Properties

Label 768.6.a.v.1.1
Level $768$
Weight $6$
Character 768.1
Self dual yes
Analytic conductor $123.175$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,6,Mod(1,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,18,0,40,0,16,0,162,0,344] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.174773616\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{61}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 384)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.40512\) of defining polynomial
Character \(\chi\) \(=\) 768.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} -11.2410 q^{5} -148.205 q^{7} +81.0000 q^{9} +47.0360 q^{11} +545.374 q^{13} -101.169 q^{15} -1162.53 q^{17} +606.748 q^{19} -1333.84 q^{21} +1104.70 q^{23} -2998.64 q^{25} +729.000 q^{27} +2355.82 q^{29} +2949.39 q^{31} +423.324 q^{33} +1665.97 q^{35} +3567.52 q^{37} +4908.37 q^{39} -14129.3 q^{41} -17714.4 q^{43} -910.521 q^{45} -11597.8 q^{47} +5157.72 q^{49} -10462.8 q^{51} +1514.95 q^{53} -528.732 q^{55} +5460.73 q^{57} +10085.1 q^{59} +35214.0 q^{61} -12004.6 q^{63} -6130.55 q^{65} +28755.0 q^{67} +9942.28 q^{69} +53443.0 q^{71} +43934.9 q^{73} -26987.8 q^{75} -6970.97 q^{77} -26786.0 q^{79} +6561.00 q^{81} +105107. q^{83} +13068.0 q^{85} +21202.4 q^{87} +47927.2 q^{89} -80827.1 q^{91} +26544.5 q^{93} -6820.45 q^{95} +38270.6 q^{97} +3809.92 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} + 40 q^{5} + 16 q^{7} + 162 q^{9} + 344 q^{11} + 216 q^{13} + 360 q^{15} + 924 q^{17} - 536 q^{19} + 144 q^{21} + 3584 q^{23} - 3498 q^{25} + 1458 q^{27} + 8648 q^{29} - 3536 q^{31} + 3096 q^{33}+ \cdots + 27864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) −11.2410 −0.201085 −0.100543 0.994933i \(-0.532058\pi\)
−0.100543 + 0.994933i \(0.532058\pi\)
\(6\) 0 0
\(7\) −148.205 −1.14319 −0.571594 0.820537i \(-0.693675\pi\)
−0.571594 + 0.820537i \(0.693675\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 47.0360 0.117206 0.0586028 0.998281i \(-0.481335\pi\)
0.0586028 + 0.998281i \(0.481335\pi\)
\(12\) 0 0
\(13\) 545.374 0.895027 0.447513 0.894277i \(-0.352310\pi\)
0.447513 + 0.894277i \(0.352310\pi\)
\(14\) 0 0
\(15\) −101.169 −0.116097
\(16\) 0 0
\(17\) −1162.53 −0.975624 −0.487812 0.872949i \(-0.662205\pi\)
−0.487812 + 0.872949i \(0.662205\pi\)
\(18\) 0 0
\(19\) 606.748 0.385589 0.192794 0.981239i \(-0.438245\pi\)
0.192794 + 0.981239i \(0.438245\pi\)
\(20\) 0 0
\(21\) −1333.84 −0.660020
\(22\) 0 0
\(23\) 1104.70 0.435436 0.217718 0.976012i \(-0.430139\pi\)
0.217718 + 0.976012i \(0.430139\pi\)
\(24\) 0 0
\(25\) −2998.64 −0.959565
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 2355.82 0.520172 0.260086 0.965586i \(-0.416249\pi\)
0.260086 + 0.965586i \(0.416249\pi\)
\(30\) 0 0
\(31\) 2949.39 0.551224 0.275612 0.961269i \(-0.411120\pi\)
0.275612 + 0.961269i \(0.411120\pi\)
\(32\) 0 0
\(33\) 423.324 0.0676687
\(34\) 0 0
\(35\) 1665.97 0.229878
\(36\) 0 0
\(37\) 3567.52 0.428413 0.214206 0.976788i \(-0.431283\pi\)
0.214206 + 0.976788i \(0.431283\pi\)
\(38\) 0 0
\(39\) 4908.37 0.516744
\(40\) 0 0
\(41\) −14129.3 −1.31269 −0.656343 0.754463i \(-0.727897\pi\)
−0.656343 + 0.754463i \(0.727897\pi\)
\(42\) 0 0
\(43\) −17714.4 −1.46102 −0.730510 0.682902i \(-0.760717\pi\)
−0.730510 + 0.682902i \(0.760717\pi\)
\(44\) 0 0
\(45\) −910.521 −0.0670284
\(46\) 0 0
\(47\) −11597.8 −0.765829 −0.382914 0.923784i \(-0.625080\pi\)
−0.382914 + 0.923784i \(0.625080\pi\)
\(48\) 0 0
\(49\) 5157.72 0.306879
\(50\) 0 0
\(51\) −10462.8 −0.563277
\(52\) 0 0
\(53\) 1514.95 0.0740814 0.0370407 0.999314i \(-0.488207\pi\)
0.0370407 + 0.999314i \(0.488207\pi\)
\(54\) 0 0
\(55\) −528.732 −0.0235683
\(56\) 0 0
\(57\) 5460.73 0.222620
\(58\) 0 0
\(59\) 10085.1 0.377181 0.188590 0.982056i \(-0.439608\pi\)
0.188590 + 0.982056i \(0.439608\pi\)
\(60\) 0 0
\(61\) 35214.0 1.21169 0.605843 0.795584i \(-0.292836\pi\)
0.605843 + 0.795584i \(0.292836\pi\)
\(62\) 0 0
\(63\) −12004.6 −0.381063
\(64\) 0 0
\(65\) −6130.55 −0.179977
\(66\) 0 0
\(67\) 28755.0 0.782576 0.391288 0.920268i \(-0.372030\pi\)
0.391288 + 0.920268i \(0.372030\pi\)
\(68\) 0 0
\(69\) 9942.28 0.251399
\(70\) 0 0
\(71\) 53443.0 1.25819 0.629093 0.777330i \(-0.283426\pi\)
0.629093 + 0.777330i \(0.283426\pi\)
\(72\) 0 0
