Properties

Label 777.1.w
Level $777$
Weight $1$
Character orbit 777.w
Rep. character $\chi_{777}(221,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $4$
Sturm bound $101$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 777 = 3 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 777.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 777 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(101\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(777, [\chi])\).

Total New Old
Modular forms 24 24 0
Cusp forms 16 16 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 8 q^{4} - 8 q^{9} - 8 q^{16} - 8 q^{25} + 16 q^{28} + 8 q^{30} - 16 q^{34} + 16 q^{36} - 16 q^{40} - 16 q^{48} + 8 q^{58} + 16 q^{64} + 16 q^{70} - 8 q^{81} + 16 q^{84}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(777, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
777.1.w.a 777.w 777.w $2$ $0.388$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-111}) \) None 777.1.w.a \(-1\) \(-1\) \(2\) \(2\) \(q-\zeta_{6}q^{2}+\zeta_{6}^{2}q^{3}+\zeta_{6}q^{5}+q^{6}+q^{7}+\cdots\)
777.1.w.b 777.w 777.w $2$ $0.388$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-111}) \) None 777.1.w.a \(1\) \(-1\) \(-2\) \(2\) \(q+\zeta_{6}q^{2}+\zeta_{6}^{2}q^{3}-\zeta_{6}q^{5}-q^{6}+q^{7}+\cdots\)
777.1.w.c 777.w 777.w $4$ $0.388$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-111}) \) None 777.1.w.c \(0\) \(-2\) \(0\) \(-4\) \(q+(-\zeta_{12}^{3}-\zeta_{12}^{5})q^{2}-\zeta_{12}^{2}q^{3}+\cdots\)
777.1.w.d 777.w 777.w $8$ $0.388$ \(\Q(\zeta_{24})\) $D_{12}$ \(\Q(\sqrt{-111}) \) None 777.1.w.d \(0\) \(4\) \(0\) \(0\) \(q+(\zeta_{24}^{7}+\zeta_{24}^{9})q^{2}+\zeta_{24}^{4}q^{3}+(-\zeta_{24}^{2}+\cdots)q^{4}+\cdots\)