Properties

Label 775.2.bl.b.351.1
Level $775$
Weight $2$
Character 775.351
Analytic conductor $6.188$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(51,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.bl (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,-2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(5\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 155)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 351.1
Character \(\chi\) \(=\) 775.351
Dual form 775.2.bl.b.276.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03762 - 1.48042i) q^{2} +(0.203052 + 1.93191i) q^{3} +(1.34222 + 4.13093i) q^{4} +(2.44628 - 4.23709i) q^{6} +(-0.816826 - 0.173622i) q^{7} +(1.82396 - 5.61358i) q^{8} +(-0.756592 + 0.160819i) q^{9} +(-3.03538 + 3.37113i) q^{11} +(-7.70804 + 3.43184i) q^{12} +(5.75194 + 2.56093i) q^{13} +(1.40735 + 1.56302i) q^{14} +(-4.99902 + 3.63200i) q^{16} +(-0.865839 - 0.961611i) q^{17} +(1.77972 + 0.792384i) q^{18} +(0.526383 - 0.234361i) q^{19} +(0.169563 - 1.61329i) q^{21} +(11.1756 - 2.37545i) q^{22} +(-0.729749 + 2.24594i) q^{23} +(11.2153 + 2.38388i) q^{24} +(-7.92902 - 13.7335i) q^{26} +(1.33653 + 4.11341i) q^{27} +(-0.379142 - 3.60729i) q^{28} +(-0.640127 - 0.465079i) q^{29} +(4.56993 - 3.18053i) q^{31} +3.75801 q^{32} +(-7.12905 - 5.17955i) q^{33} +(0.340664 + 3.24120i) q^{34} +(-1.67985 - 2.90958i) q^{36} +(5.64427 - 9.77616i) q^{37} +(-1.41952 - 0.301728i) q^{38} +(-3.77954 + 11.6322i) q^{39} +(-1.17622 + 11.1910i) q^{41} +(-2.73384 + 3.03624i) q^{42} +(-10.2075 + 4.54466i) q^{43} +(-18.0001 - 8.01414i) q^{44} +(4.81187 - 3.49603i) q^{46} +(-6.73909 + 4.89623i) q^{47} +(-8.03174 - 8.92015i) q^{48} +(-5.75776 - 2.56352i) q^{49} +(1.68193 - 1.86798i) q^{51} +(-2.85865 + 27.1982i) q^{52} +(-5.22161 + 1.10989i) q^{53} +(3.36622 - 10.3602i) q^{54} +(-2.46450 + 4.26864i) q^{56} +(0.559646 + 0.969336i) q^{57} +(0.615823 + 1.89531i) q^{58} +(0.557834 + 5.30744i) q^{59} -4.18717 q^{61} +(-14.0203 - 0.284685i) q^{62} +0.645926 q^{63} +(2.34063 + 1.70057i) q^{64} +(6.85838 + 21.1079i) q^{66} +(3.52238 + 6.10094i) q^{67} +(2.81020 - 4.86742i) q^{68} +(-4.48712 - 0.953766i) q^{69} +(2.94921 - 0.626874i) q^{71} +(-0.477228 + 4.54052i) q^{72} +(-6.92763 + 7.69391i) q^{73} +(-25.9736 + 11.5642i) q^{74} +(1.67465 + 1.85989i) q^{76} +(3.06468 - 2.22662i) q^{77} +(24.9218 - 18.1067i) q^{78} +(0.856267 + 0.950981i) q^{79} +(-9.79521 + 4.36111i) q^{81} +(18.9640 - 21.0616i) q^{82} +(1.37104 - 13.0446i) q^{83} +(6.89197 - 1.46493i) q^{84} +(27.5269 + 5.85103i) q^{86} +(0.768511 - 1.33110i) q^{87} +(13.3877 + 23.1882i) q^{88} +(1.14268 + 3.51681i) q^{89} +(-4.25370 - 3.09050i) q^{91} -10.2573 q^{92} +(7.07242 + 8.18286i) q^{93} +20.9802 q^{94} +(0.763071 + 7.26013i) q^{96} +(1.67517 + 5.15563i) q^{97} +(7.93704 + 13.7473i) q^{98} +(1.75440 - 3.03871i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} - 3 q^{3} - 2 q^{4} - 12 q^{6} + 2 q^{7} + 31 q^{8} + 6 q^{9} + 16 q^{11} + q^{12} - 2 q^{13} - 10 q^{14} - 16 q^{16} - 4 q^{17} - 37 q^{18} - 9 q^{19} - 24 q^{21} + 2 q^{22} + 4 q^{23}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{7}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.03762 1.48042i −1.44081 1.04681i −0.987872 0.155272i \(-0.950375\pi\)
−0.452942 0.891540i \(-0.649625\pi\)
\(3\) 0.203052 + 1.93191i 0.117232 + 1.11539i 0.882055 + 0.471147i \(0.156160\pi\)
−0.764823 + 0.644240i \(0.777174\pi\)
\(4\) 1.34222 + 4.13093i 0.671111 + 2.06547i
\(5\) 0 0
\(6\) 2.44628 4.23709i 0.998692 1.72978i
\(7\) −0.816826 0.173622i −0.308731 0.0656229i 0.0509406 0.998702i \(-0.483778\pi\)
−0.359672 + 0.933079i \(0.617111\pi\)
\(8\) 1.82396 5.61358i 0.644868 1.98470i
\(9\) −0.756592 + 0.160819i −0.252197 + 0.0536062i
\(10\) 0 0
\(11\) −3.03538 + 3.37113i −0.915201 + 1.01643i 0.0845988 + 0.996415i \(0.473039\pi\)
−0.999800 + 0.0200184i \(0.993628\pi\)
\(12\) −7.70804 + 3.43184i −2.22512 + 0.990687i
\(13\) 5.75194 + 2.56093i 1.59530 + 0.710274i 0.995924 0.0901931i \(-0.0287484\pi\)
0.599377 + 0.800467i \(0.295415\pi\)
\(14\) 1.40735 + 1.56302i 0.376129 + 0.417734i
\(15\) 0 0
\(16\) −4.99902 + 3.63200i −1.24975 + 0.907999i
\(17\) −0.865839 0.961611i −0.209997 0.233225i 0.628940 0.777454i \(-0.283489\pi\)
−0.838937 + 0.544229i \(0.816822\pi\)
\(18\) 1.77972 + 0.792384i 0.419485 + 0.186767i
\(19\) 0.526383 0.234361i 0.120761 0.0537661i −0.345467 0.938431i \(-0.612279\pi\)
0.466228 + 0.884665i \(0.345613\pi\)
\(20\) 0 0
\(21\) 0.169563 1.61329i 0.0370017 0.352048i
\(22\) 11.1756 2.37545i 2.38265 0.506448i
\(23\) −0.729749 + 2.24594i −0.152163 + 0.468310i −0.997862 0.0653498i \(-0.979184\pi\)
0.845699 + 0.533660i \(0.179184\pi\)
\(24\) 11.2153 + 2.38388i 2.28931 + 0.486608i
\(25\) 0 0
\(26\) −7.92902 13.7335i −1.55501 2.69335i
\(27\) 1.33653 + 4.11341i 0.257215 + 0.791626i
\(28\) −0.379142 3.60729i −0.0716511 0.681714i
\(29\) −0.640127 0.465079i −0.118869 0.0863630i 0.526763 0.850012i \(-0.323406\pi\)
−0.645631 + 0.763649i \(0.723406\pi\)
\(30\) 0 0
\(31\) 4.56993 3.18053i 0.820783 0.571240i
\(32\) 3.75801 0.664329
\(33\) −7.12905 5.17955i −1.24101 0.901645i
\(34\) 0.340664 + 3.24120i 0.0584233 + 0.555861i
\(35\) 0 0
\(36\) −1.67985 2.90958i −0.279974 0.484930i
\(37\) 5.64427 9.77616i 0.927912 1.60719i 0.141102 0.989995i \(-0.454935\pi\)
0.786810 0.617196i \(-0.211731\pi\)
\(38\) −1.41952 0.301728i −0.230276 0.0489468i
\(39\) −3.77954 + 11.6322i −0.605210 + 1.86265i
\(40\) 0 0
\(41\) −1.17622 + 11.1910i −0.183695 + 1.74774i 0.382944 + 0.923771i \(0.374910\pi\)
−0.566639 + 0.823966i \(0.691757\pi\)
\(42\) −2.73384 + 3.03624i −0.421841 + 0.468502i
\(43\) −10.2075 + 4.54466i −1.55663 + 0.693054i −0.991277 0.131797i \(-0.957925\pi\)
−0.565349 + 0.824852i \(0.691259\pi\)
\(44\) −18.0001 8.01414i −2.71361 1.20818i
\(45\) 0 0
\(46\) 4.81187 3.49603i 0.709471 0.515461i
\(47\) −6.73909 + 4.89623i −0.982997 + 0.714189i −0.958376 0.285508i \(-0.907838\pi\)
−0.0246207 + 0.999697i \(0.507838\pi\)
\(48\) −8.03174 8.92015i −1.15928 1.28751i
\(49\) −5.75776 2.56352i −0.822537 0.366217i
\(50\) 0 0
\(51\) 1.68193 1.86798i 0.235518 0.261569i
\(52\) −2.85865 + 27.1982i −0.396423 + 3.77171i
\(53\) −5.22161 + 1.10989i −0.717244 + 0.152455i −0.552056 0.833807i \(-0.686156\pi\)
−0.165188 + 0.986262i \(0.552823\pi\)
\(54\) 3.36622 10.3602i 0.458085 1.40984i
\(55\) 0 0
\(56\) −2.46450 + 4.26864i −0.329333 + 0.570421i
\(57\) 0.559646 + 0.969336i 0.0741270 + 0.128392i
\(58\) 0.615823 + 1.89531i 0.0808615 + 0.248866i
\(59\) 0.557834 + 5.30744i 0.0726238 + 0.690969i 0.968897 + 0.247466i \(0.0795979\pi\)
−0.896273 + 0.443503i \(0.853735\pi\)
\(60\) 0 0
\(61\) −4.18717 −0.536112 −0.268056 0.963403i \(-0.586381\pi\)
−0.268056 + 0.963403i \(0.586381\pi\)
\(62\) −14.0203 0.284685i −1.78058 0.0361551i
\(63\) 0.645926 0.0813790
\(64\) 2.34063 + 1.70057i 0.292579 + 0.212571i
\(65\) 0 0
\(66\) 6.85838 + 21.1079i 0.844208 + 2.59820i
\(67\) 3.52238 + 6.10094i 0.430327 + 0.745348i 0.996901 0.0786623i \(-0.0250649\pi\)