\(73\) 43934.9 0.964944 0.482472 0.875911i \(-0.339739\pi\)
0.482472 + 0.875911i \(0.339739\pi\)
\(74\) 0 0
\(75\) −26987.8 −0.554005
\(76\) 0 0
\(77\) −6970.97 −0.133988
\(78\) 0 0
\(79\) −26786.0 −0.482881 −0.241441 0.970416i \(-0.577620\pi\)
−0.241441 + 0.970416i \(0.577620\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 105107. 1.67470 0.837348 0.546671i \(-0.184105\pi\)
0.837348 + 0.546671i \(0.184105\pi\)
\(84\) 0 0
\(85\) 13068.0 0.196183
\(86\) 0 0
\(87\) 21202.4 0.300321
\(88\) 0 0
\(89\) 47927.2 0.641368 0.320684 0.947186i \(-0.396087\pi\)
0.320684 + 0.947186i \(0.396087\pi\)
\(90\) 0 0
\(91\) −80827.1 −1.02318
\(92\) 0 0
\(93\) 26544.5 0.318249
\(94\) 0 0
\(95\) −6820.45 −0.0775361
\(96\) 0 0
\(97\) 38270.6 0.412986 0.206493 0.978448i \(-0.433795\pi\)
0.206493 + 0.978448i \(0.433795\pi\)
\(98\) 0 0
\(99\) 3809.92 0.0390686
\(100\) 0 0
\(101\) 128974. 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(102\) 0 0
\(103\) 202213. 1.87809 0.939044 0.343798i \(-0.111713\pi\)
0.939044 + 0.343798i \(0.111713\pi\)
\(104\) 0 0
\(105\) 14993.7 0.132720
\(106\) 0 0
\(107\) −50910.8 −0.429883 −0.214942 0.976627i \(-0.568956\pi\)
−0.214942 + 0.976627i \(0.568956\pi\)
\(108\) 0 0
\(109\) −86786.3 −0.699656 −0.349828 0.936814i \(-0.613760\pi\)
−0.349828 + 0.936814i \(0.613760\pi\)
\(110\) 0 0
\(111\) 32107.7 0.247344
\(112\) 0 0
\(113\) 10281.4 0.0757457 0.0378729 0.999283i \(-0.487942\pi\)
0.0378729 + 0.999283i \(0.487942\pi\)
\(114\) 0 0
\(115\) −12417.9 −0.0875596
\(116\) 0 0
\(117\) 44175.3 0.298342
\(118\) 0 0
\(119\) 172293. 1.11532
\(120\) 0 0
\(121\) −158839. −0.986263
\(122\) 0 0
\(123\) −127164. −0.757879
\(124\) 0 0
\(125\) 68835.8 0.394039
\(126\) 0 0
\(127\) −118323. −0.650966 −0.325483 0.945548i \(-0.605527\pi\)
−0.325483 + 0.945548i \(0.605527\pi\)
\(128\) 0 0
\(129\) −159430. −0.843520
\(130\) 0 0
\(131\) 328293. 1.67141 0.835705 0.549179i \(-0.185060\pi\)
0.835705 + 0.549179i \(0.185060\pi\)
\(132\) 0 0
\(133\) −89923.1 −0.440800
\(134\) 0 0
\(135\) −8194.69 −0.0386988
\(136\) 0 0
\(137\) 11172.7 0.0508579 0.0254289 0.999677i \(-0.491905\pi\)
0.0254289 + 0.999677i \(0.491905\pi\)
\(138\) 0 0
\(139\) −109510. −0.480748 −0.240374 0.970680i \(-0.577270\pi\)
−0.240374 + 0.970680i \(0.577270\pi\)
\(140\) 0 0
\(141\) −104380. −0.442151
\(142\) 0 0
\(143\) 25652.2 0.104902
\(144\) 0 0
\(145\) −26481.7 −0.104599
\(146\) 0 0
\(147\) 46419.5 0.177177
\(148\) 0 0
\(149\) −309729. −1.14292 −0.571461 0.820629i \(-0.693623\pi\)
−0.571461 + 0.820629i \(0.693623\pi\)
\(150\) 0 0
\(151\) 461953. 1.64875 0.824377 0.566041i \(-0.191526\pi\)
0.824377 + 0.566041i \(0.191526\pi\)
\(152\) 0 0
\(153\) −94165.1 −0.325208
\(154\) 0 0
\(155\) −33154.1 −0.110843
\(156\) 0 0
\(157\) 434846. 1.40795 0.703973 0.710227i \(-0.251408\pi\)
0.703973 + 0.710227i \(0.251408\pi\)
\(158\) 0 0
\(159\) 13634.6 0.0427709
\(160\) 0 0
\(161\) −163722. −0.497785
\(162\) 0 0
\(163\) 119362. 0.351883 0.175941 0.984401i \(-0.443703\pi\)
0.175941 + 0.984401i \(0.443703\pi\)
\(164\) 0 0
\(165\) −4758.59 −0.0136072
\(166\) 0 0
\(167\) 460259. 1.27706 0.638530 0.769597i \(-0.279543\pi\)
0.638530 + 0.769597i \(0.279543\pi\)
\(168\) 0 0
\(169\) −73860.2 −0.198927
\(170\) 0 0
\(171\) 49146.6 0.128530
\(172\) 0 0
\(173\) −465904. −1.18353 −0.591767 0.806109i \(-0.701569\pi\)
−0.591767 + 0.806109i \(0.701569\pi\)
\(174\) 0 0
\(175\) 444413. 1.09696
\(176\) 0 0
\(177\) 90765.8 0.217765
\(178\) 0 0
\(179\) −143810. −0.335471 −0.167736 0.985832i \(-0.553645\pi\)
−0.167736 + 0.985832i \(0.553645\pi\)
\(180\) 0 0
\(181\) −281826. −0.639418 −0.319709 0.947516i \(-0.603585\pi\)
−0.319709 + 0.947516i \(0.603585\pi\)
\(182\) 0 0
\(183\) 316926. 0.699567
\(184\) 0 0
\(185\) −40102.5 −0.0861475
\(186\) 0 0
\(187\) −54680.9 −0.114349
\(188\) 0 0
\(189\) −108041. −0.220007
\(190\) 0 0
\(191\) 319313. 0.633335 0.316667 0.948537i \(-0.397436\pi\)
0.316667 + 0.948537i \(0.397436\pi\)
\(192\) 0 0
\(193\) 755250. 1.45948 0.729739 0.683726i \(-0.239642\pi\)
0.729739 + 0.683726i \(0.239642\pi\)
\(194\) 0 0
\(195\) −55174.9 −0.103910
\(196\) 0 0
\(197\) 69303.0 0.127229 0.0636146 0.997975i \(-0.479737\pi\)
0.0636146 + 0.997975i \(0.479737\pi\)
\(198\) 0 0
\(199\) 16621.2 0.0297530 0.0148765 0.999889i \(-0.495264\pi\)
