Properties

Label 768.6.a.ba.1.2
Level $768$
Weight $6$
Character 768.1
Self dual yes
Analytic conductor $123.175$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,6,Mod(1,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 768.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-45,0,-50,0,98,0,405,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.174773616\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 65x^{3} + 85x^{2} + 856x - 1692 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.60811\) of defining polynomial
Character \(\chi\) \(=\) 768.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -66.8717 q^{5} +230.960 q^{7} +81.0000 q^{9} -360.698 q^{11} +674.528 q^{13} +601.845 q^{15} -765.210 q^{17} -2277.37 q^{19} -2078.64 q^{21} +465.702 q^{23} +1346.82 q^{25} -729.000 q^{27} +1430.14 q^{29} +3327.79 q^{31} +3246.28 q^{33} -15444.7 q^{35} -5736.07 q^{37} -6070.75 q^{39} +12666.7 q^{41} +2017.82 q^{43} -5416.61 q^{45} -1605.83 q^{47} +36535.6 q^{49} +6886.89 q^{51} +11998.3 q^{53} +24120.5 q^{55} +20496.4 q^{57} -24401.4 q^{59} +19670.5 q^{61} +18707.8 q^{63} -45106.8 q^{65} +50239.4 q^{67} -4191.32 q^{69} +16572.5 q^{71} -14263.2 q^{73} -12121.4 q^{75} -83306.8 q^{77} -47850.0 q^{79} +6561.00 q^{81} +60126.7 q^{83} +51170.9 q^{85} -12871.3 q^{87} -139147. q^{89} +155789. q^{91} -29950.1 q^{93} +152292. q^{95} +85226.4 q^{97} -29216.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 45 q^{3} - 50 q^{5} + 98 q^{7} + 405 q^{9} - 676 q^{13} + 450 q^{15} - 202 q^{17} - 716 q^{19} - 882 q^{21} - 836 q^{23} + 4683 q^{25} - 3645 q^{27} - 5046 q^{29} + 9346 q^{31} - 436 q^{35} - 10952 q^{37}+ \cdots + 29686 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −66.8717 −1.19624 −0.598119 0.801408i \(-0.704085\pi\)
−0.598119 + 0.801408i \(0.704085\pi\)
\(6\) 0 0
\(7\) 230.960 1.78152 0.890762 0.454469i \(-0.150171\pi\)
0.890762 + 0.454469i \(0.150171\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −360.698 −0.898797 −0.449399 0.893331i \(-0.648362\pi\)
−0.449399 + 0.893331i \(0.648362\pi\)
\(12\) 0 0
\(13\) 674.528 1.10698 0.553492 0.832854i \(-0.313295\pi\)
0.553492 + 0.832854i \(0.313295\pi\)
\(14\) 0 0
\(15\) 601.845 0.690648
\(16\) 0 0
\(17\) −765.210 −0.642182 −0.321091 0.947048i \(-0.604050\pi\)
−0.321091 + 0.947048i \(0.604050\pi\)
\(18\) 0 0
\(19\) −2277.37 −1.44727 −0.723636 0.690182i \(-0.757530\pi\)
−0.723636 + 0.690182i \(0.757530\pi\)
\(20\) 0 0
\(21\) −2078.64 −1.02856
\(22\) 0 0
\(23\) 465.702 0.183565 0.0917823 0.995779i \(-0.470744\pi\)
0.0917823 + 0.995779i \(0.470744\pi\)
\(24\) 0 0
\(25\) 1346.82 0.430984
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 1430.14 0.315779 0.157890 0.987457i \(-0.449531\pi\)
0.157890 + 0.987457i \(0.449531\pi\)
\(30\) 0 0
\(31\) 3327.79 0.621945 0.310972 0.950419i \(-0.399345\pi\)
0.310972 + 0.950419i \(0.399345\pi\)
\(32\) 0 0
\(33\) 3246.28 0.518921
\(34\) 0 0
\(35\) −15444.7 −2.13113
\(36\) 0 0
\(37\) −5736.07 −0.688827 −0.344414 0.938818i \(-0.611922\pi\)
−0.344414 + 0.938818i \(0.611922\pi\)
\(38\) 0 0
\(39\) −6070.75 −0.639118
\(40\) 0 0