−0.566574 + 0.824011i \(0.691732\pi\)
\(68\) 2.81020 4.86742i 0.340787 0.590261i
\(69\) −4.48712 0.953766i −0.540185 0.114820i
\(70\) 0 0
\(71\) 2.94921 0.626874i 0.350007 0.0743962i −0.0295537 0.999563i \(-0.509409\pi\)
0.379560 + 0.925167i \(0.376075\pi\)
\(72\) −0.477228 + 4.54052i −0.0562418 + 0.535105i
\(73\) −6.92763 + 7.69391i −0.810818 + 0.900504i −0.996626 0.0820820i \(-0.973843\pi\)
0.185808 + 0.982586i \(0.440510\pi\)
\(74\) −25.9736 + 11.5642i −3.01938 + 1.34431i
\(75\) 0 0
\(76\) 1.67465 + 1.85989i 0.192096 + 0.213344i
\(77\) 3.06468 2.22662i 0.349252 0.253747i
\(78\) 24.9218 18.1067i 2.82183 2.05018i
\(79\) 0.856267 + 0.950981i 0.0963375 + 0.106994i 0.789386 0.613898i \(-0.210399\pi\)
−0.693048 + 0.720891i \(0.743733\pi\)
\(80\) 0 0
\(81\) −9.79521 + 4.36111i −1.08836 + 0.484568i
\(82\) 18.9640 21.0616i 2.09422 2.32587i
\(83\) 1.37104 13.0446i 0.150492 1.43183i −0.615071 0.788472i \(-0.710873\pi\)
0.765563 0.643361i \(-0.222461\pi\)
\(84\) 6.89197 1.46493i 0.751976 0.159837i
\(85\) 0 0
\(86\) 27.5269 + 5.85103i 2.96831 + 0.630933i
\(87\) 0.768511 1.33110i 0.0823930 0.142709i
\(88\) 13.3877 + 23.1882i 1.42713 + 2.47187i
\(89\) 1.14268 + 3.51681i 0.121124 + 0.372782i 0.993175 0.116634i \(-0.0372103\pi\)
−0.872051 + 0.489415i \(0.837210\pi\)
\(90\) 0 0
\(91\) −4.25370 3.09050i −0.445909 0.323972i
\(92\) −10.2573 −1.06940
\(93\) 7.07242 + 8.18286i 0.733376 + 0.848523i
\(94\) 20.9802 2.16394
\(95\) 0 0
\(96\) 0.763071 + 7.26013i 0.0778806 + 0.740984i
\(97\) 1.67517 + 5.15563i 0.170087 + 0.523475i 0.999375 0.0353469i \(-0.0112536\pi\)
−0.829288 + 0.558822i \(0.811254\pi\)
\(98\) 7.93704 + 13.7473i 0.801762 + 1.38869i
\(99\) 1.75440 3.03871i 0.176324 0.305402i
\(100\) 0 0
\(101\) 0.705882 2.17248i 0.0702379 0.216170i −0.909776 0.415100i \(-0.863747\pi\)
0.980014 + 0.198930i \(0.0637466\pi\)
\(102\) −6.19252 + 1.31626i −0.613151 + 0.130329i
\(103\) −0.684777 + 6.51522i −0.0674731 + 0.641963i 0.907563 + 0.419916i \(0.137941\pi\)
−0.975036 + 0.222047i \(0.928726\pi\)
\(104\) 24.8673 27.6179i 2.43844 2.70816i
\(105\) 0 0
\(106\) 12.2828 + 5.46863i 1.19301 + 0.531161i
\(107\) 3.10153 + 3.44460i 0.299836 + 0.333002i 0.874171 0.485619i \(-0.161406\pi\)
−0.574334 + 0.818621i \(0.694739\pi\)
\(108\) −15.1983 + 11.0422i −1.46246 + 1.06254i
\(109\) 0.480316 0.348970i 0.0460059 0.0334252i −0.564545 0.825403i \(-0.690948\pi\)
0.610551 + 0.791977i \(0.290948\pi\)
\(110\) 0 0
\(111\) 20.0327 + 8.91914i 1.90142 + 0.846567i
\(112\) 4.71392 2.09877i 0.445424 0.198315i
\(113\) 6.46109 7.17577i 0.607808 0.675039i −0.358172 0.933656i \(-0.616600\pi\)
0.965980 + 0.258616i \(0.0832665\pi\)
\(114\) 0.294675 2.80365i 0.0275988 0.262585i
\(115\) 0 0
\(116\) 1.06202 3.26856i 0.0986060 0.303478i
\(117\) −4.76372 1.01256i −0.440406 0.0936112i
\(118\) 6.72056 11.6404i 0.618678 1.07158i
\(119\) 0.540283 + 0.935798i 0.0495277 + 0.0857844i
\(120\) 0 0
\(121\) −1.00118 9.52556i −0.0910160 0.865960i
\(122\) 8.53186 + 6.19876i 0.772438 + 0.561209i
\(123\) −21.8588 −1.97094
\(124\) 19.2724 + 14.6091i 1.73071 + 1.31193i
\(125\) 0 0
\(126\) −1.31615 0.956239i −0.117252 0.0851886i
\(127\) 1.28296 + 12.2066i 0.113845 + 1.08316i 0.891048 + 0.453910i \(0.149971\pi\)
−0.777203 + 0.629250i \(0.783362\pi\)
\(128\) −4.57435 14.0784i −0.404319 1.24437i
\(129\) −10.8525 18.7971i −0.955510 1.65499i
\(130\) 0 0
\(131\) −16.2500 3.45404i −1.41977 0.301781i −0.566847 0.823823i \(-0.691837\pi\)
−0.852919 + 0.522042i \(0.825170\pi\)
\(132\) 11.8276 36.4017i 1.02946 3.16836i
\(133\) −0.470654 + 0.100041i −0.0408108 + 0.00867461i
\(134\) 1.85467 17.6460i 0.160219 1.52438i
\(135\) 0 0
\(136\) −6.97734 + 3.10651i −0.598302 + 0.266381i
\(137\) −2.67643 1.19162i −0.228663 0.101807i 0.289207 0.957266i \(-0.406608\pi\)
−0.517870 + 0.855459i \(0.673275\pi\)
\(138\) 7.73106 + 8.58621i 0.658111 + 0.730907i
\(139\) −17.3423 + 12.6000i −1.47096 + 1.06871i −0.490624 + 0.871371i \(0.663231\pi\)
−0.980335 + 0.197342i \(0.936769\pi\)
\(140\) 0 0
\(141\) −10.8275 12.0251i −0.911836 1.01270i
\(142\) −6.93739 3.08873i −0.582173 0.259200i
\(143\) −26.0925 + 11.6171i −2.18197 + 0.971474i
\(144\) 3.19812 3.55188i 0.266510 0.295990i
\(145\) 0 0
\(146\) 25.5060 5.42148i 2.11090 0.448685i
\(147\) 3.78336 11.6440i 0.312046 0.960379i
\(148\) 47.9605 + 10.1943i 3.94233 + 0.837968i
\(149\) 3.94968 6.84105i 0.323571 0.560441i −0.657651 0.753322i \(-0.728450\pi\)
0.981222 + 0.192882i \(0.0617834\pi\)
\(150\) 0 0
\(151\) −0.686047 2.11144i −0.0558297 0.171826i 0.919253 0.393667i \(-0.128794\pi\)
−0.975083 + 0.221840i \(0.928794\pi\)
\(152\) −0.355500 3.38236i −0.0288349 0.274346i
\(153\) 0.809732 + 0.588305i 0.0654629 + 0.0475616i
\(154\) −9.54097 −0.768833
\(155\) 0 0
\(156\) −53.1249 −4.25339
\(157\) 4.23067 + 3.07376i 0.337644 + 0.245313i 0.743667 0.668550i \(-0.233085\pi\)
−0.406023 + 0.913863i \(0.633085\pi\)
\(158\) −0.336898 3.20537i −0.0268021 0.255005i
\(159\) −3.20446 9.86231i −0.254130 0.782132i
\(160\) 0 0
\(161\) 0.986021 1.70784i 0.0777094 0.134597i
\(162\) 26.4151 + 5.61471i 2.07537 + 0.441134i
\(163\) −4.10314 + 12.6282i −0.321382 + 0.989113i 0.651665 + 0.758507i \(0.274071\pi\)
−0.973047 + 0.230606i \(0.925929\pi\)
\(164\) −47.8079 + 10.1619i −3.73317 + 0.793510i
\(165\) 0 0
\(166\) −22.1051 + 24.5502i −1.71569 + 1.90547i
\(167\) −5.80350 + 2.58388i −0.449088 + 0.199947i −0.618803 0.785546i \(-0.712382\pi\)
0.169715 + 0.985493i \(0.445715\pi\)
\(168\) −8.74704 3.89443i −0.674849 0.300462i
\(169\) 17.8278 + 19.7997i 1.37137 + 1.52306i
\(170\) 0 0
\(171\) −0.360568 + 0.261968i −0.0275733 + 0.0200332i
\(172\) −32.4744 36.0665i −2.47615 2.75004i
\(173\) −2.30333 1.02551i −0.175119 0.0779679i 0.317305 0.948324i \(-0.397222\pi\)
−0.492423 + 0.870356i \(0.663889\pi\)
\(174\) −3.53651 + 1.57456i −0.268102 + 0.119367i
\(175\) 0 0
\(176\) 2.92997 27.8768i 0.220855 2.10129i
\(177\) −10.1402 + 2.15537i −0.762184 + 0.162007i
\(178\) 2.87800 8.85757i 0.215715 0.663903i
\(179\) 11.6906 + 2.48491i 0.873795 + 0.185731i 0.622917 0.782288i \(-0.285947\pi\)
0.250878 + 0.968019i \(0.419281\pi\)
\(180\) 0 0
\(181\) −7.04742 12.2065i −0.523830 0.907301i −0.999615 0.0277391i \(-0.991169\pi\)
0.475785 0.879562i \(-0.342164\pi\)
\(182\) 4.09220 + 12.5945i 0.303334 + 0.933567i
\(183\) −0.850212 8.08923i −0.0628495 0.597973i
\(184\) 11.2767 + 8.19301i 0.831330 + 0.603997i
\(185\) 0 0
\(186\) −2.29685 27.1437i −0.168413 1.99027i
\(187\) 5.86986 0.429247
\(188\) −29.2714 21.2669i −2.13483 1.55105i
\(189\) −0.377533 3.59199i −0.0274615 0.261279i
\(190\) 0 0
\(191\) −0.140704 0.243707i −0.0101810 0.0176340i 0.860890 0.508791i \(-0.169907\pi\)
−0.871071 + 0.491157i \(0.836574\pi\)
\(192\) −2.81007 + 4.86719i −0.202800 + 0.351259i
\(193\) 23.6610 + 5.02930i 1.70316 + 0.362017i 0.953868 0.300226i \(-0.0970621\pi\)
0.749289 + 0.662243i \(0.230395\pi\)
\(194\) 4.21913 12.9851i 0.302916 0.932279i
\(195\) 0 0