0.0148765 + 0.999889i \(0.495264\pi\)
\(200\) 0 0
\(201\) 258795. 0.451821
\(202\) 0 0
\(203\) −349144. −0.594654
\(204\) 0 0
\(205\) 158827. 0.263962
\(206\) 0 0
\(207\) 89480.5 0.145145
\(208\) 0 0
\(209\) 28539.0 0.0451932
\(210\) 0 0
\(211\) 412143. 0.637297 0.318648 0.947873i \(-0.396771\pi\)
0.318648 + 0.947873i \(0.396771\pi\)
\(212\) 0 0
\(213\) 480987. 0.726414
\(214\) 0 0
\(215\) 199128. 0.293789
\(216\) 0 0
\(217\) −437114. −0.630153
\(218\) 0 0
\(219\) 395414. 0.557111
\(220\) 0 0
\(221\) −634015. −0.873210
\(222\) 0 0
\(223\) 1.19123e6 1.60411 0.802053 0.597252i \(-0.203741\pi\)
0.802053 + 0.597252i \(0.203741\pi\)
\(224\) 0 0
\(225\) −242890. −0.319855
\(226\) 0 0
\(227\) −1.41130e6 −1.81783 −0.908916 0.416980i \(-0.863089\pi\)
−0.908916 + 0.416980i \(0.863089\pi\)
\(228\) 0 0
\(229\) −546374. −0.688496 −0.344248 0.938879i \(-0.611866\pi\)
−0.344248 + 0.938879i \(0.611866\pi\)
\(230\) 0 0
\(231\) −62738.7 −0.0773581
\(232\) 0 0
\(233\) 919704. 1.10984 0.554918 0.831905i \(-0.312750\pi\)
0.554918 + 0.831905i \(0.312750\pi\)
\(234\) 0 0
\(235\) 130371. 0.153997
\(236\) 0 0
\(237\) −241074. −0.278792
\(238\) 0 0
\(239\) 1.38063e6 1.56345 0.781724 0.623624i \(-0.214340\pi\)
0.781724 + 0.623624i \(0.214340\pi\)
\(240\) 0 0
\(241\) 650375. 0.721308 0.360654 0.932700i \(-0.382553\pi\)
0.360654 + 0.932700i \(0.382553\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) −57977.9 −0.0617089
\(246\) 0 0
\(247\) 330905. 0.345112
\(248\) 0 0
\(249\) 945962. 0.966886
\(250\) 0 0
\(251\) 393270. 0.394009 0.197005 0.980403i \(-0.436879\pi\)
0.197005 + 0.980403i \(0.436879\pi\)
\(252\) 0 0
\(253\) 51960.6 0.0510355
\(254\) 0 0
\(255\) 117612. 0.113267
\(256\) 0 0
\(257\) −1.23955e6 −1.17066 −0.585331 0.810794i \(-0.699036\pi\)
−0.585331 + 0.810794i \(0.699036\pi\)
\(258\) 0 0
\(259\) −528725. −0.489757
\(260\) 0 0
\(261\) 190821. 0.173391
\(262\) 0 0
\(263\) 1.47951e6 1.31895 0.659476 0.751726i \(-0.270778\pi\)
0.659476 + 0.751726i \(0.270778\pi\)
\(264\) 0 0
\(265\) −17029.6 −0.0148967
\(266\) 0 0
\(267\) 431345. 0.370294
\(268\) 0 0
\(269\) 345680. 0.291269 0.145634 0.989338i \(-0.453478\pi\)
0.145634 + 0.989338i \(0.453478\pi\)
\(270\) 0 0
\(271\) 1.53008e6 1.26558 0.632791 0.774322i \(-0.281909\pi\)
0.632791 + 0.774322i \(0.281909\pi\)
\(272\) 0 0
\(273\) −727444. −0.590736
\(274\) 0 0
\(275\) −141044. −0.112466
\(276\) 0 0
\(277\) −464109. −0.363429 −0.181715 0.983351i \(-0.558165\pi\)
−0.181715 + 0.983351i \(0.558165\pi\)
\(278\) 0 0
\(279\) 238901. 0.183741
\(280\) 0 0
\(281\) −847312. −0.640144 −0.320072 0.947393i \(-0.603707\pi\)
−0.320072 + 0.947393i \(0.603707\pi\)
\(282\) 0 0
\(283\) 2.08212e6 1.54540 0.772698 0.634773i \(-0.218907\pi\)
0.772698 + 0.634773i \(0.218907\pi\)
\(284\) 0 0
\(285\) −61384.1 −0.0447655
\(286\) 0 0
\(287\) 2.09403e6 1.50065
\(288\) 0 0
\(289\) −68376.5 −0.0481573
\(290\) 0 0
\(291\) 344435. 0.238438
\(292\) 0 0
\(293\) 1.23146e6 0.838017 0.419008 0.907982i \(-0.362378\pi\)
0.419008 + 0.907982i \(0.362378\pi\)
\(294\) 0 0
\(295\) −113366. −0.0758454
\(296\) 0 0
\(297\) 34289.2 0.0225562
\(298\) 0 0
\(299\) 602474. 0.389727
\(300\) 0 0
\(301\) 2.62537e6 1.67022
\(302\) 0 0
\(303\) 1.16076e6 0.726335
\(304\) 0 0
\(305\) −395840. −0.243652
\(306\) 0 0
\(307\) −1.70679e6 −1.03356 −0.516778 0.856120i \(-0.672869\pi\)
−0.516778 + 0.856120i \(0.672869\pi\)
\(308\) 0 0
\(309\) 1.81992e6 1.08431
\(310\) 0 0
\(311\) −2.97615e6 −1.74484 −0.872418 0.488761i \(-0.837449\pi\)
−0.872418 + 0.488761i \(0.837449\pi\)
\(312\) 0 0
\(313\) −3.41990e6 −1.97312 −0.986558 0.163411i \(-0.947750\pi\)
−0.986558 + 0.163411i \(0.947750\pi\)
\(314\) 0 0
\(315\) 134944. 0.0766260
\(316\) 0 0
\(317\) −3.30728e6 −1.84851 −0.924257 0.381770i \(-0.875315\pi\)
−0.924257 + 0.381770i \(0.875315\pi\)
\(318\) 0 0
\(319\) 110808. 0.0609671
\(320\) 0 0
\(321\) −458197. −0.248193
\(322\) 0 0
\(323\) −705364. −0.376190
\(324\) 0 0
\(325\) −1.63538e6 −0.858836
\(326\) 0 0
\(327\) −781077. −0.403947
\(328\) 0 0
\(329\) 1.71885e6 0.875486
\(330\) 0 0
\(331\) 858062. 0.430476 0.215238 0.976562i \(-0.430947\pi\)
0.215238 + 0.976562i \(0.430947\pi\)
\(332\) 0 0
\(333\) 288969. 0.142804
\(334\) 0 0
\(335\) −323235. −0.157364
\(336\) 0 0
\(337\) 2.31479e6 1.11029 0.555146 0.831753i \(-0.312662\pi\)
