Properties

Label 775.2.k.h.376.5
Level $775$
Weight $2$
Character 775.376
Analytic conductor $6.188$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(101,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 376.5
Character \(\chi\) \(=\) 775.376
Dual form 775.2.k.h.101.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.334686 - 1.03006i) q^{2} +(0.849570 - 2.61471i) q^{3} +(0.669031 - 0.486079i) q^{4} -2.97764 q^{6} +(-4.04839 + 2.94133i) q^{7} +(-2.47704 - 1.79968i) q^{8} +(-3.68788 - 2.67940i) q^{9} +(-1.13130 + 0.821939i) q^{11} +(-0.702567 - 2.16228i) q^{12} +(-0.196715 + 0.605427i) q^{13} +(4.38467 + 3.18565i) q^{14} +(-0.513645 + 1.58084i) q^{16} +(-1.94151 - 1.41059i) q^{17} +(-1.52566 + 4.69549i) q^{18} +(0.848048 + 2.61002i) q^{19} +(4.25132 + 13.0842i) q^{21} +(1.22527 + 0.890214i) q^{22} +(-6.02940 - 4.38062i) q^{23} +(-6.81005 + 4.94779i) q^{24} +0.689462 q^{26} +(-3.46636 + 2.51846i) q^{27} +(-1.27878 + 3.93568i) q^{28} +(0.238536 + 0.734139i) q^{29} +(-3.70997 - 4.15164i) q^{31} -4.32332 q^{32} +(1.18801 + 3.65632i) q^{33} +(-0.803191 + 2.47197i) q^{34} -3.76971 q^{36} +7.89911 q^{37} +(2.40464 - 1.74708i) q^{38} +(1.41589 + 1.02871i) q^{39} +(-2.21167 - 6.80681i) q^{41} +(12.0546 - 8.75821i) q^{42} +(-1.59181 - 4.89908i) q^{43} +(-0.357348 + 1.09980i) q^{44} +(-2.49433 + 7.67676i) q^{46} +(1.04775 - 3.22464i) q^{47} +(3.69705 + 2.68606i) q^{48} +(5.57493 - 17.1579i) q^{49} +(-5.33772 + 3.87808i) q^{51} +(0.162677 + 0.500668i) q^{52} +(-1.08466 - 0.788052i) q^{53} +(3.75430 + 2.72766i) q^{54} +15.3215 q^{56} +7.54493 q^{57} +(0.676370 - 0.491412i) q^{58} +(1.16069 - 3.57224i) q^{59} -6.15910 q^{61} +(-3.03475 + 5.21098i) q^{62} +22.8110 q^{63} +(2.47425 + 7.61494i) q^{64} +(3.36861 - 2.44744i) q^{66} +3.34130 q^{67} -1.98459 q^{68} +(-16.5764 + 12.0435i) q^{69} +(1.69553 + 1.23188i) q^{71} +(4.31298 + 13.2740i) q^{72} +(8.89448 - 6.46222i) q^{73} +(-2.64372 - 8.13653i) q^{74} +(1.83605 + 1.33397i) q^{76} +(2.16236 - 6.65506i) q^{77} +(0.585747 - 1.80274i) q^{78} +(-5.88488 - 4.27562i) q^{79} +(-0.585816 - 1.80296i) q^{81} +(-6.27119 + 4.55629i) q^{82} +(2.68206 + 8.25452i) q^{83} +(9.20423 + 6.68727i) q^{84} +(-4.51358 + 3.27931i) q^{86} +2.12221 q^{87} +4.28151 q^{88} +(8.03470 - 5.83755i) q^{89} +(-0.984379 - 3.02961i) q^{91} -6.16318 q^{92} +(-14.0072 + 6.17339i) q^{93} -3.67223 q^{94} +(-3.67297 + 11.3042i) q^{96} +(-13.9505 + 10.1356i) q^{97} -19.5394 q^{98} +6.37441 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{4} - 4 q^{6} - 8 q^{9} - 14 q^{11} + 16 q^{14} - 22 q^{16} + 2 q^{19} - 38 q^{21} + 30 q^{24} + 12 q^{26} - 20 q^{29} + 26 q^{31} + 2 q^{34} - 44 q^{36} + 18 q^{39} - 20 q^{41} - 62 q^{44} - 70 q^{46}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.334686 1.03006i −0.236659 0.728360i −0.996897 0.0787163i \(-0.974918\pi\)
0.760238 0.649644i \(-0.225082\pi\)
\(3\) 0.849570 2.61471i 0.490500 1.50960i −0.333355 0.942801i \(-0.608181\pi\)
0.823854 0.566801i \(-0.191819\pi\)
\(4\) 0.669031 0.486079i 0.334515 0.243040i
\(5\) 0 0
\(6\) −2.97764 −1.21562
\(7\) −4.04839 + 2.94133i −1.53015 + 1.11172i −0.573990 + 0.818862i \(0.694605\pi\)
−0.956157 + 0.292855i \(0.905395\pi\)
\(8\) −2.47704 1.79968i −0.875767 0.636282i
\(9\) −3.68788 2.67940i −1.22929 0.893134i
\(10\) 0 0
\(11\) −1.13130 + 0.821939i −0.341100 + 0.247824i −0.745126 0.666924i \(-0.767611\pi\)
0.404026 + 0.914748i \(0.367611\pi\)
\(12\) −0.702567 2.16228i −0.202814 0.624196i
\(13\) −0.196715 + 0.605427i −0.0545590 + 0.167915i −0.974623 0.223853i \(-0.928136\pi\)
0.920064 + 0.391768i \(0.128136\pi\)
\(14\) 4.38467 + 3.18565i 1.17185 + 0.851401i
\(15\) 0 0
\(16\) −0.513645 + 1.58084i −0.128411 + 0.395209i
\(17\) −1.94151 1.41059i −0.470885 0.342118i 0.326901 0.945058i \(-0.393996\pi\)
−0.797786 + 0.602941i \(0.793996\pi\)
\(18\) −1.52566 + 4.69549i −0.359601 + 1.10674i
\(19\) 0.848048 + 2.61002i 0.194556 + 0.598781i 0.999981 + 0.00608415i \(0.00193666\pi\)
−0.805426 + 0.592697i \(0.798063\pi\)
\(20\) 0 0
\(21\) 4.25132 + 13.0842i 0.927714 + 2.85521i
\(22\) 1.22527 + 0.890214i 0.261229 + 0.189794i
\(23\) −6.02940 4.38062i −1.25722 0.913422i −0.258600 0.965985i \(-0.583261\pi\)
−0.998618 + 0.0525629i \(0.983261\pi\)
\(24\) −6.81005 + 4.94779i −1.39010 + 1.00996i
\(25\) 0 0
\(26\) 0.689462 0.135215
\(27\) −3.46636 + 2.51846i −0.667102 + 0.484678i
\(28\) −1.27878 + 3.93568i −0.241666 + 0.743773i
\(29\) 0.238536 + 0.734139i 0.0442950 + 0.136326i 0.970758 0.240059i \(-0.0771669\pi\)
−0.926463 + 0.376385i \(0.877167\pi\)
\(30\) 0 0
\(31\) −3.70997 4.15164i −0.666331 0.745656i
\(32\) −4.32332 −0.764263
\(33\) 1.18801 + 3.65632i 0.206806 + 0.636484i
\(34\) −0.803191 + 2.47197i −0.137746 + 0.423939i
\(35\) 0 0
\(36\) −3.76971 −0.628285
\(37\) 7.89911 1.29861 0.649303 0.760530i \(-0.275061\pi\)
0.649303 + 0.760530i \(0.275061\pi\)
\(38\) 2.40464 1.74708i 0.390085 0.283413i
\(39\) 1.41589 + 1.02871i 0.226724 + 0.164725i
\(40\) 0 0
\(41\) −2.21167 6.80681i −0.345404 1.06305i −0.961367 0.275270i \(-0.911233\pi\)
0.615963 0.787775i \(-0.288767\pi\)
\(42\) 12.0546 8.75821i 1.86007 1.35142i
\(43\) −1.59181 4.89908i −0.242748 0.747103i −0.995999 0.0893688i \(-0.971515\pi\)
0.753250 0.657734i \(-0.228485\pi\)
\(44\) −0.357348 + 1.09980i −0.0538723 + 0.165802i
\(45\) 0 0
\(46\) −2.49433 + 7.67676i −0.367769 + 1.13188i
\(47\) 1.04775 3.22464i 0.152830 0.470362i −0.845105 0.534601i \(-0.820462\pi\)
0.997935 + 0.0642386i \(0.0204619\pi\)
\(48\) 3.69705 + 2.68606i 0.533623 + 0.387700i
\(49\) 5.57493 17.1579i 0.796419 2.45112i
\(50\) 0 0
\(51\) −5.33772 + 3.87808i −0.747431 + 0.543040i
\(52\) 0.162677 + 0.500668i 0.0225592 + 0.0694302i
\(53\) −1.08466 0.788052i −0.148989 0.108247i 0.510793 0.859704i \(-0.329352\pi\)
−0.659783 + 0.751456i \(0.729352\pi\)
\(54\) 3.75430 + 2.72766i 0.510896 + 0.371187i
\(55\) 0 0
\(56\) 15.3215 2.04742
\(57\) 7.54493 0.999351
\(58\) 0.676370 0.491412i 0.0888117 0.0645255i
\(59\) 1.16069 3.57224i 0.151109 0.465066i −0.846637 0.532171i \(-0.821376\pi\)
0.997746 + 0.0671049i \(0.0213762\pi\)
\(60\) 0 0
\(61\) −6.15910 −0.788593 −0.394296 0.918983i \(-0.629012\pi\)
−0.394296 + 0.918983i \(0.629012\pi\)
\(62\) −3.03475 + 5.21098i −0.385413 + 0.661795i
\(63\) 22.8110 2.87391
\(64\) 2.47425 + 7.61494i 0.309281 + 0.951868i
\(65\) 0 0
\(66\) 3.36861 2.44744i 0.414647 0.301259i
\(67\) 3.34130 0.408205 0.204102 0.978950i \(-0.434572\pi\)
0.204102 + 0.978950i \(0.434572\pi\)
\(68\) −1.98459 −0.240666
\(69\) −16.5764 + 12.0435i −1.99557 + 1.44987i
\(70\) 0 0
\(71\) 1.69553 + 1.23188i 0.201223 + 0.146197i 0.683834 0.729638i \(-0.260311\pi\)