\(196\) 2.86154 27.2257i 0.204396 1.94469i
\(197\) 8.52507 9.46805i 0.607386 0.674571i −0.358502 0.933529i \(-0.616713\pi\)
0.965889 + 0.258958i \(0.0833792\pi\)
\(198\) −8.07337 + 3.59449i −0.573749 + 0.255450i
\(199\) 9.87056 + 4.39466i 0.699705 + 0.311529i 0.725582 0.688136i \(-0.241571\pi\)
−0.0258761 + 0.999665i \(0.508238\pi\)
\(200\) 0 0
\(201\) −11.0712 + 8.04371i −0.780904 + 0.567360i
\(202\) −4.65449 + 3.38169i −0.327489 + 0.237935i
\(203\) 0.442124 + 0.491029i 0.0310310 + 0.0344635i
\(204\) 9.97401 + 4.44072i 0.698320 + 0.310912i
\(205\) 0 0
\(206\) 11.0405 12.2618i 0.769231 0.854318i
\(207\) 0.190934 1.81661i 0.0132708 0.126263i
\(208\) −38.0553 + 8.08891i −2.63866 + 0.560865i
\(209\) −0.807711 + 2.48588i −0.0558705 + 0.171952i
\(210\) 0 0
\(211\) 2.19907 3.80891i 0.151391 0.262216i −0.780348 0.625345i \(-0.784958\pi\)
0.931739 + 0.363129i \(0.118292\pi\)
\(212\) −11.5934 20.0804i −0.796241 1.37913i
\(213\) 1.80990 + 5.57031i 0.124013 + 0.381671i
\(214\) −1.22030 11.6103i −0.0834177 0.793667i
\(215\) 0 0
\(216\) 25.5287 1.73701
\(217\) −4.28505 + 1.80450i −0.290888 + 0.122498i
\(218\) −1.49532 −0.101276
\(219\) −16.2706 11.8213i −1.09946 0.798808i
\(220\) 0 0
\(221\) −2.51763 7.74848i −0.169354 0.521219i
\(222\) −27.6150 47.8305i −1.85340 3.21018i
\(223\) 8.79878 15.2399i 0.589210 1.02054i −0.405126 0.914261i \(-0.632772\pi\)
0.994336 0.106281i \(-0.0338943\pi\)
\(224\) −3.06964 0.652473i −0.205099 0.0435952i
\(225\) 0 0
\(226\) −23.7884 + 5.05637i −1.58238 + 0.336345i
\(227\) 2.33539 22.2197i 0.155005 1.47477i −0.589831 0.807527i \(-0.700806\pi\)
0.744836 0.667248i \(-0.232528\pi\)
\(228\) −3.25309 + 3.61292i −0.215441 + 0.239272i
\(229\) 0.133599 0.0594822i 0.00882849 0.00393070i −0.402318 0.915500i \(-0.631795\pi\)
0.411146 + 0.911569i \(0.365129\pi\)
\(230\) 0 0
\(231\) 4.92391 + 5.46855i 0.323969 + 0.359804i
\(232\) −3.77833 + 2.74512i −0.248059 + 0.180226i
\(233\) 7.02994 5.10755i 0.460547 0.334607i −0.333199 0.942856i \(-0.608128\pi\)
0.793746 + 0.608250i \(0.208128\pi\)
\(234\) 8.20763 + 9.11550i 0.536549 + 0.595899i
\(235\) 0 0
\(236\) −21.1759 + 9.42813i −1.37844 + 0.613719i
\(237\) −1.66334 + 1.84733i −0.108046 + 0.119997i
\(238\) 0.284480 2.70664i 0.0184401 0.175446i
\(239\) 10.2336 2.17521i 0.661954 0.140703i 0.135329 0.990801i \(-0.456791\pi\)
0.526624 + 0.850098i \(0.323457\pi\)
\(240\) 0 0
\(241\) −5.32178 1.13118i −0.342806 0.0728657i 0.0332916 0.999446i \(-0.489401\pi\)
−0.376098 + 0.926580i \(0.622734\pi\)
\(242\) −12.0618 + 20.8916i −0.775360 + 1.34296i
\(243\) −3.92655 6.80098i −0.251888 0.436283i
\(244\) −5.62011 17.2969i −0.359791 1.10732i
\(245\) 0 0
\(246\) 44.5398 + 32.3601i 2.83976 + 2.06320i
\(247\) 3.62790 0.230838
\(248\) −9.51879 31.4548i −0.604444 1.99738i
\(249\) 25.4794 1.61469
\(250\) 0 0
\(251\) 1.20823 + 11.4955i 0.0762626 + 0.725590i 0.964119 + 0.265470i \(0.0855270\pi\)
−0.887857 + 0.460120i \(0.847806\pi\)
\(252\) 0.866976 + 2.66828i 0.0546143 + 0.168086i
\(253\) −5.35627 9.27734i −0.336746 0.583261i
\(254\) 15.4566 26.7717i 0.969836 1.67981i
\(255\) 0 0
\(256\) −9.73302 + 29.9552i −0.608314 + 1.87220i
\(257\) 18.5574 3.94450i 1.15758 0.246051i 0.411184 0.911552i \(-0.365115\pi\)
0.746397 + 0.665501i \(0.231782\pi\)
\(258\) −5.71426 + 54.3675i −0.355754 + 3.38477i
\(259\) −6.30774 + 7.00546i −0.391944 + 0.435298i
\(260\) 0 0
\(261\) 0.559108 + 0.248931i 0.0346079 + 0.0154084i
\(262\) 27.9978 + 31.0947i 1.72971 + 1.92104i
\(263\) 4.21884 3.06516i 0.260145 0.189006i −0.450066 0.892995i \(-0.648600\pi\)
0.710211 + 0.703989i \(0.248600\pi\)
\(264\) −42.0790 + 30.5722i −2.58978 + 1.88159i
\(265\) 0 0
\(266\) 1.10711 + 0.492919i 0.0678815 + 0.0302228i
\(267\) −6.56213 + 2.92165i −0.401596 + 0.178802i
\(268\) −20.4748 + 22.7395i −1.25069 + 1.38904i
\(269\) −0.120184 + 1.14347i −0.00732773 + 0.0697187i −0.997575 0.0696049i \(-0.977826\pi\)
0.990247 + 0.139324i \(0.0444928\pi\)
\(270\) 0 0
\(271\) 3.88599 11.9599i 0.236057 0.726509i −0.760922 0.648843i \(-0.775253\pi\)
0.996979 0.0776663i \(-0.0247469\pi\)
\(272\) 7.82091 + 1.66239i 0.474212 + 0.100797i
\(273\) 5.10683 8.84529i 0.309079 0.535341i
\(274\) 3.68944 + 6.39030i 0.222887 + 0.386052i
\(275\) 0 0
\(276\) −2.08276 19.8161i −0.125367 1.19279i
\(277\) −17.6504 12.8237i −1.06051 0.770503i −0.0863249 0.996267i \(-0.527512\pi\)
−0.974182 + 0.225764i \(0.927512\pi\)
\(278\) 53.9902 3.23812
\(279\) −2.94608 + 3.14129i −0.176377 + 0.188064i
\(280\) 0 0
\(281\) 25.1753 + 18.2909i 1.50183 + 1.09114i 0.969645 + 0.244515i \(0.0786289\pi\)
0.532185 + 0.846628i \(0.321371\pi\)
\(282\) 4.26005 + 40.5317i 0.253683 + 2.41363i
\(283\) −5.60243 17.2425i −0.333030 1.02496i −0.967684 0.252165i \(-0.918858\pi\)
0.634654 0.772796i \(-0.281142\pi\)
\(284\) 6.54806 + 11.3416i 0.388556 + 0.672999i
\(285\) 0 0
\(286\) 70.3648 + 14.9565i 4.16076 + 0.884397i
\(287\) 2.90377 8.93687i 0.171404 0.527527i
\(288\) −2.84328 + 0.604359i −0.167542 + 0.0356122i
\(289\) 1.60196 15.2417i 0.0942332 0.896569i
\(290\) 0 0
\(291\) −9.62005 + 4.28312i −0.563937 + 0.251081i
\(292\) −41.0814 18.2906i −2.40411 1.07038i
\(293\) 7.83301 + 8.69944i 0.457609 + 0.508226i 0.927153 0.374683i \(-0.122248\pi\)
−0.469544 + 0.882909i \(0.655582\pi\)
\(294\) −24.9470 + 18.1250i −1.45494 + 1.05707i
\(295\) 0 0
\(296\) −44.5843 49.5159i −2.59141 2.87805i
\(297\) −17.9237 7.98014i −1.04004 0.463055i
\(298\) −18.1755 + 8.09227i −1.05288 + 0.468773i
\(299\) −9.94915 + 11.0497i −0.575374 + 0.639018i
\(300\) 0 0
\(301\) 9.12679 1.93996i 0.526059 0.111817i
\(302\) −1.72790 + 5.31794i −0.0994296 + 0.306013i
\(303\) 4.34036 + 0.922572i 0.249347 + 0.0530004i
\(304\) −1.78020 + 3.08339i −0.102101 + 0.176845i
\(305\) 0 0
\(306\) −0.778988 2.39748i −0.0445318 0.137055i
\(307\) −1.22753 11.6792i −0.0700591 0.666568i −0.972044 0.234800i \(-0.924557\pi\)
0.901985 0.431768i \(-0.142110\pi\)
\(308\) 13.3115 + 9.67136i 0.758492 + 0.551077i
\(309\) −12.7258 −0.723947
\(310\) 0 0
\(311\) −0.833220 −0.0472476 −0.0236238 0.999721i \(-0.507520\pi\)
−0.0236238 + 0.999721i \(0.507520\pi\)
\(312\) 58.4047 + 42.4335i 3.30651 + 2.40232i
\(313\) 1.10756 + 10.5377i 0.0626029 + 0.595627i 0.980186 + 0.198082i \(0.0634711\pi\)
−0.917583 + 0.397545i \(0.869862\pi\)
\(314\) −4.07004 12.5263i −0.229686 0.706900i
\(315\) 0 0
\(316\) −2.77914 + 4.81361i −0.156339 + 0.270787i
\(317\) 30.4268 + 6.46741i 1.70894 + 0.363246i 0.955663 0.294461i \(-0.0951403\pi\)
0.753274 + 0.657707i \(0.228474\pi\)
\(318\) −8.07086 + 24.8396i −0.452591 + 1.39293i
\(319\) 3.51087 0.746258i 0.196571 0.0417824i
\(320\) 0 0
\(321\) −6.02488 + 6.69130i −0.336276 + 0.373472i
\(322\) −4.53745 + 2.02020i −0.252862 + 0.112581i
\(323\) −0.681127 0.303257i −0.0378989 0.0168737i
\(324\) −31.1628 34.6098i −1.73127 1.92277i
\(325\) 0 0
\(326\) 27.0555 19.6570i 1.49847 1.08870i
\(327\) 0.771706 + 0.857067i 0.0426755 + 0.0473959i
\(328\) 60.6761 + 27.0147i 3.35028 + 1.49164i
\(329\) 6.35476 2.82932i 0.350349 0.155986i
