Properties

Label 775.2.o.f.749.4
Level $775$
Weight $2$
Character 775.749
Analytic conductor $6.188$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(149,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.118796048409600000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 36x^{12} - 77x^{10} + 119x^{8} - 77x^{6} + 36x^{4} - 7x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 749.4
Root \(0.413319 - 0.238630i\) of defining polynomial
Character \(\chi\) \(=\) 775.749
Dual form 775.2.o.f.149.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.477260i q^{2} +(-2.34981 - 1.35666i) q^{3} +1.77222 q^{4} +(-0.647481 + 1.12147i) q^{6} +(0.157874 + 0.0911485i) q^{7} -1.80033i q^{8} +(2.18107 + 3.77773i) q^{9} +(-1.57453 - 2.72717i) q^{11} +(-4.16439 - 2.40431i) q^{12} +(0.133532 - 0.0770945i) q^{13} +(0.0435016 - 0.0753469i) q^{14} +2.68522 q^{16} +(-0.881070 - 0.508686i) q^{17} +(1.80296 - 1.04094i) q^{18} +(0.379404 - 0.657147i) q^{19} +(-0.247316 - 0.428364i) q^{21} +(-1.30157 + 0.751461i) q^{22} -7.06719i q^{23} +(-2.44244 + 4.23044i) q^{24} +(-0.0367941 - 0.0637292i) q^{26} -3.69596i q^{27} +(0.279788 + 0.161536i) q^{28} -8.35947 q^{29} +(4.52783 - 3.24018i) q^{31} -4.88221i q^{32} +8.54445i q^{33} +(-0.242775 + 0.420499i) q^{34} +(3.86535 + 6.69498i) q^{36} +(-7.15862 - 4.13303i) q^{37} +(-0.313630 - 0.181074i) q^{38} -0.418365 q^{39} +(-0.803649 - 1.39196i) q^{41} +(-0.204441 + 0.118034i) q^{42} +(8.55270 + 4.93790i) q^{43} +(-2.79042 - 4.83315i) q^{44} -3.37289 q^{46} +6.97506i q^{47} +(-6.30976 - 3.64294i) q^{48} +(-3.48338 - 6.03340i) q^{49} +(1.38023 + 2.39063i) q^{51} +(0.236648 - 0.136629i) q^{52} +(-8.21261 + 4.74155i) q^{53} -1.76393 q^{54} +(0.164098 - 0.284225i) q^{56} +(-1.78306 + 1.02945i) q^{57} +3.98964i q^{58} +(-1.66312 + 2.88061i) q^{59} -14.3159 q^{61} +(-1.54641 - 2.16095i) q^{62} +0.795207i q^{63} +3.04036 q^{64} +4.07792 q^{66} +(-3.83803 + 2.21589i) q^{67} +(-1.56145 - 0.901505i) q^{68} +(-9.58780 + 16.6066i) q^{69} +(-6.81335 - 11.8011i) q^{71} +(6.80117 - 3.92666i) q^{72} +(-3.92167 + 2.26418i) q^{73} +(-1.97253 + 3.41652i) q^{74} +(0.672388 - 1.16461i) q^{76} -0.574065i q^{77} +0.199669i q^{78} +(-1.20440 + 2.08608i) q^{79} +(1.52905 - 2.64840i) q^{81} +(-0.664327 + 0.383549i) q^{82} +(13.9865 - 8.07508i) q^{83} +(-0.438299 - 0.759156i) q^{84} +(2.35666 - 4.08186i) q^{86} +(19.6432 + 11.3410i) q^{87} +(-4.90981 + 2.83468i) q^{88} +4.99092 q^{89} +0.0281082 q^{91} -12.5246i q^{92} +(-15.0354 + 1.47106i) q^{93} +3.32892 q^{94} +(-6.62352 + 11.4723i) q^{96} +3.08456i q^{97} +(-2.87950 + 1.66248i) q^{98} +(6.86834 - 11.8963i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 4 q^{6} + 10 q^{9} + 8 q^{11} + 16 q^{14} - 12 q^{16} - 6 q^{19} - 6 q^{21} - 20 q^{24} - 16 q^{26} - 76 q^{29} - 10 q^{31} + 32 q^{34} + 46 q^{36} + 28 q^{39} - 8 q^{41} + 6 q^{44} + 4 q^{46}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.477260i 0.337474i −0.985661 0.168737i \(-0.946031\pi\)
0.985661 0.168737i \(-0.0539688\pi\)
\(3\) −2.34981 1.35666i −1.35666 0.783270i −0.367491 0.930027i \(-0.619783\pi\)
−0.989173 + 0.146757i \(0.953117\pi\)
\(4\) 1.77222 0.886111
\(5\) 0 0
\(6\) −0.647481 + 1.12147i −0.264333 + 0.457839i
\(7\) 0.157874 + 0.0911485i 0.0596707 + 0.0344509i 0.529539 0.848286i \(-0.322365\pi\)
−0.469868 + 0.882737i \(0.655698\pi\)
\(8\) 1.80033i 0.636513i
\(9\) 2.18107 + 3.77773i 0.727025 + 1.25924i
\(10\) 0 0
\(11\) −1.57453 2.72717i −0.474739 0.822273i 0.524842 0.851200i \(-0.324124\pi\)
−0.999582 + 0.0289268i \(0.990791\pi\)
\(12\) −4.16439 2.40431i −1.20216 0.694065i
\(13\) 0.133532 0.0770945i 0.0370350 0.0213822i −0.481368 0.876518i \(-0.659860\pi\)
0.518403 + 0.855136i \(0.326527\pi\)
\(14\) 0.0435016 0.0753469i 0.0116263 0.0201373i
\(15\) 0 0
\(16\) 2.68522 0.671305
\(17\) −0.881070 0.508686i −0.213691 0.123374i 0.389335 0.921096i \(-0.372705\pi\)
−0.603026 + 0.797722i \(0.706038\pi\)
\(18\) 1.80296 1.04094i 0.424962 0.245352i
\(19\) 0.379404 0.657147i 0.0870412 0.150760i −0.819218 0.573482i \(-0.805592\pi\)
0.906259 + 0.422722i \(0.138925\pi\)
\(20\) 0 0
\(21\) −0.247316 0.428364i −0.0539688 0.0934766i
\(22\) −1.30157 + 0.751461i −0.277495 + 0.160212i
\(23\) 7.06719i 1.47361i −0.676105 0.736805i \(-0.736334\pi\)
0.676105 0.736805i \(-0.263666\pi\)
\(24\) −2.44244 + 4.23044i −0.498562 + 0.863534i
\(25\) 0 0
\(26\) −0.0367941 0.0637292i −0.00721592 0.0124983i
\(27\) 3.69596i 0.711287i
\(28\) 0.279788 + 0.161536i 0.0528749 + 0.0305273i
\(29\) −8.35947 −1.55231 −0.776157 0.630539i \(-0.782834\pi\)
−0.776157 + 0.630539i \(0.782834\pi\)
\(30\) 0 0
\(31\) 4.52783 3.24018i 0.813222 0.581953i
\(32\) 4.88221i 0.863061i
\(33\) 8.54445i 1.48740i
\(34\) −0.242775 + 0.420499i −0.0416356 + 0.0721151i
\(35\) 0 0
\(36\) 3.86535 + 6.69498i 0.644225 + 1.11583i
\(37\) −7.15862 4.13303i −1.17687 0.679466i −0.221582 0.975142i \(-0.571122\pi\)
−0.955288 + 0.295675i \(0.904455\pi\)
\(38\) −0.313630 0.181074i −0.0508775 0.0293741i
\(39\) −0.418365 −0.0669920
\(40\) 0 0
\(41\) −0.803649 1.39196i −0.125509 0.217388i 0.796423 0.604740i \(-0.206723\pi\)
−0.921932 + 0.387352i \(0.873390\pi\)
\(42\) −0.204441 + 0.118034i −0.0315459 + 0.0182130i
\(43\) 8.55270 + 4.93790i 1.30427 + 0.753023i 0.981134 0.193328i \(-0.0619281\pi\)
0.323140 + 0.946351i \(0.395261\pi\)
\(44\) −2.79042 4.83315i −0.420672 0.728625i
\(45\) 0 0
\(46\) −3.37289 −0.497305
\(47\) 6.97506i 1.01742i 0.860939 + 0.508708i \(0.169877\pi\)
−0.860939 + 0.508708i \(0.830123\pi\)
\(48\) −6.30976 3.64294i −0.910735 0.525813i
\(49\) −3.48338 6.03340i −0.497626 0.861914i
\(50\) 0 0
\(51\) 1.38023 + 2.39063i 0.193271 + 0.334755i
\(52\) 0.236648 0.136629i 0.0328171 0.0189470i
\(53\) −8.21261 + 4.74155i −1.12809 + 0.651302i −0.943454 0.331505i \(-0.892444\pi\)
−0.184635 + 0.982807i \(0.559110\pi\)
\(54\) −1.76393 −0.240041
\(55\) 0 0
\(56\) 0.164098 0.284225i 0.0219285 0.0379812i
\(57\) −1.78306 + 1.02945i −0.236171 + 0.136354i
\(58\) 3.98964i 0.523865i
\(59\) −1.66312 + 2.88061i −0.216520 + 0.375023i −0.953742 0.300628i \(-0.902804\pi\)
0.737222 + 0.675651i \(0.236137\pi\)
\(60\) 0 0
\(61\) −14.3159 −1.83296 −0.916480 0.400080i \(-0.868982\pi\)
−0.916480 + 0.400080i \(0.868982\pi\)
\(62\) −1.54641 2.16095i −0.196394 0.274441i
\(63\) 0.795207i 0.100187i
\(64\) 3.04036 0.380044
\(65\) 0 0
\(66\) 4.07792 0.501958
\(67\) −3.83803 + 2.21589i −0.468890 + 0.270714i −0.715775 0.698331i \(-0.753926\pi\)