\(41\) 12666.7 1.17681 0.588403 0.808568i \(-0.299757\pi\)
0.588403 + 0.808568i \(0.299757\pi\)
\(42\) 0 0
\(43\) 2017.82 0.166422 0.0832112 0.996532i \(-0.473482\pi\)
0.0832112 + 0.996532i \(0.473482\pi\)
\(44\) 0 0
\(45\) −5416.61 −0.398746
\(46\) 0 0
\(47\) −1605.83 −0.106036 −0.0530182 0.998594i \(-0.516884\pi\)
−0.0530182 + 0.998594i \(0.516884\pi\)
\(48\) 0 0
\(49\) 36535.6 2.17383
\(50\) 0 0
\(51\) 6886.89 0.370764
\(52\) 0 0
\(53\) 11998.3 0.586718 0.293359 0.956002i \(-0.405227\pi\)
0.293359 + 0.956002i \(0.405227\pi\)
\(54\) 0 0
\(55\) 24120.5 1.07517
\(56\) 0 0
\(57\) 20496.4 0.835583
\(58\) 0 0
\(59\) −24401.4 −0.912608 −0.456304 0.889824i \(-0.650827\pi\)
−0.456304 + 0.889824i \(0.650827\pi\)
\(60\) 0 0
\(61\) 19670.5 0.676848 0.338424 0.940994i \(-0.390106\pi\)
0.338424 + 0.940994i \(0.390106\pi\)
\(62\) 0 0
\(63\) 18707.8 0.593842
\(64\) 0 0
\(65\) −45106.8 −1.32422
\(66\) 0 0
\(67\) 50239.4 1.36728 0.683640 0.729820i \(-0.260396\pi\)
0.683640 + 0.729820i \(0.260396\pi\)
\(68\) 0 0
\(69\) −4191.32 −0.105981
\(70\) 0 0
\(71\) 16572.5 0.390160 0.195080 0.980787i \(-0.437503\pi\)
0.195080 + 0.980787i \(0.437503\pi\)
\(72\) 0 0
\(73\) −14263.2 −0.313264 −0.156632 0.987657i \(-0.550064\pi\)
−0.156632 + 0.987657i \(0.550064\pi\)
\(74\) 0 0
\(75\) −12121.4 −0.248828
\(76\) 0 0
\(77\) −83306.8 −1.60123
\(78\) 0 0
\(79\) −47850.0 −0.862609 −0.431305 0.902206i \(-0.641947\pi\)
−0.431305 + 0.902206i \(0.641947\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 60126.7 0.958014 0.479007 0.877811i \(-0.340997\pi\)
0.479007 + 0.877811i \(0.340997\pi\)
\(84\) 0 0
\(85\) 51170.9 0.768203
\(86\) 0 0
\(87\) −12871.3 −0.182315
\(88\) 0 0
\(89\) −139147. −1.86208 −0.931041 0.364914i \(-0.881098\pi\)
−0.931041 + 0.364914i \(0.881098\pi\)
\(90\) 0 0
\(91\) 155789. 1.97212
\(92\) 0 0
\(93\) −29950.1 −0.359080
\(94\) 0 0
\(95\) 152292. 1.73128
\(96\) 0 0
\(97\) 85226.4 0.919697 0.459849 0.887997i \(-0.347904\pi\)
0.459849 + 0.887997i \(0.347904\pi\)
\(98\) 0 0
\(99\) −29216.5 −0.299599
\(100\) 0 0
\(101\) −169928. −1.65753 −0.828765 0.559597i \(-0.810956\pi\)
−0.828765 + 0.559597i \(0.810956\pi\)
\(102\) 0 0
\(103\) 165056. 1.53299 0.766494 0.642252i \(-0.222000\pi\)
0.766494 + 0.642252i \(0.222000\pi\)
\(104\) 0 0
\(105\) 139002. 1.23041
\(106\) 0 0
\(107\) −4855.53 −0.0409994 −0.0204997 0.999790i \(-0.506526\pi\)
−0.0204997 + 0.999790i \(0.506526\pi\)
\(108\) 0 0
\(109\) −50783.0 −0.409404 −0.204702 0.978824i \(-0.565622\pi\)
−0.204702 + 0.978824i \(0.565622\pi\)
\(110\) 0 0
\(111\) 51624.7 0.397695
\(112\) 0 0
\(113\) −250074. −1.84235 −0.921177 0.389145i \(-0.872771\pi\)
−0.921177 + 0.389145i \(0.872771\pi\)
\(114\) 0 0
\(115\) −31142.3 −0.219587
\(116\) 0 0
\(117\) 54636.7 0.368995
\(118\) 0 0
\(119\) −176733. −1.14406
\(120\) 0 0
\(121\) −30948.2 −0.192164
\(122\) 0 0
\(123\) −114001. −0.679429
\(124\) 0 0
\(125\) 118910. 0.680679
\(126\) 0 0
\(127\) −75539.2 −0.415588 −0.207794 0.978173i \(-0.566628\pi\)
−0.207794 + 0.978173i \(0.566628\pi\)
\(128\) 0 0
\(129\) −18160.4 −0.0960840
\(130\) 0 0