\(330\) 0 0
\(331\) 0.934022 8.88662i 0.0513385 0.488453i −0.938399 0.345554i \(-0.887691\pi\)
0.989737 0.142899i \(-0.0456424\pi\)
\(332\) 55.7267 11.8451i 3.05840 0.650083i
\(333\) −2.69822 + 8.30427i −0.147862 + 0.455071i
\(334\) 15.6505 + 3.32662i 0.856359 + 0.182025i
\(335\) 0 0
\(336\) 5.01180 + 8.68070i 0.273416 + 0.473571i
\(337\) −7.20064 22.1613i −0.392244 1.20720i −0.931087 0.364796i \(-0.881139\pi\)
0.538843 0.842406i \(-0.318861\pi\)
\(338\) −7.01432 66.7368i −0.381529 3.63000i
\(339\) 15.1749 + 11.0252i 0.824185 + 0.598805i
\(340\) 0 0
\(341\) −3.14947 + 25.0599i −0.170554 + 1.35707i
\(342\) 1.12252 0.0606990
\(343\) 8.98713 + 6.52953i 0.485260 + 0.352562i
\(344\) 6.89377 + 65.5898i 0.371687 + 3.53637i
\(345\) 0 0
\(346\) 3.17512 + 5.49947i 0.170696 + 0.295654i
\(347\) −9.63256 + 16.6841i −0.517103 + 0.895648i 0.482700 + 0.875786i \(0.339656\pi\)
−0.999803 + 0.0198624i \(0.993677\pi\)
\(348\) 6.53020 + 1.38804i 0.350055 + 0.0744065i
\(349\) 10.0809 31.0259i 0.539619 1.66078i −0.193832 0.981035i \(-0.562092\pi\)
0.733451 0.679743i \(-0.237908\pi\)
\(350\) 0 0
\(351\) −2.84652 + 27.0828i −0.151936 + 1.44557i
\(352\) −11.4070 + 12.6687i −0.607995 + 0.675247i
\(353\) 11.6241 5.17536i 0.618686 0.275457i −0.0733652 0.997305i \(-0.523374\pi\)
0.692051 + 0.721848i \(0.256707\pi\)
\(354\) 23.8527 + 10.6199i 1.26776 + 0.564442i
\(355\) 0 0
\(356\) −12.9940 + 9.44069i −0.688680 + 0.500355i
\(357\) −1.69817 + 1.23379i −0.0898766 + 0.0652992i
\(358\) −20.1422 22.3702i −1.06455 1.18230i
\(359\) −5.85762 2.60798i −0.309153 0.137644i 0.246295 0.969195i \(-0.420787\pi\)
−0.555449 + 0.831551i \(0.687453\pi\)
\(360\) 0 0
\(361\) −12.4913 + 13.8730i −0.657438 + 0.730159i
\(362\) −3.71073 + 35.3053i −0.195032 + 1.85560i
\(363\) 18.1992 3.86836i 0.955210 0.203036i
\(364\) 7.05722 21.7199i 0.369899 1.13843i
\(365\) 0 0
\(366\) −10.2430 + 17.7414i −0.535411 + 0.927359i
\(367\) 10.9471 + 18.9610i 0.571435 + 0.989754i 0.996419 + 0.0845536i \(0.0269464\pi\)
−0.424984 + 0.905201i \(0.639720\pi\)
\(368\) −4.50921 13.8779i −0.235059 0.723436i
\(369\) −0.909800 8.65617i −0.0473623 0.450622i
\(370\) 0 0
\(371\) 4.45785 0.231440
\(372\) −24.3101 + 40.1989i −1.26042 + 2.08422i
\(373\) −4.62775 −0.239616 −0.119808 0.992797i \(-0.538228\pi\)
−0.119808 + 0.992797i \(0.538228\pi\)
\(374\) −11.9605 8.68984i −0.618465 0.449341i
\(375\) 0 0
\(376\) 15.1936 + 46.7610i 0.783548 + 2.41151i
\(377\) −2.49093 4.31443i −0.128290 0.222204i
\(378\) −4.54837 + 7.87801i −0.233943 + 0.405201i
\(379\) 14.1342 + 3.00432i 0.726025 + 0.154321i 0.556076 0.831131i \(-0.312306\pi\)
0.169949 + 0.985453i \(0.445640\pi\)
\(380\) 0 0
\(381\) −23.3215 + 4.95714i −1.19480 + 0.253962i
\(382\) −0.0740861 + 0.704882i −0.00379057 + 0.0360649i
\(383\) −13.6515 + 15.1615i −0.697560 + 0.774718i −0.982986 0.183682i \(-0.941198\pi\)
0.285426 + 0.958401i \(0.407865\pi\)
\(384\) 26.2693 11.6959i 1.34055 0.596852i
\(385\) 0 0
\(386\) −40.7666 45.2759i −2.07497 2.30449i
\(387\) 6.99203 5.08001i 0.355425 0.258231i
\(388\) −19.0491 + 13.8400i −0.967072 + 0.702619i
\(389\) 4.17983 + 4.64217i 0.211926 + 0.235367i 0.839730 0.543004i \(-0.182713\pi\)
−0.627805 + 0.778371i \(0.716046\pi\)
\(390\) 0 0
\(391\) 2.79156 1.24288i 0.141175 0.0628553i
\(392\) −24.8925 + 27.6459i −1.25726 + 1.39633i
\(393\) 3.37330 32.0948i 0.170160 1.61897i
\(394\) −31.3875 + 6.67162i −1.58128 + 0.336111i
\(395\) 0 0
\(396\) 14.9075 + 3.16869i 0.749131 + 0.159233i
\(397\) −15.7955 + 27.3586i −0.792753 + 1.37309i 0.131503 + 0.991316i \(0.458020\pi\)
−0.924256 + 0.381773i \(0.875314\pi\)
\(398\) −13.6065 23.5672i −0.682033 1.18132i
\(399\) −0.288836 0.888946i −0.0144599 0.0445030i
\(400\) 0 0
\(401\) −1.67599 1.21768i −0.0836950 0.0608080i 0.545151 0.838338i \(-0.316472\pi\)
−0.628846 + 0.777530i \(0.716472\pi\)
\(402\) 34.4670 1.71906
\(403\) 34.4311 6.59097i 1.71513 0.328320i
\(404\) 9.92182 0.493629
\(405\) 0 0
\(406\) −0.173954 1.65506i −0.00863317 0.0821391i
\(407\) 15.8242 + 48.7019i 0.784377 + 2.41406i
\(408\) −7.41825 12.8488i −0.367258 0.636110i
\(409\) −11.9560 + 20.7083i −0.591184 + 1.02396i 0.402890 + 0.915249i \(0.368006\pi\)
−0.994073 + 0.108712i \(0.965327\pi\)
\(410\) 0 0
\(411\) 1.75865 5.41258i 0.0867479 0.266983i
\(412\) −27.8330 + 5.91609i −1.37124 + 0.291465i
\(413\) 0.465833 4.43211i 0.0229221 0.218090i
\(414\) −3.07840 + 3.41891i −0.151295 + 0.168030i
\(415\) 0 0
\(416\) 21.6159 + 9.62401i 1.05981 + 0.471856i
\(417\) −27.8633 30.9454i −1.36447 1.51540i
\(418\) 5.32594 3.86952i 0.260500 0.189265i
\(419\) 24.7274 17.9655i 1.20801 0.877673i 0.212965 0.977060i \(-0.431688\pi\)
0.995049 + 0.0993864i \(0.0316880\pi\)
\(420\) 0 0
\(421\) 20.5099 + 9.13160i 0.999592 + 0.445047i 0.840263 0.542178i \(-0.182400\pi\)
0.159329 + 0.987226i \(0.449067\pi\)
\(422\) −10.1196 + 4.50555i −0.492616 + 0.219327i
\(423\) 4.31134 4.78822i 0.209624 0.232811i
\(424\) −3.29358 + 31.3364i −0.159951 + 1.52183i
\(425\) 0 0
\(426\) 4.55848 14.0296i 0.220859 0.679735i
\(427\) 3.42019 + 0.726984i 0.165515 + 0.0351812i
\(428\) −10.0665 + 17.4356i −0.486581 + 0.842783i
\(429\) −27.7414 48.0495i −1.33937 2.31985i
\(430\) 0 0
\(431\) 1.72251 + 16.3886i 0.0829704 + 0.789411i 0.954328 + 0.298762i \(0.0965736\pi\)
−0.871357 + 0.490649i \(0.836760\pi\)
\(432\) −21.6212 15.7087i −1.04025 0.755787i
\(433\) −30.3372 −1.45791 −0.728957 0.684560i \(-0.759994\pi\)
−0.728957 + 0.684560i \(0.759994\pi\)
\(434\) 11.4027 + 2.66676i 0.547347 + 0.128009i
\(435\) 0 0
\(436\) 2.08626 + 1.51576i 0.0999138 + 0.0725916i
\(437\) 0.142232 + 1.35325i 0.00680388 + 0.0647346i
\(438\) 15.6528 + 48.1745i 0.747921 + 2.30187i
\(439\) 8.25197 + 14.2928i 0.393845 + 0.682160i 0.992953 0.118508i \(-0.0378113\pi\)
−0.599108 + 0.800668i \(0.704478\pi\)
\(440\) 0 0
\(441\) 4.76854 + 1.01358i 0.227073 + 0.0482659i
\(442\) −6.34100 + 19.5156i −0.301611 + 0.928262i
\(443\) −24.6936 + 5.24879i −1.17323 + 0.249377i −0.752987 0.658035i \(-0.771388\pi\)
−0.420241 + 0.907413i \(0.638054\pi\)
\(444\) −9.95602 + 94.7252i −0.472492 + 4.49546i
\(445\) 0 0
\(446\) −40.4900 + 18.0273i −1.91726 + 0.853618i
\(447\) 14.0183 + 6.24133i 0.663041 + 0.295205i
\(448\) −1.61664 1.79546i −0.0763788 0.0848273i
\(449\) −2.11185 + 1.53435i −0.0996644 + 0.0724104i −0.636501 0.771276i \(-0.719619\pi\)
0.536837 + 0.843686i \(0.319619\pi\)
\(450\) 0 0
\(451\) −34.1560 37.9340i −1.60834 1.78624i
\(452\) 38.3148 + 17.0589i 1.80218 + 0.802381i
\(453\) 3.93980 1.75411i 0.185108 0.0824153i
\(454\) −37.6531 + 41.8180i −1.76715 + 1.96261i
\(455\) 0 0
\(456\) 6.46222 1.37359i 0.302621 0.0643241i
\(457\) 2.89306 8.90392i 0.135332 0.416508i −0.860310 0.509771i \(-0.829730\pi\)
0.995641 + 0.0932637i \(0.0297300\pi\)
\(458\) −0.360283 0.0765805i −0.0168349 0.00357837i
\(459\) 2.79828 4.84677i 0.130613 0.226228i
\(460\) 0 0
\(461\) −5.44913 16.7707i −0.253791 0.781089i −0.994065 0.108784i \(-0.965304\pi\)
0.740274 0.672305i \(-0.234696\pi\)