−0.482611 + 0.875835i \(0.660311\pi\)
\(72\) 4.31298 + 13.2740i 0.508290 + 1.56436i
\(73\) 8.89448 6.46222i 1.04102 0.756346i 0.0705361 0.997509i \(-0.477529\pi\)
0.970485 + 0.241163i \(0.0775290\pi\)
\(74\) −2.64372 8.13653i −0.307326 0.945853i
\(75\) 0 0
\(76\) 1.83605 + 1.33397i 0.210609 + 0.153017i
\(77\) 2.16236 6.65506i 0.246424 0.758414i
\(78\) 0.585747 1.80274i 0.0663228 0.204120i
\(79\) −5.88488 4.27562i −0.662101 0.481045i 0.205271 0.978705i \(-0.434193\pi\)
−0.867372 + 0.497661i \(0.834193\pi\)
\(80\) 0 0
\(81\) −0.585816 1.80296i −0.0650907 0.200329i
\(82\) −6.27119 + 4.55629i −0.692537 + 0.503158i
\(83\) 2.68206 + 8.25452i 0.294394 + 0.906052i 0.983424 + 0.181319i \(0.0580367\pi\)
−0.689030 + 0.724733i \(0.741963\pi\)
\(84\) 9.20423 + 6.68727i 1.00426 + 0.729641i
\(85\) 0 0
\(86\) −4.51358 + 3.27931i −0.486712 + 0.353617i
\(87\) 2.12221 0.227525
\(88\) 4.28151 0.456410
\(89\) 8.03470 5.83755i 0.851676 0.618779i −0.0739315 0.997263i \(-0.523555\pi\)
0.925608 + 0.378484i \(0.123555\pi\)
\(90\) 0 0
\(91\) −0.984379 3.02961i −0.103191 0.317589i
\(92\) −6.16318 −0.642556
\(93\) −14.0072 + 6.17339i −1.45248 + 0.640151i
\(94\) −3.67223 −0.378762
\(95\) 0 0
\(96\) −3.67297 + 11.3042i −0.374871 + 1.15373i
\(97\) −13.9505 + 10.1356i −1.41646 + 1.02912i −0.424115 + 0.905608i \(0.639415\pi\)
−0.992343 + 0.123509i \(0.960585\pi\)
\(98\) −19.5394 −1.97378
\(99\) 6.37441 0.640653
\(100\) 0 0
\(101\) 2.82366 + 2.05151i 0.280965 + 0.204133i 0.719338 0.694660i \(-0.244445\pi\)
−0.438373 + 0.898793i \(0.644445\pi\)
\(102\) 5.78111 + 4.20022i 0.572415 + 0.415884i
\(103\) 2.54309 + 7.82683i 0.250578 + 0.771200i 0.994669 + 0.103122i \(0.0328831\pi\)
−0.744091 + 0.668079i \(0.767117\pi\)
\(104\) 1.57684 1.14564i 0.154622 0.112340i
\(105\) 0 0
\(106\) −0.448718 + 1.38101i −0.0435833 + 0.134136i
\(107\) −4.80437 3.49058i −0.464456 0.337447i 0.330821 0.943694i \(-0.392674\pi\)
−0.795277 + 0.606247i \(0.792674\pi\)
\(108\) −1.09493 + 3.36985i −0.105360 + 0.324264i
\(109\) −3.44220 + 10.5940i −0.329703 + 1.01472i 0.639570 + 0.768733i \(0.279113\pi\)
−0.969273 + 0.245988i \(0.920887\pi\)
\(110\) 0 0
\(111\) 6.71085 20.6539i 0.636966 1.96038i
\(112\) −2.57032 7.91064i −0.242873 0.747485i
\(113\) 10.0475 7.29991i 0.945186 0.686718i −0.00447704 0.999990i \(-0.501425\pi\)
0.949664 + 0.313272i \(0.101425\pi\)
\(114\) −2.52518 7.77171i −0.236505 0.727887i
\(115\) 0 0
\(116\) 0.516437 + 0.375214i 0.0479500 + 0.0348377i
\(117\) 2.34765 1.70566i 0.217040 0.157689i
\(118\) −4.06808 −0.374497
\(119\) 12.0090 1.10086
\(120\) 0 0
\(121\) −2.79493 + 8.60190i −0.254084 + 0.781991i
\(122\) 2.06137 + 6.34423i 0.186627 + 0.574380i
\(123\) −19.6768 −1.77420
\(124\) −4.50011 0.974232i −0.404122 0.0874886i
\(125\) 0 0
\(126\) −7.63451 23.4966i −0.680137 2.09324i
\(127\) −3.27595 + 10.0823i −0.290693 + 0.894662i 0.693941 + 0.720032i \(0.255873\pi\)
−0.984634 + 0.174630i \(0.944127\pi\)
\(128\) 0.0204481 0.0148564i 0.00180737 0.00131313i
\(129\) −14.1620 −1.24690
\(130\) 0 0
\(131\) 3.13546 2.27805i 0.273947 0.199034i −0.442326 0.896854i \(-0.645847\pi\)
0.716273 + 0.697820i \(0.245847\pi\)
\(132\) 2.57208 + 1.86872i 0.223871 + 0.162651i
\(133\) −11.1102 8.07201i −0.963373 0.699932i
\(134\) −1.11829 3.44173i −0.0966052 0.297320i
\(135\) 0 0
\(136\) 2.27059 + 6.98817i 0.194702 + 0.599231i
\(137\) 6.76461 20.8193i 0.577940 1.77872i −0.0480027 0.998847i \(-0.515286\pi\)
0.625943 0.779869i \(-0.284714\pi\)
\(138\) 17.9534 + 13.0439i 1.52829 + 1.11037i
\(139\) 1.65531 5.09453i 0.140402 0.432112i −0.855989 0.516994i \(-0.827051\pi\)
0.996391 + 0.0848813i \(0.0270511\pi\)
\(140\) 0 0
\(141\) −7.54136 5.47912i −0.635097 0.461425i
\(142\) 0.701433 2.15879i 0.0588630 0.181162i
\(143\) −0.275080 0.846608i −0.0230033 0.0707970i
\(144\) 6.12996 4.45368i 0.510830 0.371140i
\(145\) 0 0
\(146\) −9.63332 6.99901i −0.797259 0.579242i
\(147\) −40.1265 29.1536i −3.30958 2.40455i
\(148\) 5.28475 3.83959i 0.434404 0.315613i
\(149\) −1.57437 −0.128977 −0.0644886 0.997918i \(-0.520542\pi\)
−0.0644886 + 0.997918i \(0.520542\pi\)
\(150\) 0 0
\(151\) 6.94745 5.04761i 0.565375 0.410769i −0.268047 0.963406i \(-0.586378\pi\)
0.833422 + 0.552637i \(0.186378\pi\)
\(152\) 2.59655 7.99136i 0.210608 0.648185i
\(153\) 3.38052 + 10.4042i 0.273299 + 0.841127i
\(154\) −7.57880 −0.610717
\(155\) 0 0
\(156\) 1.44731 0.115877
\(157\) 2.59997 + 8.00189i 0.207500 + 0.638620i 0.999601 + 0.0282303i \(0.00898719\pi\)
−0.792101 + 0.610390i \(0.791013\pi\)
\(158\) −2.43454 + 7.49276i −0.193682 + 0.596092i
\(159\) −2.98202 + 2.16656i −0.236490 + 0.171820i
\(160\) 0 0
\(161\) 37.2942 2.93919
\(162\) −1.66108 + 1.20685i −0.130507 + 0.0948190i
\(163\) 2.38981 + 1.73630i 0.187184 + 0.135997i 0.677431 0.735587i \(-0.263093\pi\)
−0.490247 + 0.871584i \(0.663093\pi\)
\(164\) −4.78832 3.47892i −0.373905 0.271658i
\(165\) 0 0
\(166\) 7.60498 5.52534i 0.590261 0.428850i
\(167\) 3.23599 + 9.95936i 0.250409 + 0.770678i 0.994700 + 0.102823i \(0.0327875\pi\)
−0.744291 + 0.667855i \(0.767213\pi\)
\(168\) 13.0167 40.0612i 1.00426 3.09079i
\(169\) 10.1894 + 7.40301i 0.783798 + 0.569463i
\(170\) 0 0
\(171\) 3.86581 11.8977i 0.295626 0.909842i
\(172\) −3.44631 2.50389i −0.262779 0.190920i
\(173\) 1.31761 4.05518i 0.100176 0.308310i −0.888392 0.459086i \(-0.848177\pi\)
0.988568 + 0.150776i \(0.0481771\pi\)
\(174\) −0.710274 2.18600i −0.0538458 0.165720i
\(175\) 0 0
\(176\) −0.718264 2.21059i −0.0541411 0.166629i
\(177\) −8.35429 6.06974i −0.627947 0.456230i
\(178\) −8.70211 6.32245i −0.652251 0.473888i
\(179\) 2.38375 1.73189i 0.178170 0.129448i −0.495126 0.868821i \(-0.664878\pi\)
0.673296 + 0.739373i \(0.264878\pi\)
\(180\) 0 0
\(181\) 0.445493 0.0331132 0.0165566 0.999863i \(-0.494730\pi\)
0.0165566 + 0.999863i \(0.494730\pi\)
\(182\) −2.79121 + 2.02793i −0.206898 + 0.150320i
\(183\) −5.23259 + 16.1043i −0.386804 + 1.19046i
\(184\) 7.05139 + 21.7019i 0.519835 + 1.59989i
\(185\) 0 0
\(186\) 11.0470 + 12.3621i 0.810003 + 0.906432i
\(187\) 3.35585 0.245404
\(188\) −0.866455 2.66667i −0.0631927 0.194487i
\(189\) 6.62557 20.3914i 0.481939 1.48326i
\(190\) 0 0
\(191\) −23.6564 −1.71172 −0.855858 0.517211i \(-0.826970\pi\)
−0.855858 + 0.517211i \(0.826970\pi\)
\(192\) 22.0129 1.58864
\(193\) −15.6959 + 11.4037i −1.12982 + 0.820860i −0.985668 0.168696i \(-0.946044\pi\)
−0.144148 + 0.989556i \(0.546044\pi\)
\(194\) 15.1093 + 10.9776i 1.08479 + 0.788143i
\(195\) 0 0
\(196\) −4.61029 14.1890i −0.329306 1.01350i
\(197\) 8.87674 6.44933i 0.632442 0.459496i −0.224803 0.974404i \(-0.572174\pi\)
0.857245 + 0.514908i \(0.172174\pi\)