0.555146 + 0.831753i \(0.312662\pi\)
\(338\) 0 0
\(339\) 92533.0 0.0437318
\(340\) 0 0
\(341\) 138728. 0.0646066
\(342\) 0 0
\(343\) 1.72648e6 0.792367
\(344\) 0 0
\(345\) −111761. −0.0505526
\(346\) 0 0
\(347\) −42663.1 −0.0190208 −0.00951039 0.999955i \(-0.503027\pi\)
−0.00951039 + 0.999955i \(0.503027\pi\)
\(348\) 0 0
\(349\) 4.06310e6 1.78564 0.892820 0.450413i \(-0.148723\pi\)
0.892820 + 0.450413i \(0.148723\pi\)
\(350\) 0 0
\(351\) 397578. 0.172248
\(352\) 0 0
\(353\) 1.25470e6 0.535922 0.267961 0.963430i \(-0.413650\pi\)
0.267961 + 0.963430i \(0.413650\pi\)
\(354\) 0 0
\(355\) −600752. −0.253002
\(356\) 0 0
\(357\) 1.55064e6 0.643932
\(358\) 0 0
\(359\) 1.93310e6 0.791621 0.395811 0.918332i \(-0.370464\pi\)
0.395811 + 0.918332i \(0.370464\pi\)
\(360\) 0 0
\(361\) −2.10796e6 −0.851321
\(362\) 0 0
\(363\) −1.42955e6 −0.569419
\(364\) 0 0
\(365\) −493872. −0.194036
\(366\) 0 0
\(367\) 932855. 0.361534 0.180767 0.983526i \(-0.442142\pi\)
0.180767 + 0.983526i \(0.442142\pi\)
\(368\) 0 0
\(369\) −1.14447e6 −0.437562
\(370\) 0 0
\(371\) −224524. −0.0846890
\(372\) 0 0
\(373\) 636513. 0.236884 0.118442 0.992961i \(-0.462210\pi\)
0.118442 + 0.992961i \(0.462210\pi\)
\(374\) 0 0
\(375\) 619522. 0.227499
\(376\) 0 0
\(377\) 1.28480e6 0.465567
\(378\) 0 0
\(379\) −436637. −0.156143 −0.0780715 0.996948i \(-0.524876\pi\)
−0.0780715 + 0.996948i \(0.524876\pi\)
\(380\) 0 0
\(381\) −1.06490e6 −0.375835
\(382\) 0 0
\(383\) 2.77960e6 0.968244 0.484122 0.875001i \(-0.339139\pi\)
0.484122 + 0.875001i \(0.339139\pi\)
\(384\) 0 0
\(385\) 78360.7 0.0269430
\(386\) 0 0
\(387\) −1.43487e6 −0.487006
\(388\) 0 0
\(389\) −4.22186e6 −1.41459 −0.707294 0.706919i \(-0.750084\pi\)
−0.707294 + 0.706919i \(0.750084\pi\)
\(390\) 0 0
\(391\) −1.28425e6 −0.424822
\(392\) 0 0
\(393\) 2.95463e6 0.964989
\(394\) 0 0
\(395\) 301102. 0.0971002
\(396\) 0 0
\(397\) 3.89554e6 1.24048 0.620242 0.784411i \(-0.287034\pi\)
0.620242 + 0.784411i \(0.287034\pi\)
\(398\) 0 0
\(399\) −809308. −0.254496
\(400\) 0 0
\(401\) −82294.6 −0.0255570 −0.0127785 0.999918i \(-0.504068\pi\)
−0.0127785 + 0.999918i \(0.504068\pi\)
\(402\) 0 0
\(403\) 1.60852e6 0.493360
\(404\) 0 0
\(405\) −73752.2 −0.0223428
\(406\) 0 0
\(407\) 167802. 0.0502124
\(408\) 0 0
\(409\) 133394. 0.0394300 0.0197150 0.999806i \(-0.493724\pi\)
0.0197150 + 0.999806i \(0.493724\pi\)
\(410\) 0 0
\(411\) 100555. 0.0293628
\(412\) 0 0
\(413\) −1.49466e6 −0.431189
\(414\) 0 0
\(415\) −1.18151e6 −0.336756
\(416\) 0 0
\(417\) −985591. −0.277560
\(418\) 0 0
\(419\) 4.85459e6 1.35088 0.675441 0.737414i \(-0.263953\pi\)
0.675441 + 0.737414i \(0.263953\pi\)
\(420\) 0 0
\(421\) 674802. 0.185554 0.0927772 0.995687i \(-0.470426\pi\)
0.0927772 + 0.995687i \(0.470426\pi\)
\(422\) 0 0
\(423\) −939423. −0.255276
\(424\) 0 0
\(425\) 3.48601e6 0.936175
\(426\) 0 0
\(427\) −5.21888e6 −1.38519
\(428\) 0 0
\(429\) 230870. 0.0605653
\(430\) 0 0
\(431\) −5.62432e6 −1.45840 −0.729200 0.684301i \(-0.760108\pi\)
−0.729200 + 0.684301i \(0.760108\pi\)
\(432\) 0 0
\(433\) 5.89978e6 1.51222 0.756112 0.654442i \(-0.227097\pi\)
0.756112 + 0.654442i \(0.227097\pi\)
\(434\) 0 0
\(435\) −238336. −0.0603901
\(436\) 0 0
\(437\) 670273. 0.167899
\(438\) 0 0
\(439\) 417376. 0.103363 0.0516817 0.998664i \(-0.483542\pi\)
0.0516817 + 0.998664i \(0.483542\pi\)
\(440\) 0 0
\(441\) 417775. 0.102293
\(442\) 0 0
\(443\) 5.30672e6 1.28474 0.642372 0.766393i \(-0.277950\pi\)
0.642372 + 0.766393i \(0.277950\pi\)
\(444\) 0 0
\(445\) −538750. −0.128969
\(446\) 0 0
\(447\) −2.78756e6 −0.659866
\(448\) 0 0
\(449\) −2.85104e6 −0.667402 −0.333701 0.942679i \(-0.608298\pi\)
−0.333701 + 0.942679i \(0.608298\pi\)
\(450\) 0 0
\(451\) −664585. −0.153854
\(452\) 0 0
\(453\) 4.15758e6 0.951909
\(454\) 0 0
\(455\) 908578. 0.205747
\(456\) 0 0
\(457\) −2.94965e6 −0.660662 −0.330331 0.943865i \(-0.607160\pi\)
−0.330331 + 0.943865i \(0.607160\pi\)
\(458\) 0 0
\(459\) −847486. −0.187759
\(460\) 0 0
\(461\) −7.87075e6 −1.72490 −0.862449 0.506143i \(-0.831071\pi\)
−0.862449 + 0.506143i \(0.831071\pi\)
\(462\) 0 0
\(463\) −3.22083e6 −0.698257 −0.349128 0.937075i \(-0.613522\pi\)
−0.349128 + 0.937075i \(0.613522\pi\)
\(464\) 0 0
\(465\) −298387. −0.0639952
\(466\) 0 0
