0.369572 + 0.366599i −0.0117221 + 0.0116278i
\(995\) −9.07048 −0.287554
\(996\) −16.8554 + 18.4323i −0.534082 + 0.584051i
\(997\) 29.7314 0.941604 0.470802 0.882239i \(-0.343965\pi\)
0.470802 + 0.882239i \(0.343965\pi\)
\(998\) 12.7884 12.6856i 0.404811 0.401556i
\(999\) 25.0878 34.6121i 0.793744 1.09508i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.g.d.131.26 yes 32
3.2 odd 2 inner 780.2.g.d.131.7 32
4.3 odd 2 inner 780.2.g.d.131.8 yes 32
12.11 even 2 inner 780.2.g.d.131.25 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.g.d.131.7 32 3.2 odd 2 inner
780.2.g.d.131.8 yes 32 4.3 odd 2 inner
780.2.g.d.131.25 yes 32 12.11 even 2 inner
780.2.g.d.131.26 yes 32 1.1 even 1 trivial