\(198\) −2.13343 6.56601i −0.151616 0.466626i
\(199\) 3.19700 9.83935i 0.226629 0.697493i −0.771493 0.636238i \(-0.780490\pi\)
0.998122 0.0612552i \(-0.0195103\pi\)
\(200\) 0 0
\(201\) 2.83867 8.73652i 0.200224 0.616227i
\(202\) 1.16813 3.59514i 0.0821895 0.252953i
\(203\) −3.12503 2.27047i −0.219334 0.159355i
\(204\) −1.68605 + 5.18911i −0.118047 + 0.363311i
\(205\) 0 0
\(206\) 7.21095 5.23906i 0.502410 0.365022i
\(207\) 10.4983 + 32.3104i 0.729681 + 2.24573i
\(208\) −0.856039 0.621949i −0.0593557 0.0431244i
\(209\) −3.10468 2.25568i −0.214755 0.156029i
\(210\) 0 0
\(211\) −14.8291 −1.02088 −0.510440 0.859913i \(-0.670518\pi\)
−0.510440 + 0.859913i \(0.670518\pi\)
\(212\) −1.10873 −0.0761476
\(213\) 4.66148 3.38676i 0.319399 0.232057i
\(214\) −1.98754 + 6.11702i −0.135866 + 0.418151i
\(215\) 0 0
\(216\) 13.1187 0.892617
\(217\) 27.2307 + 5.89520i 1.84854 + 0.400192i
\(218\) 12.0645 0.817110
\(219\) −9.34034 28.7466i −0.631161 1.94252i
\(220\) 0 0
\(221\) 1.23593 0.897957i 0.0831378 0.0604031i
\(222\) −23.5207 −1.57861
\(223\) −13.4811 −0.902758 −0.451379 0.892332i \(-0.649068\pi\)
−0.451379 + 0.892332i \(0.649068\pi\)
\(224\) 17.5025 12.7163i 1.16943 0.849644i
\(225\) 0 0
\(226\) −10.8821 7.90629i −0.723865 0.525919i
\(227\) 6.80665 + 20.9487i 0.451773 + 1.39042i 0.874882 + 0.484336i \(0.160939\pi\)
−0.423109 + 0.906079i \(0.639061\pi\)
\(228\) 5.04779 3.66743i 0.334298 0.242882i
\(229\) −1.32263 4.07064i −0.0874019 0.268995i 0.897797 0.440409i \(-0.145167\pi\)
−0.985199 + 0.171414i \(0.945167\pi\)
\(230\) 0 0
\(231\) −15.5640 11.3079i −1.02403 0.744004i
\(232\) 0.730348 2.24778i 0.0479497 0.147574i
\(233\) 5.11113 15.7304i 0.334841 1.03053i −0.631959 0.775002i \(-0.717749\pi\)
0.966800 0.255533i \(-0.0822510\pi\)
\(234\) −2.54266 1.84735i −0.166219 0.120765i
\(235\) 0 0
\(236\) −0.959855 2.95413i −0.0624812 0.192297i
\(237\) −16.1791 + 11.7548i −1.05095 + 0.763558i
\(238\) −4.01923 12.3699i −0.260528 0.801824i
\(239\) −12.1116 8.79963i −0.783437 0.569201i 0.122571 0.992460i \(-0.460886\pi\)
−0.906009 + 0.423259i \(0.860886\pi\)
\(240\) 0 0
\(241\) 10.4677 7.60519i 0.674281 0.489894i −0.197175 0.980368i \(-0.563177\pi\)
0.871455 + 0.490475i \(0.163177\pi\)
\(242\) 9.79587 0.629703
\(243\) −18.0659 −1.15893
\(244\) −4.12063 + 2.99381i −0.263796 + 0.191659i
\(245\) 0 0
\(246\) 6.58555 + 20.2682i 0.419879 + 1.29225i
\(247\) −1.74700 −0.111159
\(248\) 1.71816 + 16.9605i 0.109103 + 1.07700i
\(249\) 23.8618 1.51218
\(250\) 0 0
\(251\) −4.44076 + 13.6673i −0.280298 + 0.862670i 0.707470 + 0.706743i \(0.249836\pi\)
−0.987769 + 0.155927i \(0.950164\pi\)
\(252\) 15.2612 11.0879i 0.961368 0.698475i
\(253\) 10.4217 0.655205
\(254\) 11.4818 0.720432
\(255\) 0 0
\(256\) 12.9332 + 9.39650i 0.808323 + 0.587281i
\(257\) −16.0441 11.6567i −1.00081 0.727128i −0.0385449 0.999257i \(-0.512272\pi\)
−0.962261 + 0.272129i \(0.912272\pi\)
\(258\) 4.73983 + 14.5877i 0.295089 + 0.908190i
\(259\) −31.9787 + 23.2339i −1.98706 + 1.44368i
\(260\) 0 0
\(261\) 1.08736 3.34655i 0.0673059 0.207146i
\(262\) −3.39592 2.46728i −0.209800 0.152429i
\(263\) −0.0252272 + 0.0776412i −0.00155557 + 0.00478756i −0.951831 0.306622i \(-0.900801\pi\)
0.950276 + 0.311410i \(0.100801\pi\)
\(264\) 3.63744 11.1949i 0.223869 0.688998i
\(265\) 0 0
\(266\) −4.59621 + 14.1457i −0.281812 + 0.867328i
\(267\) −8.43745 25.9678i −0.516364 1.58920i
\(268\) 2.23543 1.62414i 0.136551 0.0992099i
\(269\) −3.59930 11.0775i −0.219453 0.675408i −0.998807 0.0488240i \(-0.984453\pi\)
0.779354 0.626584i \(-0.215547\pi\)
\(270\) 0 0
\(271\) −5.81128 4.22214i −0.353010 0.256477i 0.397121 0.917766i \(-0.370009\pi\)
−0.750131 + 0.661290i \(0.770009\pi\)
\(272\) 3.22715 2.34466i 0.195675 0.142166i
\(273\) −8.75784 −0.530049
\(274\) −23.7091 −1.43232
\(275\) 0 0
\(276\) −5.23606 + 16.1149i −0.315174 + 0.970005i
\(277\) 4.82569 + 14.8519i 0.289947 + 0.892366i 0.984872 + 0.173284i \(0.0554378\pi\)
−0.694925 + 0.719083i \(0.744562\pi\)
\(278\) −5.80167 −0.347961
\(279\) 2.55803 + 25.2513i 0.153145 + 1.51175i
\(280\) 0 0
\(281\) −3.75049 11.5428i −0.223735 0.688586i −0.998418 0.0562356i \(-0.982090\pi\)
0.774682 0.632351i \(-0.217910\pi\)
\(282\) −3.11982 + 9.60182i −0.185783 + 0.571780i
\(283\) 4.57342 3.32278i 0.271861 0.197519i −0.443498 0.896275i \(-0.646263\pi\)
0.715360 + 0.698756i \(0.246263\pi\)
\(284\) 1.73315 0.102844
\(285\) 0 0
\(286\) −0.779990 + 0.566696i −0.0461218 + 0.0335094i
\(287\) 28.9747 + 21.0514i 1.71032 + 1.24262i
\(288\) 15.9439 + 11.5839i 0.939504 + 0.682590i
\(289\) −3.47360 10.6906i −0.204329 0.628861i
\(290\) 0 0
\(291\) 14.6498 + 45.0874i 0.858786 + 2.64307i
\(292\) 2.80953 8.64685i 0.164415 0.506019i
\(293\) 13.4133 + 9.74536i 0.783616 + 0.569330i 0.906062 0.423145i \(-0.139074\pi\)
−0.122446 + 0.992475i \(0.539074\pi\)
\(294\) −16.6001 + 51.0900i −0.968139 + 2.97963i
\(295\) 0 0
\(296\) −19.5664 14.2158i −1.13728 0.826279i
\(297\) 1.85148 5.69828i 0.107434 0.330648i
\(298\) 0.526919 + 1.62169i 0.0305236 + 0.0939419i
\(299\) 3.83822 2.78863i 0.221970 0.161271i
\(300\) 0 0
\(301\) 20.8541 + 15.1514i 1.20201 + 0.873310i
\(302\) −7.52454 5.46690i −0.432989 0.314585i
\(303\) 7.76299 5.64015i 0.445972 0.324018i
\(304\) −4.56162 −0.261627
\(305\) 0 0
\(306\) 9.58547 6.96425i 0.547965 0.398120i
\(307\) 0.329733 1.01481i 0.0188189 0.0579185i −0.941206 0.337833i \(-0.890306\pi\)
0.960025 + 0.279914i \(0.0903061\pi\)
\(308\) −1.78820 5.50351i −0.101892 0.313592i
\(309\) 22.6254 1.28711
\(310\) 0 0
\(311\) −20.0217 −1.13532 −0.567662 0.823262i \(-0.692152\pi\)
−0.567662 + 0.823262i \(0.692152\pi\)
\(312\) −1.65589 5.09630i −0.0937461 0.288521i
\(313\) 5.95865 18.3388i 0.336803 1.03657i −0.629025 0.777385i \(-0.716546\pi\)
0.965827 0.259187i \(-0.0834545\pi\)
\(314\) 7.37223 5.35624i 0.416039 0.302270i
\(315\) 0 0
\(316\) −6.01546 −0.338396
\(317\) 18.9260 13.7506i 1.06299 0.772309i 0.0883523 0.996089i \(-0.471840\pi\)
0.974640 + 0.223781i \(0.0718399\pi\)
\(318\) 3.22973 + 2.34653i 0.181114 + 0.131587i
\(319\) −0.873273 0.634470i −0.0488939 0.0355235i
\(320\) 0 0
\(321\) −13.2085 + 9.59654i −0.737226 + 0.535626i
\(322\) −12.4818 38.4151i −0.695586 2.14079i
\(323\) 2.03518 6.26363i 0.113240 0.348518i
\(324\) −1.26831 0.921481i −0.0704616 0.0511934i
\(325\) 0 0
\(326\) 0.988649 3.04275i 0.0547562 0.168522i
\(327\) 24.7758 + 18.0007i 1.37011 + 0.995441i
\(328\) −6.77167 + 20.8410i −0.373903 + 1.15075i
\(329\) 5.24303 + 16.1364i 0.289057 + 0.889627i
\(330\) 0 0
\(331\) −6.55241 20.1663i −0.360153 1.10844i −0.952961 0.303094i \(-0.901981\pi\)
0.592808 0.805344i \(-0.298019\pi\)