\(462\) −1.93731 18.4323i −0.0901318 0.857546i
\(463\) 4.70265 + 3.41667i 0.218551 + 0.158786i 0.691674 0.722210i \(-0.256874\pi\)
−0.473123 + 0.880996i \(0.656874\pi\)
\(464\) 4.88917 0.226974
\(465\) 0 0
\(466\) −21.8856 −1.01383
\(467\) 6.54431 + 4.75472i 0.302834 + 0.220022i 0.728816 0.684710i \(-0.240071\pi\)
−0.425981 + 0.904732i \(0.640071\pi\)
\(468\) −2.21115 21.0377i −0.102210 0.972467i
\(469\) −1.81792 5.59497i −0.0839436 0.258352i
\(470\) 0 0
\(471\) −5.07918 + 8.79739i −0.234036 + 0.405362i
\(472\) 30.8112 + 6.54912i 1.41820 + 0.301448i
\(473\) 15.6629 48.2055i 0.720181 2.21649i
\(474\) 6.12406 1.30171i 0.281287 0.0597895i
\(475\) 0 0
\(476\) −3.14054 + 3.48792i −0.143946 + 0.159869i
\(477\) 3.77214 1.67947i 0.172715 0.0768975i
\(478\) −24.0723 10.7177i −1.10104 0.490215i
\(479\) 6.09262 + 6.76654i 0.278379 + 0.309171i 0.866078 0.499908i \(-0.166633\pi\)
−0.587700 + 0.809079i \(0.699966\pi\)
\(480\) 0 0
\(481\) 57.5015 41.7773i 2.62184 1.90488i
\(482\) 9.16915 + 10.1834i 0.417643 + 0.463840i
\(483\) 3.49960 + 1.55812i 0.159237 + 0.0708970i
\(484\) 38.0056 16.9212i 1.72753 0.769145i
\(485\) 0 0
\(486\) −2.06748 + 19.6707i −0.0937826 + 0.892282i
\(487\) 40.2479 8.55495i 1.82381 0.387662i 0.836691 0.547675i \(-0.184487\pi\)
0.987115 + 0.160013i \(0.0511537\pi\)
\(488\) −7.63725 + 23.5050i −0.345722 + 1.06402i
\(489\) −25.2296 5.36271i −1.14092 0.242510i
\(490\) 0 0
\(491\) −9.46138 16.3876i −0.426986 0.739562i 0.569617 0.821910i \(-0.307091\pi\)
−0.996604 + 0.0823481i \(0.973758\pi\)
\(492\) −29.3393 90.2971i −1.32272 4.07091i
\(493\) 0.107021 + 1.01824i 0.00481998 + 0.0458591i
\(494\) −7.39228 5.37081i −0.332595 0.241644i
\(495\) 0 0
\(496\) −11.2935 + 32.4975i −0.507091 + 1.45918i
\(497\) −2.51783 −0.112940
\(498\) −51.9172 37.7201i −2.32647 1.69028i
\(499\) −0.831837 7.91440i −0.0372382 0.354297i −0.997237 0.0742919i \(-0.976330\pi\)
0.959998 0.280006i \(-0.0903363\pi\)
\(500\) 0 0
\(501\) −6.17023 10.6872i −0.275666 0.477467i
\(502\) 14.5562 25.2121i 0.649676 1.12527i
\(503\) −7.35909 1.56422i −0.328125 0.0697452i 0.0409035 0.999163i \(-0.486976\pi\)
−0.369029 + 0.929418i \(0.620310\pi\)
\(504\) 1.17815 3.62596i 0.0524788 0.161513i
\(505\) 0 0
\(506\) −2.82028 + 26.8332i −0.125377 + 1.19288i
\(507\) −34.6313 + 38.4619i −1.53803 + 1.70816i
\(508\) −48.7026 + 21.6838i −2.16083 + 0.962062i
\(509\) 12.2699 + 5.46290i 0.543852 + 0.242139i 0.660226 0.751067i \(-0.270460\pi\)
−0.116374 + 0.993205i \(0.537127\pi\)
\(510\) 0 0
\(511\) 6.99450 5.08180i 0.309418 0.224806i
\(512\) 40.2267 29.2264i 1.77779 1.29164i
\(513\) 1.66755 + 1.85200i 0.0736240 + 0.0817677i
\(514\) −43.6525 19.4353i −1.92543 0.857255i
\(515\) 0 0
\(516\) 63.0831 70.0608i 2.77708 3.08426i
\(517\) 3.94984 37.5803i 0.173714 1.65278i
\(518\) 23.2238 4.93636i 1.02039 0.216891i
\(519\) 1.51349 4.65804i 0.0664349 0.204465i
\(520\) 0 0
\(521\) 9.74556 16.8798i 0.426961 0.739518i −0.569640 0.821894i \(-0.692918\pi\)
0.996601 + 0.0823761i \(0.0262509\pi\)
\(522\) −0.770727 1.33494i −0.0337338 0.0584287i
\(523\) 1.93469 + 5.95438i 0.0845983 + 0.260367i 0.984404 0.175925i \(-0.0562916\pi\)
−0.899805 + 0.436292i \(0.856292\pi\)
\(524\) −7.54266 71.7636i −0.329503 3.13501i
\(525\) 0 0
\(526\) −13.1341 −0.572674
\(527\) −7.01525 1.64067i −0.305589 0.0714685i
\(528\) 54.4503 2.36965
\(529\) 14.0957 + 10.2411i 0.612856 + 0.445266i
\(530\) 0 0
\(531\) −1.27559 3.92585i −0.0553558 0.170368i
\(532\) −1.04498 1.80996i −0.0453057 0.0784718i
\(533\) −35.4248 + 61.3576i −1.53442 + 2.65769i
\(534\) 17.6964 + 3.76148i 0.765797 + 0.162775i
\(535\) 0 0
\(536\) 40.6728 8.64527i 1.75680 0.373419i
\(537\) −2.42682 + 23.0897i −0.104725 + 0.996394i
\(538\) 1.93770 2.15204i 0.0835403 0.0927809i
\(539\) 26.1189 11.6289i 1.12502 0.500892i
\(540\) 0 0
\(541\) 24.4535 + 27.1584i 1.05134 + 1.16763i 0.985478 + 0.169802i \(0.0543127\pi\)
0.0658608 + 0.997829i \(0.479021\pi\)
\(542\) −25.6237 + 18.6167i −1.10063 + 0.799657i
\(543\) 22.1508 16.0935i 0.950582 0.690638i
\(544\) −3.25383 3.61375i −0.139507 0.154938i
\(545\) 0 0
\(546\) −23.5005 + 10.4631i −1.00573 + 0.447779i
\(547\) −7.61131 + 8.45322i −0.325436 + 0.361433i −0.883555 0.468328i \(-0.844857\pi\)
0.558119 + 0.829761i \(0.311523\pi\)
\(548\) 1.33015 12.6556i 0.0568214 0.540619i
\(549\) 3.16798 0.673375i 0.135206 0.0287390i
\(550\) 0 0
\(551\) −0.445948 0.0947892i −0.0189980 0.00403815i
\(552\) −13.5384 + 23.4492i −0.576232 + 0.998062i
\(553\) −0.534310 0.925453i −0.0227212 0.0393542i
\(554\) 16.9802 + 52.2597i 0.721420 + 2.22030i
\(555\) 0 0
\(556\) −75.3268 54.7281i −3.19457 2.32099i
\(557\) −17.9263 −0.759560 −0.379780 0.925077i \(-0.624000\pi\)
−0.379780 + 0.925077i \(0.624000\pi\)
\(558\) 10.6534 2.03933i 0.450995 0.0863317i
\(559\) −70.3514 −2.97555
\(560\) 0 0
\(561\) 1.19188 + 11.3400i 0.0503214 + 0.478776i
\(562\) −24.2194 74.5397i −1.02163 3.14427i
\(563\) 16.5969 + 28.7466i 0.699474 + 1.21152i 0.968649 + 0.248433i \(0.0799157\pi\)
−0.269175 + 0.963091i \(0.586751\pi\)
\(564\) 35.1421 60.8678i 1.47975 2.56300i
\(565\) 0 0
\(566\) −14.1105 + 43.4276i −0.593108 + 1.82540i
\(567\) 8.75817 1.86161i 0.367808 0.0781801i
\(568\) 1.86024 17.6990i 0.0780540 0.742634i
\(569\) 18.2648 20.2851i 0.765699 0.850395i −0.226635 0.973980i \(-0.572772\pi\)
0.992334 + 0.123585i \(0.0394391\pi\)
\(570\) 0 0
\(571\) 27.0994 + 12.0654i 1.13408 + 0.504923i 0.885939 0.463802i \(-0.153515\pi\)
0.248137 + 0.968725i \(0.420182\pi\)
\(572\) −83.0116 92.1937i −3.47089 3.85481i
\(573\) 0.442248 0.321312i 0.0184752 0.0134230i
\(574\) −19.1471 + 13.9111i −0.799182 + 0.580640i
\(575\) 0 0
\(576\) −2.04439 0.910221i −0.0851829 0.0379259i
\(577\) 1.84475 0.821336i 0.0767979 0.0341926i −0.367978 0.929834i \(-0.619950\pi\)
0.444776 + 0.895642i \(0.353283\pi\)
\(578\) −25.8282 + 28.6851i −1.07431 + 1.19314i
\(579\) −4.91174 + 46.7321i −0.204125 + 1.94212i
\(580\) 0 0
\(581\) −3.38474 + 10.4171i −0.140422 + 0.432176i
\(582\) 25.9428 + 5.51431i 1.07536 + 0.228576i
\(583\) 12.1080 20.9717i 0.501462 0.868558i
\(584\) 30.5547 + 52.9222i 1.26436 + 2.18994i
\(585\) 0 0
\(586\) −3.08189 29.3222i −0.127312 1.21129i
\(587\) 2.75988 + 2.00517i 0.113913 + 0.0827623i 0.643283 0.765628i \(-0.277572\pi\)
−0.529371 + 0.848391i \(0.677572\pi\)
\(588\) 53.1786 2.19305
\(589\) 1.66014 2.74519i 0.0684049 0.113114i
\(590\) 0 0
\(591\) 20.0224 + 14.5471i 0.823612 + 0.598389i
\(592\) 7.29120 + 69.3711i 0.299667 + 2.85114i
\(593\) 4.48436 + 13.8014i 0.184151 + 0.566757i 0.999933 0.0116020i \(-0.00369312\pi\)
−0.815782 + 0.578359i \(0.803693\pi\)
\(594\) 24.7077 + 42.7950i 1.01377 + 1.75590i
\(595\) 0 0
\(596\) 33.5613 + 7.13367i 1.37472 + 0.292206i
\(597\) −6.48584 + 19.9613i −0.265448 + 0.816964i
\(598\) 36.6307 7.78609i 1.49794 0.318397i
\(599\) −0.0589838 + 0.561194i −0.00241001 + 0.0229298i −0.995661 0.0930566i \(-0.970336\pi\)
0.993251 + 0.115986i \(0.0370029\pi\)
\(600\) 0 0
