Properties

Label 7744.2.a.du.1.5
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7744,2,Mod(1,7744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7744.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7744, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-5,0,0,0,2,0,7,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.19898000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 7x^{3} + 24x^{2} - 15x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.68692\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.686920 q^{3} -0.750338 q^{5} -3.05529 q^{7} -2.52814 q^{9} +6.20933 q^{13} -0.515422 q^{15} -3.08177 q^{17} +4.23580 q^{19} -2.09874 q^{21} +0.264608 q^{23} -4.43699 q^{25} -3.79739 q^{27} +1.66044 q^{29} +4.19687 q^{31} +2.29250 q^{35} +2.36499 q^{37} +4.26531 q^{39} +5.67853 q^{41} -9.90575 q^{43} +1.89696 q^{45} +11.5274 q^{47} +2.33481 q^{49} -2.11693 q^{51} -4.40734 q^{53} +2.90966 q^{57} -0.836198 q^{59} -6.26228 q^{61} +7.72421 q^{63} -4.65909 q^{65} +7.76323 q^{67} +0.181764 q^{69} +10.3601 q^{71} -8.46823 q^{73} -3.04786 q^{75} -14.7211 q^{79} +4.97592 q^{81} -10.9957 q^{83} +2.31237 q^{85} +1.14059 q^{87} -15.9492 q^{89} -18.9713 q^{91} +2.88292 q^{93} -3.17828 q^{95} -0.881290 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 5 q^{3} + 2 q^{7} + 7 q^{9} - 4 q^{13} + 8 q^{15} - 9 q^{17} - 5 q^{19} - 12 q^{21} + 6 q^{23} + 4 q^{25} - 26 q^{27} - 10 q^{29} + 12 q^{31} + 26 q^{35} + 12 q^{37} + 2 q^{39} - 17 q^{41} - 11 q^{43}+ \cdots - 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.686920 0.396594 0.198297 0.980142i \(-0.436459\pi\)
0.198297 + 0.980142i \(0.436459\pi\)
\(4\) 0 0
\(5\) −0.750338 −0.335561 −0.167781 0.985824i \(-0.553660\pi\)
−0.167781 + 0.985824i \(0.553660\pi\)
\(6\) 0 0
\(7\) −3.05529 −1.15479 −0.577396 0.816464i \(-0.695931\pi\)
−0.577396 + 0.816464i \(0.695931\pi\)
\(8\) 0 0
\(9\) −2.52814 −0.842713
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 6.20933 1.72216 0.861079 0.508472i \(-0.169789\pi\)
0.861079 + 0.508472i \(0.169789\pi\)
\(14\) 0 0
\(15\) −0.515422 −0.133081
\(16\) 0 0
\(17\) −3.08177 −0.747439 −0.373719 0.927542i \(-0.621918\pi\)
−0.373719 + 0.927542i \(0.621918\pi\)
\(18\) 0 0
\(19\) 4.23580 0.971760 0.485880 0.874026i \(-0.338499\pi\)
0.485880 + 0.874026i \(0.338499\pi\)
\(20\) 0 0
\(21\) −2.09874 −0.457983
\(22\) 0 0
\(23\) 0.264608 0.0551745 0.0275873 0.999619i \(-0.491218\pi\)
0.0275873 + 0.999619i \(0.491218\pi\)
\(24\) 0 0
\(25\) −4.43699 −0.887399
\(26\) 0 0
\(27\) −3.79739 −0.730808
\(28\) 0 0
\(29\) 1.66044 0.308337 0.154168 0.988045i \(-0.450730\pi\)
0.154168 + 0.988045i \(0.450730\pi\)
\(30\) 0 0
\(31\) 4.19687 0.753781 0.376890 0.926258i \(-0.376993\pi\)
0.376890 + 0.926258i \(0.376993\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.29250 0.387503
\(36\) 0 0
\(37\) 2.36499 0.388802 0.194401 0.980922i \(-0.437724\pi\)
0.194401 + 0.980922i \(0.437724\pi\)
\(38\) 0 0
\(39\) 4.26531 0.682997
\(40\) 0 0
\(41\) 5.67853 0.886837 0.443419 0.896315i \(-0.353765\pi\)
0.443419 + 0.896315i \(0.353765\pi\)
\(42\) 0 0
\(43\) −9.90575 −1.51061 −0.755306 0.655372i \(-0.772512\pi\)
−0.755306 + 0.655372i \(0.772512\pi\)
\(44\) 0 0
\(45\) 1.89696 0.282782
\(46\) 0 0
\(47\) 11.5274 1.68145 0.840724 0.541464i \(-0.182130\pi\)
0.840724 + 0.541464i \(0.182130\pi\)
\(48\) 0 0
\(49\) 2.33481 0.333544
\(50\) 0 0
\(51\) −2.11693 −0.296429
\(52\) 0 0
\(53\) −4.40734 −0.605395 −0.302697 0.953087i \(-0.597887\pi\)
−0.302697 + 0.953087i \(0.597887\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.90966 0.385394
\(58\) 0 0
\(59\) −0.836198 −0.108864 −0.0544319 0.998517i \(-0.517335\pi\)
−0.0544319 + 0.998517i \(0.517335\pi\)
\(60\) 0 0
\(61\) −6.26228 −0.801803 −0.400901 0.916121i \(-0.631303\pi\)
−0.400901 + 0.916121i \(0.631303\pi\)
\(62\) 0 0
\(63\) 7.72421 0.973159
\(64\) 0 0
\(65\) −4.65909 −0.577889
\(66\) 0 0
\(67\) 7.76323 0.948430 0.474215 0.880409i \(-0.342732\pi\)
0.474215 + 0.880409i \(0.342732\pi\)
\(68\) 0 0
\(69\) 0.181764 0.0218819
\(70\) 0 0
\(71\) 10.3601 1.22952 0.614758 0.788716i \(-0.289254\pi\)
0.614758 + 0.788716i \(0.289254\pi\)
\(72\) 0 0
\(73\) −8.46823 −0.991131 −0.495565 0.868571i \(-0.665039\pi\)