\(332\) 5.80673 + 4.21884i 0.318686 + 0.231539i
\(333\) −29.1310 21.1649i −1.59637 1.15983i
\(334\) 9.17567 6.66651i 0.502070 0.364775i
\(335\) 0 0
\(336\) −22.8677 −1.24753
\(337\) −10.3468 + 7.51736i −0.563624 + 0.409497i −0.832783 0.553599i \(-0.813254\pi\)
0.269160 + 0.963096i \(0.413254\pi\)
\(338\) 4.21529 12.9733i 0.229281 0.705656i
\(339\) −10.5511 32.4730i −0.573058 1.76369i
\(340\) 0 0
\(341\) 7.60949 + 1.64738i 0.412077 + 0.0892108i
\(342\) −13.5492 −0.732655
\(343\) 17.0730 + 52.5453i 0.921855 + 2.83718i
\(344\) −4.87379 + 15.0000i −0.262777 + 0.808744i
\(345\) 0 0
\(346\) −4.61806 −0.248268
\(347\) −34.2904 −1.84080 −0.920402 0.390974i \(-0.872138\pi\)
−0.920402 + 0.390974i \(0.872138\pi\)
\(348\) 1.41982 1.03156i 0.0761106 0.0552976i
\(349\) −0.843868 0.613106i −0.0451712 0.0328188i 0.564971 0.825111i \(-0.308888\pi\)
−0.610142 + 0.792292i \(0.708888\pi\)
\(350\) 0 0
\(351\) −0.842858 2.59405i −0.0449884 0.138460i
\(352\) 4.89098 3.55351i 0.260690 0.189403i
\(353\) 0.909726 + 2.79985i 0.0484198 + 0.149021i 0.972343 0.233557i \(-0.0750364\pi\)
−0.923923 + 0.382578i \(0.875036\pi\)
\(354\) −3.45612 + 10.6369i −0.183691 + 0.565342i
\(355\) 0 0
\(356\) 2.53795 7.81100i 0.134511 0.413982i
\(357\) 10.2025 31.4000i 0.539972 1.66186i
\(358\) −2.58176 1.87576i −0.136450 0.0991368i
\(359\) 1.18848 3.65778i 0.0627258 0.193050i −0.914783 0.403946i \(-0.867638\pi\)
0.977508 + 0.210896i \(0.0676382\pi\)
\(360\) 0 0
\(361\) 9.27828 6.74107i 0.488331 0.354793i
\(362\) −0.149100 0.458883i −0.00783653 0.0241183i
\(363\) 20.1170 + 14.6158i 1.05587 + 0.767133i
\(364\) −2.13121 1.54841i −0.111706 0.0811590i
\(365\) 0 0
\(366\) 18.3396 0.958626
\(367\) −5.51281 −0.287766 −0.143883 0.989595i \(-0.545959\pi\)
−0.143883 + 0.989595i \(0.545959\pi\)
\(368\) 10.0220 7.28142i 0.522433 0.379570i
\(369\) −10.0818 + 31.0287i −0.524839 + 1.61529i
\(370\) 0 0
\(371\) 6.70904 0.348316
\(372\) −6.37050 + 10.9388i −0.330295 + 0.567151i
\(373\) −0.532637 −0.0275789 −0.0137895 0.999905i \(-0.504389\pi\)
−0.0137895 + 0.999905i \(0.504389\pi\)
\(374\) −1.12315 3.45671i −0.0580769 0.178742i
\(375\) 0 0
\(376\) −8.39864 + 6.10197i −0.433127 + 0.314685i
\(377\) −0.491391 −0.0253079
\(378\) −23.2218 −1.19440
\(379\) 5.95047 4.32327i 0.305655 0.222071i −0.424375 0.905487i \(-0.639506\pi\)
0.730030 + 0.683415i \(0.239506\pi\)
\(380\) 0 0
\(381\) 23.5792 + 17.1313i 1.20800 + 0.877663i
\(382\) 7.91746 + 24.3674i 0.405092 + 1.24675i
\(383\) 3.29142 2.39136i 0.168184 0.122193i −0.500510 0.865731i \(-0.666854\pi\)
0.668693 + 0.743538i \(0.266854\pi\)
\(384\) −0.0214731 0.0660873i −0.00109579 0.00337250i
\(385\) 0 0
\(386\) 16.9997 + 12.3510i 0.865263 + 0.628650i
\(387\) −7.25622 + 22.3323i −0.368854 + 1.13522i
\(388\) −4.40659 + 13.5621i −0.223711 + 0.688511i
\(389\) 27.8933 + 20.2656i 1.41424 + 1.02751i 0.992688 + 0.120707i \(0.0385160\pi\)
0.421556 + 0.906802i \(0.361484\pi\)
\(390\) 0 0
\(391\) 5.52688 + 17.0100i 0.279507 + 0.860233i
\(392\) −44.6880 + 32.4677i −2.25708 + 1.63987i
\(393\) −3.29264 10.1337i −0.166092 0.511177i
\(394\) −9.61410 6.98505i −0.484351 0.351902i
\(395\) 0 0
\(396\) 4.26468 3.09847i 0.214308 0.155704i
\(397\) 1.88725 0.0947182 0.0473591 0.998878i \(-0.484919\pi\)
0.0473591 + 0.998878i \(0.484919\pi\)
\(398\) −11.2051 −0.561660
\(399\) −30.5448 + 22.1921i −1.52915 + 1.11100i
\(400\) 0 0
\(401\) 6.21445 + 19.1261i 0.310335 + 0.955113i 0.977632 + 0.210321i \(0.0674510\pi\)
−0.667297 + 0.744791i \(0.732549\pi\)
\(402\) −9.94918 −0.496220
\(403\) 3.24332 1.42943i 0.161561 0.0712049i
\(404\) 2.88631 0.143599
\(405\) 0 0
\(406\) −1.29281 + 3.97885i −0.0641609 + 0.197467i
\(407\) −8.93628 + 6.49258i −0.442955 + 0.321825i
\(408\) 20.2011 1.00010
\(409\) −11.8662 −0.586745 −0.293373 0.955998i \(-0.594778\pi\)
−0.293373 + 0.955998i \(0.594778\pi\)
\(410\) 0 0
\(411\) −48.6895 35.3750i −2.40168 1.74492i
\(412\) 5.50587 + 4.00025i 0.271255 + 0.197078i
\(413\) 5.80820 + 17.8758i 0.285803 + 0.879611i
\(414\) 29.7679 21.6277i 1.46301 1.06294i
\(415\) 0 0
\(416\) 0.850463 2.61746i 0.0416974 0.128331i
\(417\) −11.9144 8.65632i −0.583451 0.423902i
\(418\) −1.28439 + 3.95294i −0.0628215 + 0.193345i
\(419\) 4.55963 14.0331i 0.222752 0.685561i −0.775760 0.631028i \(-0.782633\pi\)
0.998512 0.0545326i \(-0.0173669\pi\)
\(420\) 0 0
\(421\) −3.13553 + 9.65018i −0.152817 + 0.470321i −0.997933 0.0642610i \(-0.979531\pi\)
0.845117 + 0.534582i \(0.179531\pi\)
\(422\) 4.96311 + 15.2749i 0.241600 + 0.743569i
\(423\) −12.5041 + 9.08476i −0.607970 + 0.441716i
\(424\) 1.26851 + 3.90407i 0.0616043 + 0.189599i
\(425\) 0 0
\(426\) −5.04869 3.66809i −0.244610 0.177719i
\(427\) 24.9345 18.1159i 1.20666 0.876692i
\(428\) −4.91097 −0.237381
\(429\) −2.44733 −0.118158
\(430\) 0 0
\(431\) 7.62147 23.4565i 0.367113 1.12986i −0.581534 0.813522i \(-0.697547\pi\)
0.948647 0.316336i \(-0.102453\pi\)
\(432\) −2.20079 6.77335i −0.105886 0.325883i
\(433\) 15.8754 0.762922 0.381461 0.924385i \(-0.375421\pi\)
0.381461 + 0.924385i \(0.375421\pi\)
\(434\) −3.04135 30.0223i −0.145989 1.44111i
\(435\) 0 0
\(436\) 2.84659 + 8.76090i 0.136327 + 0.419571i
\(437\) 6.32029 19.4519i 0.302341 0.930509i
\(438\) −26.4846 + 19.2422i −1.26548 + 0.919426i
\(439\) −1.64657 −0.0785864 −0.0392932 0.999228i \(-0.512511\pi\)
−0.0392932 + 0.999228i \(0.512511\pi\)
\(440\) 0 0
\(441\) −66.5325 + 48.3387i −3.16822 + 2.30184i
\(442\) −1.33860 0.972547i −0.0636705 0.0462593i
\(443\) −14.5828 10.5950i −0.692848 0.503383i 0.184747 0.982786i \(-0.440853\pi\)
−0.877595 + 0.479403i \(0.840853\pi\)
\(444\) −5.54965 17.0801i −0.263375 0.810585i
\(445\) 0 0
\(446\) 4.51192 + 13.8863i 0.213646 + 0.657533i
\(447\) −1.33754 + 4.11651i −0.0632633 + 0.194704i
\(448\) −32.4147 23.5507i −1.53145 1.11267i
\(449\) 1.49885 4.61297i 0.0707349 0.217700i −0.909440 0.415836i \(-0.863489\pi\)
0.980174 + 0.198137i \(0.0634889\pi\)
\(450\) 0 0
\(451\) 8.09684 + 5.88270i 0.381265 + 0.277006i
\(452\) 3.17373 9.76773i 0.149280 0.459436i
\(453\) −7.29570 22.4539i −0.342782 1.05497i
\(454\) 19.3003 14.0225i 0.905807 0.658108i
\(455\) 0 0
\(456\) −18.6891 13.5784i −0.875198 0.635869i
\(457\) −3.32344 2.41462i −0.155464 0.112951i 0.507334 0.861750i \(-0.330631\pi\)
−0.662798 + 0.748798i \(0.730631\pi\)
\(458\) −3.75032 + 2.72477i −0.175241 + 0.127320i
\(459\) 10.2825 0.479945
\(460\) 0 0
\(461\) −18.8029 + 13.6611i −0.875738 + 0.636261i −0.932120 0.362149i \(-0.882043\pi\)
0.0563827 + 0.998409i \(0.482043\pi\)
\(462\) −6.43872 + 19.8164i −0.299557 + 0.921940i
\(463\) 9.51077 + 29.2711i 0.442003 + 1.36035i 0.885737 + 0.464187i \(0.153653\pi\)