\(131\) −215478. −1.09704 −0.548522 0.836136i \(-0.684809\pi\)
−0.548522 + 0.836136i \(0.684809\pi\)
\(132\) 0 0
\(133\) −525982. −2.57835
\(134\) 0 0
\(135\) 48749.5 0.230216
\(136\) 0 0
\(137\) −140259. −0.638455 −0.319228 0.947678i \(-0.603423\pi\)
−0.319228 + 0.947678i \(0.603423\pi\)
\(138\) 0 0
\(139\) −35488.8 −0.155795 −0.0778977 0.996961i \(-0.524821\pi\)
−0.0778977 + 0.996961i \(0.524821\pi\)
\(140\) 0 0
\(141\) 14452.5 0.0612202
\(142\) 0 0
\(143\) −243301. −0.994954
\(144\) 0 0
\(145\) −95635.9 −0.377747
\(146\) 0 0
\(147\) −328820. −1.25506
\(148\) 0 0
\(149\) 92665.3 0.341941 0.170971 0.985276i \(-0.445310\pi\)
0.170971 + 0.985276i \(0.445310\pi\)
\(150\) 0 0
\(151\) −335751. −1.19833 −0.599163 0.800627i \(-0.704500\pi\)
−0.599163 + 0.800627i \(0.704500\pi\)
\(152\) 0 0
\(153\) −61982.0 −0.214061
\(154\) 0 0
\(155\) −222535. −0.743994
\(156\) 0 0
\(157\) −411865. −1.33354 −0.666770 0.745263i \(-0.732324\pi\)
−0.666770 + 0.745263i \(0.732324\pi\)
\(158\) 0 0
\(159\) −107985. −0.338742
\(160\) 0 0
\(161\) 107559. 0.327025
\(162\) 0 0
\(163\) 201696. 0.594605 0.297302 0.954783i \(-0.403913\pi\)
0.297302 + 0.954783i \(0.403913\pi\)
\(164\) 0 0
\(165\) −217084. −0.620752
\(166\) 0 0
\(167\) 232101. 0.644000 0.322000 0.946740i \(-0.395645\pi\)
0.322000 + 0.946740i \(0.395645\pi\)
\(168\) 0 0
\(169\) 83694.6 0.225414
\(170\) 0 0
\(171\) −184467. −0.482424
\(172\) 0 0
\(173\) −604310. −1.53513 −0.767564 0.640972i \(-0.778531\pi\)
−0.767564 + 0.640972i \(0.778531\pi\)
\(174\) 0 0
\(175\) 311063. 0.767808
\(176\) 0 0
\(177\) 219612. 0.526894
\(178\) 0 0
\(179\) 48331.8 0.112746 0.0563729 0.998410i \(-0.482046\pi\)
0.0563729 + 0.998410i \(0.482046\pi\)
\(180\) 0 0
\(181\) 157000. 0.356207 0.178104 0.984012i \(-0.443004\pi\)
0.178104 + 0.984012i \(0.443004\pi\)
\(182\) 0 0
\(183\) −177035. −0.390778
\(184\) 0 0
\(185\) 383581. 0.824001
\(186\) 0 0
\(187\) 276010. 0.577192
\(188\) 0 0
\(189\) −168370. −0.342855
\(190\) 0 0
\(191\) −271788. −0.539073 −0.269536 0.962990i \(-0.586870\pi\)
−0.269536 + 0.962990i \(0.586870\pi\)
\(192\) 0 0
\(193\) 211920. 0.409524 0.204762 0.978812i \(-0.434358\pi\)
0.204762 + 0.978812i \(0.434358\pi\)
\(194\) 0 0
\(195\) 405961. 0.764536
\(196\) 0 0
\(197\) −256636. −0.471142 −0.235571 0.971857i \(-0.575696\pi\)
−0.235571 + 0.971857i \(0.575696\pi\)
\(198\) 0 0
\(199\) 165826. 0.296839 0.148419 0.988925i \(-0.452581\pi\)
0.148419 + 0.988925i \(0.452581\pi\)
\(200\) 0 0
\(201\) −452154. −0.789399
\(202\) 0 0
\(203\) 330305. 0.562568
\(204\) 0 0
\(205\) −847046. −1.40774
\(206\) 0 0
\(207\) 37721.9 0.0611882
\(208\) 0 0
\(209\) 821443. 1.30080
\(210\) 0 0
\(211\) 1.27854e6 1.97701 0.988505 0.151187i \(-0.0483097\pi\)
0.988505 + 0.151187i \(0.0483097\pi\)
\(212\) 0 0
\(213\) −149153. −0.225259
\(214\) 0 0
\(215\) −134935. −0.199081
\(216\) 0 0
\(217\) 768587. 1.10801
\(218\) 0 0
\(219\) 128369. 0.180863
\(220\) 0 0
\(221\) −516155. −0.710886
\(222\) 0 0
\(223\) 329203. 0.443304 0.221652 0.975126i \(-0.428855\pi\)
0.221652 + 0.975126i \(0.428855\pi\)
\(224\) 0 0
\(225\) 109093. 0.143661
\(226\) 0 0