−0.495565 + 0.868571i \(0.665039\pi\)
\(74\) 0 0
\(75\) −3.04786 −0.351937
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.7211 −1.65625 −0.828127 0.560541i \(-0.810593\pi\)
−0.828127 + 0.560541i \(0.810593\pi\)
\(80\) 0 0
\(81\) 4.97592 0.552879
\(82\) 0 0
\(83\) −10.9957 −1.20693 −0.603467 0.797388i \(-0.706215\pi\)
−0.603467 + 0.797388i \(0.706215\pi\)
\(84\) 0 0
\(85\) 2.31237 0.250811
\(86\) 0 0
\(87\) 1.14059 0.122284
\(88\) 0 0
\(89\) −15.9492 −1.69061 −0.845306 0.534282i \(-0.820582\pi\)
−0.845306 + 0.534282i \(0.820582\pi\)
\(90\) 0 0
\(91\) −18.9713 −1.98873
\(92\) 0 0
\(93\) 2.88292 0.298945
\(94\) 0 0
\(95\) −3.17828 −0.326085
\(96\) 0 0
\(97\) −0.881290 −0.0894815 −0.0447407 0.998999i \(-0.514246\pi\)
−0.0447407 + 0.998999i \(0.514246\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.4980 −1.14410 −0.572048 0.820220i \(-0.693851\pi\)
−0.572048 + 0.820220i \(0.693851\pi\)
\(102\) 0 0
\(103\) 10.9285 1.07681 0.538406 0.842685i \(-0.319027\pi\)
0.538406 + 0.842685i \(0.319027\pi\)
\(104\) 0 0
\(105\) 1.57477 0.153681
\(106\) 0 0
\(107\) −2.08795 −0.201850 −0.100925 0.994894i \(-0.532180\pi\)
−0.100925 + 0.994894i \(0.532180\pi\)
\(108\) 0 0
\(109\) 3.88713 0.372320 0.186160 0.982519i \(-0.440396\pi\)
0.186160 + 0.982519i \(0.440396\pi\)
\(110\) 0 0
\(111\) 1.62456 0.154197
\(112\) 0 0
\(113\) 13.6144 1.28074 0.640368 0.768069i \(-0.278782\pi\)
0.640368 + 0.768069i \(0.278782\pi\)
\(114\) 0 0
\(115\) −0.198545 −0.0185144
\(116\) 0 0
\(117\) −15.6981 −1.45129
\(118\) 0 0
\(119\) 9.41570 0.863136
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 3.90070 0.351714
\(124\) 0 0
\(125\) 7.08093 0.633338
\(126\) 0 0
\(127\) 8.17419 0.725342 0.362671 0.931917i \(-0.381865\pi\)
0.362671 + 0.931917i \(0.381865\pi\)
\(128\) 0 0
\(129\) −6.80446 −0.599099
\(130\) 0 0
\(131\) 5.90996 0.516356 0.258178 0.966097i \(-0.416878\pi\)
0.258178 + 0.966097i \(0.416878\pi\)
\(132\) 0 0
\(133\) −12.9416 −1.12218
\(134\) 0 0
\(135\) 2.84933 0.245231
\(136\) 0 0
\(137\) −8.29629 −0.708800 −0.354400 0.935094i \(-0.615315\pi\)
−0.354400 + 0.935094i \(0.615315\pi\)
\(138\) 0 0
\(139\) 18.1970 1.54345 0.771727 0.635954i \(-0.219393\pi\)
0.771727 + 0.635954i \(0.219393\pi\)
\(140\) 0 0
\(141\) 7.91843 0.666852
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.24589 −0.103466
\(146\) 0 0
\(147\) 1.60383 0.132282
\(148\) 0 0
\(149\) −10.9906 −0.900384 −0.450192 0.892932i \(-0.648645\pi\)
−0.450192 + 0.892932i \(0.648645\pi\)
\(150\) 0 0
\(151\) −17.5546 −1.42858 −0.714288 0.699852i \(-0.753249\pi\)
−0.714288 + 0.699852i \(0.753249\pi\)
\(152\) 0 0
\(153\) 7.79114 0.629877
\(154\) 0 0
\(155\) −3.14907 −0.252940
\(156\) 0 0
\(157\) 13.2393 1.05661 0.528306 0.849054i \(-0.322827\pi\)
0.528306 + 0.849054i \(0.322827\pi\)
\(158\) 0 0
\(159\) −3.02749 −0.240096
\(160\) 0 0
\(161\) −0.808454 −0.0637151
\(162\) 0 0
\(163\) −22.5899 −1.76938 −0.884689 0.466181i \(-0.845629\pi\)
−0.884689 + 0.466181i \(0.845629\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.1022 −1.24603 −0.623014 0.782211i \(-0.714092\pi\)
−0.623014 + 0.782211i \(0.714092\pi\)
\(168\) 0 0
\(169\) 25.5557 1.96583
\(170\) 0 0
\(171\) −10.7087 −0.818915
\(172\) 0 0
\(173\) −8.63190 −0.656272 −0.328136 0.944631i \(-0.606420\pi\)
−0.328136 + 0.944631i \(0.606420\pi\)
\(174\) 0 0
\(175\) 13.5563 1.02476
\(176\) 0 0
\(177\) −0.574402 −0.0431747
\(178\) 0 0
\(179\) −13.4976 −1.00886 −0.504430 0.863452i \(-0.668297\pi\)
−0.504430 + 0.863452i \(0.668297\pi\)
\(180\) 0 0
\(181\) 8.19393 0.609050 0.304525 0.952504i \(-0.401502\pi\)
0.304525 + 0.952504i \(0.401502\pi\)
\(182\) 0 0
\(183\) −4.30169 −0.317990
\(184\) 0 0
\(185\) −1.77454 −0.130467
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 11.6021 0.843932
\(190\) 0 0
\(191\) −19.6899 −1.42471 −0.712356 0.701819i \(-0.752372\pi\)
−0.712356 + 0.701819i \(0.752372\pi\)
\(192\) 0 0
\(193\) −23.8601 −1.71749 −0.858745 0.512404i \(-0.828755\pi\)
−0.858745 + 0.512404i \(0.828755\pi\)
\(194\) 0 0
\(195\) −3.20043 −0.229187
\(196\) 0 0
\(197\) −18.9000 −1.34657 −0.673283 0.739385i \(-0.735116\pi\)
−0.673283 + 0.739385i \(0.735116\pi\)
\(198\) 0 0
\(199\) −9.81826 −0.695998 −0.347999 0.937495i \(-0.613139\pi\)