−0.443734 + 0.896158i \(0.646347\pi\)
\(464\) −1.28308 −0.0595653
\(465\) 0 0
\(466\) −17.9139 −0.829844
\(467\) −5.16147 15.8854i −0.238844 0.735088i −0.996588 0.0825353i \(-0.973698\pi\)
0.757744 0.652552i \(-0.226302\pi\)
\(468\) 0.741559 2.28228i 0.0342786 0.105499i
\(469\) −13.5269 + 9.82785i −0.624613 + 0.453808i
\(470\) 0 0
\(471\) 23.1315 1.06584
\(472\) −9.30397 + 6.75973i −0.428250 + 0.311142i
\(473\) 5.82756 + 4.23397i 0.267952 + 0.194678i
\(474\) 17.5231 + 12.7312i 0.804861 + 0.584766i
\(475\) 0 0
\(476\) 8.03437 5.83731i 0.368255 0.267553i
\(477\) 1.88859 + 5.81248i 0.0864726 + 0.266135i
\(478\) −5.01052 + 15.4208i −0.229176 + 0.705331i
\(479\) 3.66602 + 2.66352i 0.167505 + 0.121699i 0.668379 0.743820i \(-0.266988\pi\)
−0.500875 + 0.865520i \(0.666988\pi\)
\(480\) 0 0
\(481\) −1.55387 + 4.78233i −0.0708506 + 0.218056i
\(482\) −11.3372 8.23693i −0.516393 0.375182i
\(483\) 31.6840 97.5134i 1.44167 4.43702i
\(484\) 2.31131 + 7.11349i 0.105060 + 0.323341i
\(485\) 0 0
\(486\) 6.04640 + 18.6089i 0.274270 + 0.844116i
\(487\) 12.1341 + 8.81591i 0.549847 + 0.399487i 0.827729 0.561128i \(-0.189633\pi\)
−0.277882 + 0.960615i \(0.589633\pi\)
\(488\) 15.2564 + 11.0844i 0.690623 + 0.501767i
\(489\) 6.57021 4.77354i 0.297115 0.215867i
\(490\) 0 0
\(491\) 40.2267 1.81541 0.907703 0.419613i \(-0.137834\pi\)
0.907703 + 0.419613i \(0.137834\pi\)
\(492\) −13.1644 + 9.56448i −0.593496 + 0.431200i
\(493\) 0.572447 1.76181i 0.0257817 0.0793480i
\(494\) 0.584697 + 1.79951i 0.0263068 + 0.0809639i
\(495\) 0 0
\(496\) 8.46867 3.73239i 0.380255 0.167589i
\(497\) −10.4875 −0.470430
\(498\) −7.98620 24.5790i −0.357870 1.10141i
\(499\) −12.6135 + 38.8202i −0.564656 + 1.73783i 0.104316 + 0.994544i \(0.466735\pi\)
−0.668972 + 0.743288i \(0.733265\pi\)
\(500\) 0 0
\(501\) 28.7900 1.28624
\(502\) 15.5643 0.694670
\(503\) −5.91042 + 4.29417i −0.263533 + 0.191468i −0.711703 0.702480i \(-0.752076\pi\)
0.448170 + 0.893948i \(0.352076\pi\)
\(504\) −56.5038 41.0524i −2.51688 1.82862i
\(505\) 0 0
\(506\) −3.48799 10.7349i −0.155060 0.477225i
\(507\) 28.0133 20.3529i 1.24412 0.903903i
\(508\) 2.70910 + 8.33776i 0.120197 + 0.369928i
\(509\) 6.40708 19.7190i 0.283989 0.874028i −0.702711 0.711475i \(-0.748027\pi\)
0.986700 0.162553i \(-0.0519727\pi\)
\(510\) 0 0
\(511\) −17.0008 + 52.3232i −0.752072 + 2.31464i
\(512\) 5.36600 16.5149i 0.237146 0.729861i
\(513\) −9.51289 6.91152i −0.420004 0.305151i
\(514\) −6.63737 + 20.4277i −0.292762 + 0.901028i
\(515\) 0 0
\(516\) −9.47483 + 6.88387i −0.417106 + 0.303045i
\(517\) 1.46514 + 4.50923i 0.0644367 + 0.198316i
\(518\) 34.6350 + 25.1638i 1.52178 + 1.10563i
\(519\) −9.48373 6.89033i −0.416289 0.302452i
\(520\) 0 0
\(521\) −5.07858 −0.222497 −0.111248 0.993793i \(-0.535485\pi\)
−0.111248 + 0.993793i \(0.535485\pi\)
\(522\) −3.81106 −0.166806
\(523\) 13.2479 9.62516i 0.579290 0.420879i −0.259178 0.965830i \(-0.583452\pi\)
0.838468 + 0.544951i \(0.183452\pi\)
\(524\) 0.990410 3.04817i 0.0432663 0.133160i
\(525\) 0 0
\(526\) 0.0884181 0.00385521
\(527\) 1.34669 + 13.2937i 0.0586628 + 0.579082i
\(528\) −6.39026 −0.278100
\(529\) 10.0565 + 30.9507i 0.437239 + 1.34568i
\(530\) 0 0
\(531\) −13.8520 + 10.0640i −0.601125 + 0.436743i
\(532\) −11.3567 −0.492374
\(533\) 4.55609 0.197346
\(534\) −23.9244 + 17.3821i −1.03531 + 0.752198i
\(535\) 0 0
\(536\) −8.27654 6.01326i −0.357492 0.259733i
\(537\) −2.50324 7.70417i −0.108023 0.332460i
\(538\) −10.2058 + 7.41497i −0.440005 + 0.319682i
\(539\) 7.79579 + 23.9930i 0.335789 + 1.03345i
\(540\) 0 0
\(541\) 34.4222 + 25.0092i 1.47993 + 1.07523i 0.977580 + 0.210563i \(0.0675299\pi\)
0.502347 + 0.864666i \(0.332470\pi\)
\(542\) −2.40409 + 7.39904i −0.103265 + 0.317816i
\(543\) 0.378477 1.16483i 0.0162420 0.0499878i
\(544\) 8.39377 + 6.09843i 0.359880 + 0.261468i
\(545\) 0 0
\(546\) 2.93113 + 9.02108i 0.125441 + 0.386066i
\(547\) 8.55006 6.21198i 0.365574 0.265605i −0.389799 0.920900i \(-0.627456\pi\)
0.755373 + 0.655295i \(0.227456\pi\)
\(548\) −5.59412 17.2169i −0.238969 0.735470i
\(549\) 22.7141 + 16.5027i 0.969412 + 0.704319i
\(550\) 0 0
\(551\) −1.71383 + 1.24517i −0.0730116 + 0.0530460i
\(552\) 62.7349 2.67018
\(553\) 36.4003 1.54790
\(554\) 13.6833 9.94147i 0.581346 0.422372i
\(555\) 0 0
\(556\) −1.36889 4.21301i −0.0580539 0.178671i
\(557\) 23.2668 0.985845 0.492923 0.870073i \(-0.335929\pi\)
0.492923 + 0.870073i \(0.335929\pi\)
\(558\) 25.1541 11.0862i 1.06486 0.469315i
\(559\) 3.27917 0.138694
\(560\) 0 0
\(561\) 2.85103 8.77456i 0.120371 0.370462i
\(562\) −10.6345 + 7.72643i −0.448590 + 0.325920i
\(563\) −4.65782 −0.196304 −0.0981519 0.995171i \(-0.531293\pi\)
−0.0981519 + 0.995171i \(0.531293\pi\)
\(564\) −7.70869 −0.324594
\(565\) 0 0
\(566\) −4.95331 3.59879i −0.208203 0.151269i
\(567\) 7.67470 + 5.57600i 0.322307 + 0.234170i
\(568\) −1.98293 6.10283i −0.0832018 0.256069i
\(569\) 4.77950 3.47251i 0.200367 0.145575i −0.483078 0.875578i \(-0.660481\pi\)
0.683445 + 0.730002i \(0.260481\pi\)
\(570\) 0 0
\(571\) 14.4553 44.4889i 0.604936 1.86180i 0.107708 0.994183i \(-0.465649\pi\)
0.497229 0.867620i \(-0.334351\pi\)
\(572\) −0.595556 0.432696i −0.0249014 0.0180919i
\(573\) −20.0978 + 61.8545i −0.839596 + 2.58401i
\(574\) 11.9867 36.8912i 0.500315 1.53981i
\(575\) 0 0
\(576\) 11.2788 34.7125i 0.469949 1.44636i
\(577\) −5.40567 16.6370i −0.225041 0.692605i −0.998287 0.0584996i \(-0.981368\pi\)
0.773246 0.634106i \(-0.218632\pi\)
\(578\) −9.84940 + 7.15601i −0.409681 + 0.297651i
\(579\) 16.4827 + 50.7285i 0.684998 + 2.10821i
\(580\) 0 0
\(581\) −35.1373 25.5287i −1.45774 1.05911i
\(582\) 41.5396 30.1802i 1.72187 1.25101i
\(583\) 1.87481 0.0776466
\(584\) −33.6619 −1.39294
\(585\) 0 0
\(586\) 5.54903 17.0781i 0.229228 0.705492i
\(587\) 10.3838 + 31.9580i 0.428584 + 1.31905i 0.899520 + 0.436879i \(0.143916\pi\)
−0.470936 + 0.882167i \(0.656084\pi\)
\(588\) −41.0169 −1.69151
\(589\) 7.68964 13.2039i 0.316846 0.544058i
\(590\) 0 0
\(591\) −9.32171 28.6893i −0.383444 1.18012i
\(592\) −4.05734 + 12.4872i −0.166756 + 0.513221i
\(593\) 18.9442 13.7638i 0.777946 0.565211i −0.126416 0.991977i \(-0.540347\pi\)
0.904362 + 0.426767i \(0.140347\pi\)
\(594\) −6.48922 −0.266256
\(595\) 0 0
\(596\) −1.05330 + 0.765268i −0.0431449 + 0.0313466i
\(597\) −23.0110 16.7184i −0.941776 0.684240i
\(598\) −4.15704 3.02027i −0.169994 0.123508i
\(599\) 1.12006 + 3.44720i 0.0457645 + 0.140849i 0.971328 0.237744i \(-0.0764080\pi\)
−0.925563 + 0.378593i \(0.876408\pi\)
\(600\) 0 0
\(601\) −8.53432 26.2659i −0.348122 1.07141i −0.959891 0.280373i \(-0.909542\pi\)
0.611769 0.791036i \(-0.290458\pi\)