0.246885 + 0.969045i \(0.420593\pi\)
\(68\) −1.56145 0.901505i −0.189354 0.109324i
\(69\) −9.58780 + 16.6066i −1.15424 + 1.99919i
\(70\) 0 0
\(71\) −6.81335 11.8011i −0.808596 1.40053i −0.913836 0.406083i \(-0.866895\pi\)
0.105240 0.994447i \(-0.466439\pi\)
\(72\) 6.80117 3.92666i 0.801525 0.462761i
\(73\) −3.92167 + 2.26418i −0.458997 + 0.265002i −0.711622 0.702562i \(-0.752039\pi\)
0.252626 + 0.967564i \(0.418706\pi\)
\(74\) −1.97253 + 3.41652i −0.229302 + 0.397163i
\(75\) 0 0
\(76\) 0.672388 1.16461i 0.0771282 0.133590i
\(77\) 0.574065i 0.0654208i
\(78\) 0.199669i 0.0226081i
\(79\) −1.20440 + 2.08608i −0.135505 + 0.234702i −0.925790 0.378037i \(-0.876599\pi\)
0.790285 + 0.612739i \(0.209932\pi\)
\(80\) 0 0
\(81\) 1.52905 2.64840i 0.169895 0.294266i
\(82\) −0.664327 + 0.383549i −0.0733627 + 0.0423559i
\(83\) 13.9865 8.07508i 1.53521 0.886355i 0.536103 0.844152i \(-0.319896\pi\)
0.999109 0.0422031i \(-0.0134376\pi\)
\(84\) −0.438299 0.759156i −0.0478223 0.0828307i
\(85\) 0 0
\(86\) 2.35666 4.08186i 0.254126 0.440158i
\(87\) 19.6432 + 11.3410i 2.10597 + 1.21588i
\(88\) −4.90981 + 2.83468i −0.523387 + 0.302178i
\(89\) 4.99092 0.529036 0.264518 0.964381i \(-0.414787\pi\)
0.264518 + 0.964381i \(0.414787\pi\)
\(90\) 0 0
\(91\) 0.0281082 0.00294654
\(92\) 12.5246i 1.30578i
\(93\) −15.0354 + 1.47106i −1.55910 + 0.152542i
\(94\) 3.32892 0.343352
\(95\) 0 0
\(96\) −6.62352 + 11.4723i −0.676010 + 1.17088i
\(97\) 3.08456i 0.313189i 0.987663 + 0.156595i \(0.0500516\pi\)
−0.987663 + 0.156595i \(0.949948\pi\)
\(98\) −2.87950 + 1.66248i −0.290873 + 0.167936i
\(99\) 6.86834 11.8963i 0.690295 1.19563i
\(100\) 0 0
\(101\) 4.98659 0.496184 0.248092 0.968737i \(-0.420197\pi\)
0.248092 + 0.968737i \(0.420197\pi\)
\(102\) 1.14095 0.658729i 0.112971 0.0652239i
\(103\) 9.57680 5.52917i 0.943630 0.544805i 0.0525338 0.998619i \(-0.483270\pi\)
0.891096 + 0.453814i \(0.149937\pi\)
\(104\) −0.138796 0.240401i −0.0136100 0.0235733i
\(105\) 0 0
\(106\) 2.26295 + 3.91955i 0.219797 + 0.380700i
\(107\) −5.70329 3.29280i −0.551358 0.318327i 0.198312 0.980139i \(-0.436454\pi\)
−0.749669 + 0.661812i \(0.769788\pi\)
\(108\) 6.55006i 0.630280i
\(109\) 15.2744 1.46302 0.731509 0.681832i \(-0.238816\pi\)
0.731509 + 0.681832i \(0.238816\pi\)
\(110\) 0 0
\(111\) 11.2143 + 19.4237i 1.06441 + 1.84361i
\(112\) 0.423926 + 0.244754i 0.0400573 + 0.0231271i
\(113\) 8.65957 4.99960i 0.814624 0.470323i −0.0339352 0.999424i \(-0.510804\pi\)
0.848559 + 0.529101i \(0.177471\pi\)
\(114\) 0.491314 + 0.850981i 0.0460158 + 0.0797017i
\(115\) 0 0
\(116\) −14.8148 −1.37552
\(117\) 0.582484 + 0.336297i 0.0538507 + 0.0310907i
\(118\) 1.37480 + 0.793740i 0.126560 + 0.0730697i
\(119\) −0.0927320 0.160616i −0.00850073 0.0147237i
\(120\) 0 0
\(121\) 0.541695 0.938244i 0.0492450 0.0852949i
\(122\) 6.83240i 0.618576i
\(123\) 4.36113i 0.393229i
\(124\) 8.02432 5.74232i 0.720606 0.515675i
\(125\) 0 0
\(126\) 0.379521 0.0338104
\(127\) −8.25855 4.76808i −0.732828 0.423098i 0.0866278 0.996241i \(-0.472391\pi\)
−0.819456 + 0.573142i \(0.805724\pi\)
\(128\) 11.2155i 0.991316i
\(129\) −13.3982 23.2063i −1.17964 2.04320i
\(130\) 0 0
\(131\) −4.96128 + 8.59319i −0.433469 + 0.750791i −0.997169 0.0751887i \(-0.976044\pi\)
0.563700 + 0.825980i \(0.309377\pi\)
\(132\) 15.1427i 1.31800i
\(133\) 0.119796 0.0691642i 0.0103876 0.00599730i
\(134\) 1.05756 + 1.83174i 0.0913589 + 0.158238i
\(135\) 0 0
\(136\) −0.915803 + 1.58622i −0.0785295 + 0.136017i
\(137\) 12.8657 7.42800i 1.09919 0.634616i 0.163180 0.986596i \(-0.447825\pi\)
0.936008 + 0.351980i \(0.114491\pi\)
\(138\) 7.92564 + 4.57587i 0.674675 + 0.389524i
\(139\) 11.7470 0.996372 0.498186 0.867070i \(-0.334000\pi\)
0.498186 + 0.867070i \(0.334000\pi\)
\(140\) 0 0
\(141\) 9.46281 16.3901i 0.796912 1.38029i
\(142\) −5.63218 + 3.25174i −0.472642 + 0.272880i
\(143\) −0.420499 0.242775i −0.0351639 0.0203019i
\(144\) 5.85666 + 10.1440i 0.488055 + 0.845337i
\(145\) 0 0
\(146\) 1.08060 + 1.87166i 0.0894312 + 0.154899i
\(147\) 18.9031i 1.55910i
\(148\) −12.6867 7.32465i −1.04284 0.602083i
\(149\) −1.38413 + 2.39739i −0.113393 + 0.196402i −0.917136 0.398574i \(-0.869505\pi\)
0.803743 + 0.594976i \(0.202838\pi\)
\(150\) 0 0
\(151\) 18.0145 1.46600 0.733000 0.680228i \(-0.238119\pi\)
0.733000 + 0.680228i \(0.238119\pi\)
\(152\) −1.18308 0.683053i −0.0959606 0.0554029i
\(153\) 4.43793i 0.358785i
\(154\) −0.273978 −0.0220778
\(155\) 0 0
\(156\) −0.741436 −0.0593624
\(157\) 9.94733i 0.793883i 0.917844 + 0.396942i \(0.129928\pi\)
−0.917844 + 0.396942i \(0.870072\pi\)
\(158\) 0.995602 + 0.574811i 0.0792058 + 0.0457295i
\(159\) 25.7308 2.04058
\(160\) 0 0
\(161\) 0.644164 1.11572i 0.0507672 0.0879314i
\(162\) −1.26397 0.729756i −0.0993072 0.0573350i
\(163\) 0.646932i 0.0506716i 0.999679 + 0.0253358i \(0.00806551\pi\)
−0.999679 + 0.0253358i \(0.991934\pi\)
\(164\) −1.42424 2.46686i −0.111215 0.192630i
\(165\) 0 0
\(166\) −3.85391 6.67517i −0.299122 0.518094i
\(167\) 1.70902 + 0.986702i 0.132248 + 0.0763533i 0.564664 0.825321i \(-0.309006\pi\)
−0.432417 + 0.901674i \(0.642339\pi\)
\(168\) −0.771197 + 0.445251i −0.0594991 + 0.0343518i
\(169\) −6.48811 + 11.2377i −0.499086 + 0.864442i
\(170\) 0 0
\(171\) 3.31003 0.253125
\(172\) 15.1573 + 8.75107i 1.15573 + 0.667263i
\(173\) 9.12843 5.27030i 0.694021 0.400693i −0.111095 0.993810i \(-0.535436\pi\)
0.805117 + 0.593116i \(0.202103\pi\)
\(174\) 5.41260 9.37490i 0.410328 0.710709i
\(175\) 0 0
\(176\) −4.22797 7.32305i −0.318695 0.551996i
\(177\) 7.81603 4.51259i 0.587489 0.339187i
\(178\) 2.38197i 0.178536i
\(179\) 10.6208 18.3957i 0.793832 1.37496i −0.129746 0.991547i \(-0.541416\pi\)
0.923578 0.383410i \(-0.125250\pi\)
\(180\) 0 0
\(181\) 5.01558 + 8.68724i 0.372805 + 0.645718i 0.989996 0.141096i \(-0.0450626\pi\)
−0.617191 + 0.786814i \(0.711729\pi\)
\(182\) 0.0134149i 0.000994380i
\(183\) 33.6396 + 19.4218i 2.48671 + 1.43570i
\(184\) −12.7233 −0.937972
\(185\) 0 0
\(186\) 0.702080 + 7.17578i 0.0514790 + 0.526154i
\(187\) 3.20377i 0.234283i
\(188\) 12.3614i 0.901545i
\(189\) 0.336881 0.583495i 0.0245045 0.0424430i
\(190\) 0 0
\(191\) −6.70623 11.6155i −0.485245 0.840470i 0.514611 0.857424i \(-0.327936\pi\)
−0.999856 + 0.0169541i \(0.994603\pi\)
\(192\) −7.14426 4.12474i −0.515593 0.297678i
\(193\) 16.4397 + 9.49147i 1.18336 + 0.683211i 0.956789 0.290785i \(-0.0939163\pi\)
0.226567 + 0.973995i \(0.427250\pi\)
\(194\) 1.47214 0.105693
\(195\) 0 0