\(601\) −19.9005 + 8.86028i −0.811759 + 0.361419i −0.770268 0.637720i \(-0.779878\pi\)
−0.0414913 + 0.999139i \(0.513211\pi\)
\(602\) −21.4689 9.55855i −0.875005 0.389577i
\(603\) −3.64615 4.04946i −0.148483 0.164907i
\(604\) 7.80137 5.66803i 0.317433 0.230629i
\(605\) 0 0
\(606\) −7.47821 8.30539i −0.303781 0.337384i
\(607\) 9.52379 + 4.24026i 0.386559 + 0.172107i 0.590809 0.806812i \(-0.298809\pi\)
−0.204250 + 0.978919i \(0.565476\pi\)
\(608\) 1.97815 0.880731i 0.0802248 0.0357184i
\(609\) −0.858848 + 0.953847i −0.0348023 + 0.0386518i
\(610\) 0 0
\(611\) −51.3017 + 10.9045i −2.07545 + 0.441150i
\(612\) −1.34341 + 4.13458i −0.0543040 + 0.167131i
\(613\) −16.2216 3.44801i −0.655184 0.139264i −0.131687 0.991291i \(-0.542039\pi\)
−0.523497 + 0.852028i \(0.675373\pi\)
\(614\) −14.7888 + 25.6150i −0.596829 + 1.03374i
\(615\) 0 0
\(616\) −6.90945 21.2651i −0.278390 0.856795i
\(617\) 1.61141 + 15.3315i 0.0648729 + 0.617224i 0.977864 + 0.209244i \(0.0671002\pi\)
−0.912991 + 0.407980i \(0.866233\pi\)
\(618\) 25.9304 + 18.8395i 1.04307 + 0.757837i
\(619\) 40.5205 1.62866 0.814328 0.580406i \(-0.197106\pi\)
0.814328 + 0.580406i \(0.197106\pi\)
\(620\) 0 0
\(621\) −10.2138 −0.409865
\(622\) 1.69779 + 1.23351i 0.0680750 + 0.0494594i
\(623\) −0.322777 3.07102i −0.0129318 0.123038i
\(624\) −23.3542 71.8769i −0.934917 2.87738i
\(625\) 0 0
\(626\) 13.3434 23.1115i 0.533310 0.923721i
\(627\) −4.96649 1.05566i −0.198343 0.0421590i
\(628\) −7.01901 + 21.6023i −0.280089 + 0.862025i
\(629\) −14.2879 + 3.03698i −0.569695 + 0.121093i
\(630\) 0 0
\(631\) −5.30926 + 5.89653i −0.211358 + 0.234737i −0.839497 0.543364i \(-0.817150\pi\)
0.628139 + 0.778101i \(0.283817\pi\)
\(632\) 6.90021 3.07217i 0.274475 0.122204i
\(633\) 7.80498 + 3.47500i 0.310220 + 0.138119i
\(634\) −52.4237 58.2224i −2.08201 2.31231i
\(635\) 0 0
\(636\) 36.4394 26.4748i 1.44492 1.04979i
\(637\) −26.5533 29.4904i −1.05208 1.16845i
\(638\) −8.25858 3.67696i −0.326960 0.145572i
\(639\) −2.13053 + 0.948575i −0.0842827 + 0.0375251i
\(640\) 0 0
\(641\) 3.39369 32.2888i 0.134043 1.27533i −0.696168 0.717879i \(-0.745113\pi\)
0.830210 0.557450i \(-0.188220\pi\)
\(642\) 22.1823 4.71500i 0.875466 0.186086i
\(643\) 11.0420 33.9837i 0.435453 1.34019i −0.457169 0.889380i \(-0.651137\pi\)
0.892622 0.450806i \(-0.148863\pi\)
\(644\) 8.37843 + 1.78089i 0.330156 + 0.0701769i
\(645\) 0 0
\(646\) 0.938929 + 1.62627i 0.0369417 + 0.0639849i
\(647\) 1.45217 + 4.46933i 0.0570909 + 0.175708i 0.975536 0.219842i \(-0.0705542\pi\)
−0.918445 + 0.395550i \(0.870554\pi\)
\(648\) 6.61533 + 62.9407i 0.259875 + 2.47254i
\(649\) −19.5853 14.2295i −0.768790 0.558558i
\(650\) 0 0
\(651\) −4.35622 7.91190i −0.170734 0.310092i
\(652\) −57.6734 −2.25866
\(653\) 35.7838 + 25.9985i 1.40033 + 1.01740i 0.994641 + 0.103388i \(0.0329683\pi\)
0.405689 + 0.914011i \(0.367032\pi\)
\(654\) −0.303627 2.88882i −0.0118728 0.112962i
\(655\) 0 0
\(656\) −34.7657 60.2159i −1.35737 2.35104i
\(657\) 4.00407 6.93524i 0.156213 0.270570i
\(658\) −17.1371 3.64261i −0.668075 0.142004i
\(659\) −4.42186 + 13.6091i −0.172251 + 0.530135i −0.999497 0.0317052i \(-0.989906\pi\)
0.827246 + 0.561840i \(0.189906\pi\)
\(660\) 0 0
\(661\) 2.03732 19.3838i 0.0792424 0.753941i −0.880687 0.473699i \(-0.842919\pi\)
0.959929 0.280242i \(-0.0904148\pi\)
\(662\) −15.0591 + 16.7248i −0.585288 + 0.650028i
\(663\) 14.4581 6.43718i 0.561507 0.249999i
\(664\) −70.7263 31.4894i −2.74471 1.22202i
\(665\) 0 0
\(666\) 17.7917 12.9264i 0.689415 0.500889i
\(667\) 1.51167 1.09829i 0.0585321 0.0425260i
\(668\) −18.4634 20.5057i −0.714371 0.793390i
\(669\) 31.2288 + 13.9039i 1.20737 + 0.537557i
\(670\) 0 0
\(671\) 12.7096 14.1155i 0.490650 0.544923i
\(672\) 0.637221 6.06275i 0.0245813 0.233876i
\(673\) −10.2436 + 2.17735i −0.394863 + 0.0839307i −0.401064 0.916050i \(-0.631359\pi\)
0.00620110 + 0.999981i \(0.498026\pi\)
\(674\) −18.1358 + 55.8162i −0.698564 + 2.14996i
\(675\) 0 0
\(676\) −57.8626 + 100.221i −2.22548 + 3.85465i
\(677\) −14.1405 24.4920i −0.543462 0.941304i −0.998702 0.0509354i \(-0.983780\pi\)
0.455240 0.890369i \(-0.349554\pi\)
\(678\) −14.5987 44.9302i −0.560660 1.72553i
\(679\) −0.473190 4.50210i −0.0181594 0.172775i
\(680\) 0 0
\(681\) 43.4006 1.66312
\(682\) 43.5165 46.4000i 1.66633 1.77675i
\(683\) −2.92111 −0.111773 −0.0558866 0.998437i \(-0.517799\pi\)
−0.0558866 + 0.998437i \(0.517799\pi\)
\(684\) −1.56613 1.13786i −0.0598826 0.0435072i
\(685\) 0 0
\(686\) −8.64592 26.6094i −0.330103 1.01595i
\(687\) 0.142042 + 0.246023i 0.00541923 + 0.00938638i
\(688\) 34.5211 59.7924i 1.31611 2.27956i
\(689\) −32.8768 6.98817i −1.25250 0.266228i
\(690\) 0 0
\(691\) 22.1035 4.69823i 0.840855 0.178729i 0.232701 0.972548i \(-0.425244\pi\)
0.608154 + 0.793819i \(0.291910\pi\)
\(692\) 1.14473 10.8913i 0.0435160 0.414027i
\(693\) −1.96063 + 2.17750i −0.0744782 + 0.0827164i
\(694\) 44.3268 19.7356i 1.68262 0.749152i
\(695\) 0 0
\(696\) −6.07050 6.74198i −0.230102 0.255554i
\(697\) 11.7798 8.55852i 0.446191 0.324177i
\(698\) −66.4723 + 48.2949i −2.51601 + 1.82799i
\(699\) 11.2948 + 12.5441i 0.427207 + 0.474461i
\(700\) 0 0
\(701\) −25.8525 + 11.5103i −0.976436 + 0.434737i −0.831999 0.554777i \(-0.812804\pi\)
−0.144437 + 0.989514i \(0.546137\pi\)
\(702\) 45.8940 50.9704i 1.73216 1.92376i
\(703\) 0.679898 6.46880i 0.0256428 0.243975i
\(704\) −12.8375 + 2.72871i −0.483833 + 0.102842i
\(705\) 0 0
\(706\) −31.3471 6.66303i −1.17976 0.250766i
\(707\) −0.953773 + 1.65198i −0.0358703 + 0.0621292i
\(708\) −22.5141 38.9955i −0.846131 1.46554i
\(709\) −4.96572 15.2829i −0.186492 0.573962i 0.813479 0.581594i \(-0.197571\pi\)
−0.999971 + 0.00763191i \(0.997571\pi\)
\(710\) 0 0
\(711\) −0.800780 0.581801i −0.0300316 0.0218192i
\(712\) 21.8261 0.817969
\(713\) 3.80837 + 12.5847i 0.142625 + 0.471303i
\(714\) 5.28675 0.197851
\(715\) 0 0
\(716\) 5.42636 + 51.6283i 0.202792 + 1.92944i
\(717\) 6.28024 + 19.3286i 0.234540 + 0.721840i
\(718\) 8.07470 + 13.9858i 0.301345 + 0.521945i
\(719\) −14.2609 + 24.7007i −0.531843 + 0.921179i 0.467466 + 0.884011i \(0.345167\pi\)
−0.999309 + 0.0371679i \(0.988166\pi\)
\(720\) 0 0
\(721\) 1.69053 5.20291i 0.0629585 0.193766i
\(722\) 45.9904 9.77556i 1.71159 0.363809i
\(723\) 1.10474 10.5109i 0.0410857 0.390904i
\(724\) 40.9650 45.4962i 1.52245 1.69085i
\(725\) 0 0
\(726\) −42.8098 19.0602i −1.58882 0.707389i
\(727\) −3.67677 4.08346i −0.136364 0.151447i 0.671095 0.741371i \(-0.265824\pi\)
−0.807459 + 0.589924i \(0.799158\pi\)
\(728\) −25.1074 + 18.2416i −0.930540 + 0.676077i
\(729\) −13.6817 + 9.94036i −0.506731 + 0.368162i
\(730\) 0 0
\(731\) 13.2082 + 5.88068i 0.488524 + 0.217505i
\(732\) 32.2749 14.3697i 1.19291 0.531119i
\(733\) −27.4651 + 30.5031i −1.01445 + 1.12666i −0.0225327 + 0.999746i \(0.507173\pi\)
−0.991914 + 0.126911i \(0.959494\pi\)
\(734\) 5.76407 54.8415i 0.212756 2.02424i
\(735\) 0 0
\(736\) −2.74241 + 8.44026i −0.101086 + 0.311112i
\(737\) −31.2588 6.64426i −1.15143 0.244745i
\(738\) −10.9609 + 18.9848i −0.403476 + 0.698842i
