Properties

Label 780.2.g.d.131.23
Level $780$
Weight $2$
Character 780.131
Analytic conductor $6.228$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(131,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.23
Character \(\chi\) \(=\) 780.131
Dual form 780.2.g.d.131.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.885473 - 1.10270i) q^{2} +(1.58822 + 0.691055i) q^{3} +(-0.431874 - 1.95281i) q^{4} +1.00000i q^{5} +(2.16835 - 1.13941i) q^{6} +2.86589i q^{7} +(-2.53577 - 1.25294i) q^{8} +(2.04489 + 2.19509i) q^{9} +(1.10270 + 0.885473i) q^{10} +4.24800 q^{11} +(0.663591 - 3.39995i) q^{12} +1.00000 q^{13} +(3.16020 + 2.53767i) q^{14} +(-0.691055 + 1.58822i) q^{15} +(-3.62697 + 1.68674i) q^{16} +6.17427i q^{17} +(4.23121 - 0.311189i) q^{18} -2.87129i q^{19} +(1.95281 - 0.431874i) q^{20} +(-1.98048 + 4.55166i) q^{21} +(3.76149 - 4.68425i) q^{22} -3.95180 q^{23} +(-3.16152 - 3.74230i) q^{24} -1.00000 q^{25} +(0.885473 - 1.10270i) q^{26} +(1.73080 + 4.89942i) q^{27} +(5.59654 - 1.23770i) q^{28} -10.2281i q^{29} +(1.13941 + 2.16835i) q^{30} -7.95193i q^{31} +(-1.35162 + 5.49301i) q^{32} +(6.74675 + 2.93560i) q^{33} +(6.80834 + 5.46715i) q^{34} -2.86589 q^{35} +(3.40348 - 4.94129i) q^{36} +9.09015 q^{37} +(-3.16615 - 2.54245i) q^{38} +(1.58822 + 0.691055i) q^{39} +(1.25294 - 2.53577i) q^{40} +4.90666i q^{41} +(3.26543 + 6.21424i) q^{42} -0.365453i q^{43} +(-1.83460 - 8.29555i) q^{44} +(-2.19509 + 2.04489i) q^{45} +(-3.49921 + 4.35763i) q^{46} -9.74823 q^{47} +(-6.92606 + 0.172481i) q^{48} -1.21330 q^{49} +(-0.885473 + 1.10270i) q^{50} +(-4.26676 + 9.80610i) q^{51} +(-0.431874 - 1.95281i) q^{52} -11.9264i q^{53} +(6.93515 + 2.42976i) q^{54} +4.24800i q^{55} +(3.59078 - 7.26724i) q^{56} +(1.98422 - 4.56023i) q^{57} +(-11.2784 - 9.05667i) q^{58} -3.66920 q^{59} +(3.39995 + 0.663591i) q^{60} +8.03057 q^{61} +(-8.76856 - 7.04122i) q^{62} +(-6.29089 + 5.86041i) q^{63} +(4.86029 + 6.35434i) q^{64} +1.00000i q^{65} +(9.21114 - 4.84022i) q^{66} +1.85359i q^{67} +(12.0572 - 2.66651i) q^{68} +(-6.27633 - 2.73091i) q^{69} +(-2.53767 + 3.16020i) q^{70} -5.11426 q^{71} +(-2.43505 - 8.12838i) q^{72} -14.0499 q^{73} +(8.04908 - 10.0237i) q^{74} +(-1.58822 - 0.691055i) q^{75} +(-5.60709 + 1.24003i) q^{76} +12.1743i q^{77} +(2.16835 - 1.13941i) q^{78} -1.80212i q^{79} +(-1.68674 - 3.62697i) q^{80} +(-0.636882 + 8.97744i) q^{81} +(5.41056 + 4.34472i) q^{82} -16.1101 q^{83} +(9.74386 + 1.90178i) q^{84} -6.17427 q^{85} +(-0.402983 - 0.323599i) q^{86} +(7.06815 - 16.2444i) q^{87} +(-10.7720 - 5.32248i) q^{88} +6.13592i q^{89} +(0.311189 + 4.23121i) q^{90} +2.86589i q^{91} +(1.70668 + 7.71713i) q^{92} +(5.49522 - 12.6294i) q^{93} +(-8.63180 + 10.7493i) q^{94} +2.87129 q^{95} +(-5.94264 + 7.79006i) q^{96} +9.93736 q^{97} +(-1.07435 + 1.33790i) q^{98} +(8.68667 + 9.32475i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 10 q^{6} + 12 q^{9} + 6 q^{10} - 20 q^{12} + 32 q^{13} - 6 q^{16} + 4 q^{18} + 20 q^{21} + 16 q^{22} + 10 q^{24} - 32 q^{25} + 16 q^{28} + 16 q^{33} + 28 q^{34} + 30 q^{36} - 24 q^{37}+ \cdots + 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.885473 1.10270i 0.626124 0.779723i
\(3\) 1.58822 + 0.691055i 0.916959 + 0.398981i
\(4\) −0.431874 1.95281i −0.215937 0.976407i
\(5\) 1.00000i 0.447214i
\(6\) 2.16835 1.13941i 0.885225 0.465163i
\(7\) 2.86589i 1.08320i 0.840635 + 0.541602i \(0.182182\pi\)
−0.840635 + 0.541602i \(0.817818\pi\)
\(8\) −2.53577 1.25294i −0.896531 0.442981i
\(9\) 2.04489 + 2.19509i 0.681629 + 0.731698i
\(10\) 1.10270 + 0.885473i 0.348703 + 0.280011i
\(11\) 4.24800 1.28082 0.640409 0.768034i \(-0.278765\pi\)
0.640409 + 0.768034i \(0.278765\pi\)
\(12\) 0.663591 3.39995i 0.191562 0.981480i
\(13\) 1.00000 0.277350
\(14\) 3.16020 + 2.53767i 0.844599 + 0.678220i
\(15\) −0.691055 + 1.58822i −0.178430 + 0.410077i
\(16\) −3.62697 + 1.68674i −0.906742 + 0.421685i
\(17\) 6.17427i 1.49748i 0.662863 + 0.748740i \(0.269341\pi\)
−0.662863 + 0.748740i \(0.730659\pi\)
\(18\) 4.23121 0.311189i 0.997306 0.0733479i
\(19\) 2.87129i 0.658718i −0.944205 0.329359i \(-0.893167\pi\)
0.944205 0.329359i \(-0.106833\pi\)
\(20\) 1.95281 0.431874i 0.436663 0.0965700i
\(21\) −1.98048 + 4.55166i −0.432177 + 0.993253i
\(22\) 3.76149 4.68425i 0.801952 0.998685i
\(23\) −3.95180 −0.824007 −0.412004 0.911182i \(-0.635171\pi\)
−0.412004 + 0.911182i \(0.635171\pi\)
\(24\) −3.16152 3.74230i −0.645342 0.763894i
\(25\) −1.00000 −0.200000
\(26\) 0.885473 1.10270i 0.173656 0.216256i
\(27\) 1.73080 + 4.89942i 0.333092 + 0.942894i
\(28\) 5.59654 1.23770i 1.05765 0.233904i
\(29\) 10.2281i 1.89930i −0.313311 0.949651i \(-0.601438\pi\)
0.313311 0.949651i \(-0.398562\pi\)
\(30\) 1.13941 + 2.16835i 0.208027 + 0.395885i
\(31\) 7.95193i 1.42821i −0.700039 0.714104i \(-0.746834\pi\)
0.700039 0.714104i \(-0.253166\pi\)
\(32\) −1.35162 + 5.49301i −0.238935 + 0.971035i
\(33\) 6.74675 + 2.93560i 1.17446 + 0.511022i
\(34\) 6.80834 + 5.46715i 1.16762 + 0.937609i
\(35\) −2.86589 −0.484423
\(36\) 3.40348 4.94129i 0.567247 0.823548i
\(37\) 9.09015 1.49441 0.747206 0.664593i \(-0.231395\pi\)
0.747206 + 0.664593i \(0.231395\pi\)
\(38\) −3.16615 2.54245i −0.513618 0.412439i
\(39\) 1.58822 + 0.691055i 0.254319 + 0.110657i
\(40\) 1.25294 2.53577i 0.198107 0.400941i
\(41\) 4.90666i 0.766292i 0.923688 + 0.383146i \(0.125159\pi\)
−0.923688 + 0.383146i \(0.874841\pi\)
\(42\) 3.26543 + 6.21424i 0.503866 + 0.958878i
\(43\) 0.365453i 0.0557310i −0.999612 0.0278655i \(-0.991129\pi\)
0.999612 0.0278655i \(-0.00887102\pi\)
\(44\) −1.83460 8.29555i −0.276576 1.25060i
\(45\) −2.19509 + 2.04489i −0.327225 + 0.304834i
\(46\) −3.49921 + 4.35763i −0.515931 + 0.642498i
\(47\) −9.74823 −1.42193 −0.710963 0.703230i \(-0.751741\pi\)
−0.710963 + 0.703230i \(0.751741\pi\)
\(48\) −6.92606 + 0.172481i −0.999690 + 0.0248955i
\(49\) −1.21330 −0.173329
\(50\) −0.885473 + 1.10270i −0.125225 + 0.155945i
\(51\) −4.26676 + 9.80610i −0.597466 + 1.37313i
\(52\) −0.431874 1.95281i −0.0598902 0.270807i
\(53\) 11.9264i 1.63821i −0.573640 0.819107i \(-0.694469\pi\)
0.573640 0.819107i \(-0.305531\pi\)
\(54\) 6.93515 + 2.42976i 0.943754 + 0.330649i
\(55\) 4.24800i 0.572800i
\(56\) 3.59078 7.26724i 0.479838 0.971125i
\(57\) 1.98422 4.56023i 0.262816 0.604018i
\(58\) −11.2784 9.05667i −1.48093 1.18920i
\(59\) −3.66920 −0.477689 −0.238845 0.971058i \(-0.576769\pi\)
−0.238845 + 0.971058i \(0.576769\pi\)
\(60\) 3.39995 + 0.663591i 0.438931 + 0.0856692i
\(61\) 8.03057 1.02821 0.514105 0.857727i \(-0.328124\pi\)
0.514105 + 0.857727i \(0.328124\pi\)
\(62\) −8.76856 7.04122i −1.11361 0.894236i
\(63\) −6.29089 + 5.86041i −0.792578 + 0.738342i
\(64\) 4.86029 + 6.35434i 0.607536 + 0.794292i
\(65\) 1.00000i 0.124035i
\(66\) 9.21114 4.84022i 1.13381 0.595790i
\(67\) 1.85359i 0.226452i 0.993569 + 0.113226i \(0.0361184\pi\)
−0.993569 + 0.113226i \(0.963882\pi\)
\(68\) 12.0572 2.66651i 1.46215 0.323362i
\(69\) −6.27633 2.73091i −0.755581 0.328763i
\(70\) −2.53767 + 3.16020i −0.303309 + 0.377716i
\(71\) −5.11426 −0.606951 −0.303475 0.952839i \(-0.598147\pi\)