\(467\) 3.23362e6 0.686115 0.343057 0.939314i \(-0.388537\pi\)
0.343057 + 0.939314i \(0.388537\pi\)
\(468\) 0 0
\(469\) −4.26164e6 −0.894632
\(470\) 0 0
\(471\) 3.91361e6 0.812878
\(472\) 0 0
\(473\) −833216. −0.171240
\(474\) 0 0
\(475\) −1.81942e6 −0.369997
\(476\) 0 0
\(477\) 122711. 0.0246938
\(478\) 0 0
\(479\) −7.98448e6 −1.59004 −0.795020 0.606583i \(-0.792540\pi\)
−0.795020 + 0.606583i \(0.792540\pi\)
\(480\) 0 0
\(481\) 1.94563e6 0.383441
\(482\) 0 0
\(483\) −1.47350e6 −0.287396
\(484\) 0 0
\(485\) −430200. −0.0830454
\(486\) 0 0
\(487\) −4.14364e6 −0.791698 −0.395849 0.918316i \(-0.629550\pi\)
−0.395849 + 0.918316i \(0.629550\pi\)
\(488\) 0 0
\(489\) 1.07426e6 0.203160
\(490\) 0 0
\(491\) −8.09427e6 −1.51521 −0.757607 0.652711i \(-0.773632\pi\)
−0.757607 + 0.652711i \(0.773632\pi\)
\(492\) 0 0
\(493\) −2.73871e6 −0.507492
\(494\) 0 0
\(495\) −42827.3 −0.00785611
\(496\) 0 0
\(497\) −7.92052e6 −1.43834
\(498\) 0 0
\(499\) 6.18633e6 1.11220 0.556098 0.831117i \(-0.312298\pi\)
0.556098 + 0.831117i \(0.312298\pi\)
\(500\) 0 0
\(501\) 4.14233e6 0.737311
\(502\) 0 0
\(503\) −1.12950e6 −0.199052 −0.0995260 0.995035i \(-0.531733\pi\)
−0.0995260 + 0.995035i \(0.531733\pi\)
\(504\) 0 0
\(505\) −1.44979e6 −0.252975
\(506\) 0 0
\(507\) −664742. −0.114851
\(508\) 0 0
\(509\) −5.44872e6 −0.932181 −0.466091 0.884737i \(-0.654338\pi\)
−0.466091 + 0.884737i \(0.654338\pi\)
\(510\) 0 0
\(511\) −6.51137e6 −1.10311
\(512\) 0 0
\(513\) 442319. 0.0742066
\(514\) 0 0
\(515\) −2.27308e6 −0.377655
\(516\) 0 0
\(517\) −545515. −0.0897595
\(518\) 0 0
\(519\) −4.19313e6 −0.683314
\(520\) 0 0
\(521\) −5.87834e6 −0.948769 −0.474385 0.880318i \(-0.657329\pi\)
−0.474385 + 0.880318i \(0.657329\pi\)
\(522\) 0 0
\(523\) −1.00787e7 −1.61120 −0.805601 0.592458i \(-0.798158\pi\)
−0.805601 + 0.592458i \(0.798158\pi\)
\(524\) 0 0
\(525\) 3.99972e6 0.633332
\(526\) 0 0
\(527\) −3.42876e6 −0.537787
\(528\) 0 0
\(529\) −5.21599e6 −0.810396
\(530\) 0 0
\(531\) 816892. 0.125727
\(532\) 0 0
\(533\) −7.70575e6 −1.17489
\(534\) 0 0
\(535\) 572288. 0.0864431
\(536\) 0 0
\(537\) −1.29429e6 −0.193684
\(538\) 0 0
\(539\) 242599. 0.0359680
\(540\) 0 0
\(541\) 1.07470e7 1.57869 0.789343 0.613953i \(-0.210421\pi\)
0.789343 + 0.613953i \(0.210421\pi\)
\(542\) 0 0
\(543\) −2.53643e6 −0.369168
\(544\) 0 0
\(545\) 975565. 0.140690
\(546\) 0 0
\(547\) 1.90847e6 0.272719 0.136360 0.990659i \(-0.456460\pi\)
0.136360 + 0.990659i \(0.456460\pi\)
\(548\) 0 0
\(549\) 2.85233e6 0.403895
\(550\) 0 0
\(551\) 1.42939e6 0.200572
\(552\) 0 0
\(553\) 3.96982e6 0.552024
\(554\) 0 0
\(555\) −360923. −0.0497373
\(556\) 0 0
\(557\) −9.16492e6 −1.25167 −0.625837 0.779954i \(-0.715242\pi\)
−0.625837 + 0.779954i \(0.715242\pi\)
\(558\) 0 0
\(559\) −9.66099e6 −1.30765
\(560\) 0 0
\(561\) −492128. −0.0660193
\(562\) 0 0
\(563\) 7.86037e6 1.04513 0.522567 0.852598i \(-0.324974\pi\)
0.522567 + 0.852598i \(0.324974\pi\)
\(564\) 0 0
\(565\) −115574. −0.0152313
\(566\) 0 0
\(567\) −972373. −0.127021
\(568\) 0 0
\(569\) 3.16208e6 0.409442 0.204721 0.978820i \(-0.434371\pi\)
0.204721 + 0.978820i \(0.434371\pi\)
\(570\) 0 0
\(571\) 1.36016e7 1.74582 0.872910 0.487881i \(-0.162230\pi\)
0.872910 + 0.487881i \(0.162230\pi\)
\(572\) 0 0
\(573\) 2.87382e6 0.365656
\(574\) 0 0
\(575\) −3.31259e6 −0.417829
\(576\) 0 0
\(577\) −1.53482e6 −0.191919 −0.0959594 0.995385i \(-0.530592\pi\)
−0.0959594 + 0.995385i \(0.530592\pi\)
\(578\) 0 0
\(579\) 6.79725e6 0.842630
\(580\) 0 0
\(581\) −1.55774e7 −1.91449
\(582\) 0 0
\(583\) 71257.3 0.00868277
\(584\) 0 0
\(585\) −496574. −0.0599922
\(586\) 0 0
\(587\) −7.35171e6 −0.880629 −0.440315 0.897844i \(-0.645133\pi\)
−0.440315 + 0.897844i \(0.645133\pi\)
\(588\) 0 0
\(589\) 1.78954e6 0.212546
\(590\) 0 0
\(591\) 623727. 0.0734558
\(592\) 0 0
\(593\) 7.72521e6 0.902139 0.451069 0.892489i \(-0.351043\pi\)
0.451069 + 0.892489i \(0.351043\pi\)
\(594\) 0 0
\(595\) −1.93675e6 −0.224275
\(596\) 0 0
\(597\) 149591. 0.0171779
\(598\) 0 0
\(599\) −1.53129e7 −1.74378 −0.871890 0.489702i \(-0.837106\pi\)
−0.871890 + 0.489702i \(0.837106\pi\)
\(600\) 0 0
\(601\) −3.69885e6 −0.417715 −0.208857 0.977946i \(-0.566974\pi\)
−0.208857 + 0.977946i \(0.566974\pi\)
\(602\) 0 0
\(603\) 2.32916e6 0.260859
\(604\) 0 0
\(605\) 1.78550e6 0.198323