−0.347999 + 0.937495i \(0.613139\pi\)
\(200\) 0 0
\(201\) 5.33272 0.376141
\(202\) 0 0
\(203\) −5.07314 −0.356065
\(204\) 0 0
\(205\) −4.26082 −0.297588
\(206\) 0 0
\(207\) −0.668965 −0.0464963
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 13.0188 0.896253 0.448126 0.893970i \(-0.352091\pi\)
0.448126 + 0.893970i \(0.352091\pi\)
\(212\) 0 0
\(213\) 7.11655 0.487618
\(214\) 0 0
\(215\) 7.43266 0.506903
\(216\) 0 0
\(217\) −12.8227 −0.870460
\(218\) 0 0
\(219\) −5.81700 −0.393076
\(220\) 0 0
\(221\) −19.1357 −1.28721
\(222\) 0 0
\(223\) 3.49698 0.234175 0.117088 0.993122i \(-0.462644\pi\)
0.117088 + 0.993122i \(0.462644\pi\)
\(224\) 0 0
\(225\) 11.2173 0.747823
\(226\) 0 0
\(227\) −10.9286 −0.725354 −0.362677 0.931915i \(-0.618137\pi\)
−0.362677 + 0.931915i \(0.618137\pi\)
\(228\) 0 0
\(229\) −11.6882 −0.772379 −0.386189 0.922419i \(-0.626209\pi\)
−0.386189 + 0.922419i \(0.626209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.71863 0.309128 0.154564 0.987983i \(-0.450603\pi\)
0.154564 + 0.987983i \(0.450603\pi\)
\(234\) 0 0
\(235\) −8.64947 −0.564229
\(236\) 0 0
\(237\) −10.1122 −0.656860
\(238\) 0 0
\(239\) 1.21129 0.0783520 0.0391760 0.999232i \(-0.487527\pi\)
0.0391760 + 0.999232i \(0.487527\pi\)
\(240\) 0 0
\(241\) −17.6151 −1.13469 −0.567344 0.823481i \(-0.692029\pi\)
−0.567344 + 0.823481i \(0.692029\pi\)
\(242\) 0 0
\(243\) 14.8102 0.950077
\(244\) 0 0
\(245\) −1.75190 −0.111925
\(246\) 0 0
\(247\) 26.3015 1.67352
\(248\) 0 0
\(249\) −7.55317 −0.478662
\(250\) 0 0
\(251\) −0.796375 −0.0502667 −0.0251334 0.999684i \(-0.508001\pi\)
−0.0251334 + 0.999684i \(0.508001\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.58841 0.0994702
\(256\) 0 0
\(257\) −15.4164 −0.961650 −0.480825 0.876817i \(-0.659663\pi\)
−0.480825 + 0.876817i \(0.659663\pi\)
\(258\) 0 0
\(259\) −7.22574 −0.448986
\(260\) 0 0
\(261\) −4.19784 −0.259840
\(262\) 0 0
\(263\) 23.1291 1.42620 0.713101 0.701062i \(-0.247290\pi\)
0.713101 + 0.701062i \(0.247290\pi\)
\(264\) 0 0
\(265\) 3.30700 0.203147
\(266\) 0 0
\(267\) −10.9558 −0.670486
\(268\) 0 0
\(269\) −24.1256 −1.47097 −0.735483 0.677544i \(-0.763045\pi\)
−0.735483 + 0.677544i \(0.763045\pi\)
\(270\) 0 0
\(271\) 5.06570 0.307719 0.153860 0.988093i \(-0.450830\pi\)
0.153860 + 0.988093i \(0.450830\pi\)
\(272\) 0 0
\(273\) −13.0318 −0.788719
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.86711 0.352520 0.176260 0.984344i \(-0.443600\pi\)
0.176260 + 0.984344i \(0.443600\pi\)
\(278\) 0 0
\(279\) −10.6103 −0.635221
\(280\) 0 0
\(281\) −27.9832 −1.66934 −0.834669 0.550752i \(-0.814341\pi\)
−0.834669 + 0.550752i \(0.814341\pi\)
\(282\) 0 0
\(283\) −7.60221 −0.451904 −0.225952 0.974138i \(-0.572549\pi\)
−0.225952 + 0.974138i \(0.572549\pi\)
\(284\) 0 0
\(285\) −2.18323 −0.129323
\(286\) 0 0
\(287\) −17.3496 −1.02411
\(288\) 0 0
\(289\) −7.50270 −0.441336
\(290\) 0 0
\(291\) −0.605376 −0.0354878
\(292\) 0 0
\(293\) −3.94130 −0.230253 −0.115127 0.993351i \(-0.536727\pi\)
−0.115127 + 0.993351i \(0.536727\pi\)
\(294\) 0 0
\(295\) 0.627431 0.0365305
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.64304 0.0950192
\(300\) 0 0
\(301\) 30.2650 1.74444
\(302\) 0 0
\(303\) −7.89822 −0.453741
\(304\) 0 0
\(305\) 4.69882 0.269054
\(306\) 0 0
\(307\) −10.7552 −0.613829 −0.306915 0.951737i \(-0.599297\pi\)
−0.306915 + 0.951737i \(0.599297\pi\)
\(308\) 0 0
\(309\) 7.50698 0.427057
\(310\) 0 0
\(311\) 26.0833 1.47905 0.739525 0.673129i \(-0.235050\pi\)
0.739525 + 0.673129i \(0.235050\pi\)
\(312\) 0 0
\(313\) −3.00837 −0.170043 −0.0850214 0.996379i \(-0.527096\pi\)
−0.0850214 + 0.996379i \(0.527096\pi\)
\(314\) 0 0
\(315\) −5.79577 −0.326554
\(316\) 0 0
\(317\) −32.3983 −1.81967 −0.909836 0.414969i \(-0.863792\pi\)
−0.909836 + 0.414969i \(0.863792\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.43425 −0.0800523
\(322\) 0 0
\(323\) −13.0538 −0.726331
\(324\) 0 0
\(325\) −27.5507 −1.52824
\(326\) 0 0
\(327\) 2.67015 0.147660
\(328\) 0 0
\(329\) −35.2197 −1.94172
\(330\) 0 0
\(331\) −19.2715 −1.05926 −0.529629 0.848229i \(-0.677669\pi\)
−0.529629 + 0.848229i \(0.677669\pi\)
\(332\) 0 0
\(333\) −5.97903 −0.327649
\(334\) 0 0
\(335\) −5.82505 −0.318256
\(336\) 0 0