−0.303475 + 0.952839i \(0.598147\pi\)
\(72\) −2.43505 8.12838i −0.286973 0.957939i
\(73\) −14.0499 −1.64442 −0.822209 0.569186i \(-0.807259\pi\)
−0.822209 + 0.569186i \(0.807259\pi\)
\(74\) 8.04908 10.0237i 0.935687 1.16523i
\(75\) −1.58822 0.691055i −0.183392 0.0797962i
\(76\) −5.60709 + 1.24003i −0.643177 + 0.142242i
\(77\) 12.1743i 1.38739i
\(78\) 2.16835 1.13941i 0.245517 0.129013i
\(79\) 1.80212i 0.202755i −0.994848 0.101377i \(-0.967675\pi\)
0.994848 0.101377i \(-0.0323249\pi\)
\(80\) −1.68674 3.62697i −0.188583 0.405507i
\(81\) −0.636882 + 8.97744i −0.0707647 + 0.997493i
\(82\) 5.41056 + 4.34472i 0.597496 + 0.479794i
\(83\) −16.1101 −1.76831 −0.884155 0.467194i \(-0.845265\pi\)
−0.884155 + 0.467194i \(0.845265\pi\)
\(84\) 9.74386 + 1.90178i 1.06314 + 0.207501i
\(85\) −6.17427 −0.669694
\(86\) −0.402983 0.323599i −0.0434548 0.0348945i
\(87\) 7.06815 16.2444i 0.757785 1.74158i
\(88\) −10.7720 5.32248i −1.14829 0.567378i
\(89\) 6.13592i 0.650406i 0.945644 + 0.325203i \(0.105433\pi\)
−0.945644 + 0.325203i \(0.894567\pi\)
\(90\) 0.311189 + 4.23121i 0.0328022 + 0.446009i
\(91\) 2.86589i 0.300426i
\(92\) 1.70668 + 7.71713i 0.177934 + 0.804567i
\(93\) 5.49522 12.6294i 0.569828 1.30961i
\(94\) −8.63180 + 10.7493i −0.890302 + 1.10871i
\(95\) 2.87129 0.294588
\(96\) −5.94264 + 7.79006i −0.606518 + 0.795069i
\(97\) 9.93736 1.00899 0.504493 0.863416i \(-0.331679\pi\)
0.504493 + 0.863416i \(0.331679\pi\)
\(98\) −1.07435 + 1.33790i −0.108525 + 0.135149i
\(99\) 8.68667 + 9.32475i 0.873043 + 0.937173i
\(100\) 0.431874 + 1.95281i 0.0431874 + 0.195281i
\(101\) 1.71996i 0.171143i −0.996332 0.0855713i \(-0.972728\pi\)
0.996332 0.0855713i \(-0.0272715\pi\)
\(102\) 7.03504 + 13.3880i 0.696573 + 1.32561i
\(103\) 5.54725i 0.546587i 0.961931 + 0.273293i \(0.0881130\pi\)
−0.961931 + 0.273293i \(0.911887\pi\)
\(104\) −2.53577 1.25294i −0.248653 0.122861i
\(105\) −4.55166 1.98048i −0.444196 0.193276i
\(106\) −13.1512 10.5605i −1.27735 1.02573i
\(107\) 8.18510 0.791283 0.395642 0.918405i \(-0.370522\pi\)
0.395642 + 0.918405i \(0.370522\pi\)
\(108\) 8.82018 5.49586i 0.848722 0.528840i
\(109\) 7.39835 0.708633 0.354317 0.935125i \(-0.384713\pi\)
0.354317 + 0.935125i \(0.384713\pi\)
\(110\) 4.68425 + 3.76149i 0.446625 + 0.358644i
\(111\) 14.4372 + 6.28179i 1.37031 + 0.596241i
\(112\) −4.83401 10.3945i −0.456771 0.982186i
\(113\) 1.06302i 0.100000i −0.998749 0.0500002i \(-0.984078\pi\)
0.998749 0.0500002i \(-0.0159222\pi\)
\(114\) −3.27158 6.22595i −0.306411 0.583114i
\(115\) 3.95180i 0.368507i
\(116\) −19.9735 + 4.41723i −1.85449 + 0.410130i
\(117\) 2.04489 + 2.19509i 0.189050 + 0.202937i
\(118\) −3.24898 + 4.04601i −0.299093 + 0.372466i
\(119\) −17.6948 −1.62208
\(120\) 3.74230 3.16152i 0.341624 0.288606i
\(121\) 7.04547 0.640497
\(122\) 7.11086 8.85527i 0.643787 0.801719i
\(123\) −3.39077 + 7.79286i −0.305736 + 0.702659i
\(124\) −15.5286 + 3.43423i −1.39451 + 0.308403i
\(125\) 1.00000i 0.0894427i
\(126\) 0.891832 + 12.1262i 0.0794507 + 1.08029i
\(127\) 10.0625i 0.892904i −0.894808 0.446452i \(-0.852687\pi\)
0.894808 0.446452i \(-0.147313\pi\)
\(128\) 11.3106 + 0.267179i 0.999721 + 0.0236156i
\(129\) 0.252548 0.580419i 0.0222356 0.0511031i
\(130\) 1.10270 + 0.885473i 0.0967128 + 0.0776611i
\(131\) −16.0192 −1.39960 −0.699801 0.714338i \(-0.746728\pi\)
−0.699801 + 0.714338i \(0.746728\pi\)
\(132\) 2.81893 14.4430i 0.245356 1.25710i
\(133\) 8.22878 0.713525
\(134\) 2.04394 + 1.64130i 0.176570 + 0.141787i
\(135\) −4.89942 + 1.73080i −0.421675 + 0.148963i
\(136\) 7.73599 15.6566i 0.663355 1.34254i
\(137\) 4.54576i 0.388370i 0.980965 + 0.194185i \(0.0622063\pi\)
−0.980965 + 0.194185i \(0.937794\pi\)
\(138\) −8.56888 + 4.50273i −0.729432 + 0.383298i
\(139\) 16.3247i 1.38464i −0.721589 0.692321i \(-0.756588\pi\)
0.721589 0.692321i \(-0.243412\pi\)
\(140\) 1.23770 + 5.59654i 0.104605 + 0.472994i
\(141\) −15.4823 6.73656i −1.30385 0.567321i
\(142\) −4.52854 + 5.63947i −0.380027 + 0.473254i
\(143\) 4.24800 0.355235
\(144\) −11.1193 4.51235i −0.926608 0.376029i
\(145\) 10.2281 0.849393
\(146\) −12.4408 + 15.4928i −1.02961 + 1.28219i
\(147\) −1.92699 0.838459i −0.158936 0.0691549i
\(148\) −3.92580 17.7514i −0.322699 1.45915i
\(149\) 12.0625i 0.988199i 0.869405 + 0.494100i \(0.164502\pi\)
−0.869405 + 0.494100i \(0.835498\pi\)
\(150\) −2.16835 + 1.13941i −0.177045 + 0.0930326i
\(151\) 11.6403i 0.947273i −0.880721 0.473636i \(-0.842941\pi\)
0.880721 0.473636i \(-0.157059\pi\)
\(152\) −3.59755 + 7.28093i −0.291799 + 0.590561i
\(153\) −13.5531 + 12.6257i −1.09570 + 1.02073i
\(154\) 13.4245 + 10.7800i 1.08178 + 0.868676i
\(155\) 7.95193 0.638714
\(156\) 0.663591 3.39995i 0.0531298 0.272214i
\(157\) −5.20474 −0.415383 −0.207692 0.978194i \(-0.566595\pi\)
−0.207692 + 0.978194i \(0.566595\pi\)
\(158\) −1.98719 1.59573i −0.158093 0.126950i
\(159\) 8.24179 18.9417i 0.653616 1.50218i
\(160\) −5.49301 1.35162i −0.434260 0.106855i
\(161\) 11.3254i 0.892567i
\(162\) 9.33544 + 8.65157i 0.733461 + 0.679731i
\(163\) 4.40608i 0.345111i −0.985000 0.172556i \(-0.944798\pi\)
0.985000 0.172556i \(-0.0552024\pi\)
\(164\) 9.58181 2.11906i 0.748213 0.165471i
\(165\) −2.93560 + 6.74675i −0.228536 + 0.525234i
\(166\) −14.2650 + 17.7645i −1.10718 + 1.37879i
\(167\) −22.3785 −1.73170 −0.865849 0.500305i \(-0.833221\pi\)
−0.865849 + 0.500305i \(0.833221\pi\)
\(168\) 10.7250 9.06054i 0.827452 0.699036i
\(169\) 1.00000 0.0769231
\(170\) −5.46715 + 6.80834i −0.419311 + 0.522176i
\(171\) 6.30274 5.87145i 0.481983 0.449001i
\(172\) −0.713661 + 0.157830i −0.0544162 + 0.0120344i
\(173\) 9.57026i 0.727613i −0.931474 0.363807i \(-0.881477\pi\)
0.931474 0.363807i \(-0.118523\pi\)
\(174\) −11.6540 22.1780i −0.883485 1.68131i
\(175\) 2.86589i 0.216641i
\(176\) −15.4073 + 7.16527i −1.16137 + 0.540102i
\(177\) −5.82750 2.53562i −0.438022 0.190589i
\(178\) 6.76605 + 5.43319i 0.507137 + 0.407235i
\(179\) −1.70286 −0.127278 −0.0636388 0.997973i \(-0.520271\pi\)
−0.0636388 + 0.997973i \(0.520271\pi\)
\(180\) 4.94129 + 3.40348i 0.368302 + 0.253680i
\(181\) −2.18927 −0.162727 −0.0813635 0.996684i \(-0.525927\pi\)
−0.0813635 + 0.996684i \(0.525927\pi\)
\(182\) 3.16020 + 2.53767i 0.234250 + 0.188104i
\(183\) 12.7543 + 5.54957i 0.942826 + 0.410236i
\(184\) 10.0209 + 4.95136i 0.738748 + 0.365019i
\(185\) 9.09015i 0.668321i
\(186\) −9.06053 17.2426i −0.664350 1.26429i
\(187\) 26.2283i 1.91800i
\(188\) 4.21001 + 19.0365i 0.307047 + 1.38838i
\(189\) −14.0412 + 4.96027i −1.02135 + 0.360807i
\(190\) 2.54245 3.16615i 0.184448 0.229697i
\(191\) 14.3893 1.04117 0.520585 0.853810i \(-0.325714\pi\)
0.520585 + 0.853810i \(0.325714\pi\)
\(192\) 3.32801 + 13.4508i 0.240178 + 0.970729i
\(193\) 15.6033 1.12315 0.561575 0.827426i \(-0.310196\pi\)
0.561575 + 0.827426i \(0.310196\pi\)
\(194\) 8.79927 10.9579i 0.631750 0.786730i
\(195\) −0.691055 + 1.58822i −0.0494875 + 0.113735i
\(196\) 0.523994 + 2.36935i 0.0374282 + 0.169240i
\(197\) 25.9412i 1.84823i 0.382111 + 0.924116i \(0.375197\pi\)
−0.382111 + 0.924116i \(0.624803\pi\)
