Properties

Label 777.1.ct
Level $777$
Weight $1$
Character orbit 777.ct
Rep. character $\chi_{777}(65,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $6$
Newform subspaces $1$
Sturm bound $101$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 777 = 3 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 777.ct (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 777 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(101\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(777, [\chi])\).

Total New Old
Modular forms 30 30 0
Cusp forms 6 6 0
Eisenstein series 24 24 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q - 6 q^{7} + 3 q^{13} - 3 q^{27} - 6 q^{36} - 3 q^{37} - 3 q^{39} - 3 q^{48} + 6 q^{49} + 3 q^{52} + 3 q^{64} + 3 q^{67} + 3 q^{75} + 3 q^{79} - 3 q^{91} + 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(777, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
777.1.ct.a 777.ct 777.bt $6$ $0.388$ \(\Q(\zeta_{18})\) $D_{18}$ \(\Q(\sqrt{-3}) \) None 777.1.cn.a \(0\) \(0\) \(0\) \(-6\) \(q+\zeta_{18}^{4}q^{3}+\zeta_{18}q^{4}-q^{7}+\zeta_{18}^{8}q^{9}+\cdots\)