\(337\) −19.6589 −1.07089 −0.535445 0.844570i \(-0.679856\pi\)
−0.535445 + 0.844570i \(0.679856\pi\)
\(338\) 0 0
\(339\) 9.35201 0.507931
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 14.2535 0.769618
\(344\) 0 0
\(345\) −0.136385 −0.00734271
\(346\) 0 0
\(347\) −1.29421 −0.0694770 −0.0347385 0.999396i \(-0.511060\pi\)
−0.0347385 + 0.999396i \(0.511060\pi\)
\(348\) 0 0
\(349\) 11.4717 0.614066 0.307033 0.951699i \(-0.400664\pi\)
0.307033 + 0.951699i \(0.400664\pi\)
\(350\) 0 0
\(351\) −23.5792 −1.25857
\(352\) 0 0
\(353\) −15.5104 −0.825534 −0.412767 0.910837i \(-0.635438\pi\)
−0.412767 + 0.910837i \(0.635438\pi\)
\(354\) 0 0
\(355\) −7.77356 −0.412578
\(356\) 0 0
\(357\) 6.46784 0.342314
\(358\) 0 0
\(359\) −13.9623 −0.736904 −0.368452 0.929647i \(-0.620112\pi\)
−0.368452 + 0.929647i \(0.620112\pi\)
\(360\) 0 0
\(361\) −1.05797 −0.0556828
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.35403 0.332585
\(366\) 0 0
\(367\) 15.4530 0.806641 0.403320 0.915059i \(-0.367856\pi\)
0.403320 + 0.915059i \(0.367856\pi\)
\(368\) 0 0
\(369\) −14.3561 −0.747350
\(370\) 0 0
\(371\) 13.4657 0.699105
\(372\) 0 0
\(373\) −6.75664 −0.349846 −0.174923 0.984582i \(-0.555968\pi\)
−0.174923 + 0.984582i \(0.555968\pi\)
\(374\) 0 0
\(375\) 4.86404 0.251178
\(376\) 0 0
\(377\) 10.3102 0.531004
\(378\) 0 0
\(379\) −23.1289 −1.18805 −0.594025 0.804446i \(-0.702462\pi\)
−0.594025 + 0.804446i \(0.702462\pi\)
\(380\) 0 0
\(381\) 5.61502 0.287666
\(382\) 0 0
\(383\) 23.9627 1.22444 0.612219 0.790689i \(-0.290277\pi\)
0.612219 + 0.790689i \(0.290277\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 25.0431 1.27301
\(388\) 0 0
\(389\) −13.3342 −0.676069 −0.338035 0.941134i \(-0.609762\pi\)
−0.338035 + 0.941134i \(0.609762\pi\)
\(390\) 0 0
\(391\) −0.815460 −0.0412396
\(392\) 0 0
\(393\) 4.05967 0.204784
\(394\) 0 0
\(395\) 11.0458 0.555775
\(396\) 0 0
\(397\) −23.8585 −1.19742 −0.598712 0.800964i \(-0.704321\pi\)
−0.598712 + 0.800964i \(0.704321\pi\)
\(398\) 0 0
\(399\) −8.88986 −0.445050
\(400\) 0 0
\(401\) 13.5055 0.674432 0.337216 0.941427i \(-0.390515\pi\)
0.337216 + 0.941427i \(0.390515\pi\)
\(402\) 0 0
\(403\) 26.0598 1.29813
\(404\) 0 0
\(405\) −3.73362 −0.185525
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 37.6546 1.86190 0.930950 0.365145i \(-0.118981\pi\)
0.930950 + 0.365145i \(0.118981\pi\)
\(410\) 0 0
\(411\) −5.69889 −0.281105
\(412\) 0 0
\(413\) 2.55483 0.125715
\(414\) 0 0
\(415\) 8.25049 0.405000
\(416\) 0 0
\(417\) 12.4999 0.612124
\(418\) 0 0
\(419\) −13.2409 −0.646862 −0.323431 0.946252i \(-0.604836\pi\)
−0.323431 + 0.946252i \(0.604836\pi\)
\(420\) 0 0
\(421\) 2.31827 0.112986 0.0564928 0.998403i \(-0.482008\pi\)
0.0564928 + 0.998403i \(0.482008\pi\)
\(422\) 0 0
\(423\) −29.1430 −1.41698
\(424\) 0 0
\(425\) 13.6738 0.663276
\(426\) 0 0
\(427\) 19.1331 0.925915
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.90764 0.188225 0.0941123 0.995562i \(-0.469999\pi\)
0.0941123 + 0.995562i \(0.469999\pi\)
\(432\) 0 0
\(433\) 19.6112 0.942456 0.471228 0.882011i \(-0.343811\pi\)
0.471228 + 0.882011i \(0.343811\pi\)
\(434\) 0 0
\(435\) −0.855830 −0.0410339
\(436\) 0 0
\(437\) 1.12083 0.0536164
\(438\) 0 0
\(439\) −4.69615 −0.224135 −0.112068 0.993701i \(-0.535747\pi\)
−0.112068 + 0.993701i \(0.535747\pi\)
\(440\) 0 0
\(441\) −5.90273 −0.281082
\(442\) 0 0
\(443\) 42.0488 1.99780 0.998899 0.0469116i \(-0.0149379\pi\)
0.998899 + 0.0469116i \(0.0149379\pi\)
\(444\) 0 0
\(445\) 11.9673 0.567304
\(446\) 0 0
\(447\) −7.54966 −0.357087
\(448\) 0 0
\(449\) −24.6953 −1.16544 −0.582722 0.812671i \(-0.698013\pi\)
−0.582722 + 0.812671i \(0.698013\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −12.0586 −0.566564
\(454\) 0 0
\(455\) 14.2349 0.667342
\(456\) 0 0
\(457\) 17.8621 0.835555 0.417778 0.908549i \(-0.362809\pi\)
0.417778 + 0.908549i \(0.362809\pi\)
\(458\) 0 0
\(459\) 11.7027 0.546234
\(460\) 0 0
\(461\) −29.9746 −1.39606 −0.698028 0.716071i \(-0.745939\pi\)
−0.698028 + 0.716071i \(0.745939\pi\)
\(462\) 0 0
\(463\) 29.0359 1.34941 0.674705 0.738087i \(-0.264271\pi\)
0.674705 + 0.738087i \(0.264271\pi\)
\(464\) 0 0
\(465\) −2.16316 −0.100314
\(466\) 0 0
\(467\) 28.1602 1.30310 0.651549 0.758606i \(-0.274119\pi\)
0.651549 + 0.758606i \(0.274119\pi\)
