Defining parameters
| Level: | \( N \) | \(=\) | \( 7742 = 2 \cdot 7^{2} \cdot 79 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7742.bj (of order \(39\) and degree \(24\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 79 \) |
| Character field: | \(\Q(\zeta_{39})\) | ||
| Sturm bound: | \(2240\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7742, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 27264 | 6576 | 20688 |
| Cusp forms | 26496 | 6576 | 19920 |
| Eisenstein series | 768 | 0 | 768 |
Decomposition of \(S_{2}^{\mathrm{new}}(7742, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(7742, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7742, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(79, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(158, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(553, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1106, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3871, [\chi])\)\(^{\oplus 2}\)