Defining parameters
Level: | \( N \) | \(=\) | \( 7742 = 2 \cdot 7^{2} \cdot 79 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7742.v (of order \(13\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 79 \) |
Character field: | \(\Q(\zeta_{13})\) | ||
Sturm bound: | \(2240\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7742, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 13632 | 3264 | 10368 |
Cusp forms | 13248 | 3264 | 9984 |
Eisenstein series | 384 | 0 | 384 |
Decomposition of \(S_{2}^{\mathrm{new}}(7742, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(7742, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7742, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(79, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(158, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(553, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1106, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3871, [\chi])\)\(^{\oplus 2}\)