\(468\) 0 0
\(469\) −23.7189 −1.09524
\(470\) 0 0
\(471\) 9.09435 0.419045
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −18.7942 −0.862338
\(476\) 0 0
\(477\) 11.1424 0.510174
\(478\) 0 0
\(479\) 22.2165 1.01510 0.507548 0.861623i \(-0.330552\pi\)
0.507548 + 0.861623i \(0.330552\pi\)
\(480\) 0 0
\(481\) 14.6850 0.669579
\(482\) 0 0
\(483\) −0.555343 −0.0252690
\(484\) 0 0
\(485\) 0.661265 0.0300265
\(486\) 0 0
\(487\) −13.1020 −0.593710 −0.296855 0.954923i \(-0.595938\pi\)
−0.296855 + 0.954923i \(0.595938\pi\)
\(488\) 0 0
\(489\) −15.5175 −0.701724
\(490\) 0 0
\(491\) −13.5736 −0.612566 −0.306283 0.951940i \(-0.599085\pi\)
−0.306283 + 0.951940i \(0.599085\pi\)
\(492\) 0 0
\(493\) −5.11710 −0.230463
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −31.6531 −1.41983
\(498\) 0 0
\(499\) 19.9633 0.893679 0.446840 0.894614i \(-0.352549\pi\)
0.446840 + 0.894614i \(0.352549\pi\)
\(500\) 0 0
\(501\) −11.0610 −0.494167
\(502\) 0 0
\(503\) 8.09028 0.360728 0.180364 0.983600i \(-0.442272\pi\)
0.180364 + 0.983600i \(0.442272\pi\)
\(504\) 0 0
\(505\) 8.62740 0.383914
\(506\) 0 0
\(507\) 17.5548 0.779634
\(508\) 0 0
\(509\) 31.5349 1.39776 0.698879 0.715240i \(-0.253683\pi\)
0.698879 + 0.715240i \(0.253683\pi\)
\(510\) 0 0
\(511\) 25.8729 1.14455
\(512\) 0 0
\(513\) −16.0850 −0.710170
\(514\) 0 0
\(515\) −8.20004 −0.361337
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −5.92943 −0.260273
\(520\) 0 0
\(521\) 36.9841 1.62030 0.810151 0.586221i \(-0.199385\pi\)
0.810151 + 0.586221i \(0.199385\pi\)
\(522\) 0 0
\(523\) 7.41319 0.324156 0.162078 0.986778i \(-0.448180\pi\)
0.162078 + 0.986778i \(0.448180\pi\)
\(524\) 0 0
\(525\) 9.31211 0.406414
\(526\) 0 0
\(527\) −12.9338 −0.563405
\(528\) 0 0
\(529\) −22.9300 −0.996956
\(530\) 0 0
\(531\) 2.11403 0.0917410
\(532\) 0 0
\(533\) 35.2598 1.52727
\(534\) 0 0
\(535\) 1.56667 0.0677329
\(536\) 0 0
\(537\) −9.27180 −0.400108
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.5798 0.497857 0.248928 0.968522i \(-0.419922\pi\)
0.248928 + 0.968522i \(0.419922\pi\)
\(542\) 0 0
\(543\) 5.62858 0.241545
\(544\) 0 0
\(545\) −2.91666 −0.124936
\(546\) 0 0
\(547\) −10.0361 −0.429113 −0.214557 0.976712i \(-0.568831\pi\)
−0.214557 + 0.976712i \(0.568831\pi\)
\(548\) 0 0
\(549\) 15.8319 0.675690
\(550\) 0 0
\(551\) 7.03331 0.299629
\(552\) 0 0
\(553\) 44.9773 1.91263
\(554\) 0 0
\(555\) −1.21897 −0.0517424
\(556\) 0 0
\(557\) −31.1186 −1.31854 −0.659269 0.751907i \(-0.729134\pi\)
−0.659269 + 0.751907i \(0.729134\pi\)
\(558\) 0 0
\(559\) −61.5080 −2.60151
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.2824 −0.939092 −0.469546 0.882908i \(-0.655582\pi\)
−0.469546 + 0.882908i \(0.655582\pi\)
\(564\) 0 0
\(565\) −10.2154 −0.429765
\(566\) 0 0
\(567\) −15.2029 −0.638461
\(568\) 0 0
\(569\) −31.2700 −1.31091 −0.655453 0.755236i \(-0.727522\pi\)
−0.655453 + 0.755236i \(0.727522\pi\)
\(570\) 0 0
\(571\) −5.93719 −0.248464 −0.124232 0.992253i \(-0.539647\pi\)
−0.124232 + 0.992253i \(0.539647\pi\)
\(572\) 0 0
\(573\) −13.5254 −0.565032
\(574\) 0 0
\(575\) −1.17406 −0.0489618
\(576\) 0 0
\(577\) 6.67861 0.278034 0.139017 0.990290i \(-0.455606\pi\)
0.139017 + 0.990290i \(0.455606\pi\)
\(578\) 0 0
\(579\) −16.3900 −0.681145
\(580\) 0 0
\(581\) 33.5951 1.39376
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 11.7788 0.486995
\(586\) 0 0
\(587\) 41.0820 1.69563 0.847817 0.530289i \(-0.177916\pi\)
0.847817 + 0.530289i \(0.177916\pi\)
\(588\) 0 0
\(589\) 17.7771 0.732494
\(590\) 0 0
\(591\) −12.9828 −0.534039
\(592\) 0 0
\(593\) −0.283994 −0.0116622 −0.00583111 0.999983i \(-0.501856\pi\)
−0.00583111 + 0.999983i \(0.501856\pi\)
\(594\) 0 0
\(595\) −7.06496 −0.289635
\(596\) 0 0
\(597\) −6.74436 −0.276028
\(598\) 0 0
\(599\) −41.6379 −1.70128 −0.850638 0.525751i \(-0.823784\pi\)
−0.850638 + 0.525751i \(0.823784\pi\)
\(600\) 0 0
\(601\) 6.17280 0.251794 0.125897 0.992043i \(-0.459819\pi\)
0.125897 + 0.992043i \(0.459819\pi\)
\(602\) 0 0
\(603\) −19.6265 −0.799254
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 40.6678 1.65066 0.825328 0.564653i \(-0.190990\pi\)
0.825328 + 0.564653i \(0.190990\pi\)
\(608\) 0 0
\(609\) −3.48484 −0.141213
\(610\) 0 0
\(611\) 71.5776 2.89572