\(198\) 17.9742 1.32193i 1.27737 0.0939454i
\(199\) 7.25282i 0.514139i −0.966393 0.257069i \(-0.917243\pi\)
0.966393 0.257069i \(-0.0827569\pi\)
\(200\) 2.53577 + 1.25294i 0.179306 + 0.0885962i
\(201\) −1.28093 + 2.94391i −0.0903500 + 0.207647i
\(202\) −1.89659 1.52298i −0.133444 0.107156i
\(203\) 29.3124 2.05733
\(204\) 20.9922 + 4.09719i 1.46975 + 0.286861i
\(205\) −4.90666 −0.342696
\(206\) 6.11693 + 4.91194i 0.426187 + 0.342231i
\(207\) −8.08098 8.67458i −0.561667 0.602925i
\(208\) −3.62697 + 1.68674i −0.251485 + 0.116954i
\(209\) 12.1972i 0.843699i
\(210\) −6.21424 + 3.26543i −0.428823 + 0.225336i
\(211\) 7.99477i 0.550383i 0.961389 + 0.275191i \(0.0887412\pi\)
−0.961389 + 0.275191i \(0.911259\pi\)
\(212\) −23.2900 + 5.15070i −1.59956 + 0.353751i
\(213\) −8.12257 3.53423i −0.556549 0.242162i
\(214\) 7.24769 9.02567i 0.495442 0.616982i
\(215\) 0.365453 0.0249237
\(216\) 1.74977 14.5924i 0.119057 0.992887i
\(217\) 22.7893 1.54704
\(218\) 6.55104 8.15813i 0.443692 0.552538i
\(219\) −22.3144 9.70926i −1.50786 0.656091i
\(220\) 8.29555 1.83460i 0.559286 0.123689i
\(221\) 6.17427i 0.415326i
\(222\) 19.7106 10.3574i 1.32289 0.695145i
\(223\) 12.3219i 0.825137i 0.910926 + 0.412569i \(0.135368\pi\)
−0.910926 + 0.412569i \(0.864632\pi\)
\(224\) −15.7423 3.87360i −1.05183 0.258816i
\(225\) −2.04489 2.19509i −0.136326 0.146340i
\(226\) −1.17219 0.941274i −0.0779726 0.0626126i
\(227\) 19.7406 1.31023 0.655113 0.755531i \(-0.272621\pi\)
0.655113 + 0.755531i \(0.272621\pi\)
\(228\) −9.76222 1.90536i −0.646519 0.126185i
\(229\) −29.9806 −1.98118 −0.990588 0.136880i \(-0.956293\pi\)
−0.990588 + 0.136880i \(0.956293\pi\)
\(230\) −4.35763 3.49921i −0.287334 0.230731i
\(231\) −8.41309 + 19.3354i −0.553541 + 1.27218i
\(232\) −12.8151 + 25.9360i −0.841354 + 1.70278i
\(233\) 19.7267i 1.29234i −0.763195 0.646169i \(-0.776370\pi\)
0.763195 0.646169i \(-0.223630\pi\)
\(234\) 4.23121 0.311189i 0.276603 0.0203431i
\(235\) 9.74823i 0.635904i
\(236\) 1.58463 + 7.16527i 0.103151 + 0.466419i
\(237\) 1.24537 2.86217i 0.0808952 0.185918i
\(238\) −15.6682 + 19.5119i −1.01562 + 1.26477i
\(239\) 7.99750 0.517315 0.258658 0.965969i \(-0.416720\pi\)
0.258658 + 0.965969i \(0.416720\pi\)
\(240\) −0.172481 6.92606i −0.0111336 0.447075i
\(241\) −10.6112 −0.683526 −0.341763 0.939786i \(-0.611024\pi\)
−0.341763 + 0.939786i \(0.611024\pi\)
\(242\) 6.23857 7.76901i 0.401031 0.499411i
\(243\) −7.21541 + 13.8180i −0.462869 + 0.886427i
\(244\) −3.46820 15.6822i −0.222029 1.00395i
\(245\) 1.21330i 0.0775150i
\(246\) 5.59071 + 10.6394i 0.356451 + 0.678341i
\(247\) 2.87129i 0.182696i
\(248\) −9.96328 + 20.1643i −0.632669 + 1.28043i
\(249\) −25.5863 11.1329i −1.62147 0.705522i
\(250\) −1.10270 0.885473i −0.0697406 0.0560022i
\(251\) 1.26328 0.0797374 0.0398687 0.999205i \(-0.487306\pi\)
0.0398687 + 0.999205i \(0.487306\pi\)
\(252\) 14.1612 + 9.75398i 0.892070 + 0.614443i
\(253\) −16.7872 −1.05540
\(254\) −11.0959 8.91009i −0.696218 0.559069i
\(255\) −9.80610 4.26676i −0.614082 0.267195i
\(256\) 10.3098 12.2355i 0.644363 0.764720i
\(257\) 3.52977i 0.220181i −0.993922 0.110090i \(-0.964886\pi\)
0.993922 0.110090i \(-0.0351141\pi\)
\(258\) −0.416401 0.792429i −0.0259240 0.0493345i
\(259\) 26.0513i 1.61875i
\(260\) 1.95281 0.431874i 0.121108 0.0267837i
\(261\) 22.4515 20.9152i 1.38972 1.29462i
\(262\) −14.1846 + 17.6643i −0.876325 + 1.09130i
\(263\) 20.0297 1.23509 0.617543 0.786537i \(-0.288128\pi\)
0.617543 + 0.786537i \(0.288128\pi\)
\(264\) −13.4301 15.8973i −0.826566 0.978410i
\(265\) 11.9264 0.732632
\(266\) 7.28636 9.07383i 0.446755 0.556352i
\(267\) −4.24026 + 9.74519i −0.259499 + 0.596396i
\(268\) 3.61971 0.800517i 0.221109 0.0488994i
\(269\) 0.156032i 0.00951341i 0.999989 + 0.00475670i \(0.00151411\pi\)
−0.999989 + 0.00475670i \(0.998486\pi\)
\(270\) −2.42976 + 6.93515i −0.147871 + 0.422060i
\(271\) 5.40592i 0.328386i 0.986428 + 0.164193i \(0.0525020\pi\)
−0.986428 + 0.164193i \(0.947498\pi\)
\(272\) −10.4144 22.3939i −0.631466 1.35783i
\(273\) −1.98048 + 4.55166i −0.119864 + 0.275479i
\(274\) 5.01259 + 4.02515i 0.302822 + 0.243168i
\(275\) −4.24800 −0.256164
\(276\) −2.62238 + 13.4359i −0.157849 + 0.808747i
\(277\) −3.93265 −0.236290 −0.118145 0.992996i \(-0.537695\pi\)
−0.118145 + 0.992996i \(0.537695\pi\)
\(278\) −18.0012 14.4551i −1.07964 0.866958i
\(279\) 17.4552 16.2608i 1.04502 0.973508i
\(280\) 7.26724 + 3.59078i 0.434300 + 0.214590i
\(281\) 20.0451i 1.19579i 0.801574 + 0.597896i \(0.203996\pi\)
−0.801574 + 0.597896i \(0.796004\pi\)
\(282\) −21.1376 + 11.1073i −1.25872 + 0.661427i
\(283\) 8.25743i 0.490853i 0.969415 + 0.245427i \(0.0789281\pi\)
−0.969415 + 0.245427i \(0.921072\pi\)
\(284\) 2.20872 + 9.98720i 0.131063 + 0.592631i
\(285\) 4.56023 + 1.98422i 0.270125 + 0.117535i
\(286\) 3.76149 4.68425i 0.222421 0.276985i
\(287\) −14.0619 −0.830050
\(288\) −14.8216 + 8.26563i −0.873370 + 0.487057i
\(289\) −21.1216 −1.24245
\(290\) 9.05667 11.2784i 0.531826 0.662292i
\(291\) 15.7827 + 6.86726i 0.925199 + 0.402566i
\(292\) 6.06780 + 27.4369i 0.355091 + 1.60562i
\(293\) 0.770477i 0.0450117i −0.999747 0.0225059i \(-0.992836\pi\)
0.999747 0.0225059i \(-0.00716444\pi\)
\(294\) −2.63086 + 1.38245i −0.153435 + 0.0806262i
\(295\) 3.66920i 0.213629i
\(296\) −23.0506 11.3894i −1.33979 0.661996i
\(297\) 7.35242 + 20.8127i 0.426631 + 1.20768i
\(298\) 13.3013 + 10.6810i 0.770522 + 0.618735i
\(299\) −3.95180 −0.228538
\(300\) −0.663591 + 3.39995i −0.0383124 + 0.196296i
\(301\) 1.04735 0.0603680
\(302\) −12.8357 10.3072i −0.738611 0.593110i
\(303\) 1.18859 2.73168i 0.0682826 0.156931i
\(304\) 4.84311 + 10.4141i 0.277772 + 0.597288i
\(305\) 8.03057i 0.459829i
\(306\) 1.92136 + 26.1247i 0.109837 + 1.49345i
\(307\) 11.7703i 0.671765i −0.941904 0.335882i \(-0.890966\pi\)
0.941904 0.335882i \(-0.109034\pi\)
\(308\) 23.7741 5.25776i 1.35465 0.299588i
\(309\) −3.83346 + 8.81026i −0.218078 + 0.501198i
\(310\) 7.04122 8.76856i 0.399914 0.498020i
\(311\) 16.5939 0.940952 0.470476 0.882413i \(-0.344082\pi\)
0.470476 + 0.882413i \(0.344082\pi\)
\(312\) −3.16152 3.74230i −0.178986 0.211866i
\(313\) 24.4382 1.38133 0.690665 0.723175i \(-0.257318\pi\)
0.690665 + 0.723175i \(0.257318\pi\)
\(314\) −4.60866 + 5.73924i −0.260081 + 0.323884i
\(315\) −5.86041 6.29089i −0.330197 0.354452i
\(316\) −3.51921 + 0.778291i −0.197971 + 0.0437823i
\(317\) 4.48775i 0.252057i −0.992027 0.126029i \(-0.959777\pi\)
0.992027 0.126029i \(-0.0402231\pi\)
\(318\) −13.5891 25.8606i −0.762037 1.45019i
\(319\) 43.4487i 2.43266i
\(320\) −6.35434 + 4.86029i −0.355218 + 0.271698i
\(321\) 12.9997 + 5.65635i 0.725575 + 0.315707i
\(322\) −12.4885 10.0283i −0.695956 0.558858i
\(323\) 17.7281 0.986418
\(324\) 17.8063 2.63341i 0.989240 0.146301i
\(325\) −1.00000 −0.0554700
\(326\) −4.85857 3.90147i −0.269091 0.216082i
\(327\) 11.7502 + 5.11267i 0.649788 + 0.282731i
\(328\) 6.14775 12.4422i 0.339453 0.687005i
\(329\) 27.9373i 1.54023i
\(330\) 4.84022 + 9.21114i 0.266445 + 0.507057i
\(331\) 12.4242i 0.682898i −0.939900 0.341449i \(-0.889082\pi\)