\(196\) −6.17333 10.6925i −0.440952 0.763752i
\(197\) 8.58181 4.95471i 0.611428 0.353008i −0.162096 0.986775i \(-0.551825\pi\)
0.773524 + 0.633767i \(0.218492\pi\)
\(198\) −5.67764 3.27799i −0.403492 0.232956i
\(199\) −6.17851 10.7015i −0.437983 0.758609i 0.559551 0.828796i \(-0.310974\pi\)
−0.997534 + 0.0701871i \(0.977640\pi\)
\(200\) 0 0
\(201\) 12.0249 0.848169
\(202\) 2.37990i 0.167449i
\(203\) −1.31974 0.761954i −0.0926278 0.0534787i
\(204\) 2.44608 + 4.23673i 0.171260 + 0.296631i
\(205\) 0 0
\(206\) −2.63885 4.57062i −0.183857 0.318450i
\(207\) 26.6979 15.4141i 1.85563 1.07135i
\(208\) 0.358561 0.207016i 0.0248618 0.0143539i
\(209\) −2.38954 −0.165288
\(210\) 0 0
\(211\) −1.25287 + 2.17004i −0.0862513 + 0.149392i −0.905924 0.423441i \(-0.860822\pi\)
0.819672 + 0.572833i \(0.194155\pi\)
\(212\) −14.5546 + 8.40309i −0.999612 + 0.577126i
\(213\) 36.9737i 2.53340i
\(214\) −1.57152 + 2.72195i −0.107427 + 0.186069i
\(215\) 0 0
\(216\) −6.65394 −0.452744
\(217\) 1.01016 0.0988346i 0.0685744 0.00670933i
\(218\) 7.28984i 0.493730i
\(219\) 12.2869 0.830272
\(220\) 0 0
\(221\) −0.156867 −0.0105520
\(222\) 9.27015 5.35212i 0.622172 0.359211i
\(223\) −16.2038 9.35529i −1.08509 0.626477i −0.152825 0.988253i \(-0.548837\pi\)
−0.932265 + 0.361777i \(0.882170\pi\)
\(224\) 0.445006 0.770774i 0.0297332 0.0514995i
\(225\) 0 0
\(226\) −2.38611 4.13287i −0.158722 0.274914i
\(227\) −13.6689 + 7.89172i −0.907235 + 0.523792i −0.879540 0.475824i \(-0.842150\pi\)
−0.0276942 + 0.999616i \(0.508816\pi\)
\(228\) −3.15997 + 1.82441i −0.209274 + 0.120825i
\(229\) −4.97967 + 8.62504i −0.329066 + 0.569959i −0.982327 0.187174i \(-0.940067\pi\)
0.653261 + 0.757133i \(0.273401\pi\)
\(230\) 0 0
\(231\) −0.778814 + 1.34895i −0.0512422 + 0.0887541i
\(232\) 15.0498i 0.988069i
\(233\) 3.73699i 0.244818i 0.992480 + 0.122409i \(0.0390620\pi\)
−0.992480 + 0.122409i \(0.960938\pi\)
\(234\) 0.160501 0.277996i 0.0104923 0.0181732i
\(235\) 0 0
\(236\) −2.94742 + 5.10508i −0.191861 + 0.332312i
\(237\) 5.66021 3.26793i 0.367670 0.212275i
\(238\) −0.0766558 + 0.0442573i −0.00496886 + 0.00286877i
\(239\) −3.82694 6.62845i −0.247544 0.428759i 0.715300 0.698818i \(-0.246290\pi\)
−0.962844 + 0.270059i \(0.912957\pi\)
\(240\) 0 0
\(241\) 3.67712 6.36895i 0.236864 0.410260i −0.722949 0.690902i \(-0.757214\pi\)
0.959813 + 0.280641i \(0.0905471\pi\)
\(242\) −0.447786 0.258529i −0.0287848 0.0166189i
\(243\) −16.7883 + 9.69275i −1.07697 + 0.621791i
\(244\) −25.3709 −1.62421
\(245\) 0 0
\(246\) 2.08139 0.132705
\(247\) 0.117000i 0.00744452i
\(248\) −5.83339 8.15159i −0.370421 0.517627i
\(249\) −43.8207 −2.77702
\(250\) 0 0
\(251\) −9.47442 + 16.4102i −0.598020 + 1.03580i 0.395093 + 0.918641i \(0.370712\pi\)
−0.993113 + 0.117160i \(0.962621\pi\)
\(252\) 1.40928i 0.0887766i
\(253\) −19.2734 + 11.1275i −1.21171 + 0.699581i
\(254\) −2.27561 + 3.94148i −0.142785 + 0.247310i
\(255\) 0 0
\(256\) 0.728021 0.0455013
\(257\) 3.56865 2.06036i 0.222606 0.128522i −0.384550 0.923104i \(-0.625643\pi\)
0.607157 + 0.794582i \(0.292310\pi\)
\(258\) −11.0754 + 6.39440i −0.689526 + 0.398098i
\(259\) −0.753440 1.30500i −0.0468165 0.0810885i
\(260\) 0 0
\(261\) −18.2326 31.5798i −1.12857 1.95474i
\(262\) 4.10119 + 2.36782i 0.253372 + 0.146285i
\(263\) 19.3874i 1.19548i −0.801691 0.597739i \(-0.796066\pi\)
0.801691 0.597739i \(-0.203934\pi\)
\(264\) 15.3828 0.946748
\(265\) 0 0
\(266\) −0.0330093 0.0571738i −0.00202393 0.00350555i
\(267\) −11.7277 6.77100i −0.717725 0.414378i
\(268\) −6.80185 + 3.92705i −0.415489 + 0.239883i
\(269\) 13.5178 + 23.4135i 0.824193 + 1.42754i 0.902534 + 0.430618i \(0.141704\pi\)
−0.0783415 + 0.996927i \(0.524962\pi\)
\(270\) 0 0
\(271\) 29.5797 1.79684 0.898419 0.439140i \(-0.144717\pi\)
0.898419 + 0.439140i \(0.144717\pi\)
\(272\) −2.36587 1.36593i −0.143452 0.0828219i
\(273\) −0.0660489 0.0381334i −0.00399746 0.00230794i
\(274\) −3.54508 6.14027i −0.214166 0.370947i
\(275\) 0 0
\(276\) −16.9917 + 29.4305i −1.02278 + 1.77151i
\(277\) 13.1202i 0.788314i −0.919043 0.394157i \(-0.871037\pi\)
0.919043 0.394157i \(-0.128963\pi\)
\(278\) 5.60640i 0.336249i
\(279\) 22.1161 + 10.0379i 1.32405 + 0.600951i
\(280\) 0 0
\(281\) −14.1060 −0.841495 −0.420748 0.907178i \(-0.638232\pi\)
−0.420748 + 0.907178i \(0.638232\pi\)
\(282\) −7.82232 4.51622i −0.465813 0.268937i
\(283\) 4.40824i 0.262043i 0.991380 + 0.131021i \(0.0418256\pi\)
−0.991380 + 0.131021i \(0.958174\pi\)
\(284\) −12.0748 20.9141i −0.716506 1.24103i
\(285\) 0 0
\(286\) −0.115867 + 0.200688i −0.00685136 + 0.0118669i
\(287\) 0.293006i 0.0172956i
\(288\) 18.4437 10.6485i 1.08680 0.627467i
\(289\) −7.98248 13.8261i −0.469557 0.813297i
\(290\) 0 0
\(291\) 4.18471 7.24813i 0.245312 0.424893i
\(292\) −6.95007 + 4.01262i −0.406722 + 0.234821i
\(293\) −0.403011 0.232678i −0.0235441 0.0135932i 0.488182 0.872742i \(-0.337660\pi\)
−0.511726 + 0.859149i \(0.670994\pi\)
\(294\) 9.02171 0.526157
\(295\) 0 0
\(296\) −7.44083 + 12.8879i −0.432489 + 0.749093i
\(297\) −10.0795 + 5.81940i −0.584872 + 0.337676i
\(298\) 1.14418 + 0.660591i 0.0662804 + 0.0382670i
\(299\) −0.544841 0.943692i −0.0315090 0.0545751i
\(300\) 0 0
\(301\) 0.900166 + 1.55913i 0.0518847 + 0.0898669i
\(302\) 8.59761i 0.494737i
\(303\) −11.7175 6.76512i −0.673155 0.388646i
\(304\) 1.01878 1.76458i 0.0584312 0.101206i
\(305\) 0 0
\(306\) −2.11805 −0.121081
\(307\) 18.3577 + 10.5988i 1.04773 + 0.604905i 0.922012 0.387161i \(-0.126544\pi\)
0.125715 + 0.992066i \(0.459878\pi\)
\(308\) 1.01737i 0.0579701i
\(309\) −30.0049 −1.70692
\(310\) 0 0
\(311\) 18.5010 1.04909 0.524547 0.851382i \(-0.324235\pi\)
0.524547 + 0.851382i \(0.324235\pi\)
\(312\) 0.753196i 0.0426413i
\(313\) 17.8301 + 10.2942i 1.00782 + 0.581864i 0.910552 0.413394i \(-0.135657\pi\)
0.0972662 + 0.995258i \(0.468990\pi\)
\(314\) 4.74746 0.267915
\(315\) 0 0
\(316\) −2.13446 + 3.69700i −0.120073 + 0.207972i
\(317\) −24.6914 14.2556i −1.38681 0.800674i −0.393853 0.919173i \(-0.628858\pi\)
−0.992954 + 0.118500i \(0.962192\pi\)
\(318\) 12.2803i 0.688643i
\(319\) 13.1623 + 22.7977i 0.736945 + 1.27643i
\(320\) 0 0
\(321\) 8.93444 + 15.4749i 0.498672 + 0.863724i
\(322\) −0.532491 0.307434i −0.0296745 0.0171326i
\(323\) −0.668563 + 0.385995i −0.0371998 + 0.0214773i
\(324\) 2.70982 4.69355i 0.150546 0.260753i
\(325\) 0 0
\(326\) 0.308755 0.0171004
\(327\) −35.8918 20.7222i −1.98482 1.14594i
\(328\) −2.50599 + 1.44683i −0.138370 + 0.0798880i
\(329\) −0.635766 + 1.10118i −0.0350509 + 0.0607100i