\(612\) 0 0
\(613\) −17.2609 −0.697159 −0.348580 0.937279i \(-0.613336\pi\)
−0.348580 + 0.937279i \(0.613336\pi\)
\(614\) 0 0
\(615\) −2.92684 −0.118022
\(616\) 0 0
\(617\) 13.2729 0.534346 0.267173 0.963649i \(-0.413911\pi\)
0.267173 + 0.963649i \(0.413911\pi\)
\(618\) 0 0
\(619\) 12.8183 0.515210 0.257605 0.966250i \(-0.417067\pi\)
0.257605 + 0.966250i \(0.417067\pi\)
\(620\) 0 0
\(621\) −1.00482 −0.0403220
\(622\) 0 0
\(623\) 48.7295 1.95231
\(624\) 0 0
\(625\) 16.8719 0.674875
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.28836 −0.290606
\(630\) 0 0
\(631\) 6.44282 0.256485 0.128242 0.991743i \(-0.459066\pi\)
0.128242 + 0.991743i \(0.459066\pi\)
\(632\) 0 0
\(633\) 8.94290 0.355448
\(634\) 0 0
\(635\) −6.13340 −0.243397
\(636\) 0 0
\(637\) 14.4976 0.574416
\(638\) 0 0
\(639\) −26.1917 −1.03613
\(640\) 0 0
\(641\) −20.0691 −0.792683 −0.396342 0.918103i \(-0.629720\pi\)
−0.396342 + 0.918103i \(0.629720\pi\)
\(642\) 0 0
\(643\) −32.4578 −1.28001 −0.640005 0.768371i \(-0.721068\pi\)
−0.640005 + 0.768371i \(0.721068\pi\)
\(644\) 0 0
\(645\) 5.10564 0.201035
\(646\) 0 0
\(647\) −15.8124 −0.621649 −0.310825 0.950467i \(-0.600605\pi\)
−0.310825 + 0.950467i \(0.600605\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −8.80816 −0.345219
\(652\) 0 0
\(653\) 3.00274 0.117506 0.0587532 0.998273i \(-0.481287\pi\)
0.0587532 + 0.998273i \(0.481287\pi\)
\(654\) 0 0
\(655\) −4.43447 −0.173269
\(656\) 0 0
\(657\) 21.4089 0.835239
\(658\) 0 0
\(659\) −3.17515 −0.123686 −0.0618431 0.998086i \(-0.519698\pi\)
−0.0618431 + 0.998086i \(0.519698\pi\)
\(660\) 0 0
\(661\) 30.6169 1.19086 0.595430 0.803408i \(-0.296982\pi\)
0.595430 + 0.803408i \(0.296982\pi\)
\(662\) 0 0
\(663\) −13.1447 −0.510498
\(664\) 0 0
\(665\) 9.71058 0.376560
\(666\) 0 0
\(667\) 0.439366 0.0170123
\(668\) 0 0
\(669\) 2.40215 0.0928725
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −17.4373 −0.672158 −0.336079 0.941834i \(-0.609101\pi\)
−0.336079 + 0.941834i \(0.609101\pi\)
\(674\) 0 0
\(675\) 16.8490 0.648518
\(676\) 0 0
\(677\) −39.8843 −1.53288 −0.766439 0.642318i \(-0.777973\pi\)
−0.766439 + 0.642318i \(0.777973\pi\)
\(678\) 0 0
\(679\) 2.69260 0.103332
\(680\) 0 0
\(681\) −7.50705 −0.287671
\(682\) 0 0
\(683\) 37.9702 1.45289 0.726445 0.687225i \(-0.241171\pi\)
0.726445 + 0.687225i \(0.241171\pi\)
\(684\) 0 0
\(685\) 6.22502 0.237846
\(686\) 0 0
\(687\) −8.02887 −0.306321
\(688\) 0 0
\(689\) −27.3666 −1.04259
\(690\) 0 0
\(691\) 30.3851 1.15590 0.577951 0.816071i \(-0.303852\pi\)
0.577951 + 0.816071i \(0.303852\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.6539 −0.517923
\(696\) 0 0
\(697\) −17.4999 −0.662856
\(698\) 0 0
\(699\) 3.24133 0.122598
\(700\) 0 0
\(701\) −15.2756 −0.576950 −0.288475 0.957487i \(-0.593148\pi\)
−0.288475 + 0.957487i \(0.593148\pi\)
\(702\) 0 0
\(703\) 10.0176 0.377822
\(704\) 0 0
\(705\) −5.94149 −0.223770
\(706\) 0 0
\(707\) 35.1298 1.32119
\(708\) 0 0
\(709\) −34.9713 −1.31338 −0.656688 0.754162i \(-0.728043\pi\)
−0.656688 + 0.754162i \(0.728043\pi\)
\(710\) 0 0
\(711\) 37.2170 1.39575
\(712\) 0 0
\(713\) 1.11053 0.0415895
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.832062 0.0310739
\(718\) 0 0
\(719\) 10.5261 0.392557 0.196279 0.980548i \(-0.437114\pi\)
0.196279 + 0.980548i \(0.437114\pi\)
\(720\) 0 0
\(721\) −33.3896 −1.24349
\(722\) 0 0
\(723\) −12.1002 −0.450010
\(724\) 0 0
\(725\) −7.36738 −0.273618
\(726\) 0 0
\(727\) 8.67301 0.321664 0.160832 0.986982i \(-0.448582\pi\)
0.160832 + 0.986982i \(0.448582\pi\)
\(728\) 0 0
\(729\) −4.75429 −0.176085
\(730\) 0 0
\(731\) 30.5272 1.12909
\(732\) 0 0
\(733\) 42.6922 1.57687 0.788436 0.615116i \(-0.210891\pi\)
0.788436 + 0.615116i \(0.210891\pi\)
\(734\) 0 0
\(735\) −1.20341 −0.0443886
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −41.2502 −1.51741 −0.758707 0.651432i \(-0.774168\pi\)
−0.758707 + 0.651432i \(0.774168\pi\)
\(740\) 0 0
\(741\) 18.0670 0.663709
\(742\) 0 0
\(743\) −34.8323 −1.27787 −0.638937 0.769259i \(-0.720626\pi\)
−0.638937 + 0.769259i \(0.720626\pi\)
\(744\) 0 0
\(745\) 8.24666 0.302134
\(746\) 0 0
\(747\) 27.7987 1.01710
\(748\) 0 0
\(749\) 6.37930 0.233094
\(750\) 0 0
\(751\) −35.8598 −1.30854 −0.654272 0.756259i \(-0.727025\pi\)