0.939900 0.341449i \(-0.110918\pi\)
\(332\) 6.95753 + 31.4600i 0.381844 + 1.72659i
\(333\) 18.5883 + 19.9537i 1.01863 + 1.09346i
\(334\) −19.8155 + 24.6766i −1.08426 + 1.35025i
\(335\) −1.85359 −0.101272
\(336\) −0.494311 19.8493i −0.0269669 1.08287i
\(337\) −0.801900 −0.0436823 −0.0218411 0.999761i \(-0.506953\pi\)
−0.0218411 + 0.999761i \(0.506953\pi\)
\(338\) 0.885473 1.10270i 0.0481634 0.0599787i
\(339\) 0.734604 1.68831i 0.0398982 0.0916963i
\(340\) 2.66651 + 12.0572i 0.144612 + 0.653894i
\(341\) 33.7798i 1.82928i
\(342\) −0.893512 12.1490i −0.0483156 0.656944i
\(343\) 16.5840i 0.895453i
\(344\) −0.457890 + 0.926705i −0.0246878 + 0.0499646i
\(345\) 2.73091 6.27633i 0.147027 0.337906i
\(346\) −10.5531 8.47421i −0.567337 0.455576i
\(347\) −12.2298 −0.656532 −0.328266 0.944585i \(-0.606464\pi\)
−0.328266 + 0.944585i \(0.606464\pi\)
\(348\) −34.7748 6.78724i −1.86413 0.363834i
\(349\) 10.5505 0.564754 0.282377 0.959304i \(-0.408877\pi\)
0.282377 + 0.959304i \(0.408877\pi\)
\(350\) −3.16020 2.53767i −0.168920 0.135644i
\(351\) 1.73080 + 4.89942i 0.0923832 + 0.261512i
\(352\) −5.74169 + 23.3343i −0.306033 + 1.24372i
\(353\) 6.24582i 0.332431i 0.986089 + 0.166216i \(0.0531548\pi\)
−0.986089 + 0.166216i \(0.946845\pi\)
\(354\) −7.95611 + 4.18073i −0.422862 + 0.222203i
\(355\) 5.11426i 0.271437i
\(356\) 11.9823 2.64994i 0.635061 0.140447i
\(357\) −28.1032 12.2281i −1.48738 0.647177i
\(358\) −1.50783 + 1.87773i −0.0796915 + 0.0992413i
\(359\) −15.8661 −0.837382 −0.418691 0.908129i \(-0.637511\pi\)
−0.418691 + 0.908129i \(0.637511\pi\)
\(360\) 8.12838 2.43505i 0.428403 0.128338i
\(361\) 10.7557 0.566091
\(362\) −1.93854 + 2.41410i −0.101887 + 0.126882i
\(363\) 11.1898 + 4.86881i 0.587310 + 0.255546i
\(364\) 5.59654 1.23770i 0.293339 0.0648732i
\(365\) 14.0499i 0.735406i
\(366\) 17.4131 9.15013i 0.910197 0.478285i
\(367\) 12.0162i 0.627242i −0.949548 0.313621i \(-0.898458\pi\)
0.949548 0.313621i \(-0.101542\pi\)
\(368\) 14.3331 6.66566i 0.747162 0.347472i
\(369\) −10.7706 + 10.0336i −0.560695 + 0.522327i
\(370\) 10.0237 + 8.04908i 0.521106 + 0.418452i
\(371\) 34.1797 1.77452
\(372\) −27.0361 5.27683i −1.40176 0.273591i
\(373\) 1.95896 0.101431 0.0507154 0.998713i \(-0.483850\pi\)
0.0507154 + 0.998713i \(0.483850\pi\)
\(374\) 28.9218 + 23.2244i 1.49551 + 1.20091i
\(375\) 0.691055 1.58822i 0.0356859 0.0820153i
\(376\) 24.7193 + 12.2139i 1.27480 + 0.629886i
\(377\) 10.2281i 0.526771i
\(378\) −6.96343 + 19.8753i −0.358160 + 1.02228i
\(379\) 7.23188i 0.371477i −0.982599 0.185738i \(-0.940532\pi\)
0.982599 0.185738i \(-0.0594677\pi\)
\(380\) −1.24003 5.60709i −0.0636124 0.287638i
\(381\) 6.95375 15.9815i 0.356251 0.818756i
\(382\) 12.7413 15.8670i 0.651902 0.811825i
\(383\) 3.36662 0.172026 0.0860130 0.996294i \(-0.472587\pi\)
0.0860130 + 0.996294i \(0.472587\pi\)
\(384\) 17.7790 + 8.24055i 0.907281 + 0.420524i
\(385\) −12.1743 −0.620458
\(386\) 13.8163 17.2057i 0.703231 0.875746i
\(387\) 0.802203 0.747309i 0.0407783 0.0379879i
\(388\) −4.29169 19.4058i −0.217878 0.985181i
\(389\) 10.7830i 0.546720i −0.961912 0.273360i \(-0.911865\pi\)
0.961912 0.273360i \(-0.0881350\pi\)
\(390\) 1.13941 + 2.16835i 0.0576964 + 0.109799i
\(391\) 24.3995i 1.23394i
\(392\) 3.07666 + 1.52019i 0.155395 + 0.0767814i
\(393\) −25.4420 11.0701i −1.28338 0.558414i
\(394\) 28.6052 + 22.9702i 1.44111 + 1.15722i
\(395\) 1.80212 0.0906747
\(396\) 14.4580 20.9906i 0.726540 1.05482i
\(397\) −6.94070 −0.348344 −0.174172 0.984715i \(-0.555725\pi\)
−0.174172 + 0.984715i \(0.555725\pi\)
\(398\) −7.99765 6.42218i −0.400886 0.321915i
\(399\) 13.0691 + 5.68654i 0.654274 + 0.284683i
\(400\) 3.62697 1.68674i 0.181348 0.0843370i
\(401\) 14.0571i 0.701976i −0.936380 0.350988i \(-0.885846\pi\)
0.936380 0.350988i \(-0.114154\pi\)
\(402\) 2.11200 + 4.01923i 0.105337 + 0.200461i
\(403\) 7.95193i 0.396114i
\(404\) −3.35877 + 0.742807i −0.167105 + 0.0369560i
\(405\) −8.97744 0.636882i −0.446092 0.0316469i
\(406\) 25.9554 32.3227i 1.28814 1.60415i
\(407\) 38.6149 1.91407
\(408\) 23.1060 19.5201i 1.14392 0.966387i
\(409\) 18.1904 0.899460 0.449730 0.893165i \(-0.351520\pi\)
0.449730 + 0.893165i \(0.351520\pi\)
\(410\) −4.34472 + 5.41056i −0.214570 + 0.267208i
\(411\) −3.14137 + 7.21967i −0.154952 + 0.356120i
\(412\) 10.8328 2.39572i 0.533692 0.118028i
\(413\) 10.5155i 0.517434i
\(414\) −16.7209 + 1.22976i −0.821788 + 0.0604392i
\(415\) 16.1101i 0.790812i
\(416\) −1.35162 + 5.49301i −0.0662687 + 0.269317i
\(417\) 11.2813 25.9272i 0.552446 1.26966i
\(418\) −13.4498 10.8003i −0.657852 0.528260i
\(419\) 1.60040 0.0781848 0.0390924 0.999236i \(-0.487553\pi\)
0.0390924 + 0.999236i \(0.487553\pi\)
\(420\) −1.90178 + 9.74386i −0.0927971 + 0.475452i
\(421\) 19.1787 0.934715 0.467357 0.884068i \(-0.345206\pi\)
0.467357 + 0.884068i \(0.345206\pi\)
\(422\) 8.81580 + 7.07916i 0.429146 + 0.344608i
\(423\) −19.9340 21.3983i −0.969225 1.04042i
\(424\) −14.9430 + 30.2426i −0.725698 + 1.46871i
\(425\) 6.17427i 0.299496i
\(426\) −11.0895 + 5.82725i −0.537288 + 0.282331i
\(427\) 23.0147i 1.11376i
\(428\) −3.53493 15.9840i −0.170868 0.772615i
\(429\) 6.74675 + 2.93560i 0.325736 + 0.141732i
\(430\) 0.323599 0.402983i 0.0156053 0.0194336i
\(431\) −29.4738 −1.41970 −0.709851 0.704352i \(-0.751238\pi\)
−0.709851 + 0.704352i \(0.751238\pi\)
\(432\) −14.5416 14.8506i −0.699633 0.714502i
\(433\) 5.58729 0.268508 0.134254 0.990947i \(-0.457136\pi\)
0.134254 + 0.990947i \(0.457136\pi\)
\(434\) 20.1793 25.1297i 0.968639 1.20626i
\(435\) 16.2444 + 7.06815i 0.778859 + 0.338892i
\(436\) −3.19516 14.4476i −0.153020 0.691915i
\(437\) 11.3467i 0.542788i
\(438\) −30.4651 + 16.0086i −1.45568 + 0.764923i
\(439\) 8.86949i 0.423318i 0.977344 + 0.211659i \(0.0678865\pi\)
−0.977344 + 0.211659i \(0.932113\pi\)
\(440\) 5.32248 10.7720i 0.253739 0.513533i
\(441\) −2.48107 2.66331i −0.118146 0.126824i
\(442\) 6.80834 + 5.46715i 0.323840 + 0.260046i
\(443\) 29.0202 1.37879 0.689396 0.724385i \(-0.257876\pi\)
0.689396 + 0.724385i \(0.257876\pi\)
\(444\) 6.03214 30.9060i 0.286273 1.46674i
\(445\) −6.13592 −0.290870
\(446\) 13.5873 + 10.9107i 0.643379 + 0.516638i
\(447\) −8.33586 + 19.1579i −0.394272 + 0.906138i
\(448\) −18.2108 + 13.9290i −0.860380 + 0.658085i
\(449\) 14.7205i 0.694702i −0.937735 0.347351i \(-0.887081\pi\)
0.937735 0.347351i \(-0.112919\pi\)
\(450\) −4.23121 + 0.311189i −0.199461 + 0.0146696i
\(451\) 20.8435i 0.981482i
\(452\) −2.07588 + 0.459090i −0.0976411 + 0.0215938i
\(453\) 8.04407 18.4873i 0.377944 0.868610i
\(454\) 17.4797 21.7678i 0.820364 1.02161i
\(455\) −2.86589 −0.134355
\(456\) −10.7452 + 9.07761i −0.503191 + 0.425098i
\(457\) 9.67137 0.452407 0.226204 0.974080i \(-0.427369\pi\)
0.226204 + 0.974080i \(0.427369\pi\)
\(458\) −26.5470 + 33.0595i −1.24046 + 1.54477i
\(459\) −30.2504 + 10.6864i −1.41197 + 0.498799i
\(460\) −7.71713 + 1.70668i −0.359813 + 0.0795744i
\(461\) 35.3265i 1.64532i 0.568534 + 0.822660i \(0.307511\pi\)
−0.568534 + 0.822660i \(0.692489\pi\)
\(462\) 13.8715 + 26.3981i 0.645361 + 1.22815i