\(330\) 0 0
\(331\) −2.19961 3.80984i −0.120902 0.209408i 0.799222 0.601036i \(-0.205245\pi\)
−0.920124 + 0.391628i \(0.871912\pi\)
\(332\) 24.7871 14.3108i 1.36037 0.785410i
\(333\) 36.0578i 1.97596i
\(334\) 0.470913 0.815646i 0.0257672 0.0446301i
\(335\) 0 0
\(336\) −0.664098 1.15025i −0.0362295 0.0627513i
\(337\) 5.09585i 0.277589i −0.990321 0.138794i \(-0.955677\pi\)
0.990321 0.138794i \(-0.0443227\pi\)
\(338\) 5.36332 + 3.09652i 0.291726 + 0.168428i
\(339\) −27.1311 −1.47356
\(340\) 0 0
\(341\) −15.9657 7.24640i −0.864593 0.392414i
\(342\) 1.57975i 0.0854229i
\(343\) 2.54610i 0.137477i
\(344\) 8.88986 15.3977i 0.479309 0.830188i
\(345\) 0 0
\(346\) −2.51530 4.35663i −0.135224 0.234214i
\(347\) 20.0381 + 11.5690i 1.07570 + 0.621057i 0.929734 0.368232i \(-0.120037\pi\)
0.145969 + 0.989289i \(0.453370\pi\)
\(348\) 34.8121 + 20.0988i 1.86612 + 1.07741i
\(349\) 31.4034 1.68098 0.840492 0.541824i \(-0.182266\pi\)
0.840492 + 0.541824i \(0.182266\pi\)
\(350\) 0 0
\(351\) −0.284938 0.493527i −0.0152089 0.0263425i
\(352\) −13.3146 + 7.68720i −0.709672 + 0.409729i
\(353\) −4.68922 2.70732i −0.249582 0.144096i 0.369991 0.929035i \(-0.379361\pi\)
−0.619573 + 0.784939i \(0.712694\pi\)
\(354\) −2.15368 3.73028i −0.114467 0.198262i
\(355\) 0 0
\(356\) 8.84502 0.468785
\(357\) 0.503224i 0.0266335i
\(358\) −8.77952 5.06886i −0.464012 0.267898i
\(359\) 15.3149 + 26.5262i 0.808290 + 1.40000i 0.914048 + 0.405607i \(0.132940\pi\)
−0.105758 + 0.994392i \(0.533727\pi\)
\(360\) 0 0
\(361\) 9.21211 + 15.9558i 0.484848 + 0.839781i
\(362\) 4.14607 2.39374i 0.217913 0.125812i
\(363\) −2.54576 + 1.46980i −0.133618 + 0.0771443i
\(364\) 0.0498140 0.00261096
\(365\) 0 0
\(366\) 9.26927 16.0548i 0.484512 0.839200i
\(367\) 18.9076 10.9163i 0.986968 0.569826i 0.0826012 0.996583i \(-0.473677\pi\)
0.904367 + 0.426757i \(0.140344\pi\)
\(368\) 18.9769i 0.989242i
\(369\) 3.50564 6.07194i 0.182496 0.316093i
\(370\) 0 0
\(371\) −1.72874 −0.0897518
\(372\) −26.6460 + 2.60705i −1.38153 + 0.135169i
\(373\) 27.1661i 1.40661i −0.710889 0.703305i \(-0.751707\pi\)
0.710889 0.703305i \(-0.248293\pi\)
\(374\) 1.52903 0.0790643
\(375\) 0 0
\(376\) 12.5574 0.647599
\(377\) −1.11625 + 0.644469i −0.0574899 + 0.0331918i
\(378\) −0.278479 0.160780i −0.0143234 0.00826962i
\(379\) −7.98472 + 13.8299i −0.410148 + 0.710397i −0.994906 0.100811i \(-0.967856\pi\)
0.584758 + 0.811208i \(0.301190\pi\)
\(380\) 0 0
\(381\) 12.9374 + 22.4082i 0.662801 + 1.14800i
\(382\) −5.54362 + 3.20061i −0.283637 + 0.163758i
\(383\) −5.84433 + 3.37422i −0.298631 + 0.172415i −0.641828 0.766849i \(-0.721824\pi\)
0.343197 + 0.939264i \(0.388490\pi\)
\(384\) −15.2156 + 26.3542i −0.776468 + 1.34488i
\(385\) 0 0
\(386\) 4.52990 7.84601i 0.230566 0.399352i
\(387\) 43.0797i 2.18987i
\(388\) 5.46652i 0.277521i
\(389\) −13.4863 + 23.3590i −0.683783 + 1.18435i 0.290035 + 0.957016i \(0.406333\pi\)
−0.973818 + 0.227331i \(0.927000\pi\)
\(390\) 0 0
\(391\) −3.59498 + 6.22668i −0.181806 + 0.314897i
\(392\) −10.8621 + 6.27124i −0.548620 + 0.316746i
\(393\) 23.3162 13.4616i 1.17614 0.679047i
\(394\) −2.36468 4.09575i −0.119131 0.206341i
\(395\) 0 0
\(396\) 12.1722 21.0829i 0.611678 1.05946i
\(397\) −18.4795 10.6692i −0.927460 0.535469i −0.0414528 0.999140i \(-0.513199\pi\)
−0.886007 + 0.463671i \(0.846532\pi\)
\(398\) −5.10740 + 2.94876i −0.256011 + 0.147808i
\(399\) −0.375331 −0.0187900
\(400\) 0 0
\(401\) −24.4634 −1.22164 −0.610821 0.791769i \(-0.709161\pi\)
−0.610821 + 0.791769i \(0.709161\pi\)
\(402\) 5.73899i 0.286235i
\(403\) 0.354808 0.781737i 0.0176743 0.0389411i
\(404\) 8.83734 0.439674
\(405\) 0 0
\(406\) −0.363650 + 0.629860i −0.0180476 + 0.0312594i
\(407\) 26.0304i 1.29028i
\(408\) 4.30393 2.48487i 0.213076 0.123020i
\(409\) −7.41790 + 12.8482i −0.366791 + 0.635301i −0.989062 0.147501i \(-0.952877\pi\)
0.622270 + 0.782802i \(0.286210\pi\)
\(410\) 0 0
\(411\) −40.3092 −1.98830
\(412\) 16.9722 9.79892i 0.836162 0.482758i
\(413\) −0.525126 + 0.303182i −0.0258398 + 0.0149186i
\(414\) −7.35651 12.7419i −0.361553 0.626228i
\(415\) 0 0
\(416\) −0.376391 0.651929i −0.0184541 0.0319634i
\(417\) −27.6033 15.9368i −1.35174 0.780428i
\(418\) 1.14043i 0.0557802i
\(419\) 14.7454 0.720360 0.360180 0.932883i \(-0.382715\pi\)
0.360180 + 0.932883i \(0.382715\pi\)
\(420\) 0 0
\(421\) 3.13737 + 5.43408i 0.152906 + 0.264841i 0.932295 0.361700i \(-0.117804\pi\)
−0.779389 + 0.626541i \(0.784470\pi\)
\(422\) 1.03567 + 0.597946i 0.0504158 + 0.0291076i
\(423\) −26.3499 + 15.2131i −1.28118 + 0.739687i
\(424\) 8.53636 + 14.7854i 0.414563 + 0.718043i
\(425\) 0 0
\(426\) 17.6461 0.854955
\(427\) −2.26010 1.30487i −0.109374 0.0631472i
\(428\) −10.1075 5.83557i −0.488564 0.282073i
\(429\) 0.658729 + 1.14095i 0.0318038 + 0.0550857i
\(430\) 0 0
\(431\) −5.84197 + 10.1186i −0.281398 + 0.487395i −0.971729 0.236098i \(-0.924131\pi\)
0.690331 + 0.723493i \(0.257465\pi\)
\(432\) 9.92445i 0.477491i
\(433\) 35.9341i 1.72688i 0.504447 + 0.863442i \(0.331696\pi\)
−0.504447 + 0.863442i \(0.668304\pi\)
\(434\) −0.0471698 0.482111i −0.00226422 0.0231421i
\(435\) 0 0
\(436\) 27.0696 1.29640
\(437\) −4.64418 2.68132i −0.222161 0.128265i
\(438\) 5.86405i 0.280195i
\(439\) −16.6439 28.8281i −0.794371 1.37589i −0.923238 0.384229i \(-0.874467\pi\)
0.128867 0.991662i \(-0.458866\pi\)
\(440\) 0 0
\(441\) 15.1950 26.3186i 0.723573 1.25327i
\(442\) 0.0748666i 0.00356104i
\(443\) 3.38095 1.95199i 0.160634 0.0927420i −0.417528 0.908664i \(-0.637104\pi\)
0.578162 + 0.815922i \(0.303770\pi\)
\(444\) 19.8742 + 34.4231i 0.943187 + 1.63365i
\(445\) 0 0
\(446\) −4.46491 + 7.73344i −0.211419 + 0.366189i
\(447\) 6.50490 3.75561i 0.307671 0.177634i
\(448\) 0.479993 + 0.277124i 0.0226775 + 0.0130929i
\(449\) 27.5270 1.29908 0.649540 0.760328i \(-0.274962\pi\)
0.649540 + 0.760328i \(0.274962\pi\)
\(450\) 0 0
\(451\) −2.53074 + 4.38337i −0.119168 + 0.206405i
\(452\) 15.3467 8.86041i 0.721847 0.416759i
\(453\) −42.3307 24.4396i −1.98887 1.14827i
\(454\) 3.76640 + 6.52360i 0.176766 + 0.306168i
\(455\) 0 0
\(456\) 1.85335 + 3.21009i 0.0867909 + 0.150326i
\(457\) 21.1516i 0.989428i −0.869056 0.494714i \(-0.835273\pi\)
0.869056 0.494714i \(-0.164727\pi\)
\(458\) 4.11639 + 2.37660i 0.192346 + 0.111051i
\(459\) −1.88008 + 3.25640i −0.0877547 + 0.151996i
\(460\) 0 0
\(461\) −2.59185 −0.120714 −0.0603572 0.998177i \(-0.519224\pi\)
−0.0603572 + 0.998177i \(0.519224\pi\)
\(462\) 0.643798 + 0.371697i 0.0299522 + 0.0172929i