\(739\) 6.42893 + 11.1352i 0.236492 + 0.409616i 0.959705 0.281009i \(-0.0906689\pi\)
−0.723213 + 0.690625i \(0.757336\pi\)
\(740\) 0 0
\(741\) 0.736652 + 7.00878i 0.0270616 + 0.257474i
\(742\) −9.08340 6.59948i −0.333462 0.242274i
\(743\) −5.08104 −0.186405 −0.0932026 0.995647i \(-0.529710\pi\)
−0.0932026 + 0.995647i \(0.529710\pi\)
\(744\) 58.8350 24.7764i 2.15700 0.908346i
\(745\) 0 0
\(746\) 9.42959 + 6.85100i 0.345242 + 0.250833i
\(747\) 1.06050 + 10.0899i 0.0388015 + 0.369172i
\(748\) 7.87865 + 24.2480i 0.288072 + 0.886595i
\(749\) −1.93536 3.35213i −0.0707164 0.122484i
\(750\) 0 0
\(751\) 6.81891 + 1.44940i 0.248825 + 0.0528895i 0.330636 0.943758i \(-0.392737\pi\)
−0.0818103 + 0.996648i \(0.526070\pi\)
\(752\) 15.9057 48.9527i 0.580021 1.78512i
\(753\) −21.9629 + 4.66836i −0.800373 + 0.170125i
\(754\) −1.31157 + 12.4788i −0.0477646 + 0.454450i
\(755\) 0 0
\(756\) 14.3315 6.38081i 0.521233 0.232068i
\(757\) 13.3881 + 5.96076i 0.486598 + 0.216648i 0.635346 0.772228i \(-0.280858\pi\)
−0.148748 + 0.988875i \(0.547524\pi\)
\(758\) −24.3525 27.0461i −0.884521 0.982360i
\(759\) 16.8354 12.2316i 0.611085 0.443979i
\(760\) 0 0
\(761\) 21.0905 + 23.4234i 0.764530 + 0.849097i 0.992202 0.124641i \(-0.0397779\pi\)
−0.227672 + 0.973738i \(0.573111\pi\)
\(762\) 54.8589 + 24.4248i 1.98733 + 0.884816i
\(763\) −0.452923 + 0.201654i −0.0163969 + 0.00730038i
\(764\) 0.817880 0.908348i 0.0295899 0.0328629i
\(765\) 0 0
\(766\) 50.2619 10.6835i 1.81604 0.386011i
\(767\) −10.3833 + 31.9566i −0.374921 + 1.15389i
\(768\) −59.8469 12.7209i −2.15954 0.459024i
\(769\) −21.8896 + 37.9139i −0.789358 + 1.36721i 0.137002 + 0.990571i \(0.456253\pi\)
−0.926361 + 0.376638i \(0.877080\pi\)
\(770\) 0 0
\(771\) 11.3885 + 35.0503i 0.410148 + 1.26231i
\(772\) 10.9826 + 104.492i 0.395273 + 3.76077i
\(773\) 19.6555 + 14.2806i 0.706960 + 0.513637i 0.882192 0.470891i \(-0.156067\pi\)
−0.175231 + 0.984527i \(0.556067\pi\)
\(774\) −21.7676 −0.782421
\(775\) 0 0
\(776\) 31.9970 1.14862
\(777\) −14.8147 10.7635i −0.531474 0.386138i
\(778\) −1.64455 15.6469i −0.0589600 0.560967i
\(779\) 2.00359 + 6.16640i 0.0717859 + 0.220934i
\(780\) 0 0
\(781\) −6.83869 + 11.8450i −0.244708 + 0.423846i
\(782\) −7.52812 1.60015i −0.269205 0.0572213i
\(783\) 1.05751 3.25469i 0.0377925 0.116313i
\(784\) 38.0938 8.09709i 1.36049 0.289182i
\(785\) 0 0
\(786\) −54.3871 + 60.4030i −1.93992 + 2.15450i
\(787\) −13.2640 + 5.90552i −0.472811 + 0.210509i −0.629287 0.777173i \(-0.716653\pi\)
0.156476 + 0.987682i \(0.449986\pi\)
\(788\) 50.5544 + 22.5083i 1.80093 + 0.801824i
\(789\) 6.77825 + 7.52801i 0.241312 + 0.268004i
\(790\) 0 0
\(791\) −6.52346 + 4.73957i −0.231947 + 0.168520i
\(792\) −13.8581 15.3910i −0.492426 0.546895i
\(793\) −24.0844 10.7230i −0.855261 0.380787i
\(794\) 72.6873 32.3625i 2.57957 1.14850i
\(795\) 0 0
\(796\) −4.90555 + 46.6732i −0.173873 + 1.65429i
\(797\) −21.3661 + 4.54149i −0.756824 + 0.160868i −0.570135 0.821551i \(-0.693109\pi\)
−0.186689 + 0.982419i \(0.559776\pi\)
\(798\) −0.727472 + 2.23893i −0.0257522 + 0.0792572i
\(799\) 10.5432 + 2.24103i 0.372993 + 0.0792821i
\(800\) 0 0
\(801\) −1.43011 2.47703i −0.0505306 0.0875215i
\(802\) 1.61236 + 4.96233i 0.0569344 + 0.175226i
\(803\) −4.90919 46.7078i −0.173242 1.64828i
\(804\) −48.0881 34.9380i −1.69594 1.23217i
\(805\) 0 0
\(806\) −79.9147 37.5424i −2.81488 1.32238i
\(807\) −2.23349 −0.0786224
\(808\) −10.9079 7.92505i −0.383739 0.278802i
\(809\) −2.04937 19.4984i −0.0720520 0.685529i −0.969614 0.244640i \(-0.921330\pi\)
0.897562 0.440888i \(-0.145337\pi\)
\(810\) 0 0
\(811\) −0.447413 0.774942i −0.0157108 0.0272119i 0.858063 0.513544i \(-0.171668\pi\)
−0.873774 + 0.486332i \(0.838334\pi\)
\(812\) −1.43498 + 2.48546i −0.0503579 + 0.0872224i
\(813\) 23.8944 + 5.07891i 0.838013 + 0.178125i
\(814\) 39.8554 122.662i 1.39693 4.29931i
\(815\) 0 0
\(816\) −1.62353 + 15.4468i −0.0568348 + 0.540747i
\(817\) −4.30795 + 4.78447i −0.150716 + 0.167387i
\(818\) 55.0186 24.4959i 1.92368 0.856477i
\(819\) 3.71533 + 1.65417i 0.129824 + 0.0578014i
\(820\) 0 0
\(821\) 30.2838 22.0025i 1.05691 0.767892i 0.0833978 0.996516i \(-0.473423\pi\)
0.973515 + 0.228624i \(0.0734228\pi\)
\(822\) −11.5963 + 8.42522i −0.404468 + 0.293863i
\(823\) 20.4074 + 22.6647i 0.711356 + 0.790041i 0.985141 0.171750i \(-0.0549421\pi\)
−0.273784 + 0.961791i \(0.588275\pi\)
\(824\) 35.3247 + 15.7276i 1.23059 + 0.547896i
\(825\) 0 0
\(826\) −7.51055 + 8.34131i −0.261325 + 0.290231i
\(827\) 2.77030 26.3577i 0.0963329 0.916546i −0.834477 0.551043i \(-0.814230\pi\)
0.930810 0.365504i \(-0.119103\pi\)
\(828\) 7.76059 1.64956i 0.269699 0.0573263i
\(829\) −11.3256 + 34.8565i −0.393354 + 1.21062i 0.536883 + 0.843657i \(0.319602\pi\)
−0.930236 + 0.366961i \(0.880398\pi\)
\(830\) 0 0
\(831\) 21.1903 36.7027i 0.735084 1.27320i
\(832\) 9.10815 + 15.7758i 0.315768 + 0.546927i
\(833\) 2.52018 + 7.75632i 0.0873191 + 0.268740i
\(834\) 10.9628 + 104.304i 0.379611 + 3.61176i
\(835\) 0 0
\(836\) −11.3531 −0.392656
\(837\) 19.1907 + 14.5471i 0.663326 + 0.502822i
\(838\) −76.9815 −2.65928
\(839\) −1.83042 1.32988i −0.0631933 0.0459126i 0.555740 0.831356i \(-0.312435\pi\)
−0.618933 + 0.785443i \(0.712435\pi\)
\(840\) 0 0
\(841\) −8.76803 26.9852i −0.302346 0.930525i
\(842\) −28.2728 48.9699i −0.974345 1.68762i
\(843\) −30.2244 + 52.3503i −1.04098 + 1.80304i
\(844\) 18.6860 + 3.97183i 0.643198 + 0.136716i
\(845\) 0 0
\(846\) −15.8734 + 3.37400i −0.545739 + 0.116001i
\(847\) −0.836057 + 7.95455i −0.0287273 + 0.273322i
\(848\) 22.0718 24.5132i 0.757949 0.841788i
\(849\) 32.1733 14.3245i 1.10419 0.491615i
\(850\) 0 0
\(851\) 17.8377 + 19.8108i 0.611469 + 0.679106i
\(852\) −20.5813 + 14.9532i −0.705103 + 0.512287i
\(853\) −5.35391 + 3.88984i −0.183314 + 0.133186i −0.675658 0.737215i \(-0.736140\pi\)
0.492344 + 0.870401i \(0.336140\pi\)
\(854\) −5.89281 6.54462i −0.201648 0.223952i
\(855\) 0 0
\(856\) 24.9936 11.1279i 0.854265 0.380343i
\(857\) 25.2061 27.9942i 0.861023 0.956263i −0.138395 0.990377i \(-0.544194\pi\)
0.999418 + 0.0341142i \(0.0108610\pi\)
\(858\) −14.6069 + 138.975i −0.498671 + 4.74454i
\(859\) −16.0689 + 3.41555i −0.548264 + 0.116537i −0.473712 0.880680i \(-0.657086\pi\)
−0.0745524 + 0.997217i \(0.523753\pi\)
\(860\) 0 0
\(861\) 17.8548 + 3.79516i 0.608491 + 0.129339i
\(862\) 20.7521 35.9437i 0.706820 1.22425i
\(863\) 12.8552 + 22.2659i 0.437598 + 0.757941i 0.997504 0.0706147i \(-0.0224961\pi\)
−0.559906 + 0.828556i \(0.689163\pi\)
\(864\) 5.02269 + 15.4582i 0.170875 + 0.525900i
\(865\) 0 0
\(866\) 61.8156 + 44.9117i 2.10058 + 1.52616i
\(867\) 29.7708 1.01107
\(868\) −13.2058 15.2792i −0.448233 0.518610i
\(869\) −5.80497 −0.196920
\(870\) 0 0
\(871\) 4.63644 + 44.1128i 0.157100 + 1.49471i
\(872\) −1.08289 3.33280i −0.0366714 0.112863i
\(873\) −2.09654 3.63131i −0.0709571 0.122901i
\(874\) 1.71355 2.96796i 0.0579618 0.100393i
\(875\) 0 0
\(876\) 26.9942 83.0795i 0.912048 2.80699i