\(602\) 8.62721 26.5518i 0.351619 1.08217i
\(603\) −12.3223 8.95269i −0.501804 0.364582i
\(604\) 2.19451 6.75402i 0.0892935 0.274817i
\(605\) 0 0
\(606\) −8.40784 6.10865i −0.341545 0.248147i
\(607\) 8.43114 25.9484i 0.342209 1.05321i −0.620851 0.783928i \(-0.713213\pi\)
0.963061 0.269284i \(-0.0867870\pi\)
\(608\) −3.66639 11.2840i −0.148692 0.457626i
\(609\) −8.59154 + 6.24212i −0.348147 + 0.252943i
\(610\) 0 0
\(611\) 1.74618 + 1.26867i 0.0706428 + 0.0513250i
\(612\) 7.31892 + 5.31750i 0.295850 + 0.214947i
\(613\) 37.2047 27.0308i 1.50268 1.09176i 0.533387 0.845872i \(-0.320919\pi\)
0.969297 0.245892i \(-0.0790809\pi\)
\(614\) −1.15567 −0.0466392
\(615\) 0 0
\(616\) −17.3332 + 12.5933i −0.698375 + 0.507399i
\(617\) −5.04636 + 15.5311i −0.203159 + 0.625259i 0.796625 + 0.604474i \(0.206617\pi\)
−0.999784 + 0.0207851i \(0.993383\pi\)
\(618\) −7.57241 23.3055i −0.304607 0.937484i
\(619\) 7.49401 0.301210 0.150605 0.988594i \(-0.451878\pi\)
0.150605 + 0.988594i \(0.451878\pi\)
\(620\) 0 0
\(621\) 31.9325 1.28141
\(622\) 6.70096 + 20.6234i 0.268684 + 0.826925i
\(623\) −15.3574 + 47.2653i −0.615283 + 1.89365i
\(624\) −2.35348 + 1.70990i −0.0942147 + 0.0684510i
\(625\) 0 0
\(626\) −20.8843 −0.834705
\(627\) −8.53559 + 6.20147i −0.340879 + 0.247663i
\(628\) 5.62901 + 4.08972i 0.224622 + 0.163197i
\(629\) −15.3362 11.1424i −0.611493 0.444276i
\(630\) 0 0
\(631\) −3.09596 + 2.24935i −0.123248 + 0.0895452i −0.647702 0.761894i \(-0.724270\pi\)
0.524453 + 0.851439i \(0.324270\pi\)
\(632\) 6.88238 + 21.1818i 0.273766 + 0.842566i
\(633\) −12.5984 + 38.7739i −0.500742 + 1.54112i
\(634\) −20.4981 14.8928i −0.814085 0.591468i
\(635\) 0 0
\(636\) −0.941941 + 2.89900i −0.0373504 + 0.114953i
\(637\) 9.29117 + 6.75043i 0.368129 + 0.267462i
\(638\) −0.361268 + 1.11187i −0.0143027 + 0.0440193i
\(639\) −2.95223 9.08604i −0.116789 0.359438i
\(640\) 0 0
\(641\) 8.53249 + 26.2603i 0.337013 + 1.03722i 0.965722 + 0.259579i \(0.0835837\pi\)
−0.628709 + 0.777641i \(0.716416\pi\)
\(642\) 14.3057 + 10.3937i 0.564600 + 0.410206i
\(643\) −25.2916 18.3754i −0.997401 0.724655i −0.0358720 0.999356i \(-0.511421\pi\)
−0.961529 + 0.274702i \(0.911421\pi\)
\(644\) 24.9510 18.1279i 0.983205 0.714341i
\(645\) 0 0
\(646\) −7.13304 −0.280646
\(647\) 26.6173 19.3386i 1.04644 0.760280i 0.0749042 0.997191i \(-0.476135\pi\)
0.971531 + 0.236911i \(0.0761349\pi\)
\(648\) −1.79365 + 5.52028i −0.0704612 + 0.216857i
\(649\) 1.62307 + 4.99530i 0.0637112 + 0.196083i
\(650\) 0 0
\(651\) 38.5487 66.1921i 1.51084 2.59427i
\(652\) 2.44283 0.0956686
\(653\) −5.98202 18.4108i −0.234095 0.720469i −0.997240 0.0742426i \(-0.976346\pi\)
0.763146 0.646227i \(-0.223654\pi\)
\(654\) 10.2496 31.5451i 0.400792 1.23351i
\(655\) 0 0
\(656\) 11.8965 0.464479
\(657\) −50.1167 −1.95524
\(658\) 14.8666 10.8012i 0.579562 0.421076i
\(659\) 2.78409 + 2.02276i 0.108453 + 0.0787957i 0.640690 0.767800i \(-0.278648\pi\)
−0.532237 + 0.846595i \(0.678648\pi\)
\(660\) 0 0
\(661\) −5.48729 16.8881i −0.213431 0.656873i −0.999261 0.0384307i \(-0.987764\pi\)
0.785830 0.618442i \(-0.212236\pi\)
\(662\) −18.5794 + 13.4987i −0.722109 + 0.524643i
\(663\) −1.29789 3.99448i −0.0504057 0.155133i
\(664\) 8.21190 25.2736i 0.318684 0.980807i
\(665\) 0 0
\(666\) −12.0513 + 37.0902i −0.466979 + 1.43722i
\(667\) 1.77775 5.47135i 0.0688347 0.211852i
\(668\) 7.00601 + 5.09017i 0.271071 + 0.196944i
\(669\) −11.4531 + 35.2490i −0.442803 + 1.36281i
\(670\) 0 0
\(671\) 6.96781 5.06241i 0.268989 0.195432i
\(672\) −18.3798 56.5673i −0.709018 2.18213i
\(673\) −12.5248 9.09980i −0.482795 0.350771i 0.319611 0.947549i \(-0.396448\pi\)
−0.802407 + 0.596777i \(0.796448\pi\)
\(674\) 11.2062 + 8.14180i 0.431648 + 0.313610i
\(675\) 0 0
\(676\) 10.4155 0.400595
\(677\) −26.4473 −1.01645 −0.508227 0.861223i \(-0.669699\pi\)
−0.508227 + 0.861223i \(0.669699\pi\)
\(678\) −29.9177 + 21.7365i −1.14898 + 0.834786i
\(679\) 26.6648 82.0659i 1.02330 3.14940i
\(680\) 0 0
\(681\) 60.5575 2.32057
\(682\) −0.849890 8.38957i −0.0325440 0.321253i
\(683\) −35.7929 −1.36958 −0.684789 0.728742i \(-0.740106\pi\)
−0.684789 + 0.728742i \(0.740106\pi\)
\(684\) −3.19690 9.83903i −0.122236 0.376205i
\(685\) 0 0
\(686\) 48.4105 35.1723i 1.84832 1.34289i
\(687\) −11.7672 −0.448947
\(688\) 8.56227 0.326434
\(689\) 0.690477 0.501661i 0.0263051 0.0191118i
\(690\) 0 0
\(691\) −36.9543 26.8488i −1.40581 1.02138i −0.993916 0.110145i \(-0.964868\pi\)
−0.411891 0.911233i \(-0.635132\pi\)
\(692\) −1.08962 3.35351i −0.0414211 0.127481i
\(693\) −25.8061 + 18.7492i −0.980293 + 0.712224i
\(694\) 11.4765 + 35.3210i 0.435642 + 1.34077i
\(695\) 0 0
\(696\) −5.25681 3.81930i −0.199259 0.144770i
\(697\) −5.30763 + 16.3352i −0.201041 + 0.618741i
\(698\) −0.349104 + 1.07443i −0.0132138 + 0.0406678i
\(699\) −36.7882 26.7282i −1.39146 1.01095i
\(700\) 0 0
\(701\) −3.29087 10.1283i −0.124295 0.382539i 0.869477 0.493973i \(-0.164456\pi\)
−0.993772 + 0.111433i \(0.964456\pi\)
\(702\) −2.38993 + 1.73638i −0.0902020 + 0.0655356i
\(703\) 6.69883 + 20.6169i 0.252651 + 0.777580i
\(704\) −9.05814 6.58112i −0.341391 0.248035i
\(705\) 0 0
\(706\) 2.57953 1.87414i 0.0970820 0.0705342i
\(707\) −17.4654 −0.656855
\(708\) −8.53965 −0.320940
\(709\) −0.118571 + 0.0861468i −0.00445303 + 0.00323531i −0.590010 0.807396i \(-0.700876\pi\)
0.585557 + 0.810632i \(0.300876\pi\)
\(710\) 0 0
\(711\) 10.2467 + 31.5360i 0.384279 + 1.18269i
\(712\) −30.4080 −1.13959
\(713\) 4.18219 + 41.2839i 0.156624 + 1.54609i
\(714\) −35.7584 −1.33822
\(715\) 0 0
\(716\) 0.752962 2.31738i 0.0281395 0.0866046i
\(717\) −33.2982 + 24.1925i −1.24354 + 0.903487i
\(718\) −4.16549 −0.155455
\(719\) −28.0309 −1.04538 −0.522688 0.852524i \(-0.675071\pi\)
−0.522688 + 0.852524i \(0.675071\pi\)
\(720\) 0 0
\(721\) −33.3167 24.2060i −1.24078 0.901478i
\(722\) −10.0490 7.30102i −0.373985 0.271716i
\(723\) −10.9924 33.8310i −0.408810 1.25819i
\(724\) 0.298048 0.216545i 0.0110769 0.00804782i
\(725\) 0 0
\(726\) 8.32228 25.6134i 0.308869 0.950601i
\(727\) −27.9552 20.3106i −1.03680 0.753280i −0.0671425 0.997743i \(-0.521388\pi\)
−0.969659 + 0.244463i \(0.921388\pi\)
\(728\) −3.01397 + 9.27603i −0.111705 + 0.343793i
\(729\) −13.5908 + 41.8282i −0.503363 + 1.54919i
\(730\) 0 0
\(731\) −3.82008 + 11.7570i −0.141291 + 0.434848i
\(732\) 4.32718 + 13.3177i 0.159937 + 0.492237i
\(733\) 13.9267 10.1184i 0.514396 0.373730i −0.300093 0.953910i \(-0.597018\pi\)
0.814488 + 0.580180i \(0.197018\pi\)
\(734\) 1.84506 + 5.67851i 0.0681024 + 0.209597i
\(735\) 0 0
\(736\) 26.0671 + 18.9388i 0.960845 + 0.698094i
\(737\) −3.78002 + 2.74634i −0.139239 + 0.101163i