\(463\) 19.5917i 0.910506i 0.890362 + 0.455253i \(0.150451\pi\)
−0.890362 + 0.455253i \(0.849549\pi\)
\(464\) −22.4470 −1.04208
\(465\) 0 0
\(466\) 1.78352 0.0826198
\(467\) 5.57372i 0.257921i 0.991650 + 0.128961i \(0.0411641\pi\)
−0.991650 + 0.128961i \(0.958836\pi\)
\(468\) 1.03229 + 0.595994i 0.0477177 + 0.0275498i
\(469\) −0.807901 −0.0373054
\(470\) 0 0
\(471\) 13.4952 23.3743i 0.621825 1.07703i
\(472\) 5.18605 + 2.99416i 0.238707 + 0.137818i
\(473\) 31.0996i 1.42996i
\(474\) −1.55965 2.70139i −0.0716371 0.124079i
\(475\) 0 0
\(476\) −0.164342 0.284648i −0.00753259 0.0130468i
\(477\) −35.8246 20.6834i −1.64030 0.947026i
\(478\) −3.16349 + 1.82644i −0.144695 + 0.0835396i
\(479\) 8.60971 14.9125i 0.393388 0.681367i −0.599506 0.800370i \(-0.704636\pi\)
0.992894 + 0.119003i \(0.0379697\pi\)
\(480\) 0 0
\(481\) −1.27454 −0.0581138
\(482\) −3.03965 1.75494i −0.138452 0.0799354i
\(483\) −3.02733 + 1.74783i −0.137748 + 0.0795289i
\(484\) 0.960005 1.66278i 0.0436366 0.0755808i
\(485\) 0 0
\(486\) 4.62596 + 8.01241i 0.209838 + 0.363450i
\(487\) 27.9971 16.1641i 1.26867 0.732467i 0.293934 0.955826i \(-0.405036\pi\)
0.974736 + 0.223359i \(0.0717022\pi\)
\(488\) 25.7733i 1.16670i
\(489\) 0.877670 1.52017i 0.0396896 0.0687444i
\(490\) 0 0
\(491\) −11.0239 19.0939i −0.497500 0.861695i 0.502496 0.864579i \(-0.332415\pi\)
−0.999996 + 0.00288473i \(0.999082\pi\)
\(492\) 7.72889i 0.348445i
\(493\) 7.36528 + 4.25234i 0.331715 + 0.191516i
\(494\) −0.0558393 −0.00251233
\(495\) 0 0
\(496\) 12.1582 8.70059i 0.545920 0.390668i
\(497\) 2.48411i 0.111427i
\(498\) 20.9139i 0.937173i
\(499\) −8.25766 + 14.3027i −0.369664 + 0.640276i −0.989513 0.144445i \(-0.953860\pi\)
0.619849 + 0.784721i \(0.287194\pi\)
\(500\) 0 0
\(501\) −2.67725 4.63712i −0.119610 0.207171i
\(502\) 7.83192 + 4.52176i 0.349556 + 0.201816i
\(503\) 22.3505 + 12.9041i 0.996560 + 0.575364i 0.907229 0.420638i \(-0.138194\pi\)
0.0893312 + 0.996002i \(0.471527\pi\)
\(504\) 1.43164 0.0637701
\(505\) 0 0
\(506\) 5.31072 + 9.19843i 0.236090 + 0.408920i
\(507\) 30.4917 17.6044i 1.35418 0.781838i
\(508\) −14.6360 8.45010i −0.649367 0.374912i
\(509\) −5.69876 9.87055i −0.252593 0.437504i 0.711646 0.702538i \(-0.247950\pi\)
−0.964239 + 0.265034i \(0.914617\pi\)
\(510\) 0 0
\(511\) −0.825505 −0.0365182
\(512\) 22.7784i 1.00667i
\(513\) −2.42879 1.40226i −0.107234 0.0619113i
\(514\) −0.983328 1.70317i −0.0433728 0.0751238i
\(515\) 0 0
\(516\) −23.7445 41.1267i −1.04529 1.81050i
\(517\) 19.0222 10.9825i 0.836594 0.483008i
\(518\) −0.622822 + 0.359587i −0.0273652 + 0.0157993i
\(519\) −28.6001 −1.25541
\(520\) 0 0
\(521\) −7.16994 + 12.4187i −0.314121 + 0.544073i −0.979250 0.202655i \(-0.935043\pi\)
0.665129 + 0.746728i \(0.268376\pi\)
\(522\) −15.0718 + 8.70170i −0.659674 + 0.380863i
\(523\) 42.0600i 1.83916i −0.392909 0.919578i \(-0.628531\pi\)
0.392909 0.919578i \(-0.371469\pi\)
\(524\) −8.79250 + 15.2291i −0.384102 + 0.665284i
\(525\) 0 0
\(526\) −9.25283 −0.403443
\(527\) −5.63757 + 0.551581i −0.245576 + 0.0240272i
\(528\) 22.9437i 0.998497i
\(529\) −26.9451 −1.17153
\(530\) 0 0
\(531\) −14.5095 −0.629661
\(532\) 0.212305 0.122574i 0.00920460 0.00531428i
\(533\) −0.214625 0.123914i −0.00929644 0.00536730i
\(534\) −3.23153 + 5.59717i −0.139842 + 0.242213i
\(535\) 0 0
\(536\) 3.98934 + 6.90973i 0.172313 + 0.298455i
\(537\) −49.9135 + 28.8176i −2.15393 + 1.24357i
\(538\) 11.1743 6.45149i 0.481759 0.278144i
\(539\) −10.9694 + 18.9996i −0.472486 + 0.818369i
\(540\) 0 0
\(541\) −14.8641 + 25.7454i −0.639058 + 1.10688i 0.346582 + 0.938020i \(0.387342\pi\)
−0.985640 + 0.168861i \(0.945991\pi\)
\(542\) 14.1172i 0.606386i
\(543\) 27.2178i 1.16803i
\(544\) −2.48351 + 4.30157i −0.106480 + 0.184428i
\(545\) 0 0
\(546\) −0.0181995 + 0.0315225i −0.000778868 + 0.00134904i
\(547\) 11.5064 6.64325i 0.491980 0.284045i −0.233416 0.972377i \(-0.574990\pi\)
0.725395 + 0.688332i \(0.241657\pi\)
\(548\) 22.8008 13.1641i 0.974003 0.562341i
\(549\) −31.2240 54.0815i −1.33261 2.30814i
\(550\) 0 0
\(551\) −3.17162 + 5.49340i −0.135115 + 0.234027i
\(552\) 29.8973 + 17.2612i 1.27251 + 0.734686i
\(553\) −0.380286 + 0.219558i −0.0161714 + 0.00933657i
\(554\) −6.26173 −0.266035
\(555\) 0 0
\(556\) 20.8184 0.882896
\(557\) 28.7388i 1.21770i 0.793284 + 0.608851i \(0.208369\pi\)
−0.793284 + 0.608851i \(0.791631\pi\)
\(558\) 4.79067 10.5551i 0.202805 0.446833i
\(559\) 1.52274 0.0644050
\(560\) 0 0
\(561\) 4.34644 7.52825i 0.183507 0.317843i
\(562\) 6.73224i 0.283983i
\(563\) −0.177452 + 0.102452i −0.00747872 + 0.00431784i −0.503735 0.863858i \(-0.668041\pi\)
0.496256 + 0.868176i \(0.334708\pi\)
\(564\) 16.7702 29.0469i 0.706153 1.22309i
\(565\) 0 0
\(566\) 2.10388 0.0884325
\(567\) 0.482795 0.278742i 0.0202755 0.0117061i
\(568\) −21.2458 + 12.2663i −0.891455 + 0.514682i
\(569\) 5.93216 + 10.2748i 0.248689 + 0.430742i 0.963162 0.268921i \(-0.0866670\pi\)
−0.714473 + 0.699663i \(0.753334\pi\)
\(570\) 0 0
\(571\) −9.61511 16.6539i −0.402380 0.696942i 0.591633 0.806208i \(-0.298484\pi\)
−0.994013 + 0.109265i \(0.965150\pi\)
\(572\) −0.745219 0.430252i −0.0311592 0.0179897i
\(573\) 36.3924i 1.52031i
\(574\) −0.139840 −0.00583680
\(575\) 0 0
\(576\) 6.63124 + 11.4856i 0.276302 + 0.478569i
\(577\) −22.5574 13.0235i −0.939078 0.542177i −0.0494067 0.998779i \(-0.515733\pi\)
−0.889671 + 0.456602i \(0.849066\pi\)
\(578\) −6.59862 + 3.80972i −0.274467 + 0.158463i
\(579\) −25.7535 44.6063i −1.07028 1.85378i
\(580\) 0 0
\(581\) 2.94413 0.122143
\(582\) −3.45924 1.99719i −0.143390 0.0827863i
\(583\) 25.8620 + 14.9315i 1.07110 + 0.618398i
\(584\) 4.07627 + 7.06030i 0.168677 + 0.292157i
\(585\) 0 0
\(586\) −0.111048 + 0.192341i −0.00458735 + 0.00794553i
\(587\) 2.78293i 0.114864i 0.998349 + 0.0574318i \(0.0182912\pi\)
−0.998349 + 0.0574318i \(0.981709\pi\)
\(588\) 33.5006i 1.38154i
\(589\) −0.411397 4.20479i −0.0169513 0.173255i
\(590\) 0 0
\(591\) −26.8875 −1.10600
\(592\) −19.2225 11.0981i −0.790039 0.456129i
\(593\) 10.0246i 0.411660i 0.978588 + 0.205830i \(0.0659893\pi\)
−0.978588 + 0.205830i \(0.934011\pi\)
\(594\) 2.77737 + 4.81054i 0.113957 + 0.197379i
\(595\) 0 0
\(596\) −2.45299 + 4.24871i −0.100478 + 0.174034i
\(597\) 33.5287i 1.37224i
\(598\) −0.450386 + 0.260031i −0.0184177 + 0.0106334i
\(599\) −2.61827 4.53497i −0.106979 0.185294i 0.807566 0.589778i \(-0.200785\pi\)
−0.914545 + 0.404484i \(0.867451\pi\)
\(600\) 0 0
\(601\) −22.5154 + 38.9979i −0.918424 + 1.59076i −0.116614 + 0.993177i \(0.537204\pi\)