\(606\) 0 0
\(607\) −4.37471e6 −0.481923 −0.240962 0.970535i \(-0.577463\pi\)
−0.240962 + 0.970535i \(0.577463\pi\)
\(608\) 0 0
\(609\) −3.14229e6 −0.343324
\(610\) 0 0
\(611\) −6.32515e6 −0.685437
\(612\) 0 0
\(613\) 1.46082e7 1.57016 0.785082 0.619392i \(-0.212621\pi\)
0.785082 + 0.619392i \(0.212621\pi\)
\(614\) 0 0
\(615\) 1.42945e6 0.152398
\(616\) 0 0
\(617\) −576151. −0.0609289 −0.0304644 0.999536i \(-0.509699\pi\)
−0.0304644 + 0.999536i \(0.509699\pi\)
\(618\) 0 0
\(619\) 4.66461e6 0.489315 0.244657 0.969610i \(-0.421325\pi\)
0.244657 + 0.969610i \(0.421325\pi\)
\(620\) 0 0
\(621\) 805325. 0.0837996
\(622\) 0 0
\(623\) −7.10305e6 −0.733204
\(624\) 0 0
\(625\) 8.59697e6 0.880329
\(626\) 0 0
\(627\) 256851. 0.0260923
\(628\) 0 0
\(629\) −4.14736e6 −0.417970
\(630\) 0 0
\(631\) −4.93025e6 −0.492942 −0.246471 0.969150i \(-0.579271\pi\)
−0.246471 + 0.969150i \(0.579271\pi\)
\(632\) 0 0
\(633\) 3.70929e6 0.367944
\(634\) 0 0
\(635\) 1.33006e6 0.130900
\(636\) 0 0
\(637\) 2.81289e6 0.274665
\(638\) 0 0
\(639\) 4.32888e6 0.419395
\(640\) 0 0
\(641\) 7.42308e6 0.713574 0.356787 0.934186i \(-0.383872\pi\)
0.356787 + 0.934186i \(0.383872\pi\)
\(642\) 0 0
\(643\) −1.28737e6 −0.122794 −0.0613969 0.998113i \(-0.519556\pi\)
−0.0613969 + 0.998113i \(0.519556\pi\)
\(644\) 0 0
\(645\) 1.79215e6 0.169619
\(646\) 0 0
\(647\) −5.25779e6 −0.493790 −0.246895 0.969042i \(-0.579410\pi\)
−0.246895 + 0.969042i \(0.579410\pi\)
\(648\) 0 0
\(649\) 474362. 0.0442077
\(650\) 0 0
\(651\) −3.93403e6 −0.363819
\(652\) 0 0
\(653\) −1.03822e7 −0.952811 −0.476405 0.879226i \(-0.658061\pi\)
−0.476405 + 0.879226i \(0.658061\pi\)
\(654\) 0 0
\(655\) −3.69034e6 −0.336096
\(656\) 0 0
\(657\) 3.55873e6 0.321648
\(658\) 0 0
\(659\) −5.31093e6 −0.476384 −0.238192 0.971218i \(-0.576555\pi\)
−0.238192 + 0.971218i \(0.576555\pi\)
\(660\) 0 0
\(661\) 5.12917e6 0.456608 0.228304 0.973590i \(-0.426682\pi\)
0.228304 + 0.973590i \(0.426682\pi\)
\(662\) 0 0
\(663\) −5.70613e6 −0.504148
\(664\) 0 0
\(665\) 1.01083e6 0.0886384
\(666\) 0 0
\(667\) 2.60247e6 0.226501
\(668\) 0 0
\(669\) 1.07211e7 0.926132
\(670\) 0 0
\(671\) 1.65632e6 0.142017
\(672\) 0 0
\(673\) 7.93890e6 0.675652 0.337826 0.941209i \(-0.390309\pi\)
0.337826 + 0.941209i \(0.390309\pi\)
\(674\) 0 0
\(675\) −2.18601e6 −0.184668
\(676\) 0 0
\(677\) −381860. −0.0320208 −0.0160104 0.999872i \(-0.505096\pi\)
−0.0160104 + 0.999872i \(0.505096\pi\)
\(678\) 0 0
\(679\) −5.67189e6 −0.472121
\(680\) 0 0
\(681\) −1.27017e7 −1.04953
\(682\) 0 0
\(683\) −8.87069e6 −0.727621 −0.363811 0.931473i \(-0.618524\pi\)
−0.363811 + 0.931473i \(0.618524\pi\)
\(684\) 0 0
\(685\) −125593. −0.0102268
\(686\) 0 0
\(687\) −4.91736e6 −0.397503
\(688\) 0 0
\(689\) 826216. 0.0663049
\(690\) 0 0
\(691\) 1.54329e6 0.122957 0.0614783 0.998108i \(-0.480419\pi\)
0.0614783 + 0.998108i \(0.480419\pi\)
\(692\) 0 0
\(693\) −564649. −0.0446627
\(694\) 0 0
\(695\) 1.23100e6 0.0966712
\(696\) 0 0
\(697\) 1.64258e7 1.28069
\(698\) 0 0
\(699\) 8.27734e6 0.640764
\(700\) 0 0
\(701\) −7.51477e6 −0.577592 −0.288796 0.957391i \(-0.593255\pi\)
−0.288796 + 0.957391i \(0.593255\pi\)
\(702\) 0 0
\(703\) 2.16459e6 0.165191
\(704\) 0 0
\(705\) 1.17334e6 0.0889101
\(706\) 0 0
\(707\) −1.91145e7 −1.43819
\(708\) 0 0
\(709\) 1.54954e7 1.15768 0.578839 0.815442i \(-0.303506\pi\)
0.578839 + 0.815442i \(0.303506\pi\)
\(710\) 0 0
\(711\) −2.16967e6 −0.160960
\(712\) 0 0
\(713\) 3.25819e6 0.240023
\(714\) 0 0
\(715\) −288356. −0.0210943
\(716\) 0 0
\(717\) 1.24257e7 0.902657
\(718\) 0 0
\(719\) 1.10624e7 0.798045 0.399022 0.916941i \(-0.369350\pi\)
0.399022 + 0.916941i \(0.369350\pi\)
\(720\) 0 0
\(721\) −2.99690e7 −2.14701
\(722\) 0 0
\(723\) 5.85337e6 0.416448
\(724\) 0 0
\(725\) −7.06425e6 −0.499138
\(726\) 0 0
\(727\) −1.63858e7 −1.14982 −0.574912 0.818216i \(-0.694964\pi\)
−0.574912 + 0.818216i \(0.694964\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.05936e7 1.42541
\(732\) 0 0
\(733\) 4.09602e6 0.281580 0.140790 0.990039i \(-0.455036\pi\)
0.140790 + 0.990039i \(0.455036\pi\)
\(734\) 0 0
\(735\) −521801. −0.0356276
\(736\) 0 0
\(737\) 1.35252e6 0.0917224
\(738\) 0 0
\(739\) −2.35232e7 −1.58447 −0.792237 0.610213i \(-0.791084\pi\)
−0.792237 + 0.610213i \(0.791084\pi\)
\(740\) 0 0