\(738\) 35.3355 1.30072
\(739\) 31.0347 1.14163 0.570816 0.821078i \(-0.306627\pi\)
0.570816 + 0.821078i \(0.306627\pi\)
\(740\) 0 0
\(741\) −1.48420 + 4.56791i −0.0545235 + 0.167806i
\(742\) −2.24542 6.91070i −0.0824320 0.253700i
\(743\) 31.9364 1.17163 0.585817 0.810443i \(-0.300774\pi\)
0.585817 + 0.810443i \(0.300774\pi\)
\(744\) 45.8066 + 9.91669i 1.67935 + 0.363564i
\(745\) 0 0
\(746\) 0.178266 + 0.548647i 0.00652679 + 0.0200874i
\(747\) 12.2261 37.6280i 0.447329 1.37674i
\(748\) 2.24516 1.63121i 0.0820914 0.0596429i
\(749\) 29.7169 1.08583
\(750\) 0 0
\(751\) 4.73561 3.44062i 0.172805 0.125550i −0.498021 0.867165i \(-0.665940\pi\)
0.670826 + 0.741615i \(0.265940\pi\)
\(752\) 4.55946 + 3.31264i 0.166266 + 0.120800i
\(753\) 31.9632 + 23.2226i 1.16480 + 0.846279i
\(754\) 0.164462 + 0.506161i 0.00598934 + 0.0184333i
\(755\) 0 0
\(756\) −5.47913 16.8630i −0.199274 0.613303i
\(757\) −11.8344 + 36.4227i −0.430130 + 1.32380i 0.467866 + 0.883800i \(0.345023\pi\)
−0.897996 + 0.440004i \(0.854977\pi\)
\(758\) −6.44475 4.68239i −0.234084 0.170072i
\(759\) 8.85394 27.2496i 0.321378 0.989099i
\(760\) 0 0
\(761\) 6.46626 + 4.69801i 0.234402 + 0.170303i 0.698786 0.715331i \(-0.253724\pi\)
−0.464384 + 0.885634i \(0.653724\pi\)
\(762\) 9.75459 30.0216i 0.353372 1.08757i
\(763\) −17.2251 53.0133i −0.623589 1.91921i
\(764\) −15.8268 + 11.4989i −0.572595 + 0.416015i
\(765\) 0 0
\(766\) −3.56482 2.59000i −0.128802 0.0935804i
\(767\) 1.93441 + 1.40543i 0.0698474 + 0.0507471i
\(768\) 35.5568 25.8335i 1.28304 0.932186i
\(769\) 4.92944 0.177760 0.0888800 0.996042i \(-0.471671\pi\)
0.0888800 + 0.996042i \(0.471671\pi\)
\(770\) 0 0
\(771\) −44.1096 + 32.0475i −1.58857 + 1.15416i
\(772\) −4.95792 + 15.2589i −0.178440 + 0.549180i
\(773\) −13.0969 40.3080i −0.471062 1.44978i −0.851196 0.524848i \(-0.824122\pi\)
0.380135 0.924931i \(-0.375878\pi\)
\(774\) 25.4321 0.914139
\(775\) 0 0
\(776\) 52.7968 1.89530
\(777\) 33.5817 + 103.354i 1.20474 + 3.70779i
\(778\) 11.5393 35.5143i 0.413704 1.27325i
\(779\) 15.8903 11.5450i 0.569331 0.413643i
\(780\) 0 0
\(781\) −2.93069 −0.104868
\(782\) 15.6715 11.3860i 0.560412 0.407163i
\(783\) −2.67575 1.94405i −0.0956235 0.0694746i
\(784\) 24.2603 + 17.6261i 0.866438 + 0.629504i
\(785\) 0 0
\(786\) −9.33628 + 6.78321i −0.333014 + 0.241949i
\(787\) −11.3831 35.0337i −0.405765 1.24882i −0.920255 0.391320i \(-0.872018\pi\)
0.514489 0.857497i \(-0.327982\pi\)
\(788\) 2.80393 8.62960i 0.0998858 0.307417i
\(789\) 0.181577 + 0.131923i 0.00646431 + 0.00469660i
\(790\) 0 0
\(791\) −19.2046 + 59.1058i −0.682838 + 2.10156i
\(792\) −15.7897 11.4719i −0.561062 0.407636i
\(793\) 1.21159 3.72889i 0.0430248 0.132417i
\(794\) −0.631635 1.94397i −0.0224159 0.0689890i
\(795\) 0 0
\(796\) −2.64381 8.13682i −0.0937075 0.288402i
\(797\) 27.4325 + 19.9309i 0.971710 + 0.705989i 0.955841 0.293885i \(-0.0949483\pi\)
0.0158697 + 0.999874i \(0.494948\pi\)
\(798\) 33.0821 + 24.0355i 1.17109 + 0.850848i
\(799\) −6.58285 + 4.78272i −0.232885 + 0.169201i
\(800\) 0 0
\(801\) −45.2722 −1.59961
\(802\) 17.6211 12.8025i 0.622223 0.452071i
\(803\) −4.75079 + 14.6214i −0.167652 + 0.515980i
\(804\) −2.34749 7.22482i −0.0827895 0.254800i
\(805\) 0 0
\(806\) −2.55789 2.86240i −0.0900977 0.100824i
\(807\) −32.0223 −1.12724
\(808\) −3.30227 10.1633i −0.116174 0.357545i
\(809\) −14.0661 + 43.2912i −0.494539 + 1.52204i 0.323134 + 0.946353i \(0.395264\pi\)
−0.817673 + 0.575683i \(0.804736\pi\)
\(810\) 0 0
\(811\) −50.5430 −1.77480 −0.887402 0.460997i \(-0.847492\pi\)
−0.887402 + 0.460997i \(0.847492\pi\)
\(812\) −3.19437 −0.112100
\(813\) −15.9768 + 11.6078i −0.560329 + 0.407103i
\(814\) 9.67858 + 7.03190i 0.339234 + 0.246468i
\(815\) 0 0
\(816\) −3.38892 10.4300i −0.118636 0.365124i
\(817\) 11.4368 8.30932i 0.400123 0.290706i
\(818\) 3.97144 + 12.2228i 0.138858 + 0.427362i
\(819\) −4.48727 + 13.8104i −0.156798 + 0.482574i
\(820\) 0 0
\(821\) −6.25705 + 19.2572i −0.218372 + 0.672081i 0.780525 + 0.625125i \(0.214952\pi\)
−0.998897 + 0.0469561i \(0.985048\pi\)
\(822\) −20.1426 + 61.9925i −0.702553 + 2.16224i
\(823\) 20.5894 + 14.9590i 0.717700 + 0.521440i 0.885649 0.464356i \(-0.153714\pi\)
−0.167948 + 0.985796i \(0.553714\pi\)
\(824\) 7.78642 23.9641i 0.271253 0.834830i
\(825\) 0 0
\(826\) 16.4692 11.9656i 0.573036 0.416335i
\(827\) 6.87427 + 21.1568i 0.239042 + 0.735695i 0.996559 + 0.0828805i \(0.0264120\pi\)
−0.757518 + 0.652815i \(0.773588\pi\)
\(828\) 22.7291 + 16.5136i 0.789890 + 0.573889i
\(829\) −11.9991 8.71789i −0.416747 0.302785i 0.359580 0.933114i \(-0.382920\pi\)
−0.776328 + 0.630329i \(0.782920\pi\)
\(830\) 0 0
\(831\) 42.9333 1.48934
\(832\) −5.09701 −0.176707
\(833\) −35.0264 + 25.4482i −1.21359 + 0.881728i
\(834\) −4.92892 + 15.1697i −0.170675 + 0.525283i
\(835\) 0 0
\(836\) −3.17357 −0.109760
\(837\) 23.3158 + 5.04766i 0.805914 + 0.174473i
\(838\) −15.9809 −0.552052
\(839\) −9.12565 28.0859i −0.315052 0.969632i −0.975733 0.218964i \(-0.929732\pi\)
0.660680 0.750667i \(-0.270268\pi\)
\(840\) 0 0
\(841\) 22.9794 16.6955i 0.792394 0.575708i
\(842\) 10.9897 0.378729
\(843\) −33.3674 −1.14923
\(844\) −9.92115 + 7.20814i −0.341500 + 0.248114i
\(845\) 0 0
\(846\) 13.5428 + 9.83939i 0.465610 + 0.338285i
\(847\) −13.9860 43.0446i −0.480566 1.47903i
\(848\) 1.80291 1.30989i 0.0619122 0.0449819i
\(849\) −4.80267 14.7811i −0.164827 0.507286i
\(850\) 0 0
\(851\) −47.6269 34.6030i −1.63263 1.18617i
\(852\) 1.47244 4.53169i 0.0504449 0.155253i
\(853\) −6.23811 + 19.1989i −0.213589 + 0.657359i 0.785662 + 0.618656i \(0.212323\pi\)
−0.999251 + 0.0387029i \(0.987677\pi\)
\(854\) −27.0057 19.6208i −0.924115 0.671409i
\(855\) 0 0
\(856\) 5.61871 + 17.2926i 0.192044 + 0.591050i
\(857\) 21.6920 15.7602i 0.740984 0.538357i −0.152035 0.988375i \(-0.548583\pi\)
0.893019 + 0.450019i \(0.148583\pi\)
\(858\) 0.819088 + 2.52089i 0.0279632 + 0.0860619i
\(859\) 37.3251 + 27.1183i 1.27352 + 0.925263i 0.999337 0.0364157i \(-0.0115941\pi\)
0.274179 + 0.961679i \(0.411594\pi\)
\(860\) 0 0
\(861\) 79.6593 57.8759i 2.71478 1.97240i
\(862\) −26.7123 −0.909825
\(863\) −9.35901 −0.318585 −0.159292 0.987231i \(-0.550921\pi\)
−0.159292 + 0.987231i \(0.550921\pi\)
\(864\) 14.9862 10.8881i 0.509841 0.370421i
\(865\) 0 0
\(866\) −5.31327 16.3526i −0.180552 0.555682i
\(867\) −30.9039 −1.04955
\(868\) 21.0837 9.29223i 0.715629 0.315399i
\(869\) 10.1719 0.345057
\(870\) 0 0
\(871\) −0.657284 + 2.02291i −0.0222712 + 0.0685438i
\(872\) 27.5923 20.0469i 0.934392 0.678875i
\(873\) 78.6052 2.66038
\(874\) −22.1518 −0.749297
\(875\) 0 0
\(876\) −20.2221 14.6922i −0.683241 0.496404i