\(227\) −242920. −0.312896 −0.156448 0.987686i \(-0.550004\pi\)
−0.156448 + 0.987686i \(0.550004\pi\)
\(228\) 0 0
\(229\) −843699. −1.06316 −0.531580 0.847008i \(-0.678402\pi\)
−0.531580 + 0.847008i \(0.678402\pi\)
\(230\) 0 0
\(231\) 749761. 0.924470
\(232\) 0 0
\(233\) 980922. 1.18371 0.591854 0.806045i \(-0.298396\pi\)
0.591854 + 0.806045i \(0.298396\pi\)
\(234\) 0 0
\(235\) 107385. 0.126845
\(236\) 0 0
\(237\) 430650. 0.498028
\(238\) 0 0
\(239\) −1.48396e6 −1.68045 −0.840226 0.542237i \(-0.817578\pi\)
−0.840226 + 0.542237i \(0.817578\pi\)
\(240\) 0 0
\(241\) −1.47497e6 −1.63584 −0.817919 0.575333i \(-0.804872\pi\)
−0.817919 + 0.575333i \(0.804872\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) −2.44320e6 −2.60042
\(246\) 0 0
\(247\) −1.53615e6 −1.60211
\(248\) 0 0
\(249\) −541140. −0.553110
\(250\) 0 0
\(251\) −384697. −0.385421 −0.192710 0.981256i \(-0.561728\pi\)
−0.192710 + 0.981256i \(0.561728\pi\)
\(252\) 0 0
\(253\) −167978. −0.164987
\(254\) 0 0
\(255\) −460538. −0.443522
\(256\) 0 0
\(257\) 1.47809e6 1.39594 0.697970 0.716127i \(-0.254087\pi\)
0.697970 + 0.716127i \(0.254087\pi\)
\(258\) 0 0
\(259\) −1.32480e6 −1.22716
\(260\) 0 0
\(261\) 115841. 0.105260
\(262\) 0 0
\(263\) −768376. −0.684990 −0.342495 0.939520i \(-0.611272\pi\)
−0.342495 + 0.939520i \(0.611272\pi\)
\(264\) 0 0
\(265\) −802346. −0.701854
\(266\) 0 0
\(267\) 1.25232e6 1.07507
\(268\) 0 0
\(269\) −1.23415e6 −1.03989 −0.519943 0.854201i \(-0.674047\pi\)
−0.519943 + 0.854201i \(0.674047\pi\)
\(270\) 0 0
\(271\) 305284. 0.252511 0.126256 0.991998i \(-0.459704\pi\)
0.126256 + 0.991998i \(0.459704\pi\)
\(272\) 0 0
\(273\) −1.40210e6 −1.13860
\(274\) 0 0
\(275\) −485796. −0.387367
\(276\) 0 0
\(277\) −773218. −0.605483 −0.302742 0.953073i \(-0.597902\pi\)
−0.302742 + 0.953073i \(0.597902\pi\)
\(278\) 0 0
\(279\) 269551. 0.207315
\(280\) 0 0
\(281\) −815352. −0.615998 −0.307999 0.951387i \(-0.599659\pi\)
−0.307999 + 0.951387i \(0.599659\pi\)
\(282\) 0 0
\(283\) −186289. −0.138268 −0.0691338 0.997607i \(-0.522024\pi\)
−0.0691338 + 0.997607i \(0.522024\pi\)
\(284\) 0 0
\(285\) −1.37063e6 −0.999555
\(286\) 0 0
\(287\) 2.92551e6 2.09651
\(288\) 0 0
\(289\) −834310. −0.587602
\(290\) 0 0
\(291\) −767038. −0.530988
\(292\) 0 0
\(293\) 281361. 0.191467 0.0957337 0.995407i \(-0.469480\pi\)
0.0957337 + 0.995407i \(0.469480\pi\)
\(294\) 0 0
\(295\) 1.63176e6 1.09170
\(296\) 0 0
\(297\) 262949. 0.172974
\(298\) 0 0
\(299\) 314129. 0.203203
\(300\) 0 0
\(301\) 466036. 0.296486
\(302\) 0 0
\(303\) 1.52935e6 0.956975
\(304\) 0 0
\(305\) −1.31540e6 −0.809671
\(306\) 0 0
\(307\) −2.34582e6 −1.42053 −0.710263 0.703936i \(-0.751424\pi\)
−0.710263 + 0.703936i \(0.751424\pi\)
\(308\) 0 0
\(309\) −1.48551e6 −0.885071
\(310\) 0 0
\(311\) −14836.6 −0.00869831 −0.00434915 0.999991i \(-0.501384\pi\)
−0.00434915 + 0.999991i \(0.501384\pi\)
\(312\) 0 0
\(313\) −2.23974e6 −1.29222 −0.646111 0.763243i \(-0.723606\pi\)
−0.646111 + 0.763243i \(0.723606\pi\)
\(314\) 0 0
\(315\) −1.25102e6 −0.710375
\(316\) 0 0
\(317\) 198362. 0.110869 0.0554346 0.998462i \(-0.482346\pi\)
0.0554346 + 0.998462i \(0.482346\pi\)