\(463\) 15.5886i 0.724463i 0.932088 + 0.362231i \(0.117985\pi\)
−0.932088 + 0.362231i \(0.882015\pi\)
\(464\) 17.2521 + 37.0968i 0.800907 + 1.72218i
\(465\) 12.6294 + 5.49522i 0.585675 + 0.254835i
\(466\) −21.7525 17.4674i −1.00767 0.809164i
\(467\) 12.6488 0.585315 0.292657 0.956217i \(-0.405460\pi\)
0.292657 + 0.956217i \(0.405460\pi\)
\(468\) 3.40348 4.94129i 0.157326 0.228411i
\(469\) −5.31217 −0.245293
\(470\) −10.7493 8.63180i −0.495830 0.398155i
\(471\) −8.26627 3.59676i −0.380890 0.165730i
\(472\) 9.30426 + 4.59729i 0.428263 + 0.211607i
\(473\) 1.55244i 0.0713813i
\(474\) −2.05336 3.90763i −0.0943140 0.179484i
\(475\) 2.87129i 0.131744i
\(476\) 7.64191 + 34.5546i 0.350266 + 1.58381i
\(477\) 26.1795 24.3881i 1.19868 1.11665i
\(478\) 7.08157 8.81881i 0.323904 0.403363i
\(479\) −15.3279 −0.700349 −0.350175 0.936684i \(-0.613878\pi\)
−0.350175 + 0.936684i \(0.613878\pi\)
\(480\) −7.79006 5.94264i −0.355566 0.271243i
\(481\) 9.09015 0.414475
\(482\) −9.39591 + 11.7009i −0.427972 + 0.532961i
\(483\) 7.82648 17.9872i 0.356117 0.818448i
\(484\) −3.04276 13.7585i −0.138307 0.625386i
\(485\) 9.93736i 0.451232i
\(486\) 8.84802 + 20.1919i 0.401354 + 0.915923i
\(487\) 23.9704i 1.08620i 0.839667 + 0.543101i \(0.182750\pi\)
−0.839667 + 0.543101i \(0.817250\pi\)
\(488\) −20.3637 10.0618i −0.921822 0.455477i
\(489\) 3.04485 6.99783i 0.137693 0.316453i
\(490\) −1.33790 1.07435i −0.0604403 0.0485340i
\(491\) −35.7975 −1.61552 −0.807759 0.589513i \(-0.799320\pi\)
−0.807759 + 0.589513i \(0.799320\pi\)
\(492\) 16.6824 + 3.25602i 0.752101 + 0.146793i
\(493\) 63.1508 2.84417
\(494\) −3.16615 2.54245i −0.142452 0.114390i
\(495\) −9.32475 + 8.68667i −0.419117 + 0.390437i
\(496\) 13.4128 + 28.8414i 0.602254 + 1.29502i
\(497\) 14.6569i 0.657451i
\(498\) −34.9323 + 18.3560i −1.56535 + 0.822553i
\(499\) 22.4553i 1.00524i −0.864509 0.502618i \(-0.832370\pi\)
0.864509 0.502618i \(-0.167630\pi\)
\(500\) −1.95281 + 0.431874i −0.0873325 + 0.0193140i
\(501\) −35.5419 15.4648i −1.58790 0.690914i
\(502\) 1.11860 1.39301i 0.0499255 0.0621731i
\(503\) −30.9647 −1.38065 −0.690323 0.723501i \(-0.742532\pi\)
−0.690323 + 0.723501i \(0.742532\pi\)
\(504\) 23.2950 6.97857i 1.03764 0.310850i
\(505\) 1.71996 0.0765373
\(506\) −14.8646 + 18.5112i −0.660814 + 0.822923i
\(507\) 1.58822 + 0.691055i 0.0705353 + 0.0306908i
\(508\) −19.6502 + 4.34574i −0.871838 + 0.192811i
\(509\) 3.40890i 0.151097i −0.997142 0.0755484i \(-0.975929\pi\)
0.997142 0.0755484i \(-0.0240708\pi\)
\(510\) −13.3880 + 7.03504i −0.592830 + 0.311517i
\(511\) 40.2654i 1.78124i
\(512\) −4.36299 22.2028i −0.192819 0.981234i
\(513\) 14.0676 4.96962i 0.621101 0.219414i
\(514\) −3.89226 3.12552i −0.171680 0.137861i
\(515\) −5.54725 −0.244441
\(516\) −1.24252 0.242511i −0.0546989 0.0106760i
\(517\) −41.4104 −1.82123
\(518\) 28.7267 + 23.0678i 1.26218 + 1.01354i
\(519\) 6.61358 15.1997i 0.290304 0.667192i
\(520\) 1.25294 2.53577i 0.0549450 0.111201i
\(521\) 4.40697i 0.193073i 0.995329 + 0.0965365i \(0.0307765\pi\)
−0.995329 + 0.0965365i \(0.969224\pi\)
\(522\) −3.18286 43.2771i −0.139310 1.89419i
\(523\) 25.4812i 1.11422i 0.830440 + 0.557108i \(0.188089\pi\)
−0.830440 + 0.557108i \(0.811911\pi\)
\(524\) 6.91827 + 31.2825i 0.302226 + 1.36658i
\(525\) 1.98048 4.55166i 0.0864354 0.198651i
\(526\) 17.7358 22.0867i 0.773317 0.963025i
\(527\) 49.0974 2.13872
\(528\) −29.4219 + 0.732698i −1.28042 + 0.0318866i
\(529\) −7.38328 −0.321012
\(530\) 10.5605 13.1512i 0.458718 0.571250i
\(531\) −7.50310 8.05424i −0.325607 0.349524i
\(532\) −3.55380 16.0693i −0.154077 0.696691i
\(533\) 4.90666i 0.212531i
\(534\) 6.99134 + 13.3048i 0.302545 + 0.575755i
\(535\) 8.18510i 0.353873i
\(536\) 2.32243 4.70028i 0.100314 0.203021i
\(537\) −2.70451 1.17677i −0.116708 0.0507813i
\(538\) 0.172055 + 0.138162i 0.00741783 + 0.00595658i
\(539\) −5.15410 −0.222003
\(540\) 5.49586 + 8.82018i 0.236504 + 0.379560i
\(541\) 8.98846 0.386444 0.193222 0.981155i \(-0.438106\pi\)
0.193222 + 0.981155i \(0.438106\pi\)
\(542\) 5.96108 + 4.78679i 0.256050 + 0.205610i
\(543\) −3.47704 1.51291i −0.149214 0.0649250i
\(544\) −33.9153 8.34528i −1.45411 0.357801i
\(545\) 7.39835i 0.316911i
\(546\) 3.26543 + 6.21424i 0.139747 + 0.265945i
\(547\) 32.3627i 1.38373i −0.722026 0.691866i \(-0.756789\pi\)
0.722026 0.691866i \(-0.243211\pi\)
\(548\) 8.87703 1.96320i 0.379208 0.0838636i
\(549\) 16.4216 + 17.6279i 0.700857 + 0.752339i
\(550\) −3.76149 + 4.68425i −0.160390 + 0.199737i
\(551\) −29.3677 −1.25110
\(552\) 12.4937 + 14.7888i 0.531766 + 0.629454i
\(553\) 5.16468 0.219625
\(554\) −3.48226 + 4.33651i −0.147947 + 0.184241i
\(555\) −6.28179 + 14.4372i −0.266647 + 0.612823i
\(556\) −31.8791 + 7.05022i −1.35197 + 0.298996i
\(557\) 29.7048i 1.25863i 0.777150 + 0.629316i \(0.216665\pi\)
−0.777150 + 0.629316i \(0.783335\pi\)
\(558\) −2.47455 33.6463i −0.104756 1.42436i
\(559\) 0.365453i 0.0154570i
\(560\) 10.3945 4.83401i 0.439247 0.204274i
\(561\) −18.1252 + 41.6563i −0.765246 + 1.75873i
\(562\) 22.1037 + 17.7494i 0.932386 + 0.748714i
\(563\) −3.63856 −0.153347 −0.0766735 0.997056i \(-0.524430\pi\)
−0.0766735 + 0.997056i \(0.524430\pi\)
\(564\) −6.46883 + 33.1435i −0.272387 + 1.39559i
\(565\) 1.06302 0.0447215
\(566\) 9.10543 + 7.31174i 0.382730 + 0.307335i
\(567\) −25.7283 1.82523i −1.08049 0.0766525i
\(568\) 12.9686 + 6.40786i 0.544150 + 0.268868i
\(569\) 24.8848i 1.04322i 0.853183 + 0.521612i \(0.174669\pi\)
−0.853183 + 0.521612i \(0.825331\pi\)
\(570\) 6.22595 3.27158i 0.260776 0.137031i
\(571\) 8.09283i 0.338674i 0.985558 + 0.169337i \(0.0541627\pi\)
−0.985558 + 0.169337i \(0.945837\pi\)
\(572\) −1.83460 8.29555i −0.0767085 0.346854i
\(573\) 22.8533 + 9.94377i 0.954711 + 0.415407i
\(574\) −12.4515 + 15.5060i −0.519714 + 0.647210i
\(575\) 3.95180 0.164801
\(576\) −4.00964 + 23.6627i −0.167068 + 0.985945i
\(577\) −43.9533 −1.82980 −0.914900 0.403681i \(-0.867730\pi\)
−0.914900 + 0.403681i \(0.867730\pi\)
\(578\) −18.7026 + 23.2907i −0.777927 + 0.968767i
\(579\) 24.7815 + 10.7827i 1.02988 + 0.448115i
\(580\) −4.41723 19.9735i −0.183416 0.829354i
\(581\) 46.1696i 1.91544i
\(582\) 21.5477 11.3227i 0.893180 0.469343i
\(583\) 50.6632i 2.09826i
\(584\) 35.6274 + 17.6037i 1.47427 + 0.728446i
\(585\) −2.19509 + 2.04489i −0.0907560 + 0.0845456i
\(586\) −0.849601 0.682236i −0.0350967 0.0281829i
\(587\) 40.9366 1.68963 0.844817 0.535055i \(-0.179709\pi\)
0.844817 + 0.535055i \(0.179709\pi\)
\(588\) −0.805136 + 4.12517i −0.0332033 + 0.170119i
\(589\) −22.8323 −0.940787
\(590\) −4.04601 3.24898i −0.166572 0.133758i
\(591\) −17.9268 + 41.2003i −0.737409 + 1.69475i
\(592\) −32.9697 + 15.3327i −1.35505 + 0.630171i
\(593\) 11.7674i 0.483230i 0.970372 + 0.241615i \(0.0776771\pi\)
−0.970372 + 0.241615i \(0.922323\pi\)
\(594\) 29.4605 + 10.3216i 1.20878 + 0.423502i
\(595\) 17.6948i 0.725414i
\(596\) 23.5558 5.20949i 0.964885 0.213389i
\(597\) 5.01210 11.5191i 0.205132 0.471444i
\(598\) −3.49921 + 4.35763i −0.143093 + 0.178197i
\(599\) 21.5307 0.879720 0.439860 0.898066i \(-0.355028\pi\)