−0.801810 + 0.597579i \(0.796129\pi\)
\(602\) 0.744112 0.429613i 0.0303277 0.0175097i
\(603\) −16.7421 9.66604i −0.681790 0.393632i
\(604\) 31.9257 1.29904
\(605\) 0 0
\(606\) −3.22872 + 5.59231i −0.131158 + 0.227172i
\(607\) −34.9034 + 20.1515i −1.41668 + 0.817923i −0.996006 0.0892866i \(-0.971541\pi\)
−0.420679 + 0.907210i \(0.638208\pi\)
\(608\) −3.20833 1.85233i −0.130115 0.0751219i
\(609\) 2.06743 + 3.58089i 0.0837765 + 0.145105i
\(610\) 0 0
\(611\) 0.537738 + 0.931390i 0.0217546 + 0.0376800i
\(612\) 7.86500i 0.317924i
\(613\) −18.3237 10.5792i −0.740086 0.427289i 0.0820147 0.996631i \(-0.473865\pi\)
−0.822100 + 0.569342i \(0.807198\pi\)
\(614\) 5.05838 8.76138i 0.204140 0.353580i
\(615\) 0 0
\(616\) −1.03351 −0.0416412
\(617\) 25.8518 + 14.9256i 1.04076 + 0.600881i 0.920047 0.391807i \(-0.128150\pi\)
0.120709 + 0.992688i \(0.461483\pi\)
\(618\) 14.3201i 0.576040i
\(619\) 1.43250 0.0575771 0.0287885 0.999586i \(-0.490835\pi\)
0.0287885 + 0.999586i \(0.490835\pi\)
\(620\) 0 0
\(621\) −26.1200 −1.04816
\(622\) 8.82977i 0.354042i
\(623\) 0.787936 + 0.454915i 0.0315680 + 0.0182258i
\(624\) −1.12340 −0.0449721
\(625\) 0 0
\(626\) 4.91302 8.50961i 0.196364 0.340112i
\(627\) 5.61496 + 3.24180i 0.224240 + 0.129465i
\(628\) 17.6289i 0.703469i
\(629\) 4.20483 + 7.28298i 0.167658 + 0.290391i
\(630\) 0 0
\(631\) 4.78914 + 8.29504i 0.190653 + 0.330220i 0.945467 0.325719i \(-0.105606\pi\)
−0.754814 + 0.655939i \(0.772273\pi\)
\(632\) 3.75563 + 2.16832i 0.149391 + 0.0862509i
\(633\) 5.88803 3.39945i 0.234028 0.135116i
\(634\) −6.80362 + 11.7842i −0.270206 + 0.468011i
\(635\) 0 0
\(636\) 45.6007 1.80818
\(637\) −0.930283 0.537099i −0.0368592 0.0212806i
\(638\) 10.8804 6.28182i 0.430760 0.248700i
\(639\) 29.7209 51.4780i 1.17574 2.03644i
\(640\) 0 0
\(641\) 5.31970 + 9.21399i 0.210115 + 0.363931i 0.951750 0.306873i \(-0.0992827\pi\)
−0.741635 + 0.670804i \(0.765949\pi\)
\(642\) 7.38555 4.26405i 0.291484 0.168289i
\(643\) 14.2242i 0.560946i 0.959862 + 0.280473i \(0.0904914\pi\)
−0.959862 + 0.280473i \(0.909509\pi\)
\(644\) 1.14160 1.97731i 0.0449854 0.0779170i
\(645\) 0 0
\(646\) 0.184220 + 0.319078i 0.00724804 + 0.0125540i
\(647\) 32.9960i 1.29721i −0.761127 0.648603i \(-0.775354\pi\)
0.761127 0.648603i \(-0.224646\pi\)
\(648\) −4.76799 2.75280i −0.187304 0.108140i
\(649\) 10.4745 0.411162
\(650\) 0 0
\(651\) −2.50778 1.13821i −0.0982876 0.0446100i
\(652\) 1.14651i 0.0449007i
\(653\) 30.7443i 1.20312i −0.798829 0.601559i \(-0.794547\pi\)
0.798829 0.601559i \(-0.205453\pi\)
\(654\) −9.88986 + 17.1297i −0.386724 + 0.669826i
\(655\) 0 0
\(656\) −2.15797 3.73772i −0.0842547 0.145933i
\(657\) −17.1069 9.87667i −0.667404 0.385326i
\(658\) 0.525549 + 0.303426i 0.0204880 + 0.0118288i
\(659\) 14.4489 0.562850 0.281425 0.959583i \(-0.409193\pi\)
0.281425 + 0.959583i \(0.409193\pi\)
\(660\) 0 0
\(661\) 3.35678 + 5.81411i 0.130564 + 0.226143i 0.923894 0.382649i \(-0.124988\pi\)
−0.793330 + 0.608791i \(0.791655\pi\)
\(662\) −1.81829 + 1.04979i −0.0706697 + 0.0408011i
\(663\) 0.368609 + 0.212816i 0.0143156 + 0.00826510i
\(664\) −14.5378 25.1802i −0.564177 0.977183i
\(665\) 0 0
\(666\) −17.2089 −0.666833
\(667\) 59.0779i 2.28751i
\(668\) 3.02876 + 1.74866i 0.117186 + 0.0676575i
\(669\) 25.3840 + 43.9663i 0.981401 + 1.69984i
\(670\) 0 0
\(671\) 22.5408 + 39.0418i 0.870179 + 1.50719i
\(672\) −2.09136 + 1.20745i −0.0806760 + 0.0465783i
\(673\) 1.53669 0.887207i 0.0592349 0.0341993i −0.470090 0.882618i \(-0.655779\pi\)
0.529325 + 0.848419i \(0.322445\pi\)
\(674\) −2.43205 −0.0936789
\(675\) 0 0
\(676\) −11.4984 + 19.9158i −0.442245 + 0.765992i
\(677\) 8.73322 5.04213i 0.335645 0.193785i −0.322700 0.946501i \(-0.604590\pi\)
0.658345 + 0.752717i \(0.271257\pi\)
\(678\) 12.9486i 0.497288i
\(679\) −0.281153 + 0.486971i −0.0107897 + 0.0186882i
\(680\) 0 0
\(681\) 42.8257 1.64108
\(682\) −3.45841 + 7.61981i −0.132430 + 0.291777i
\(683\) 6.84051i 0.261745i 0.991399 + 0.130872i \(0.0417778\pi\)
−0.991399 + 0.130872i \(0.958222\pi\)
\(684\) 5.86612 0.224297
\(685\) 0 0
\(686\) −1.21515 −0.0463947
\(687\) 23.4026 13.5115i 0.892864 0.515495i
\(688\) 22.9659 + 13.2594i 0.875566 + 0.505508i
\(689\) −0.731095 + 1.26629i −0.0278525 + 0.0482419i
\(690\) 0 0
\(691\) −4.35710 7.54671i −0.165752 0.287090i 0.771170 0.636629i \(-0.219672\pi\)
−0.936922 + 0.349539i \(0.886338\pi\)
\(692\) 16.1776 9.34015i 0.614980 0.355059i
\(693\) 2.16866 1.25208i 0.0823808 0.0475626i
\(694\) 5.52143 9.56339i 0.209591 0.363021i
\(695\) 0 0
\(696\) 20.4175 35.3642i 0.773925 1.34048i
\(697\) 1.63522i 0.0619383i
\(698\) 14.9876i 0.567288i
\(699\) 5.06984 8.78122i 0.191759 0.332136i
\(700\) 0 0
\(701\) 14.9266 25.8537i 0.563771 0.976480i −0.433392 0.901205i \(-0.642683\pi\)
0.997163 0.0752741i \(-0.0239832\pi\)
\(702\) −0.235541 + 0.135989i −0.00888990 + 0.00513259i
\(703\) −5.43202 + 3.13618i −0.204872 + 0.118283i
\(704\) −4.78714 8.29157i −0.180422 0.312500i
\(705\) 0 0
\(706\) −1.29210 + 2.23798i −0.0486287 + 0.0842273i
\(707\) 0.787252 + 0.454520i 0.0296076 + 0.0170940i
\(708\) 13.8517 7.99731i 0.520581 0.300557i
\(709\) 15.2001 0.570851 0.285426 0.958401i \(-0.407865\pi\)
0.285426 + 0.958401i \(0.407865\pi\)
\(710\) 0 0
\(711\) −10.5075 −0.394063
\(712\) 8.98531i 0.336739i
\(713\) −22.8989 31.9990i −0.857572 1.19837i
\(714\) 0.240169 0.00898810
\(715\) 0 0
\(716\) 18.8223 32.6012i 0.703424 1.21837i
\(717\) 20.7675i 0.775576i
\(718\) 12.6599 7.30919i 0.472463 0.272777i
\(719\) 4.05968 7.03157i 0.151400 0.262233i −0.780342 0.625353i \(-0.784955\pi\)
0.931743 + 0.363120i \(0.118288\pi\)
\(720\) 0 0
\(721\) 2.01590 0.0750761
\(722\) 7.61508 4.39657i 0.283404 0.163623i
\(723\) −17.2811 + 9.97723i −0.642690 + 0.371057i
\(724\) 8.88873 + 15.3957i 0.330347 + 0.572178i
\(725\) 0 0
\(726\) 0.701475 + 1.21499i 0.0260342 + 0.0450925i
\(727\) 21.3838 + 12.3460i 0.793083 + 0.457887i 0.841047 0.540963i \(-0.181940\pi\)
−0.0479640 + 0.998849i \(0.515273\pi\)
\(728\) 0.0506040i 0.00187551i
\(729\) 43.4249 1.60833
\(730\) 0 0
\(731\) −5.02368 8.70128i −0.185808 0.321828i
\(732\) 59.6169 + 34.4198i 2.20350 + 1.27219i
\(733\) 9.39212 5.42254i 0.346906 0.200286i −0.316416 0.948621i \(-0.602479\pi\)
0.663322 + 0.748334i \(0.269146\pi\)
\(734\) −5.20991 9.02383i −0.192301 0.333076i
\(735\) 0 0
\(736\) −34.5035 −1.27182
\(737\) 12.0862 + 6.97798i 0.445202 + 0.257037i
\(738\) −2.89789 1.67310i −0.106673 0.0615876i