\(318\) 0 0
\(319\) −515848. −0.283821
\(320\) 0 0
\(321\) 43699.8 0.0236710
\(322\) 0 0
\(323\) 1.74267e6 0.929413
\(324\) 0 0
\(325\) 908470. 0.477092
\(326\) 0 0
\(327\) 457047. 0.236369
\(328\) 0 0
\(329\) −370883. −0.188907
\(330\) 0 0
\(331\) −3.70558e6 −1.85903 −0.929515 0.368784i \(-0.879774\pi\)
−0.929515 + 0.368784i \(0.879774\pi\)
\(332\) 0 0
\(333\) −464622. −0.229609
\(334\) 0 0
\(335\) −3.35959e6 −1.63559
\(336\) 0 0
\(337\) 815082. 0.390955 0.195477 0.980708i \(-0.437374\pi\)
0.195477 + 0.980708i \(0.437374\pi\)
\(338\) 0 0
\(339\) 2.25067e6 1.06368
\(340\) 0 0
\(341\) −1.20033e6 −0.559002
\(342\) 0 0
\(343\) 4.55651e6 2.09121
\(344\) 0 0
\(345\) 280281. 0.126778
\(346\) 0 0
\(347\) −159705. −0.0712024 −0.0356012 0.999366i \(-0.511335\pi\)
−0.0356012 + 0.999366i \(0.511335\pi\)
\(348\) 0 0
\(349\) −3.05102e6 −1.34086 −0.670428 0.741975i \(-0.733889\pi\)
−0.670428 + 0.741975i \(0.733889\pi\)
\(350\) 0 0
\(351\) −491731. −0.213039
\(352\) 0 0
\(353\) −529374. −0.226113 −0.113057 0.993589i \(-0.536064\pi\)
−0.113057 + 0.993589i \(0.536064\pi\)
\(354\) 0 0
\(355\) −1.10823e6 −0.466724
\(356\) 0 0
\(357\) 1.59060e6 0.660526
\(358\) 0 0
\(359\) −2.74711e6 −1.12497 −0.562484 0.826808i \(-0.690154\pi\)
−0.562484 + 0.826808i \(0.690154\pi\)
\(360\) 0 0
\(361\) 2.71033e6 1.09460
\(362\) 0 0
\(363\) 278534. 0.110946
\(364\) 0 0
\(365\) 953805. 0.374738
\(366\) 0 0
\(367\) 2.09523e6 0.812020 0.406010 0.913869i \(-0.366920\pi\)
0.406010 + 0.913869i \(0.366920\pi\)
\(368\) 0 0
\(369\) 1.02601e6 0.392269
\(370\) 0 0
\(371\) 2.77113e6 1.04525
\(372\) 0 0
\(373\) −1.85054e6 −0.688693 −0.344347 0.938843i \(-0.611900\pi\)
−0.344347 + 0.938843i \(0.611900\pi\)
\(374\) 0 0
\(375\) −1.07019e6 −0.392990
\(376\) 0 0
\(377\) 964669. 0.349562
\(378\) 0 0
\(379\) −250828. −0.0896972 −0.0448486 0.998994i \(-0.514281\pi\)
−0.0448486 + 0.998994i \(0.514281\pi\)
\(380\) 0 0
\(381\) 679853. 0.239940
\(382\) 0 0
\(383\) 1.25720e6 0.437932 0.218966 0.975733i \(-0.429732\pi\)
0.218966 + 0.975733i \(0.429732\pi\)
\(384\) 0 0
\(385\) 5.57087e6 1.91545
\(386\) 0 0
\(387\) 163444. 0.0554741
\(388\) 0 0
\(389\) 5.48629e6 1.83825 0.919126 0.393964i \(-0.128897\pi\)
0.919126 + 0.393964i \(0.128897\pi\)
\(390\) 0 0
\(391\) −356360. −0.117882
\(392\) 0 0
\(393\) 1.93930e6 0.633379
\(394\) 0 0
\(395\) 3.19981e6 1.03189
\(396\) 0 0
\(397\) −926145. −0.294919 −0.147459 0.989068i \(-0.547110\pi\)
−0.147459 + 0.989068i \(0.547110\pi\)
\(398\) 0 0
\(399\) 4.73384e6 1.48861
\(400\) 0 0
\(401\) −4.52840e6 −1.40632 −0.703159 0.711032i \(-0.748228\pi\)
−0.703159 + 0.711032i \(0.748228\pi\)
\(402\) 0 0
\(403\) 2.24469e6 0.688483
\(404\) 0 0
\(405\) −438745. −0.132915
\(406\) 0 0
\(407\) 2.06899e6 0.619116
\(408\) 0 0
\(409\) −4.09167e6 −1.20946 −0.604731 0.796429i \(-0.706720\pi\)
−0.604731 + 0.796429i \(0.706720\pi\)
\(410\) 0 0
\(411\) 1.26233e6 0.368612
\(412\) 0 0
\(413\) −5.63574e6 −1.62583
\(414\) 0 0
\(415\) −4.02077e6 −1.14601
\(416\) 0 0
\(417\) 319399. 0.0899485
\(418\) 0 0
\(419\) −121773. −0.0338856 −0.0169428 0.999856i \(-0.505393\pi\)