0.439860 + 0.898066i \(0.355028\pi\)
\(600\) 3.16152 + 3.74230i 0.129068 + 0.152779i
\(601\) 40.9258 1.66940 0.834699 0.550706i \(-0.185642\pi\)
0.834699 + 0.550706i \(0.185642\pi\)
\(602\) 0.927397 1.15490i 0.0377979 0.0470703i
\(603\) −4.06880 + 3.79038i −0.165694 + 0.154356i
\(604\) −22.7313 + 5.02714i −0.924924 + 0.204551i
\(605\) 7.04547i 0.286439i
\(606\) −1.95975 3.72948i −0.0796092 0.151500i
\(607\) 19.5238i 0.792445i 0.918154 + 0.396223i \(0.129679\pi\)
−0.918154 + 0.396223i \(0.870321\pi\)
\(608\) 15.7720 + 3.88089i 0.639639 + 0.157391i
\(609\) 46.5546 + 20.2565i 1.88649 + 0.820835i
\(610\) 8.85527 + 7.11086i 0.358540 + 0.287910i
\(611\) −9.74823 −0.394371
\(612\) 30.5089 + 21.0140i 1.23325 + 0.849441i
\(613\) −21.4800 −0.867570 −0.433785 0.901016i \(-0.642822\pi\)
−0.433785 + 0.901016i \(0.642822\pi\)
\(614\) −12.9790 10.4223i −0.523791 0.420608i
\(615\) −7.79286 3.39077i −0.314239 0.136729i
\(616\) 15.2536 30.8712i 0.614586 1.24384i
\(617\) 2.91455i 0.117335i −0.998278 0.0586677i \(-0.981315\pi\)
0.998278 0.0586677i \(-0.0186852\pi\)
\(618\) 6.32061 + 12.0284i 0.254252 + 0.483852i
\(619\) 29.9890i 1.20536i 0.797983 + 0.602680i \(0.205901\pi\)
−0.797983 + 0.602680i \(0.794099\pi\)
\(620\) −3.43423 15.5286i −0.137922 0.623645i
\(621\) −6.83977 19.3615i −0.274470 0.776952i
\(622\) 14.6934 18.2980i 0.589153 0.733682i
\(623\) −17.5848 −0.704522
\(624\) −6.92606 + 0.172481i −0.277264 + 0.00690476i
\(625\) 1.00000 0.0400000
\(626\) 21.6394 26.9479i 0.864884 1.07706i
\(627\) 8.42894 19.3719i 0.336620 0.773637i
\(628\) 2.24779 + 10.1639i 0.0896967 + 0.405583i
\(629\) 56.1251i 2.23785i
\(630\) −12.1262 + 0.891832i −0.483118 + 0.0355314i
\(631\) 6.63487i 0.264130i −0.991241 0.132065i \(-0.957839\pi\)
0.991241 0.132065i \(-0.0421607\pi\)
\(632\) −2.25795 + 4.56978i −0.0898165 + 0.181776i
\(633\) −5.52483 + 12.6975i −0.219592 + 0.504679i
\(634\) −4.94862 3.97378i −0.196535 0.157819i
\(635\) 10.0625 0.399319
\(636\) −40.5491 7.91424i −1.60788 0.313820i
\(637\) −1.21330 −0.0480728
\(638\) −47.9107 38.4727i −1.89680 1.52315i
\(639\) −10.4581 11.2263i −0.413715 0.444105i
\(640\) −0.267179 + 11.3106i −0.0105612 + 0.447089i
\(641\) 32.4160i 1.28036i −0.768226 0.640178i \(-0.778860\pi\)
0.768226 0.640178i \(-0.221140\pi\)
\(642\) 17.7482 9.32620i 0.700464 0.368076i
\(643\) 34.2105i 1.34913i 0.738216 + 0.674565i \(0.235669\pi\)
−0.738216 + 0.674565i \(0.764331\pi\)
\(644\) −22.1164 + 4.89115i −0.871509 + 0.192738i
\(645\) 0.580419 + 0.252548i 0.0228540 + 0.00994406i
\(646\) 15.6978 19.5487i 0.617620 0.769133i
\(647\) −34.3353 −1.34986 −0.674930 0.737881i \(-0.735826\pi\)
−0.674930 + 0.737881i \(0.735826\pi\)
\(648\) 12.8632 21.9668i 0.505313 0.862936i
\(649\) −15.5868 −0.611833
\(650\) −0.885473 + 1.10270i −0.0347311 + 0.0432513i
\(651\) 36.1945 + 15.7487i 1.41857 + 0.617239i
\(652\) −8.60427 + 1.90288i −0.336969 + 0.0745223i
\(653\) 2.75989i 0.108003i 0.998541 + 0.0540015i \(0.0171976\pi\)
−0.998541 + 0.0540015i \(0.982802\pi\)
\(654\) 16.0422 8.42977i 0.627300 0.329630i
\(655\) 16.0192i 0.625921i
\(656\) −8.27627 17.7963i −0.323134 0.694830i
\(657\) −28.7305 30.8409i −1.12088 1.20322i
\(658\) −30.8063 24.7377i −1.20096 0.964378i
\(659\) 2.97758 0.115990 0.0579950 0.998317i \(-0.481529\pi\)
0.0579950 + 0.998317i \(0.481529\pi\)
\(660\) 14.4430 + 2.81893i 0.562192 + 0.109727i
\(661\) −22.3337 −0.868680 −0.434340 0.900749i \(-0.643018\pi\)
−0.434340 + 0.900749i \(0.643018\pi\)
\(662\) −13.7001 11.0013i −0.532471 0.427579i
\(663\) −4.26676 + 9.80610i −0.165707 + 0.380837i
\(664\) 40.8515 + 20.1849i 1.58534 + 0.783327i
\(665\) 8.22878i 0.319098i
\(666\) 38.4624 2.82875i 1.49039 0.109612i
\(667\) 40.4192i 1.56504i
\(668\) 9.66469 + 43.7010i 0.373938 + 1.69084i
\(669\) −8.51513 + 19.5699i −0.329214 + 0.756617i
\(670\) −1.64130 + 2.04394i −0.0634091 + 0.0789644i
\(671\) 34.1138 1.31695
\(672\) −22.3254 17.0309i −0.861222 0.656983i
\(673\) −0.389594 −0.0150177 −0.00750887 0.999972i \(-0.502390\pi\)
−0.00750887 + 0.999972i \(0.502390\pi\)
\(674\) −0.710061 + 0.884251i −0.0273505 + 0.0340601i
\(675\) −1.73080 4.89942i −0.0666184 0.188579i
\(676\) −0.431874 1.95281i −0.0166106 0.0751083i
\(677\) 26.8227i 1.03088i 0.856925 + 0.515440i \(0.172372\pi\)
−0.856925 + 0.515440i \(0.827628\pi\)
\(678\) −1.21122 2.30500i −0.0465165 0.0885228i
\(679\) 28.4793i 1.09294i
\(680\) 15.6566 + 7.73599i 0.600401 + 0.296662i
\(681\) 31.3523 + 13.6418i 1.20142 + 0.522755i
\(682\) −37.2488 29.9111i −1.42633 1.14535i
\(683\) 13.6048 0.520573 0.260286 0.965531i \(-0.416183\pi\)
0.260286 + 0.965531i \(0.416183\pi\)
\(684\) −14.1878 9.77236i −0.542486 0.373656i
\(685\) −4.54576 −0.173685
\(686\) 18.2871 + 14.6847i 0.698205 + 0.560665i
\(687\) −47.6158 20.7183i −1.81666 0.790451i
\(688\) 0.616424 + 1.32549i 0.0235009 + 0.0505337i
\(689\) 11.9264i 0.454359i
\(690\) −4.50273 8.56888i −0.171416 0.326212i
\(691\) 25.8210i 0.982279i 0.871081 + 0.491139i \(0.163419\pi\)
−0.871081 + 0.491139i \(0.836581\pi\)
\(692\) −18.6889 + 4.13315i −0.710447 + 0.157119i
\(693\) −26.7237 + 24.8950i −1.01515 + 0.945683i
\(694\) −10.8292 + 13.4858i −0.411071 + 0.511914i
\(695\) 16.3247 0.619231
\(696\) −38.2765 + 32.3361i −1.45087 + 1.22570i
\(697\) −30.2951 −1.14751
\(698\) 9.34216 11.6340i 0.353606 0.440352i
\(699\) 13.6322 31.3303i 0.515618 1.18502i
\(700\) −5.59654 + 1.23770i −0.211529 + 0.0467808i
\(701\) 38.4614i 1.45267i 0.687342 + 0.726334i \(0.258777\pi\)
−0.687342 + 0.726334i \(0.741223\pi\)
\(702\) 6.93515 + 2.42976i 0.261750 + 0.0917055i
\(703\) 26.1004i 0.984396i
\(704\) 20.6465 + 26.9932i 0.778144 + 1.01734i
\(705\) 6.73656 15.4823i 0.253714 0.583098i
\(706\) 6.88723 + 5.53050i 0.259204 + 0.208143i
\(707\) 4.92921 0.185382
\(708\) −2.43485 + 12.4751i −0.0915072 + 0.468843i
\(709\) −30.7167 −1.15359 −0.576794 0.816890i \(-0.695697\pi\)
−0.576794 + 0.816890i \(0.695697\pi\)
\(710\) −5.63947 4.52854i −0.211646 0.169953i
\(711\) 3.95583 3.68514i 0.148355 0.138203i
\(712\) 7.68793 15.5593i 0.288117 0.583109i
\(713\) 31.4244i 1.17685i
\(714\) −38.3684 + 20.1616i −1.43590 + 0.754530i
\(715\) 4.24800i 0.158866i
\(716\) 0.735421 + 3.32536i 0.0274840 + 0.124275i
\(717\) 12.7018 + 5.52671i 0.474357 + 0.206399i
\(718\) −14.0490 + 17.4955i −0.524305 + 0.652926i
\(719\) −8.10953 −0.302434 −0.151217 0.988501i \(-0.548319\pi\)
−0.151217 + 0.988501i \(0.548319\pi\)
\(720\) 4.51235 11.1193i 0.168165 0.414392i
\(721\) −15.8978 −0.592065
\(722\) 9.52390 11.8603i 0.354443 0.441394i
\(723\) −16.8529 7.33290i −0.626765 0.272714i
\(724\) 0.945489 + 4.27524i 0.0351388 + 0.158888i
\(725\) 10.2281i 0.379860i
\(726\) 15.2770 8.02769i 0.566984 0.297936i
\(727\) 6.79526i 0.252022i 0.992029 + 0.126011i \(0.0402175\pi\)
−0.992029 + 0.126011i \(0.959783\pi\)
\(728\) 3.59078 7.26724i 0.133083 0.269342i
\(729\) −21.0087 + 16.9598i −0.778099 + 0.628142i
\(730\) −15.4928 12.4408i −0.573413 0.460455i
\(731\) 2.25640 0.0834561
\(732\) 5.32901 27.3035i 0.196966 1.00917i
\(733\) 33.5035 1.23748 0.618740 0.785596i \(-0.287643\pi\)