\(877\) −35.6378 25.8923i −1.20340 0.874322i −0.208787 0.977961i \(-0.566951\pi\)
−0.994615 + 0.103639i \(0.966951\pi\)
\(878\) 0.551083 + 1.69606i 0.0185981 + 0.0572392i
\(879\) 36.8769 26.7926i 1.24383 0.903692i
\(880\) 0 0
\(881\) 3.08166 9.48436i 0.103824 0.319536i −0.885629 0.464394i \(-0.846272\pi\)
0.989453 + 0.144857i \(0.0462723\pi\)
\(882\) 72.0592 + 52.3540i 2.42636 + 1.76285i
\(883\) 7.72270 23.7680i 0.259890 0.799858i −0.732937 0.680296i \(-0.761851\pi\)
0.992827 0.119562i \(-0.0381489\pi\)
\(884\) 0.390398 1.20152i 0.0131305 0.0404115i
\(885\) 0 0
\(886\) −6.03281 + 18.5671i −0.202676 + 0.623773i
\(887\) −2.54103 7.82050i −0.0853196 0.262587i 0.899291 0.437352i \(-0.144083\pi\)
−0.984610 + 0.174765i \(0.944083\pi\)
\(888\) −53.7934 + 39.0832i −1.80519 + 1.31154i
\(889\) −16.3931 50.4528i −0.549808 1.69213i
\(890\) 0 0
\(891\) 2.14466 + 1.55818i 0.0718487 + 0.0522011i
\(892\) −9.01924 + 6.55286i −0.301987 + 0.219406i
\(893\) 9.30494 0.311378
\(894\) 4.68790 0.156787
\(895\) 0 0
\(896\) −0.0390842 + 0.120289i −0.00130571 + 0.00401857i
\(897\) −4.03062 12.4050i −0.134578 0.414190i
\(898\) −5.25327 −0.175304
\(899\) 2.16291 3.71395i 0.0721372 0.123867i
\(900\) 0 0
\(901\) 0.994259 + 3.06002i 0.0331236 + 0.101944i
\(902\) 3.34962 10.3091i 0.111530 0.343254i
\(903\) 57.3334 41.6551i 1.90794 1.38620i
\(904\) −38.0255 −1.26471
\(905\) 0 0
\(906\) −20.6870 + 15.0300i −0.687279 + 0.499337i
\(907\) 13.5543 + 9.84777i 0.450063 + 0.326990i 0.789621 0.613595i \(-0.210277\pi\)
−0.339558 + 0.940585i \(0.610277\pi\)
\(908\) 14.7366 + 10.7068i 0.489051 + 0.355316i
\(909\) −4.91650 15.1314i −0.163070 0.501878i
\(910\) 0 0
\(911\) 5.47419 + 16.8478i 0.181368 + 0.558193i 0.999867 0.0163147i \(-0.00519337\pi\)
−0.818499 + 0.574508i \(0.805193\pi\)
\(912\) −3.87542 + 11.9273i −0.128328 + 0.394953i
\(913\) −9.81893 7.13387i −0.324959 0.236097i
\(914\) −1.37489 + 4.23147i −0.0454773 + 0.139965i
\(915\) 0 0
\(916\) −2.86353 2.08048i −0.0946138 0.0687410i
\(917\) −5.99310 + 18.4449i −0.197909 + 0.609103i
\(918\) −3.44140 10.5915i −0.113583 0.349573i
\(919\) 0.480867 0.349370i 0.0158623 0.0115247i −0.579826 0.814740i \(-0.696879\pi\)
0.595688 + 0.803216i \(0.296879\pi\)
\(920\) 0 0
\(921\) −2.37331 1.72431i −0.0782033 0.0568180i
\(922\) 20.3648 + 14.7959i 0.670678 + 0.487276i
\(923\) −1.07935 + 0.784193i −0.0355272 + 0.0258120i
\(924\) −15.9093 −0.523377
\(925\) 0 0
\(926\) 26.9678 19.5933i 0.886218 0.643875i
\(927\) 11.5926 35.6784i 0.380751 1.17183i
\(928\) −1.03127 3.17392i −0.0338531 0.104189i
\(929\) −51.7518 −1.69792 −0.848960 0.528457i \(-0.822771\pi\)
−0.848960 + 0.528457i \(0.822771\pi\)
\(930\) 0 0
\(931\) 49.5103 1.62263
\(932\) −4.22674 13.0086i −0.138451 0.426109i
\(933\) −17.0098 + 52.3508i −0.556876 + 1.71389i
\(934\) −14.6354 + 10.6332i −0.478884 + 0.347930i
\(935\) 0 0
\(936\) −8.88486 −0.290411
\(937\) −14.3059 + 10.3939i −0.467354 + 0.339552i −0.796409 0.604758i \(-0.793270\pi\)
0.329055 + 0.944311i \(0.393270\pi\)
\(938\) 14.6505 + 10.6442i 0.478356 + 0.347546i
\(939\) −42.8884 31.1603i −1.39961 1.01688i
\(940\) 0 0
\(941\) 18.4855 13.4305i 0.602610 0.437822i −0.244194 0.969726i \(-0.578523\pi\)
0.846804 + 0.531904i \(0.178523\pi\)
\(942\) −7.74178 23.8267i −0.252241 0.776317i
\(943\) −16.4830 + 50.7295i −0.536760 + 1.65198i
\(944\) 5.05095 + 3.66973i 0.164394 + 0.119440i
\(945\) 0 0
\(946\) 2.41083 7.41977i 0.0783828 0.241238i
\(947\) 23.6674 + 17.1954i 0.769086 + 0.558774i 0.901684 0.432396i \(-0.142332\pi\)
−0.132597 + 0.991170i \(0.542332\pi\)
\(948\) −5.11055 + 15.7287i −0.165983 + 0.510843i
\(949\) 2.16272 + 6.65618i 0.0702050 + 0.216069i
\(950\) 0 0
\(951\) −19.8747 61.1681i −0.644482 1.98351i
\(952\) −29.7467 21.6123i −0.964097 0.700458i
\(953\) −22.5372 16.3742i −0.730052 0.530414i 0.159528 0.987193i \(-0.449003\pi\)
−0.889580 + 0.456780i \(0.849003\pi\)
\(954\) 5.35511 3.89071i 0.173378 0.125966i
\(955\) 0 0
\(956\) −12.3804 −0.400410
\(957\) −2.40086 + 1.74433i −0.0776088 + 0.0563861i
\(958\) 1.51661 4.66766i 0.0489995 0.150805i
\(959\) 33.8507 + 104.182i 1.09310 + 3.36420i
\(960\) 0 0
\(961\) −3.47219 + 30.8049i −0.112006 + 0.993708i
\(962\) 5.44614 0.175591
\(963\) 8.36528 + 25.7457i 0.269567 + 0.829643i
\(964\) 3.30645 10.1762i 0.106494 0.327754i
\(965\) 0 0
\(966\) −111.049 −3.57293
\(967\) 30.6100 0.984352 0.492176 0.870496i \(-0.336202\pi\)
0.492176 + 0.870496i \(0.336202\pi\)
\(968\) 22.4038 16.2773i 0.720085 0.523173i
\(969\) −14.6485 10.6428i −0.470579 0.341896i
\(970\) 0 0
\(971\) 13.3831 + 41.1888i 0.429483 + 1.32181i 0.898636 + 0.438695i \(0.144559\pi\)
−0.469153 + 0.883117i \(0.655441\pi\)
\(972\) −12.0866 + 8.78145i −0.387679 + 0.281665i
\(973\) 8.28332 + 25.4934i 0.265551 + 0.817282i
\(974\) 5.01979 15.4493i 0.160845 0.495029i
\(975\) 0 0
\(976\) 3.16359 9.73654i 0.101264 0.311659i
\(977\) 5.11780 15.7510i 0.163733 0.503918i −0.835208 0.549934i \(-0.814653\pi\)
0.998941 + 0.0460166i \(0.0146527\pi\)
\(978\) −7.11598 5.17006i −0.227544 0.165320i
\(979\) −4.29156 + 13.2081i −0.137159 + 0.422131i
\(980\) 0 0
\(981\) 41.0800 29.8464i 1.31158 0.952922i
\(982\) −13.4633 41.4358i −0.429632 1.32227i
\(983\) −19.6770 14.2962i −0.627598 0.455977i 0.227969 0.973668i \(-0.426792\pi\)
−0.855567 + 0.517692i \(0.826792\pi\)
\(984\) 48.7403 + 35.4119i 1.55378 + 1.12889i
\(985\) 0 0
\(986\) −2.00636 −0.0638954
\(987\) 46.6463 1.48477
\(988\) −1.16880 + 0.849182i −0.0371844 + 0.0270161i
\(989\) −11.8633 + 36.5116i −0.377233 + 1.16100i
\(990\) 0 0
\(991\) 25.7566 0.818186 0.409093 0.912493i \(-0.365845\pi\)
0.409093 + 0.912493i \(0.365845\pi\)
\(992\) 16.0394 + 17.9489i 0.509252 + 0.569877i
\(993\) −58.2956 −1.84996
\(994\) 3.51003 + 10.8028i 0.111331 + 0.342643i
\(995\) 0 0
\(996\) 15.9643 11.5987i 0.505847 0.367519i
\(997\) 27.2866 0.864175 0.432087 0.901832i \(-0.357777\pi\)
0.432087 + 0.901832i \(0.357777\pi\)
\(998\) 44.2086 1.39940
\(999\) −27.3812 + 19.8936i −0.866302 + 0.629405i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.k.h.376.5 56
5.2 odd 4 155.2.n.a.4.10 yes 56
5.3 odd 4 155.2.n.a.4.5 56
5.4 even 2 inner 775.2.k.h.376.10 56
31.8 even 5 inner 775.2.k.h.101.5 56
155.8 odd 20 155.2.n.a.39.10 yes 56
155.39 even 10 inner 775.2.k.h.101.10 56
155.132 odd 20 155.2.n.a.39.5 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.n.a.4.5 56 5.3 odd 4
155.2.n.a.4.10 yes 56 5.2 odd 4
155.2.n.a.39.5 yes 56 155.132 odd 20
155.2.n.a.39.10 yes 56 155.8 odd 20
775.2.k.h.101.5 56 31.8 even 5 inner
775.2.k.h.101.10 56 155.39 even 10 inner
775.2.k.h.376.5 56 1.1 even 1 trivial
775.2.k.h.376.10 56 5.4 even 2 inner