−0.0169428 + 0.999856i \(0.505393\pi\)
\(420\) 0 0
\(421\) −6.22499e6 −1.71172 −0.855861 0.517206i \(-0.826972\pi\)
−0.855861 + 0.517206i \(0.826972\pi\)
\(422\) 0 0
\(423\) −130072. −0.0353455
\(424\) 0 0
\(425\) −1.03060e6 −0.276770
\(426\) 0 0
\(427\) 4.54310e6 1.20582
\(428\) 0 0
\(429\) 2.18971e6 0.574437
\(430\) 0 0
\(431\) −5.69823e6 −1.47757 −0.738783 0.673943i \(-0.764599\pi\)
−0.738783 + 0.673943i \(0.764599\pi\)
\(432\) 0 0
\(433\) 3.78582e6 0.970377 0.485188 0.874410i \(-0.338751\pi\)
0.485188 + 0.874410i \(0.338751\pi\)
\(434\) 0 0
\(435\) 860723. 0.218092
\(436\) 0 0
\(437\) −1.06058e6 −0.265668
\(438\) 0 0
\(439\) 212373. 0.0525943 0.0262971 0.999654i \(-0.491628\pi\)
0.0262971 + 0.999654i \(0.491628\pi\)
\(440\) 0 0
\(441\) 2.95938e6 0.724610
\(442\) 0 0
\(443\) 4.53614e6 1.09819 0.549094 0.835760i \(-0.314973\pi\)
0.549094 + 0.835760i \(0.314973\pi\)
\(444\) 0 0
\(445\) 9.30500e6 2.22749
\(446\) 0 0
\(447\) −833988. −0.197420
\(448\) 0 0
\(449\) −2.61235e6 −0.611526 −0.305763 0.952108i \(-0.598912\pi\)
−0.305763 + 0.952108i \(0.598912\pi\)
\(450\) 0 0
\(451\) −4.56886e6 −1.05771
\(452\) 0 0
\(453\) 3.02176e6 0.691854
\(454\) 0 0
\(455\) −1.04179e7 −2.35912
\(456\) 0 0
\(457\) 3.79986e6 0.851093 0.425546 0.904937i \(-0.360082\pi\)
0.425546 + 0.904937i \(0.360082\pi\)
\(458\) 0 0
\(459\) 557838. 0.123588
\(460\) 0 0
\(461\) 7.43429e6 1.62925 0.814624 0.579989i \(-0.196943\pi\)
0.814624 + 0.579989i \(0.196943\pi\)
\(462\) 0 0
\(463\) 7.91454e6 1.71583 0.857913 0.513795i \(-0.171761\pi\)
0.857913 + 0.513795i \(0.171761\pi\)
\(464\) 0 0
\(465\) 2.00282e6 0.429545
\(466\) 0 0
\(467\) −2.39528e6 −0.508235 −0.254117 0.967173i \(-0.581785\pi\)
−0.254117 + 0.967173i \(0.581785\pi\)
\(468\) 0 0
\(469\) 1.16033e7 2.43584
\(470\) 0 0
\(471\) 3.70679e6 0.769920
\(472\) 0 0
\(473\) −727824. −0.149580
\(474\) 0 0
\(475\) −3.06722e6 −0.623750
\(476\) 0 0
\(477\) 971861. 0.195573
\(478\) 0 0
\(479\) −4.94106e6 −0.983968 −0.491984 0.870604i \(-0.663728\pi\)
−0.491984 + 0.870604i \(0.663728\pi\)
\(480\) 0 0
\(481\) −3.86914e6 −0.762521
\(482\) 0 0
\(483\) −968028. −0.188808
\(484\) 0 0
\(485\) −5.69924e6 −1.10018
\(486\) 0 0
\(487\) 846936. 0.161818 0.0809092 0.996721i \(-0.474218\pi\)
0.0809092 + 0.996721i \(0.474218\pi\)
\(488\) 0 0
\(489\) −1.81526e6 −0.343295
\(490\) 0 0
\(491\) −8.97769e6 −1.68059 −0.840294 0.542132i \(-0.817617\pi\)
−0.840294 + 0.542132i \(0.817617\pi\)
\(492\) 0 0
\(493\) −1.09436e6 −0.202788
\(494\) 0 0
\(495\) 1.95376e6 0.358391
\(496\) 0 0
\(497\) 3.82759e6 0.695079
\(498\) 0 0
\(499\) 7.29948e6 1.31232 0.656161 0.754621i \(-0.272179\pi\)
0.656161 + 0.754621i \(0.272179\pi\)
\(500\) 0 0
\(501\) −2.08891e6 −0.371813
\(502\) 0 0
\(503\) −2.35478e6 −0.414983 −0.207492 0.978237i \(-0.566530\pi\)
−0.207492 + 0.978237i \(0.566530\pi\)
\(504\) 0 0
\(505\) 1.13634e7 1.98280
\(506\) 0 0
\(507\) −753251. −0.130143
\(508\) 0 0
\(509\) 7.31469e6 1.25142 0.625708 0.780058i \(-0.284810\pi\)
0.625708 + 0.780058i \(0.284810\pi\)
\(510\) 0 0
\(511\) −3.29423e6 −0.558087
\(512\) 0 0
\(513\) 1.66020e6 0.278528
\(514\) 0 0