0.618740 + 0.785596i \(0.287643\pi\)
\(734\) −13.2502 10.6400i −0.489075 0.392731i
\(735\) 0.838459 1.92699i 0.0309270 0.0710781i
\(736\) 5.34134 21.7073i 0.196884 0.800140i
\(737\) 7.87404i 0.290044i
\(738\) 1.52690 + 20.7611i 0.0562059 + 0.764228i
\(739\) 17.3045i 0.636557i 0.947997 + 0.318278i \(0.103105\pi\)
−0.947997 + 0.318278i \(0.896895\pi\)
\(740\) 17.7514 3.92580i 0.652554 0.144315i
\(741\) 1.98422 4.56023i 0.0728920 0.167524i
\(742\) 30.2652 37.6897i 1.11107 1.38363i
\(743\) −21.9986 −0.807049 −0.403524 0.914969i \(-0.632215\pi\)
−0.403524 + 0.914969i \(0.632215\pi\)
\(744\) −29.7585 + 25.1401i −1.09100 + 0.921682i
\(745\) −12.0625 −0.441936
\(746\) 1.73460 2.16013i 0.0635083 0.0790880i
\(747\) −32.9433 35.3631i −1.20533 1.29387i
\(748\) 51.2190 11.3273i 1.87275 0.414168i
\(749\) 23.4576i 0.857121i
\(750\) −1.13941 2.16835i −0.0416055 0.0791769i
\(751\) 35.8032i 1.30648i −0.757151 0.653239i \(-0.773410\pi\)
0.757151 0.653239i \(-0.226590\pi\)
\(752\) 35.3565 16.4427i 1.28932 0.599605i
\(753\) 2.00636 + 0.872995i 0.0731160 + 0.0318137i
\(754\) −11.2784 9.05667i −0.410736 0.329824i
\(755\) 11.6403 0.423633
\(756\) 15.7505 + 25.2776i 0.572841 + 0.919338i
\(757\) −13.9799 −0.508107 −0.254054 0.967190i \(-0.581764\pi\)
−0.254054 + 0.967190i \(0.581764\pi\)
\(758\) −7.97456 6.40363i −0.289649 0.232590i
\(759\) −26.6618 11.6009i −0.967763 0.421086i
\(760\) −7.28093 3.59755i −0.264107 0.130497i
\(761\) 9.74392i 0.353217i 0.984281 + 0.176608i \(0.0565126\pi\)
−0.984281 + 0.176608i \(0.943487\pi\)
\(762\) −11.4654 21.8190i −0.415346 0.790421i
\(763\) 21.2028i 0.767594i
\(764\) −6.21435 28.0996i −0.224827 1.01661i
\(765\) −12.6257 13.5531i −0.456483 0.490014i
\(766\) 2.98105 3.71235i 0.107710 0.134133i
\(767\) −3.66920 −0.132487
\(768\) 24.8297 12.3080i 0.895963 0.444128i
\(769\) 19.4459 0.701235 0.350618 0.936519i \(-0.385972\pi\)
0.350618 + 0.936519i \(0.385972\pi\)
\(770\) −10.7800 + 13.4245i −0.388484 + 0.483786i
\(771\) 2.43926 5.60605i 0.0878479 0.201897i
\(772\) −6.73866 30.4703i −0.242530 1.09665i
\(773\) 39.0689i 1.40521i −0.711580 0.702605i \(-0.752020\pi\)
0.711580 0.702605i \(-0.247980\pi\)
\(774\) −0.113725 1.54631i −0.00408775 0.0555809i
\(775\) 7.95193i 0.285642i
\(776\) −25.1989 12.4509i −0.904587 0.446961i
\(777\) −18.0029 + 41.3752i −0.645851 + 1.48433i
\(778\) −11.8904 9.54806i −0.426290 0.342314i
\(779\) 14.0884 0.504771
\(780\) 3.39995 + 0.663591i 0.121738 + 0.0237604i
\(781\) −21.7254 −0.777394
\(782\) −26.9052 21.6051i −0.962128 0.772597i
\(783\) 50.1115 17.7027i 1.79084 0.632643i
\(784\) 4.40061 2.04653i 0.157165 0.0730902i
\(785\) 5.20474i 0.185765i
\(786\) −34.7352 + 18.2525i −1.23896 + 0.651043i
\(787\) 11.4804i 0.409233i −0.978842 0.204617i \(-0.934405\pi\)
0.978842 0.204617i \(-0.0655948\pi\)
\(788\) 50.6583 11.2033i 1.80463 0.399102i
\(789\) 31.8116 + 13.8416i 1.13252 + 0.492776i
\(790\) 1.59573 1.98719i 0.0567736 0.0707012i
\(791\) 3.04649 0.108321
\(792\) −10.3441 34.5293i −0.367560 1.22695i
\(793\) 8.03057 0.285174
\(794\) −6.14580 + 7.65348i −0.218106 + 0.271612i
\(795\) 18.9417 + 8.24179i 0.671794 + 0.292306i
\(796\) −14.1634 + 3.13231i −0.502009 + 0.111022i
\(797\) 8.09375i 0.286695i −0.989672 0.143348i \(-0.954213\pi\)
0.989672 0.143348i \(-0.0457867\pi\)
\(798\) 17.8429 9.37597i 0.631631 0.331906i
\(799\) 60.1882i 2.12931i
\(800\) 1.35162 5.49301i 0.0477871 0.194207i
\(801\) −13.4689 + 12.5472i −0.475901 + 0.443335i
\(802\) −15.5007 12.4471i −0.547347 0.439524i
\(803\) −59.6840 −2.10620
\(804\) 6.30211 + 1.23002i 0.222258 + 0.0433796i
\(805\) 11.3254 0.399168
\(806\) −8.76856 7.04122i −0.308859 0.248016i
\(807\) −0.107826 + 0.247812i −0.00379567 + 0.00872341i
\(808\) −2.15501 + 4.36143i −0.0758129 + 0.153435i
\(809\) 26.1234i 0.918448i −0.888320 0.459224i \(-0.848127\pi\)
0.888320 0.459224i \(-0.151873\pi\)
\(810\) −8.65157 + 9.33544i −0.303985 + 0.328014i
\(811\) 31.4381i 1.10394i 0.833864 + 0.551970i \(0.186124\pi\)
−0.833864 + 0.551970i \(0.813876\pi\)
\(812\) −12.6593 57.2417i −0.444254 2.00879i
\(813\) −3.73579 + 8.58579i −0.131020 + 0.301117i
\(814\) 34.1925 42.5805i 1.19845 1.49245i
\(815\) 4.40608 0.154338
\(816\) −1.06494 42.7634i −0.0372805 1.49702i
\(817\) −1.04932 −0.0367110
\(818\) 16.1072 20.0585i 0.563173 0.701330i
\(819\) −6.29089 + 5.86041i −0.219822 + 0.204779i
\(820\) 2.11906 + 9.58181i 0.0740009 + 0.334611i
\(821\) 18.9925i 0.662843i −0.943483 0.331421i \(-0.892472\pi\)
0.943483 0.331421i \(-0.107528\pi\)
\(822\) 5.17949 + 9.85680i 0.180656 + 0.343795i
\(823\) 23.1485i 0.806907i 0.915000 + 0.403453i \(0.132190\pi\)
−0.915000 + 0.403453i \(0.867810\pi\)
\(824\) 6.95037 14.0666i 0.242128 0.490032i
\(825\) −6.74675 2.93560i −0.234892 0.102204i
\(826\) −11.5954 9.31120i −0.403456 0.323978i
\(827\) −7.27740 −0.253060 −0.126530 0.991963i \(-0.540384\pi\)
−0.126530 + 0.991963i \(0.540384\pi\)
\(828\) −13.4499 + 19.5270i −0.467415 + 0.678610i
\(829\) −10.7495 −0.373344 −0.186672 0.982422i \(-0.559770\pi\)
−0.186672 + 0.982422i \(0.559770\pi\)
\(830\) −17.7645 14.2650i −0.616615 0.495147i
\(831\) −6.24591 2.71768i −0.216668 0.0942752i
\(832\) 4.86029 + 6.35434i 0.168500 + 0.220297i
\(833\) 7.49126i 0.259557i
\(834\) −18.6006 35.3976i −0.644085 1.22572i
\(835\) 22.3785i 0.774439i
\(836\) −23.8189 + 5.26766i −0.823793 + 0.182186i
\(837\) 38.9599 13.7632i 1.34665 0.475725i
\(838\) 1.41711 1.76476i 0.0489534 0.0609625i
\(839\) −10.7407 −0.370811 −0.185405 0.982662i \(-0.559360\pi\)
−0.185405 + 0.982662i \(0.559360\pi\)
\(840\) 9.06054 + 10.7250i 0.312618 + 0.370048i
\(841\) −75.6130 −2.60735
\(842\) 16.9823 21.1483i 0.585247 0.728819i
\(843\) −13.8523 + 31.8361i −0.477098 + 1.09649i
\(844\) 15.6123 3.45274i 0.537398 0.118848i
\(845\) 1.00000i 0.0344010i
\(846\) −41.2468 + 3.03354i −1.41810 + 0.104295i
\(847\) 20.1915i 0.693789i
\(848\) 20.1167 + 43.2566i 0.690811 + 1.48544i
\(849\) −5.70634 + 13.1146i −0.195841 + 0.450093i
\(850\) −6.80834 5.46715i −0.233524 0.187522i
\(851\) −35.9225 −1.23141
\(852\) −3.39378 + 17.3882i −0.116269 + 0.595711i
\(853\) −24.3418 −0.833446 −0.416723 0.909034i \(-0.636821\pi\)
−0.416723 + 0.909034i \(0.636821\pi\)
\(854\) 25.3782 + 20.3789i 0.868424 + 0.697352i
\(855\) 5.87145 + 6.30274i 0.200799 + 0.215549i
\(856\) −20.7556 10.2554i −0.709410 0.350523i
\(857\) 28.9086i 0.987499i −0.869604 0.493749i \(-0.835626\pi\)
0.869604 0.493749i \(-0.164374\pi\)
\(858\) 9.21114 4.84022i 0.314463 0.165242i
\(859\) 12.3604i 0.421731i 0.977515 + 0.210866i \(0.0676282\pi\)
−0.977515 + 0.210866i \(0.932372\pi\)
\(860\) −0.157830 0.713661i −0.00538195 0.0243357i
\(861\) −22.3335 9.71757i −0.761122 0.331174i
\(862\) −26.0982 + 32.5006i −0.888910 + 1.10698i
\(863\) 28.4177 0.967349 0.483674 0.875248i \(-0.339302\pi\)
0.483674 + 0.875248i \(0.339302\pi\)
\(864\) −29.2519 + 2.88512i −0.995171 + 0.0981536i
\(865\) 9.57026 0.325399
\(866\) 4.94739 6.16108i 0.168119 0.209362i
\(867\) −33.5458 14.5962i −1.13928 0.495713i
\(868\) −9.84212 44.5033i −0.334063 1.51054i
\(869\) 7.65541i 0.259692i