\(741\) 2.97814e6 0.199251
\(742\) 0 0
\(743\) −8.62364e6 −0.573084 −0.286542 0.958068i \(-0.592506\pi\)
−0.286542 + 0.958068i \(0.592506\pi\)
\(744\) 0 0
\(745\) 3.48167e6 0.229825
\(746\) 0 0
\(747\) 8.51366e6 0.558232
\(748\) 0 0
\(749\) 7.54524e6 0.491438
\(750\) 0 0
\(751\) 1.62269e7 1.04987 0.524937 0.851141i \(-0.324089\pi\)
0.524937 + 0.851141i \(0.324089\pi\)
\(752\) 0 0
\(753\) 3.53943e6 0.227481
\(754\) 0 0
\(755\) −5.19282e6 −0.331540
\(756\) 0 0
\(757\) 2.05486e7 1.30330 0.651648 0.758522i \(-0.274078\pi\)
0.651648 + 0.758522i \(0.274078\pi\)
\(758\) 0 0
\(759\) 467645. 0.0294654
\(760\) 0 0
\(761\) −4.33531e6 −0.271368 −0.135684 0.990752i \(-0.543323\pi\)
−0.135684 + 0.990752i \(0.543323\pi\)
\(762\) 0 0
\(763\) 1.28622e7 0.799839
\(764\) 0 0
\(765\) 1.05851e6 0.0653945
\(766\) 0 0
\(767\) 5.50014e6 0.337587
\(768\) 0 0
\(769\) −1.72697e7 −1.05310 −0.526548 0.850145i \(-0.676514\pi\)
−0.526548 + 0.850145i \(0.676514\pi\)
\(770\) 0 0
\(771\) −1.11560e7 −0.675882
\(772\) 0 0
\(773\) −2.64326e7 −1.59108 −0.795539 0.605903i \(-0.792812\pi\)
−0.795539 + 0.605903i \(0.792812\pi\)
\(774\) 0 0
\(775\) −8.84416e6 −0.528935
\(776\) 0 0
\(777\) −4.75852e6 −0.282761
\(778\) 0 0
\(779\) −8.57292e6 −0.506157
\(780\) 0 0
\(781\) 2.51374e6 0.147467
\(782\) 0 0
\(783\) 1.71739e6 0.100107
\(784\) 0 0
\(785\) −4.88810e6 −0.283117
\(786\) 0 0
\(787\) 2.17967e7 1.25445 0.627226 0.778837i \(-0.284190\pi\)
0.627226 + 0.778837i \(0.284190\pi\)
\(788\) 0 0
\(789\) 1.33156e7 0.761497
\(790\) 0 0
\(791\) −1.52376e6 −0.0865916
\(792\) 0 0
\(793\) 1.92048e7 1.08449
\(794\) 0 0
\(795\) −153266. −0.00860060
\(796\) 0 0
\(797\) −2.45761e7 −1.37046 −0.685231 0.728326i \(-0.740299\pi\)
−0.685231 + 0.728326i \(0.740299\pi\)
\(798\) 0 0
\(799\) 1.34828e7 0.747161
\(800\) 0 0
\(801\) 3.88210e6 0.213789
\(802\) 0 0
\(803\) 2.06652e6 0.113097
\(804\) 0 0
\(805\) 1.84040e6 0.100097
\(806\) 0 0
\(807\) 3.11112e6 0.168164
\(808\) 0 0
\(809\) −2.10063e7 −1.12844 −0.564221 0.825624i \(-0.690823\pi\)
−0.564221 + 0.825624i \(0.690823\pi\)
\(810\) 0 0
\(811\) −2.68688e7 −1.43448 −0.717242 0.696824i \(-0.754596\pi\)
−0.717242 + 0.696824i \(0.754596\pi\)
\(812\) 0 0
\(813\) 1.37707e7 0.730685
\(814\) 0 0
\(815\) −1.34175e6 −0.0707583
\(816\) 0 0
\(817\) −1.07482e7 −0.563353
\(818\) 0 0
\(819\) −6.54700e6 −0.341061
\(820\) 0 0
\(821\) −1.90654e7 −0.987161 −0.493581 0.869700i \(-0.664312\pi\)
−0.493581 + 0.869700i \(0.664312\pi\)
\(822\) 0 0
\(823\) −3.64112e6 −0.187385 −0.0936926 0.995601i \(-0.529867\pi\)
−0.0936926 + 0.995601i \(0.529867\pi\)
\(824\) 0 0
\(825\) −1.26940e6 −0.0649325
\(826\) 0 0
\(827\) 3.44261e7 1.75034 0.875172 0.483812i \(-0.160748\pi\)
0.875172 + 0.483812i \(0.160748\pi\)
\(828\) 0 0
\(829\) −2.51490e7 −1.27097 −0.635485 0.772114i \(-0.719200\pi\)
−0.635485 + 0.772114i \(0.719200\pi\)
\(830\) 0 0
\(831\) −4.17698e6 −0.209826
\(832\) 0 0
\(833\) −5.99601e6 −0.299399
\(834\) 0 0
\(835\) −5.17377e6 −0.256798
\(836\) 0 0
\(837\) 2.15011e6 0.106083
\(838\) 0 0
\(839\) −1.37585e7 −0.674785 −0.337392 0.941364i \(-0.609545\pi\)
−0.337392 + 0.941364i \(0.609545\pi\)
\(840\) 0 0
\(841\) −1.49613e7 −0.729422
\(842\) 0 0
\(843\) −7.62581e6 −0.369587
\(844\) 0 0
\(845\) 830263. 0.0400013
\(846\) 0 0
\(847\) 2.35407e7 1.12748
\(848\) 0 0
\(849\) 1.87391e7 0.892235
\(850\) 0 0
\(851\) 3.94104e6 0.186546
\(852\) 0 0
\(853\) 2.71986e7 1.27989 0.639946 0.768419i \(-0.278957\pi\)
0.639946 + 0.768419i \(0.278957\pi\)
\(854\) 0 0
\(855\) −552457. −0.0258454
\(856\) 0 0
\(857\) −1.90034e7 −0.883851 −0.441925 0.897052i \(-0.645704\pi\)
−0.441925 + 0.897052i \(0.645704\pi\)
\(858\) 0 0
\(859\) 4.23596e7 1.95871 0.979353 0.202157i \(-0.0647950\pi\)
0.979353 + 0.202157i \(0.0647950\pi\)
\(860\) 0 0
\(861\) 1.88463e7 0.866399
\(862\) 0 0
\(863\) 1.43661e6 0.0656616 0.0328308 0.999461i \(-0.489548\pi\)
0.0328308 + 0.999461i \(0.489548\pi\)
\(864\) 0 0
\(865\) 5.23722e6 0.237991
\(866\) 0 0
\(867\) −615389. −0.0278036
\(868\) 0 0
\(869\) −1.25991e6 −0.0565964
\(870\) 0 0
\(871\) 1.56822e7 0.700427
\(872\) 0 0
\(873\) 3.09992e6 0.137662
\(874\) 0 0
\(875\) −1.02018e7 −0.450461
\(876\) 0 0
\(877\) −1.32043e7 −0.579718 −0.289859 0.957069i \(-0.593608\pi\)
−0.289859 + 0.957069i \(0.593608\pi\)
\(878\) 0 0