\(515\) −1.10376e7 −1.83382
\(516\) 0 0
\(517\) 579220. 0.0953053
\(518\) 0 0
\(519\) 5.43879e6 0.886306
\(520\) 0 0
\(521\) −4.05729e6 −0.654850 −0.327425 0.944877i \(-0.606181\pi\)
−0.327425 + 0.944877i \(0.606181\pi\)
\(522\) 0 0
\(523\) 4.06432e6 0.649731 0.324865 0.945760i \(-0.394681\pi\)
0.324865 + 0.945760i \(0.394681\pi\)
\(524\) 0 0
\(525\) −2.79956e6 −0.443294
\(526\) 0 0
\(527\) −2.54646e6 −0.399402
\(528\) 0 0
\(529\) −6.21946e6 −0.966304
\(530\) 0 0
\(531\) −1.97651e6 −0.304203
\(532\) 0 0
\(533\) 8.54406e6 1.30271
\(534\) 0 0
\(535\) 324698. 0.0490450
\(536\) 0 0
\(537\) −434986. −0.0650938
\(538\) 0 0
\(539\) −1.31783e7 −1.95383
\(540\) 0 0
\(541\) 2.19907e6 0.323033 0.161516 0.986870i \(-0.448362\pi\)
0.161516 + 0.986870i \(0.448362\pi\)
\(542\) 0 0
\(543\) −1.41300e6 −0.205656
\(544\) 0 0
\(545\) 3.39594e6 0.489744
\(546\) 0 0
\(547\) −5.46860e6 −0.781463 −0.390731 0.920505i \(-0.627778\pi\)
−0.390731 + 0.920505i \(0.627778\pi\)
\(548\) 0 0
\(549\) 1.59331e6 0.225616
\(550\) 0 0
\(551\) −3.25696e6 −0.457018
\(552\) 0 0
\(553\) −1.10514e7 −1.53676
\(554\) 0 0
\(555\) −3.45223e6 −0.475737
\(556\) 0 0
\(557\) 1.14168e6 0.155921 0.0779607 0.996956i \(-0.475159\pi\)
0.0779607 + 0.996956i \(0.475159\pi\)
\(558\) 0 0
\(559\) 1.36108e6 0.184227
\(560\) 0 0
\(561\) −2.48409e6 −0.333242
\(562\) 0 0
\(563\) 8.79987e6 1.17005 0.585026 0.811015i \(-0.301084\pi\)
0.585026 + 0.811015i \(0.301084\pi\)
\(564\) 0 0
\(565\) 1.67229e7 2.20389
\(566\) 0 0
\(567\) 1.51533e6 0.197947
\(568\) 0 0
\(569\) −1.09177e7 −1.41367 −0.706836 0.707377i \(-0.749878\pi\)
−0.706836 + 0.707377i \(0.749878\pi\)
\(570\) 0 0
\(571\) −3.13621e6 −0.402545 −0.201273 0.979535i \(-0.564508\pi\)
−0.201273 + 0.979535i \(0.564508\pi\)
\(572\) 0 0
\(573\) 2.44609e6 0.311234
\(574\) 0 0
\(575\) 627219. 0.0791133
\(576\) 0 0
\(577\) −3.75626e6 −0.469695 −0.234848 0.972032i \(-0.575459\pi\)
−0.234848 + 0.972032i \(0.575459\pi\)
\(578\) 0 0
\(579\) −1.90728e6 −0.236439
\(580\) 0 0
\(581\) 1.38869e7 1.70673
\(582\) 0 0
\(583\) −4.32775e6 −0.527340
\(584\) 0 0
\(585\) −3.65365e6 −0.441405
\(586\) 0 0
\(587\) 8.59479e6 1.02953 0.514766 0.857331i \(-0.327879\pi\)
0.514766 + 0.857331i \(0.327879\pi\)
\(588\) 0 0
\(589\) −7.57862e6 −0.900123
\(590\) 0 0
\(591\) 2.30972e6 0.272014
\(592\) 0 0
\(593\) −1.28180e6 −0.149687 −0.0748434 0.997195i \(-0.523846\pi\)
−0.0748434 + 0.997195i \(0.523846\pi\)
\(594\) 0 0
\(595\) 1.18184e7 1.36857
\(596\) 0 0
\(597\) −1.49244e6 −0.171380
\(598\) 0 0
\(599\) −3.91371e6 −0.445678 −0.222839 0.974855i \(-0.571533\pi\)
−0.222839 + 0.974855i \(0.571533\pi\)
\(600\) 0 0
\(601\) −3.63280e6 −0.410257 −0.205128 0.978735i \(-0.565761\pi\)
−0.205128 + 0.978735i \(0.565761\pi\)
\(602\) 0 0
\(603\) 4.06939e6 0.455760
\(604\) 0 0
\(605\) 2.06956e6 0.229874
\(606\) 0 0
\(607\) 1.23312e7 1.35842 0.679210 0.733944i \(-0.262323\pi\)
0.679210 + 0.733944i \(0.262323\pi\)
\(608\) 0 0
\(609\) −2.97275e6 −0.324799
\(610\) 0 0
\(611\) −1.08318e6 −0.117381
\(612\) 0 0
\(613\) −8.39494e6 −0.902332 −0.451166 0.892440i \(-0.648992\pi\)
−0.451166 + 0.892440i \(0.648992\pi\)