−0.654272 + 0.756259i \(0.727025\pi\)
\(752\) 0 0
\(753\) −0.547046 −0.0199355
\(754\) 0 0
\(755\) 13.1719 0.479375
\(756\) 0 0
\(757\) −11.0309 −0.400924 −0.200462 0.979702i \(-0.564244\pi\)
−0.200462 + 0.979702i \(0.564244\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.74706 0.317081 0.158540 0.987352i \(-0.449321\pi\)
0.158540 + 0.987352i \(0.449321\pi\)
\(762\) 0 0
\(763\) −11.8763 −0.429952
\(764\) 0 0
\(765\) −5.84599 −0.211362
\(766\) 0 0
\(767\) −5.19223 −0.187481
\(768\) 0 0
\(769\) 9.61551 0.346744 0.173372 0.984856i \(-0.444534\pi\)
0.173372 + 0.984856i \(0.444534\pi\)
\(770\) 0 0
\(771\) −10.5899 −0.381384
\(772\) 0 0
\(773\) 6.57318 0.236421 0.118210 0.992989i \(-0.462284\pi\)
0.118210 + 0.992989i \(0.462284\pi\)
\(774\) 0 0
\(775\) −18.6215 −0.668904
\(776\) 0 0
\(777\) −4.96351 −0.178065
\(778\) 0 0
\(779\) 24.0531 0.861793
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −6.30536 −0.225335
\(784\) 0 0
\(785\) −9.93395 −0.354558
\(786\) 0 0
\(787\) −1.60753 −0.0573022 −0.0286511 0.999589i \(-0.509121\pi\)
−0.0286511 + 0.999589i \(0.509121\pi\)
\(788\) 0 0
\(789\) 15.8879 0.565623
\(790\) 0 0
\(791\) −41.5960 −1.47898
\(792\) 0 0
\(793\) −38.8845 −1.38083
\(794\) 0 0
\(795\) 2.27164 0.0805669
\(796\) 0 0
\(797\) −19.7184 −0.698463 −0.349231 0.937037i \(-0.613557\pi\)
−0.349231 + 0.937037i \(0.613557\pi\)
\(798\) 0 0
\(799\) −35.5249 −1.25678
\(800\) 0 0
\(801\) 40.3218 1.42470
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0.606614 0.0213803
\(806\) 0 0
\(807\) −16.5724 −0.583376
\(808\) 0 0
\(809\) −4.57450 −0.160831 −0.0804154 0.996761i \(-0.525625\pi\)
−0.0804154 + 0.996761i \(0.525625\pi\)
\(810\) 0 0
\(811\) 3.52724 0.123858 0.0619291 0.998081i \(-0.480275\pi\)
0.0619291 + 0.998081i \(0.480275\pi\)
\(812\) 0 0
\(813\) 3.47973 0.122040
\(814\) 0 0
\(815\) 16.9501 0.593735
\(816\) 0 0
\(817\) −41.9588 −1.46795
\(818\) 0 0
\(819\) 47.9621 1.67593
\(820\) 0 0
\(821\) 2.46739 0.0861126 0.0430563 0.999073i \(-0.486291\pi\)
0.0430563 + 0.999073i \(0.486291\pi\)
\(822\) 0 0
\(823\) −7.44148 −0.259394 −0.129697 0.991554i \(-0.541400\pi\)
−0.129697 + 0.991554i \(0.541400\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.8067 0.375785 0.187893 0.982190i \(-0.439834\pi\)
0.187893 + 0.982190i \(0.439834\pi\)
\(828\) 0 0
\(829\) 22.3031 0.774619 0.387310 0.921950i \(-0.373404\pi\)
0.387310 + 0.921950i \(0.373404\pi\)
\(830\) 0 0
\(831\) 4.03024 0.139807
\(832\) 0 0
\(833\) −7.19534 −0.249304
\(834\) 0 0
\(835\) 12.0821 0.418119
\(836\) 0 0
\(837\) −15.9372 −0.550869
\(838\) 0 0
\(839\) −31.9204 −1.10202 −0.551008 0.834500i \(-0.685757\pi\)
−0.551008 + 0.834500i \(0.685757\pi\)
\(840\) 0 0
\(841\) −26.2429 −0.904928
\(842\) 0 0
\(843\) −19.2222 −0.662049
\(844\) 0 0
\(845\) −19.1754 −0.659655
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −5.22211 −0.179222
\(850\) 0 0
\(851\) 0.625795 0.0214520
\(852\) 0 0
\(853\) 16.7892 0.574851 0.287425 0.957803i \(-0.407201\pi\)
0.287425 + 0.957803i \(0.407201\pi\)
\(854\) 0 0
\(855\) 8.03515 0.274796
\(856\) 0 0
\(857\) −11.2278 −0.383534 −0.191767 0.981440i \(-0.561422\pi\)
−0.191767 + 0.981440i \(0.561422\pi\)
\(858\) 0 0
\(859\) −50.2349 −1.71399 −0.856996 0.515324i \(-0.827672\pi\)
−0.856996 + 0.515324i \(0.827672\pi\)
\(860\) 0 0
\(861\) −11.9178 −0.406157
\(862\) 0 0
\(863\) 6.57659 0.223870 0.111935 0.993716i \(-0.464295\pi\)
0.111935 + 0.993716i \(0.464295\pi\)
\(864\) 0 0
\(865\) 6.47684 0.220219
\(866\) 0 0
\(867\) −5.15376 −0.175031
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 48.2044 1.63335
\(872\) 0 0
\(873\) 2.22803 0.0754072
\(874\) 0 0
\(875\) −21.6343 −0.731373
\(876\) 0 0
\(877\) −44.2319 −1.49361 −0.746803 0.665045i \(-0.768412\pi\)
−0.746803 + 0.665045i \(0.768412\pi\)
\(878\) 0 0
\(879\) −2.70736 −0.0913170
\(880\) 0 0
\(881\) 37.0273 1.24748 0.623741 0.781631i \(-0.285612\pi\)
0.623741 + 0.781631i \(0.285612\pi\)
\(882\) 0 0
\(883\) 27.8246 0.936371 0.468186 0.883630i \(-0.344908\pi\)
0.468186 + 0.883630i \(0.344908\pi\)
\(884\) 0 0
\(885\) 0.430995 0.0144877
\(886\) 0 0
\(887\) 11.8680 0.398488 0.199244 0.979950i \(-0.436151\pi\)
0.199244 + 0.979950i \(0.436151\pi\)
\(888\) 0 0