\(739\) −2.11738 3.66741i −0.0778890 0.134908i 0.824450 0.565935i \(-0.191485\pi\)
−0.902339 + 0.431027i \(0.858151\pi\)
\(740\) 0 0
\(741\) −0.158729 + 0.274927i −0.00583107 + 0.0100997i
\(742\) 0.825060i 0.0302889i
\(743\) 2.91165i 0.106818i 0.998573 + 0.0534090i \(0.0170087\pi\)
−0.998573 + 0.0534090i \(0.982991\pi\)
\(744\) 2.64840 + 27.0687i 0.0970951 + 0.992385i
\(745\) 0 0
\(746\) −12.9653 −0.474694
\(747\) 61.0110 + 35.2247i 2.23228 + 1.28880i
\(748\) 5.67779i 0.207601i
\(749\) −0.600267 1.03969i −0.0219333 0.0379896i
\(750\) 0 0
\(751\) 15.8812 27.5070i 0.579512 1.00374i −0.416023 0.909354i \(-0.636576\pi\)
0.995535 0.0943907i \(-0.0300903\pi\)
\(752\) 18.7296i 0.682997i
\(753\) 44.5262 25.7072i 1.62262 0.936823i
\(754\) 0.307579 + 0.532743i 0.0112014 + 0.0194013i
\(755\) 0 0
\(756\) 0.597028 1.03408i 0.0217137 0.0376092i
\(757\) 2.37937 1.37373i 0.0864797 0.0499291i −0.456137 0.889910i \(-0.650767\pi\)
0.542616 + 0.839981i \(0.317434\pi\)
\(758\) 6.60048 + 3.81079i 0.239740 + 0.138414i
\(759\) 60.3852 2.19184
\(760\) 0 0
\(761\) 17.7962 30.8240i 0.645113 1.11737i −0.339163 0.940728i \(-0.610144\pi\)
0.984276 0.176640i \(-0.0565229\pi\)
\(762\) 10.6945 6.17448i 0.387422 0.223678i
\(763\) 2.41142 + 1.39224i 0.0872994 + 0.0504023i
\(764\) −11.8849 20.5853i −0.429982 0.744750i
\(765\) 0 0
\(766\) 1.61038 + 2.78926i 0.0581855 + 0.100780i
\(767\) 0.512869i 0.0185186i
\(768\) −1.71071 0.987680i −0.0617300 0.0356398i
\(769\) 20.2137 35.0111i 0.728924 1.26253i −0.228414 0.973564i \(-0.573354\pi\)
0.957338 0.288970i \(-0.0933127\pi\)
\(770\) 0 0
\(771\) −11.1809 −0.402669
\(772\) 29.1348 + 16.8210i 1.04859 + 0.605401i
\(773\) 17.0700i 0.613964i −0.951715 0.306982i \(-0.900681\pi\)
0.951715 0.306982i \(-0.0993192\pi\)
\(774\) 20.5602 0.739022
\(775\) 0 0
\(776\) 5.55322 0.199349
\(777\) 4.08866i 0.146680i
\(778\) 11.1483 + 6.43647i 0.399686 + 0.230759i
\(779\) −1.21963 −0.0436978
\(780\) 0 0
\(781\) −21.4557 + 37.1623i −0.767745 + 1.32977i
\(782\) 2.97175 + 1.71574i 0.106269 + 0.0613547i
\(783\) 30.8962i 1.10414i
\(784\) −9.35365 16.2010i −0.334059 0.578607i
\(785\) 0 0
\(786\) −6.42468 11.1279i −0.229161 0.396918i
\(787\) −33.8907 19.5668i −1.20807 0.697481i −0.245734 0.969337i \(-0.579029\pi\)
−0.962338 + 0.271856i \(0.912362\pi\)
\(788\) 15.2089 8.78085i 0.541794 0.312805i
\(789\) −26.3022 + 45.5567i −0.936383 + 1.62186i
\(790\) 0 0
\(791\) 1.82283 0.0648123
\(792\) −21.4173 12.3653i −0.761031 0.439382i
\(793\) −1.91162 + 1.10367i −0.0678836 + 0.0391926i
\(794\) −5.09196 + 8.81953i −0.180707 + 0.312994i
\(795\) 0 0
\(796\) −10.9497 18.9654i −0.388102 0.672212i
\(797\) 0.153698 0.0887374i 0.00544425 0.00314324i −0.497275 0.867593i \(-0.665666\pi\)
0.502720 + 0.864450i \(0.332333\pi\)
\(798\) 0.179130i 0.00634114i
\(799\) 3.54811 6.14551i 0.125523 0.217413i
\(800\) 0 0
\(801\) 10.8856 + 18.8544i 0.384623 + 0.666186i
\(802\) 11.6754i 0.412272i
\(803\) 12.3496 + 7.13004i 0.435807 + 0.251614i
\(804\) 21.3108 0.751572
\(805\) 0 0
\(806\) −0.373092 0.169336i −0.0131416 0.00596460i
\(807\) 73.3563i 2.58226i
\(808\) 8.97750i 0.315827i
\(809\) −10.3592 + 17.9427i −0.364211 + 0.630832i −0.988649 0.150242i \(-0.951995\pi\)
0.624438 + 0.781074i \(0.285328\pi\)
\(810\) 0 0
\(811\) −19.2970 33.4235i −0.677611 1.17366i −0.975698 0.219118i \(-0.929682\pi\)
0.298088 0.954538i \(-0.403651\pi\)
\(812\) −2.33888 1.35035i −0.0820785 0.0473880i
\(813\) −69.5067 40.1297i −2.43770 1.40741i
\(814\) 12.4233 0.435435
\(815\) 0 0
\(816\) 3.70623 + 6.41937i 0.129744 + 0.224723i
\(817\) 6.48986 3.74692i 0.227051 0.131088i
\(818\) 6.13192 + 3.54027i 0.214398 + 0.123782i
\(819\) 0.0613061 + 0.106185i 0.00214221 + 0.00371041i
\(820\) 0 0
\(821\) −10.7108 −0.373808 −0.186904 0.982378i \(-0.559845\pi\)
−0.186904 + 0.982378i \(0.559845\pi\)
\(822\) 19.2380i 0.671001i
\(823\) 22.5541 + 13.0216i 0.786185 + 0.453904i 0.838618 0.544720i \(-0.183364\pi\)
−0.0524328 + 0.998624i \(0.516698\pi\)
\(824\) −9.95433 17.2414i −0.346776 0.600633i
\(825\) 0 0
\(826\) 0.144697 + 0.250622i 0.00503464 + 0.00872025i
\(827\) −6.20259 + 3.58107i −0.215685 + 0.124526i −0.603951 0.797022i \(-0.706408\pi\)
0.388266 + 0.921548i \(0.373074\pi\)
\(828\) 47.3147 27.3171i 1.64430 0.949336i
\(829\) −6.65904 −0.231278 −0.115639 0.993291i \(-0.536892\pi\)
−0.115639 + 0.993291i \(0.536892\pi\)
\(830\) 0 0
\(831\) −17.7997 + 30.8299i −0.617463 + 1.06948i
\(832\) 0.405983 0.234395i 0.0140749 0.00812617i
\(833\) 7.08779i 0.245577i
\(834\) −7.60600 + 13.1740i −0.263374 + 0.456177i
\(835\) 0 0
\(836\) −4.23479 −0.146463
\(837\) −11.9756 16.7347i −0.413936 0.578434i
\(838\) 7.03739i 0.243102i
\(839\) 29.2023 1.00818 0.504088 0.863652i \(-0.331829\pi\)
0.504088 + 0.863652i \(0.331829\pi\)
\(840\) 0 0
\(841\) 40.8807 1.40968
\(842\) 2.59347 1.49734i 0.0893768 0.0516017i
\(843\) 33.1465 + 19.1371i 1.14163 + 0.659118i
\(844\) −2.22037 + 3.84579i −0.0764283 + 0.132378i
\(845\) 0 0
\(846\) 7.26061 + 12.5758i 0.249625 + 0.432363i
\(847\) 0.171039 0.0987495i 0.00587697 0.00339307i
\(848\) −22.0527 + 12.7321i −0.757292 + 0.437222i
\(849\) 5.98050 10.3585i 0.205250 0.355504i
\(850\) 0 0
\(851\) −29.2089 + 50.5913i −1.00127 + 1.73425i
\(852\) 65.5257i 2.24487i
\(853\) 24.1509i 0.826911i 0.910524 + 0.413455i \(0.135678\pi\)
−0.910524 + 0.413455i \(0.864322\pi\)
\(854\) −0.622763 + 1.07866i −0.0213105 + 0.0369109i
\(855\) 0 0
\(856\) −5.92812 + 10.2678i −0.202619 + 0.350947i
\(857\) −24.2694 + 14.0119i −0.829026 + 0.478638i −0.853519 0.521062i \(-0.825536\pi\)
0.0244932 + 0.999700i \(0.492203\pi\)
\(858\) 0.544531 0.314385i 0.0185900 0.0107329i
\(859\) 6.39974 + 11.0847i 0.218356 + 0.378204i 0.954306 0.298833i \(-0.0965972\pi\)
−0.735949 + 0.677037i \(0.763264\pi\)
\(860\) 0 0
\(861\) −0.397510 + 0.688508i −0.0135471 + 0.0234643i
\(862\) 4.82920 + 2.78814i 0.164483 + 0.0949644i
\(863\) −35.2042 + 20.3251i −1.19836 + 0.691876i −0.960190 0.279347i \(-0.909882\pi\)
−0.238174 + 0.971223i \(0.576549\pi\)
\(864\) −18.0444 −0.613884
\(865\) 0 0
\(866\) 17.1499 0.582778
\(867\) 43.3182i 1.47116i
\(868\) 1.79024 0.175157i 0.0607645 0.00594521i
\(869\) 7.58545 0.257319
\(870\) 0 0
\(871\) −0.341666 + 0.591782i −0.0115769 + 0.0200518i
\(872\) 27.4989i 0.931230i
\(873\) −11.6526 + 6.72765i −0.394382 + 0.227696i
\(874\) −1.27969 + 2.21648i −0.0432860 + 0.0749736i
\(875\) 0 0
\(876\) 21.7751 0.735714
\(877\) 5.13898 2.96699i 0.173531 0.100188i −0.410719 0.911762i \(-0.634722\pi\)