\(879\) 1.10832e7 0.483829
\(880\) 0 0
\(881\) 9.00664e6 0.390952 0.195476 0.980709i \(-0.437375\pi\)
0.195476 + 0.980709i \(0.437375\pi\)
\(882\) 0 0
\(883\) −2.18359e7 −0.942473 −0.471237 0.882007i \(-0.656192\pi\)
−0.471237 + 0.882007i \(0.656192\pi\)
\(884\) 0 0
\(885\) −1.02030e6 −0.0437894
\(886\) 0 0
\(887\) 4.58096e7 1.95500 0.977502 0.210926i \(-0.0676479\pi\)
0.977502 + 0.210926i \(0.0676479\pi\)
\(888\) 0 0
\(889\) 1.75360e7 0.744176
\(890\) 0 0
\(891\) 308603. 0.0130229
\(892\) 0 0
\(893\) −7.03695e6 −0.295295
\(894\) 0 0
\(895\) 1.61656e6 0.0674582
\(896\) 0 0
\(897\) 5.42226e6 0.225009
\(898\) 0 0
\(899\) 6.94823e6 0.286731
\(900\) 0 0
\(901\) −1.76118e6 −0.0722757
\(902\) 0 0
\(903\) 2.36283e7 0.964302
\(904\) 0 0
\(905\) 3.16801e6 0.128577
\(906\) 0 0
\(907\) −3.25677e7 −1.31452 −0.657262 0.753662i \(-0.728286\pi\)
−0.657262 + 0.753662i \(0.728286\pi\)
\(908\) 0 0
\(909\) 1.04469e7 0.419350
\(910\) 0 0
\(911\) 4.24433e7 1.69439 0.847194 0.531283i \(-0.178290\pi\)
0.847194 + 0.531283i \(0.178290\pi\)
\(912\) 0 0
\(913\) 4.94381e6 0.196284
\(914\) 0 0
\(915\) −3.56256e6 −0.140673
\(916\) 0 0
\(917\) −4.86546e7 −1.91074
\(918\) 0 0
\(919\) 3.77474e7 1.47434 0.737172 0.675705i \(-0.236161\pi\)
0.737172 + 0.675705i \(0.236161\pi\)
\(920\) 0 0
\(921\) −1.53611e7 −0.596724
\(922\) 0 0
\(923\) 2.91464e7 1.12611
\(924\) 0 0
\(925\) −1.06977e7 −0.411090
\(926\) 0 0
\(927\) 1.63792e7 0.626029
\(928\) 0 0
\(929\) 3.41047e7 1.29651 0.648254 0.761424i \(-0.275499\pi\)
0.648254 + 0.761424i \(0.275499\pi\)
\(930\) 0 0
\(931\) 3.12944e6 0.118329
\(932\) 0 0
\(933\) −2.67854e7 −1.00738
\(934\) 0 0
\(935\) 614667. 0.0229938
\(936\) 0 0
\(937\) 2.26592e7 0.843130 0.421565 0.906798i \(-0.361481\pi\)
0.421565 + 0.906798i \(0.361481\pi\)
\(938\) 0 0
\(939\) −3.07791e7 −1.13918
\(940\) 0 0
\(941\) 1.44909e7 0.533484 0.266742 0.963768i \(-0.414053\pi\)
0.266742 + 0.963768i \(0.414053\pi\)
\(942\) 0 0
\(943\) −1.56086e7 −0.571590
\(944\) 0 0
\(945\) 1.21449e6 0.0442401
\(946\) 0 0
\(947\) 3.43018e7 1.24292 0.621459 0.783447i \(-0.286540\pi\)
0.621459 + 0.783447i \(0.286540\pi\)
\(948\) 0 0
\(949\) 2.39609e7 0.863651
\(950\) 0 0
\(951\) −2.97655e7 −1.06724
\(952\) 0 0
\(953\) 3.23134e7 1.15252 0.576262 0.817265i \(-0.304511\pi\)
0.576262 + 0.817265i \(0.304511\pi\)
\(954\) 0 0
\(955\) −3.58940e6 −0.127354
\(956\) 0 0
\(957\) 997274. 0.0351994
\(958\) 0 0
\(959\) −1.65586e6 −0.0581401
\(960\) 0 0
\(961\) −1.99302e7 −0.696152
\(962\) 0 0
\(963\) −4.12378e6 −0.143294
\(964\) 0 0
\(965\) −8.48976e6 −0.293479
\(966\) 0 0
\(967\) 2.73182e7 0.939477 0.469738 0.882806i \(-0.344348\pi\)
0.469738 + 0.882806i \(0.344348\pi\)
\(968\) 0 0
\(969\) −6.34827e6 −0.217193
\(970\) 0 0
\(971\) −2.99922e7 −1.02085 −0.510423 0.859923i \(-0.670511\pi\)
−0.510423 + 0.859923i \(0.670511\pi\)
\(972\) 0 0
\(973\) 1.62300e7 0.549585
\(974\) 0 0
\(975\) −1.47184e7 −0.495849
\(976\) 0 0
\(977\) −2.33987e7 −0.784251 −0.392126 0.919912i \(-0.628260\pi\)
−0.392126 + 0.919912i \(0.628260\pi\)
\(978\) 0 0
\(979\) 2.25430e6 0.0751720
\(980\) 0 0
\(981\) −7.02969e6 −0.233219
\(982\) 0 0
\(983\) 1.38086e7 0.455792 0.227896 0.973686i \(-0.426815\pi\)
0.227896 + 0.973686i \(0.426815\pi\)
\(984\) 0 0
\(985\) −779035. −0.0255839
\(986\) 0 0
\(987\) 1.54697e7 0.505462
\(988\) 0 0
\(989\) −1.95691e7 −0.636180
\(990\) 0 0
\(991\) 3.17280e6 0.102626 0.0513131 0.998683i \(-0.483659\pi\)
0.0513131 + 0.998683i \(0.483659\pi\)
\(992\) 0 0
\(993\) 7.72256e6 0.248535
\(994\) 0 0
\(995\) −186839. −0.00598288
\(996\) 0 0
\(997\) 4.02543e6 0.128255 0.0641276 0.997942i \(-0.479574\pi\)
0.0641276 + 0.997942i \(0.479574\pi\)
\(998\) 0 0
\(999\) 2.60072e6 0.0824481
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.6.a.v.1.1 2
4.3 odd 2 768.6.a.q.1.1 2
8.3 odd 2 768.6.a.r.1.2 2
8.5 even 2 768.6.a.m.1.2 2
16.3 odd 4 384.6.d.h.193.2 yes 4
16.5 even 4 384.6.d.g.193.1 4
16.11 odd 4 384.6.d.h.193.3 yes 4
16.13 even 4 384.6.d.g.193.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.6.d.g.193.1 4 16.5 even 4
384.6.d.g.193.4 yes 4 16.13 even 4
384.6.d.h.193.2 yes 4 16.3 odd 4
384.6.d.h.193.3 yes 4 16.11 odd 4
768.6.a.m.1.2 2 8.5 even 2
768.6.a.q.1.1 2 4.3 odd 2
768.6.a.r.1.2 2 8.3 odd 2
768.6.a.v.1.1 2 1.1 even 1 trivial