\(889\) −24.9745 −0.837619
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 48.8279 1.63396
\(894\) 0 0
\(895\) 10.1278 0.338535
\(896\) 0 0
\(897\) 1.12863 0.0376840
\(898\) 0 0
\(899\) 6.96868 0.232418
\(900\) 0 0
\(901\) 13.5824 0.452496
\(902\) 0 0
\(903\) 20.7896 0.691835
\(904\) 0 0
\(905\) −6.14822 −0.204374
\(906\) 0 0
\(907\) 10.1825 0.338105 0.169052 0.985607i \(-0.445929\pi\)
0.169052 + 0.985607i \(0.445929\pi\)
\(908\) 0 0
\(909\) 29.0686 0.964145
\(910\) 0 0
\(911\) 16.1304 0.534425 0.267212 0.963638i \(-0.413897\pi\)
0.267212 + 0.963638i \(0.413897\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 3.22772 0.106705
\(916\) 0 0
\(917\) −18.0567 −0.596284
\(918\) 0 0
\(919\) −18.8557 −0.621993 −0.310996 0.950411i \(-0.600663\pi\)
−0.310996 + 0.950411i \(0.600663\pi\)
\(920\) 0 0
\(921\) −7.38794 −0.243441
\(922\) 0 0
\(923\) 64.3291 2.11742
\(924\) 0 0
\(925\) −10.4935 −0.345023
\(926\) 0 0
\(927\) −27.6287 −0.907445
\(928\) 0 0
\(929\) 12.7280 0.417593 0.208797 0.977959i \(-0.433045\pi\)
0.208797 + 0.977959i \(0.433045\pi\)
\(930\) 0 0
\(931\) 9.88980 0.324125
\(932\) 0 0
\(933\) 17.9172 0.586582
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.92146 0.291452 0.145726 0.989325i \(-0.453448\pi\)
0.145726 + 0.989325i \(0.453448\pi\)
\(938\) 0 0
\(939\) −2.06651 −0.0674379
\(940\) 0 0
\(941\) 13.8416 0.451222 0.225611 0.974217i \(-0.427562\pi\)
0.225611 + 0.974217i \(0.427562\pi\)
\(942\) 0 0
\(943\) 1.50258 0.0489308
\(944\) 0 0
\(945\) −8.70553 −0.283191
\(946\) 0 0
\(947\) −34.5104 −1.12144 −0.560719 0.828006i \(-0.689475\pi\)
−0.560719 + 0.828006i \(0.689475\pi\)
\(948\) 0 0
\(949\) −52.5820 −1.70688
\(950\) 0 0
\(951\) −22.2551 −0.721670
\(952\) 0 0
\(953\) 26.3170 0.852492 0.426246 0.904607i \(-0.359836\pi\)
0.426246 + 0.904607i \(0.359836\pi\)
\(954\) 0 0
\(955\) 14.7741 0.478078
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25.3476 0.818516
\(960\) 0 0
\(961\) −13.3863 −0.431815
\(962\) 0 0
\(963\) 5.27863 0.170101
\(964\) 0 0
\(965\) 17.9032 0.576323
\(966\) 0 0
\(967\) 4.18054 0.134437 0.0672185 0.997738i \(-0.478588\pi\)
0.0672185 + 0.997738i \(0.478588\pi\)
\(968\) 0 0
\(969\) −8.96690 −0.288058
\(970\) 0 0
\(971\) 17.5235 0.562356 0.281178 0.959656i \(-0.409275\pi\)
0.281178 + 0.959656i \(0.409275\pi\)
\(972\) 0 0
\(973\) −55.5973 −1.78237
\(974\) 0 0
\(975\) −18.9252 −0.606090
\(976\) 0 0
\(977\) −21.9160 −0.701154 −0.350577 0.936534i \(-0.614015\pi\)
−0.350577 + 0.936534i \(0.614015\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −9.82722 −0.313759
\(982\) 0 0
\(983\) −33.4101 −1.06562 −0.532808 0.846236i \(-0.678863\pi\)
−0.532808 + 0.846236i \(0.678863\pi\)
\(984\) 0 0
\(985\) 14.1813 0.451855
\(986\) 0 0
\(987\) −24.1931 −0.770075
\(988\) 0 0
\(989\) −2.62114 −0.0833473
\(990\) 0 0
\(991\) 17.4811 0.555307 0.277653 0.960681i \(-0.410443\pi\)
0.277653 + 0.960681i \(0.410443\pi\)
\(992\) 0 0
\(993\) −13.2380 −0.420095
\(994\) 0 0
\(995\) 7.36701 0.233550
\(996\) 0 0
\(997\) −51.0447 −1.61660 −0.808301 0.588769i \(-0.799613\pi\)
−0.808301 + 0.588769i \(0.799613\pi\)
\(998\) 0 0
\(999\) −8.98080 −0.284140
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.du.1.5 6
4.3 odd 2 7744.2.a.dv.1.2 6
8.3 odd 2 3872.2.a.bn.1.5 6
8.5 even 2 3872.2.a.bq.1.2 6
11.5 even 5 704.2.m.m.641.3 12
11.9 even 5 704.2.m.m.257.3 12
11.10 odd 2 7744.2.a.dt.1.5 6
44.27 odd 10 704.2.m.n.641.1 12
44.31 odd 10 704.2.m.n.257.1 12
44.43 even 2 7744.2.a.dw.1.2 6
88.5 even 10 352.2.m.e.289.1 yes 12
88.21 odd 2 3872.2.a.bp.1.2 6
88.27 odd 10 352.2.m.f.289.3 yes 12
88.43 even 2 3872.2.a.bo.1.5 6
88.53 even 10 352.2.m.e.257.1 12
88.75 odd 10 352.2.m.f.257.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.257.1 12 88.53 even 10
352.2.m.e.289.1 yes 12 88.5 even 10
352.2.m.f.257.3 yes 12 88.75 odd 10
352.2.m.f.289.3 yes 12 88.27 odd 10
704.2.m.m.257.3 12 11.9 even 5
704.2.m.m.641.3 12 11.5 even 5
704.2.m.n.257.1 12 44.31 odd 10
704.2.m.n.641.1 12 44.27 odd 10
3872.2.a.bn.1.5 6 8.3 odd 2
3872.2.a.bo.1.5 6 88.43 even 2
3872.2.a.bp.1.2 6 88.21 odd 2
3872.2.a.bq.1.2 6 8.5 even 2
7744.2.a.dt.1.5 6 11.10 odd 2
7744.2.a.du.1.5 6 1.1 even 1 trivial
7744.2.a.dv.1.2 6 4.3 odd 2
7744.2.a.dw.1.2 6 44.43 even 2