\(870\) 22.1780 11.6540i 0.751904 0.395107i
\(871\) 1.85359i 0.0628065i
\(872\) −18.7605 9.26968i −0.635312 0.313911i
\(873\) 20.3208 + 21.8134i 0.687754 + 0.738273i
\(874\) 12.5120 + 10.0472i 0.423225 + 0.339853i
\(875\) 2.86589 0.0968846
\(876\) −9.32339 + 47.7690i −0.315008 + 1.61396i
\(877\) 54.6464 1.84528 0.922638 0.385666i \(-0.126028\pi\)
0.922638 + 0.385666i \(0.126028\pi\)
\(878\) 9.78034 + 7.85369i 0.330071 + 0.265049i
\(879\) 0.532442 1.22369i 0.0179588 0.0412739i
\(880\) −7.16527 15.4073i −0.241541 0.519382i
\(881\) 15.3502i 0.517160i 0.965990 + 0.258580i \(0.0832545\pi\)
−0.965990 + 0.258580i \(0.916745\pi\)
\(882\) −5.13374 + 0.377566i −0.172862 + 0.0127133i
\(883\) 22.3268i 0.751356i −0.926750 0.375678i \(-0.877410\pi\)
0.926750 0.375678i \(-0.122590\pi\)
\(884\) 12.0572 2.66651i 0.405528 0.0896844i
\(885\) 2.53562 5.82750i 0.0852339 0.195889i
\(886\) 25.6966 32.0005i 0.863295 1.07508i
\(887\) −36.0766 −1.21134 −0.605668 0.795718i \(-0.707094\pi\)
−0.605668 + 0.795718i \(0.707094\pi\)
\(888\) −28.7386 34.0181i −0.964406 1.14157i
\(889\) 28.8380 0.967196
\(890\) −5.43319 + 6.76605i −0.182121 + 0.226798i
\(891\) −2.70547 + 38.1361i −0.0906367 + 1.27761i
\(892\) 24.0624 5.32153i 0.805670 0.178178i
\(893\) 27.9900i 0.936648i
\(894\) 13.7442 + 26.1557i 0.459674 + 0.874779i
\(895\) 1.70286i 0.0569203i
\(896\) −0.765706 + 32.4148i −0.0255804 + 1.08290i
\(897\) −6.27633 2.73091i −0.209560 0.0911825i
\(898\) −16.2322 13.0346i −0.541676 0.434970i
\(899\) −81.3327 −2.71260
\(900\) −3.40348 + 4.94129i −0.113449 + 0.164710i
\(901\) 73.6367 2.45320
\(902\) 22.9840 + 18.4564i 0.765284 + 0.614529i
\(903\) 1.66342 + 0.723774i 0.0553550 + 0.0240857i
\(904\) −1.33190 + 2.69557i −0.0442983 + 0.0896534i
\(905\) 2.18927i 0.0727738i
\(906\) −13.2631 25.2402i −0.440636 0.838549i
\(907\) 48.3901i 1.60677i 0.595462 + 0.803383i \(0.296969\pi\)
−0.595462 + 0.803383i \(0.703031\pi\)
\(908\) −8.52544 38.5496i −0.282927 1.27931i
\(909\) 3.77548 3.51712i 0.125225 0.116656i
\(910\) −2.53767 + 3.16020i −0.0841228 + 0.104760i
\(911\) −7.14733 −0.236802 −0.118401 0.992966i \(-0.537777\pi\)
−0.118401 + 0.992966i \(0.537777\pi\)
\(912\) 0.495242 + 19.8867i 0.0163991 + 0.658514i
\(913\) −68.4355 −2.26488
\(914\) 8.56373 10.6646i 0.283263 0.352753i
\(915\) −5.54957 + 12.7543i −0.183463 + 0.421645i
\(916\) 12.9479 + 58.5466i 0.427809 + 1.93443i
\(917\) 45.9091i 1.51605i
\(918\) −15.0020 + 42.8195i −0.495141 + 1.41325i
\(919\) 41.8313i 1.37989i 0.723864 + 0.689943i \(0.242364\pi\)
−0.723864 + 0.689943i \(0.757636\pi\)
\(920\) −4.95136 + 10.0209i −0.163242 + 0.330378i
\(921\) 8.13391 18.6938i 0.268021 0.615981i
\(922\) 38.9544 + 31.2807i 1.28289 + 1.03017i
\(923\) −5.11426 −0.168338
\(924\) 41.3919 + 8.07873i 1.36169 + 0.265771i
\(925\) −9.09015 −0.298882
\(926\) 17.1895 + 13.8033i 0.564880 + 0.453604i
\(927\) −12.1767 + 11.3435i −0.399937 + 0.372569i
\(928\) 56.1827 + 13.8245i 1.84429 + 0.453810i
\(929\) 11.4151i 0.374517i −0.982311 0.187258i \(-0.940040\pi\)
0.982311 0.187258i \(-0.0599601\pi\)
\(930\) 17.2426 9.06053i 0.565406 0.297106i
\(931\) 3.48374i 0.114175i
\(932\) −38.5225 + 8.51944i −1.26185 + 0.279064i
\(933\) 26.3547 + 11.4673i 0.862815 + 0.375422i
\(934\) 11.2001 13.9477i 0.366480 0.456384i
\(935\) −26.2283 −0.857757
\(936\) −2.43505 8.12838i −0.0795920 0.265684i
\(937\) −23.8854 −0.780301 −0.390150 0.920751i \(-0.627577\pi\)
−0.390150 + 0.920751i \(0.627577\pi\)
\(938\) −4.70379 + 5.85771i −0.153584 + 0.191261i
\(939\) 38.8133 + 16.8882i 1.26662 + 0.551124i
\(940\) −19.0365 + 4.21001i −0.620902 + 0.137315i
\(941\) 41.7523i 1.36109i 0.732708 + 0.680543i \(0.238256\pi\)
−0.732708 + 0.680543i \(0.761744\pi\)
\(942\) −11.2857 + 5.93034i −0.367708 + 0.193221i
\(943\) 19.3902i 0.631430i
\(944\) 13.3081 6.18899i 0.433141 0.201435i
\(945\) −4.96027 14.0412i −0.161358 0.456760i
\(946\) −1.71187 1.37465i −0.0556577 0.0446936i
\(947\) 40.3596 1.31151 0.655756 0.754973i \(-0.272350\pi\)
0.655756 + 0.754973i \(0.272350\pi\)
\(948\) −6.12713 1.19587i −0.199000 0.0388401i
\(949\) −14.0499 −0.456079
\(950\) 3.16615 + 2.54245i 0.102724 + 0.0824879i
\(951\) 3.10128 7.12754i 0.100566 0.231126i
\(952\) 44.8699 + 22.1705i 1.45424 + 0.718549i
\(953\) 41.6911i 1.35051i 0.737586 + 0.675253i \(0.235966\pi\)
−0.737586 + 0.675253i \(0.764034\pi\)
\(954\) −3.71136 50.4631i −0.120160 1.63380i
\(955\) 14.3893i 0.465625i
\(956\) −3.45391 15.6176i −0.111708 0.505110i
\(957\) 30.0255 69.0061i 0.970585 2.23065i
\(958\) −13.5724 + 16.9020i −0.438505 + 0.546079i
\(959\) −13.0276 −0.420684
\(960\) −13.4508 + 3.32801i −0.434123 + 0.107411i
\(961\) −32.2332 −1.03978
\(962\) 8.04908 10.0237i 0.259513 0.323176i
\(963\) 16.7376 + 17.9671i 0.539362 + 0.578981i
\(964\) 4.58269 + 20.7216i 0.147599 + 0.667399i
\(965\) 15.6033i 0.502288i
\(966\) −12.9043 24.5574i −0.415189 0.790123i
\(967\) 7.31899i 0.235363i 0.993051 + 0.117681i \(0.0375462\pi\)
−0.993051 + 0.117681i \(0.962454\pi\)
\(968\) −17.8657 8.82754i −0.574226 0.283728i
\(969\) 28.1561 + 12.2511i 0.904505 + 0.393562i
\(970\) 10.9579 + 8.79927i 0.351836 + 0.282527i
\(971\) 5.83157 0.187144 0.0935720 0.995613i \(-0.470171\pi\)
0.0935720 + 0.995613i \(0.470171\pi\)
\(972\) 30.1002 + 8.12271i 0.965464 + 0.260536i
\(973\) 46.7847 1.49985
\(974\) 26.4320 + 21.2251i 0.846937 + 0.680097i
\(975\) −1.58822 0.691055i −0.0508638 0.0221315i
\(976\) −29.1266 + 13.5455i −0.932321 + 0.433581i
\(977\) 28.0105i 0.896134i −0.894000 0.448067i \(-0.852113\pi\)
0.894000 0.448067i \(-0.147887\pi\)
\(978\) −5.02035 9.55393i −0.160533 0.305501i
\(979\) 26.0653i 0.833052i
\(980\) −2.36935 + 0.523994i −0.0756863 + 0.0167384i
\(981\) 15.1288 + 16.2401i 0.483025 + 0.518506i
\(982\) −31.6977 + 39.4737i −1.01151 + 1.25966i
\(983\) 44.9653 1.43417 0.717085 0.696986i \(-0.245476\pi\)
0.717085 + 0.696986i \(0.245476\pi\)
\(984\) 18.3622 15.5125i 0.585366 0.494520i
\(985\) −25.9412 −0.826555
\(986\) 55.9183 69.6361i 1.78080 2.21766i
\(987\) 19.3062 44.3706i 0.614524 1.41233i
\(988\) −5.60709 + 1.24003i −0.178385 + 0.0394508i
\(989\) 1.44420i 0.0459228i
\(990\) 1.32193 + 17.9742i 0.0420137 + 0.571257i
\(991\) 7.61258i 0.241822i 0.992663 + 0.120911i \(0.0385815\pi\)
−0.992663 + 0.120911i \(0.961419\pi\)
\(992\) 43.6800 + 10.7480i 1.38684 + 0.341250i
\(993\) 8.58583 19.7324i 0.272463 0.626190i
\(994\) −16.1621 12.9783i −0.512630 0.411646i
\(995\) 7.25282 0.229930
\(996\) −10.6905 + 54.7734i −0.338741 + 1.73556i
\(997\) 51.5640 1.63305 0.816524 0.577312i \(-0.195898\pi\)
0.816524 + 0.577312i \(0.195898\pi\)
\(998\) −24.7613 19.8835i −0.783806 0.629403i
\(999\) 15.7332 + 44.5365i 0.497777 + 1.40907i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.g.d.131.23 yes 32
3.2 odd 2 inner 780.2.g.d.131.10 yes 32
4.3 odd 2 inner 780.2.g.d.131.9 32
12.11 even 2 inner 780.2.g.d.131.24 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.g.d.131.9 32 4.3 odd 2 inner
780.2.g.d.131.10 yes 32 3.2 odd 2 inner
780.2.g.d.131.23 yes 32 1.1 even 1 trivial
780.2.g.d.131.24 yes 32 12.11 even 2 inner