\(877\) −17.1239 + 3.63980i −0.578234 + 0.122907i −0.487739 0.872989i \(-0.662178\pi\)
−0.0904951 + 0.995897i \(0.528845\pi\)
\(878\) 4.34498 41.3397i 0.146636 1.39515i
\(879\) −15.2160 + 16.8991i −0.513223 + 0.569992i
\(880\) 0 0
\(881\) −8.66292 3.85698i −0.291861 0.129945i 0.255583 0.966787i \(-0.417733\pi\)
−0.547444 + 0.836842i \(0.684399\pi\)
\(882\) −8.21593 9.12471i −0.276645 0.307245i
\(883\) 17.9126 13.0142i 0.602806 0.437964i −0.244068 0.969758i \(-0.578482\pi\)
0.846874 + 0.531794i \(0.178482\pi\)
\(884\) 28.6292 20.8004i 0.962905 0.699592i
\(885\) 0 0
\(886\) 58.0865 + 25.8618i 1.95145 + 0.868843i
\(887\) 29.2198 13.0095i 0.981104 0.436816i 0.147430 0.989072i \(-0.452900\pi\)
0.833674 + 0.552257i \(0.186233\pi\)
\(888\) 86.6072 96.1871i 2.90635 3.22783i
\(889\) 1.07137 10.1934i 0.0359326 0.341876i
\(890\) 0 0
\(891\) 15.0303 46.2585i 0.503534 1.54972i
\(892\) 74.7651 + 15.8918i 2.50332 + 0.532097i
\(893\) −2.39986 + 4.15667i −0.0803081 + 0.139098i
\(894\) −19.3241 33.4703i −0.646294 1.11941i
\(895\) 0 0
\(896\) 1.29213 + 12.2938i 0.0431671 + 0.410707i
\(897\) −23.3671 16.9772i −0.780205 0.566852i
\(898\) 6.57462 0.219398
\(899\) −4.40453 0.0894351i −0.146899 0.00298283i
\(900\) 0 0
\(901\) 5.58836 + 4.06018i 0.186175 + 0.135264i
\(902\) 13.4386 + 127.860i 0.447458 + 4.25728i
\(903\) 5.60103 + 17.2382i 0.186391 + 0.573651i
\(904\) −28.4970 49.3582i −0.947795 1.64163i
\(905\) 0 0
\(906\) −10.6246 2.25833i −0.352979 0.0750280i
\(907\) 10.3373 31.8148i 0.343243 1.05639i −0.619275 0.785174i \(-0.712573\pi\)
0.962518 0.271219i \(-0.0874266\pi\)
\(908\) 94.9228 20.1765i 3.15012 0.669579i
\(909\) −0.184689 + 1.75720i −0.00612576 + 0.0582827i
\(910\) 0 0
\(911\) −40.9176 + 18.2177i −1.35566 + 0.603579i −0.950517 0.310673i \(-0.899445\pi\)
−0.405144 + 0.914253i \(0.632779\pi\)
\(912\) −6.31830 2.81309i −0.209220 0.0931507i
\(913\) 39.8134 + 44.2173i 1.31763 + 1.46338i
\(914\) −19.0765 + 13.8599i −0.630993 + 0.458443i
\(915\) 0 0
\(916\) 0.425037 + 0.472051i 0.0140436 + 0.0155970i
\(917\) 12.6737 + 5.64270i 0.418523 + 0.186338i
\(918\) −12.8771 + 5.73324i −0.425007 + 0.189225i
\(919\) −19.0879 + 21.1993i −0.629652 + 0.699300i −0.970577 0.240791i \(-0.922593\pi\)
0.340925 + 0.940091i \(0.389260\pi\)
\(920\) 0 0
\(921\) 22.3139 4.74297i 0.735268 0.156286i
\(922\) −13.7244 + 42.2393i −0.451988 + 1.39108i
\(923\) 18.5690 + 3.94697i 0.611208 + 0.129916i
\(924\) −15.9813 + 27.6803i −0.525745 + 0.910616i
\(925\) 0 0
\(926\) −4.52410 13.9237i −0.148671 0.457563i
\(927\) −0.529671 5.03949i −0.0173967 0.165518i
\(928\) −2.40560 1.74777i −0.0789678 0.0573735i
\(929\) −47.0642 −1.54413 −0.772064 0.635545i \(-0.780775\pi\)
−0.772064 + 0.635545i \(0.780775\pi\)
\(930\) 0 0
\(931\) −3.63157 −0.119020
\(932\) 30.5347 + 22.1847i 1.00020 + 0.726685i
\(933\) −0.169187 1.60970i −0.00553893 0.0526994i
\(934\) −6.29584 19.3766i −0.206006 0.634022i
\(935\) 0 0
\(936\) −14.3729 + 24.8946i −0.469794 + 0.813707i
\(937\) −30.1300 6.40434i −0.984306 0.209221i −0.312476 0.949926i \(-0.601158\pi\)
−0.671830 + 0.740705i \(0.734492\pi\)
\(938\) −4.57867 + 14.0917i −0.149499 + 0.460110i
\(939\) −20.1330 + 4.27940i −0.657015 + 0.139653i
\(940\) 0 0
\(941\) 1.90260 2.11305i 0.0620230 0.0688835i −0.711335 0.702853i \(-0.751909\pi\)
0.773358 + 0.633970i \(0.218576\pi\)
\(942\) 23.3732 10.4064i 0.761541 0.339060i
\(943\) −24.2759 10.8083i −0.790531 0.351967i
\(944\) −22.0652 24.5059i −0.718161 0.797599i
\(945\) 0 0
\(946\) −103.279 + 75.0367i −3.35790 + 2.43965i
\(947\) −6.97644 7.74812i −0.226704 0.251780i 0.619052 0.785350i \(-0.287517\pi\)
−0.845756 + 0.533570i \(0.820850\pi\)
\(948\) −9.86375 4.39162i −0.320360 0.142633i
\(949\) −59.5509 + 26.5138i −1.93310 + 0.860673i
\(950\) 0 0
\(951\) −6.31623 + 60.0949i −0.204818 + 1.94871i
\(952\) 6.23863 1.32606i 0.202195 0.0429779i
\(953\) 14.6425 45.0649i 0.474316 1.45979i −0.372562 0.928007i \(-0.621521\pi\)
0.846878 0.531788i \(-0.178479\pi\)
\(954\) −10.1725 2.16223i −0.329347 0.0700048i
\(955\) 0 0
\(956\) 22.7213 + 39.3545i 0.734861 + 1.27282i
\(957\) 2.15459 + 6.63114i 0.0696479 + 0.214354i
\(958\) −2.39714 22.8072i −0.0774480 0.736868i
\(959\) 1.97929 + 1.43804i 0.0639145 + 0.0464366i
\(960\) 0 0
\(961\) 10.7684 29.0696i 0.347369 0.937728i
\(962\) −179.014 −5.77164
\(963\) −2.90055 2.10737i −0.0934690 0.0679092i
\(964\) −2.47018 23.5022i −0.0795593 0.756956i
\(965\) 0 0
\(966\) −4.82418 8.35572i −0.155215 0.268841i
\(967\) −11.3526 + 19.6633i −0.365075 + 0.632329i −0.988788 0.149325i \(-0.952290\pi\)
0.623713 + 0.781653i \(0.285623\pi\)
\(968\) −55.2986 11.7541i −1.77736 0.377790i
\(969\) 0.447561 1.37745i 0.0143777 0.0442501i
\(970\) 0 0
\(971\) 5.75452 54.7506i 0.184671 1.75703i −0.373803 0.927508i \(-0.621947\pi\)
0.558475 0.829522i \(-0.311387\pi\)
\(972\) 22.8241 25.3487i 0.732083 0.813060i
\(973\) 16.3533 7.28096i 0.524263 0.233417i
\(974\) −94.6747 42.1519i −3.03357 1.35063i
\(975\) 0 0
\(976\) 20.9317 15.2078i 0.670008 0.486790i
\(977\) 11.0724 8.04457i 0.354238 0.257369i −0.396407 0.918075i \(-0.629743\pi\)
0.750645 + 0.660706i \(0.229743\pi\)
\(978\) 43.4692 + 48.2774i 1.38999 + 1.54374i
\(979\) −15.3241 6.82273i −0.489761 0.218055i
\(980\) 0 0
\(981\) −0.307282 + 0.341272i −0.00981077 + 0.0108960i
\(982\) −4.98178 + 47.3985i −0.158975 + 1.51255i
\(983\) 40.3260 8.57156i 1.28620 0.273390i 0.486443 0.873713i \(-0.338294\pi\)
0.799758 + 0.600322i \(0.204961\pi\)
\(984\) −39.8696 + 122.706i −1.27100 + 3.91172i
\(985\) 0 0
\(986\) 1.28935 2.23321i 0.0410611 0.0711200i
\(987\) 6.75633 + 11.7023i 0.215056 + 0.372488i
\(988\) 4.86945 + 14.9866i 0.154918 + 0.476788i
\(989\) −2.75812 26.2418i −0.0877032 0.834441i
\(990\) 0 0
\(991\) −34.9979 −1.11174 −0.555872 0.831268i \(-0.687616\pi\)
−0.555872 + 0.831268i \(0.687616\pi\)
\(992\) 17.1738 11.9525i 0.545270 0.379492i
\(993\) 17.3578 0.550833
\(994\) 5.13038 + 3.72744i 0.162726 + 0.118227i
\(995\) 0 0
\(996\) 34.1990 + 105.254i 1.08364 + 3.33509i
\(997\) −1.03226 1.78793i −0.0326920 0.0566242i 0.849216 0.528045i \(-0.177075\pi\)
−0.881908 + 0.471421i \(0.843741\pi\)
\(998\) −10.0216 + 17.3580i −0.317230 + 0.549458i
\(999\) 47.7571 + 10.1511i 1.51097 + 0.321166i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.bl.b.351.1 40
5.2 odd 4 775.2.ck.b.599.10 80
5.3 odd 4 775.2.ck.b.599.1 80
5.4 even 2 155.2.q.b.41.5 40
31.28 even 15 inner 775.2.bl.b.276.1 40
155.28 odd 60 775.2.ck.b.524.10 80
155.59 even 30 155.2.q.b.121.5 yes 40
155.104 odd 30 4805.2.a.z.1.2 20
155.144 even 30 4805.2.a.ba.1.2 20
155.152 odd 60 775.2.ck.b.524.1 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.b.41.5 40 5.4 even 2
155.2.q.b.121.5 yes 40 155.59 even 30
775.2.bl.b.276.1 40 31.28 even 15 inner
775.2.bl.b.351.1 40 1.1 even 1 trivial
775.2.ck.b.524.1 80 155.152 odd 60
775.2.ck.b.524.10 80 155.28 odd 60
775.2.ck.b.599.1 80 5.3 odd 4
775.2.ck.b.599.10 80 5.2 odd 4
4805.2.a.z.1.2 20 155.104 odd 30
4805.2.a.ba.1.2 20 155.144 even 30