0.584250 + 0.811574i \(0.301389\pi\)
\(878\) −13.7585 + 7.94348i −0.464327 + 0.268079i
\(879\) 0.631332 + 1.09350i 0.0212943 + 0.0368828i
\(880\) 0 0
\(881\) 24.6146 + 42.6338i 0.829289 + 1.43637i 0.898597 + 0.438775i \(0.144587\pi\)
−0.0693086 + 0.997595i \(0.522079\pi\)
\(882\) −12.5608 7.25198i −0.422944 0.244187i
\(883\) 1.11132i 0.0373989i −0.999825 0.0186994i \(-0.994047\pi\)
0.999825 0.0186994i \(-0.00595256\pi\)
\(884\) −0.278004 −0.00935029
\(885\) 0 0
\(886\) −0.931608 1.61359i −0.0312980 0.0542097i
\(887\) 4.84971 + 2.79998i 0.162837 + 0.0940141i 0.579204 0.815183i \(-0.303363\pi\)
−0.416367 + 0.909197i \(0.636697\pi\)
\(888\) 34.9691 20.1894i 1.17349 0.677512i
\(889\) −0.869207 1.50551i −0.0291523 0.0504932i
\(890\) 0 0
\(891\) −9.63017 −0.322623
\(892\) −28.7168 16.5797i −0.961510 0.555128i
\(893\) 4.58364 + 2.64637i 0.153386 + 0.0885572i
\(894\) −1.79240 3.10453i −0.0599469 0.103831i
\(895\) 0 0
\(896\) 1.02227 1.77063i 0.0341517 0.0591526i
\(897\) 2.95666i 0.0987201i
\(898\) 13.1375i 0.438405i
\(899\) −37.8503 + 27.0862i −1.26238 + 0.903375i
\(900\) 0 0
\(901\) 9.64784 0.321416
\(902\) 2.09201 + 1.20782i 0.0696563 + 0.0402161i
\(903\) 4.88489i 0.162559i
\(904\) −9.00094 15.5901i −0.299367 0.518519i
\(905\) 0 0
\(906\) −11.6641 + 20.2028i −0.387513 + 0.671191i
\(907\) 25.5048i 0.846872i −0.905926 0.423436i \(-0.860824\pi\)
0.905926 0.423436i \(-0.139176\pi\)
\(908\) −24.2243 + 13.9859i −0.803911 + 0.464138i
\(909\) 10.8761 + 18.8380i 0.360738 + 0.624816i
\(910\) 0 0
\(911\) 17.5554 30.4069i 0.581637 1.00742i −0.413649 0.910437i \(-0.635746\pi\)
0.995286 0.0969880i \(-0.0309208\pi\)
\(912\) −4.78790 + 2.76429i −0.158543 + 0.0915349i
\(913\) −44.0442 25.4290i −1.45765 0.841576i
\(914\) −10.0948 −0.333906
\(915\) 0 0
\(916\) −8.82509 + 15.2855i −0.291589 + 0.505047i
\(917\) −1.56651 + 0.904428i −0.0517309 + 0.0298668i
\(918\) 1.55415 + 0.897287i 0.0512945 + 0.0296149i
\(919\) −16.2644 28.1708i −0.536515 0.929271i −0.999088 0.0426898i \(-0.986407\pi\)
0.462574 0.886581i \(-0.346926\pi\)
\(920\) 0 0
\(921\) −28.7580 49.8104i −0.947609 1.64131i
\(922\) 1.23699i 0.0407380i
\(923\) −1.81959 1.05054i −0.0598927 0.0345790i
\(924\) −1.38023 + 2.39063i −0.0454063 + 0.0786460i
\(925\) 0 0
\(926\) 9.35036 0.307272
\(927\) 41.7754 + 24.1191i 1.37209 + 0.792174i
\(928\) 40.8127i 1.33974i
\(929\) 2.86432 0.0939752 0.0469876 0.998895i \(-0.485038\pi\)
0.0469876 + 0.998895i \(0.485038\pi\)
\(930\) 0 0
\(931\) −5.28644 −0.173256
\(932\) 6.62278i 0.216936i
\(933\) −43.4738 25.0996i −1.42327 0.821724i
\(934\) 2.66011 0.0870416
\(935\) 0 0
\(936\) 0.605447 1.04866i 0.0197896 0.0342767i
\(937\) 1.08083 + 0.624020i 0.0353093 + 0.0203858i 0.517551 0.855653i \(-0.326844\pi\)
−0.482241 + 0.876038i \(0.660177\pi\)
\(938\) 0.385579i 0.0125896i
\(939\) −27.9316 48.3790i −0.911514 1.57879i
\(940\) 0 0
\(941\) 1.77944 + 3.08208i 0.0580081 + 0.100473i 0.893571 0.448922i \(-0.148192\pi\)
−0.835563 + 0.549395i \(0.814858\pi\)
\(942\) −11.1556 6.44071i −0.363470 0.209850i
\(943\) −9.83724 + 5.67954i −0.320345 + 0.184951i
\(944\) −4.46584 + 7.73506i −0.145351 + 0.251755i
\(945\) 0 0
\(946\) −14.8426 −0.482574
\(947\) −7.68066 4.43443i −0.249588 0.144100i 0.369988 0.929037i \(-0.379362\pi\)
−0.619576 + 0.784937i \(0.712695\pi\)
\(948\) 10.0312 5.79149i 0.325797 0.188099i
\(949\) −0.349111 + 0.604678i −0.0113326 + 0.0196287i
\(950\) 0 0
\(951\) 38.6801 + 66.9959i 1.25429 + 2.17249i
\(952\) −0.289163 + 0.166948i −0.00937182 + 0.00541082i
\(953\) 11.7561i 0.380816i 0.981705 + 0.190408i \(0.0609811\pi\)
−0.981705 + 0.190408i \(0.939019\pi\)
\(954\) −9.87134 + 17.0977i −0.319596 + 0.553557i
\(955\) 0 0
\(956\) −6.78219 11.7471i −0.219352 0.379928i
\(957\) 71.4270i 2.30891i
\(958\) −7.11712 4.10907i −0.229944 0.132758i
\(959\) 2.70820 0.0874525
\(960\) 0 0
\(961\) 10.0025 29.3420i 0.322661 0.946515i
\(962\) 0.608285i 0.0196119i
\(963\) 28.7273i 0.925725i
\(964\) 6.51667 11.2872i 0.209888 0.363536i
\(965\) 0 0
\(966\) 0.834168 + 1.44482i 0.0268389 + 0.0464864i
\(967\) −2.12801 1.22860i −0.0684321 0.0395093i 0.465394 0.885104i \(-0.345913\pi\)
−0.533826 + 0.845595i \(0.679246\pi\)
\(968\) −1.68915 0.975231i −0.0542913 0.0313451i
\(969\) 2.09466 0.0672902
\(970\) 0 0
\(971\) −17.6046 30.4921i −0.564959 0.978537i −0.997054 0.0767092i \(-0.975559\pi\)
0.432095 0.901828i \(-0.357775\pi\)
\(972\) −29.7527 + 17.1777i −0.954318 + 0.550976i
\(973\) 1.85455 + 1.07073i 0.0594542 + 0.0343259i
\(974\) −7.71450 13.3619i −0.247188 0.428143i
\(975\) 0 0
\(976\) −38.4413 −1.23048
\(977\) 8.97186i 0.287035i 0.989648 + 0.143518i \(0.0458414\pi\)
−0.989648 + 0.143518i \(0.954159\pi\)
\(978\) −0.725516 0.418877i −0.0231994 0.0133942i
\(979\) −7.85836 13.6111i −0.251154 0.435012i
\(980\) 0 0
\(981\) 33.3145 + 57.7024i 1.06365 + 1.84230i
\(982\) −9.11274 + 5.26125i −0.290799 + 0.167893i
\(983\) −5.80873 + 3.35367i −0.185270 + 0.106965i −0.589766 0.807574i \(-0.700780\pi\)
0.404497 + 0.914540i \(0.367447\pi\)
\(984\) 7.85147 0.250296
\(985\) 0 0
\(986\) 2.02947 3.51515i 0.0646316 0.111945i
\(987\) 2.98786 1.72504i 0.0951047 0.0549087i
\(988\) 0.207350i 0.00659667i
\(989\) 34.8971 60.4435i 1.10966 1.92199i
\(990\) 0 0
\(991\) −27.4394 −0.871643 −0.435821 0.900033i \(-0.643542\pi\)
−0.435821 + 0.900033i \(0.643542\pi\)
\(992\) −15.8192 22.1058i −0.502261 0.701860i
\(993\) 11.9365i 0.378795i
\(994\) −1.18557 −0.0376039
\(995\) 0 0
\(996\) −77.6600 −2.46075
\(997\) 33.8648 19.5519i 1.07251 0.619214i 0.143644 0.989629i \(-0.454118\pi\)
0.928866 + 0.370416i \(0.120785\pi\)
\(998\) 6.82610 + 3.94105i 0.216076 + 0.124752i
\(999\) −15.2755 + 26.4580i −0.483296 + 0.837093i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.o.f.749.4 16
5.2 odd 4 775.2.e.f.501.3 8
5.3 odd 4 155.2.e.d.36.2 8
5.4 even 2 inner 775.2.o.f.749.5 16
31.25 even 3 inner 775.2.o.f.149.4 16
155.87 odd 12 775.2.e.f.676.3 8
155.88 even 12 4805.2.a.m.1.2 4
155.98 odd 12 4805.2.a.o.1.2 4
155.118 odd 12 155.2.e.d.56.2 yes 8
155.149 even 6 inner 775.2.o.f.149.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.e.d.36.2 8 5.3 odd 4
155.2.e.d.56.2 yes 8 155.118 odd 12
775.2.e.f.501.3 8 5.2 odd 4
775.2.e.f.676.3 8 155.87 odd 12
775.2.o.f.149.4 16 31.25 even 3 inner
775.2.o.f.149.5 16 155.149 even 6 inner
775.2.o.f.749.4 16 1.1 even 1 trivial
775.2.o.f.749.5 16 5.4 even 2 inner
4805.2.a.m.1.2 4 155.88 even 12
4805.2.a.o.1.2 4 155.98 odd 12