\(614\) 0 0
\(615\) 7.62341e6 0.812759
\(616\) 0 0
\(617\) 5.02025e6 0.530899 0.265450 0.964125i \(-0.414480\pi\)
0.265450 + 0.964125i \(0.414480\pi\)
\(618\) 0 0
\(619\) 8.02789e6 0.842122 0.421061 0.907032i \(-0.361658\pi\)
0.421061 + 0.907032i \(0.361658\pi\)
\(620\) 0 0
\(621\) −339497. −0.0353270
\(622\) 0 0
\(623\) −3.21374e7 −3.31735
\(624\) 0 0
\(625\) −1.21605e7 −1.24524
\(626\) 0 0
\(627\) −7.39299e6 −0.751019
\(628\) 0 0
\(629\) 4.38930e6 0.442353
\(630\) 0 0
\(631\) −118997. −0.0118977 −0.00594885 0.999982i \(-0.501894\pi\)
−0.00594885 + 0.999982i \(0.501894\pi\)
\(632\) 0 0
\(633\) −1.15069e7 −1.14143
\(634\) 0 0
\(635\) 5.05143e6 0.497142
\(636\) 0 0
\(637\) 2.46443e7 2.40640
\(638\) 0 0
\(639\) 1.34237e6 0.130053
\(640\) 0 0
\(641\) 1.30672e7 1.25614 0.628069 0.778158i \(-0.283846\pi\)
0.628069 + 0.778158i \(0.283846\pi\)
\(642\) 0 0
\(643\) 1.86984e7 1.78351 0.891757 0.452514i \(-0.149473\pi\)
0.891757 + 0.452514i \(0.149473\pi\)
\(644\) 0 0
\(645\) 1.21442e6 0.114939
\(646\) 0 0
\(647\) −1.57250e7 −1.47683 −0.738414 0.674348i \(-0.764425\pi\)
−0.738414 + 0.674348i \(0.764425\pi\)
\(648\) 0 0
\(649\) 8.80151e6 0.820249
\(650\) 0 0
\(651\) −6.91728e6 −0.639710
\(652\) 0 0
\(653\) 1.04382e7 0.957953 0.478977 0.877828i \(-0.341008\pi\)
0.478977 + 0.877828i \(0.341008\pi\)
\(654\) 0 0
\(655\) 1.44094e7 1.31233
\(656\) 0 0
\(657\) −1.15532e6 −0.104421
\(658\) 0 0
\(659\) 1.56129e7 1.40045 0.700227 0.713920i \(-0.253082\pi\)
0.700227 + 0.713920i \(0.253082\pi\)
\(660\) 0 0
\(661\) 1.34894e7 1.20085 0.600425 0.799681i \(-0.294998\pi\)
0.600425 + 0.799681i \(0.294998\pi\)
\(662\) 0 0
\(663\) 4.64540e6 0.410430
\(664\) 0 0
\(665\) 3.51733e7 3.08432
\(666\) 0 0
\(667\) 666019. 0.0579659
\(668\) 0 0
\(669\) −2.96283e6 −0.255942
\(670\) 0 0
\(671\) −7.09511e6 −0.608349
\(672\) 0 0
\(673\) −4.64517e6 −0.395334 −0.197667 0.980269i \(-0.563336\pi\)
−0.197667 + 0.980269i \(0.563336\pi\)
\(674\) 0 0
\(675\) −981834. −0.0829428
\(676\) 0 0
\(677\) −1.80937e7 −1.51725 −0.758623 0.651530i \(-0.774128\pi\)
−0.758623 + 0.651530i \(0.774128\pi\)
\(678\) 0 0
\(679\) 1.96839e7 1.63846
\(680\) 0 0
\(681\) 2.18628e6 0.180650
\(682\) 0 0
\(683\) 1.75881e7 1.44267 0.721333 0.692588i \(-0.243530\pi\)
0.721333 + 0.692588i \(0.243530\pi\)
\(684\) 0 0
\(685\) 9.37938e6 0.763744
\(686\) 0 0
\(687\) 7.59329e6 0.613816
\(688\) 0 0
\(689\) 8.09318e6 0.649488
\(690\) 0 0
\(691\) −8.24840e6 −0.657165 −0.328582 0.944475i \(-0.606571\pi\)
−0.328582 + 0.944475i \(0.606571\pi\)
\(692\) 0 0
\(693\) −6.74785e6 −0.533743
\(694\) 0 0
\(695\) 2.37320e6 0.186368
\(696\) 0 0
\(697\) −9.69271e6 −0.755724
\(698\) 0 0
\(699\) −8.82830e6 −0.683414
\(700\) 0 0
\(701\) −6.82859e6 −0.524851 −0.262426 0.964952i \(-0.584522\pi\)
−0.262426 + 0.964952i \(0.584522\pi\)
\(702\) 0 0
\(703\) 1.30632e7 0.996920
\(704\) 0 0
\(705\) −966462. −0.0732339
\(706\) 0 0
\(707\) −3.92466e7 −2.95293
\(708\) 0 0
\(709\) −781645. −0.0583974 −0.0291987 0.999574i \(-0.509296\pi\)
−0.0291987 + 0.999574i \(0.509296\pi\)
\(710\) 0 0
\(711\) −3.87585e6 −0.287536
\(712\) 0 0
\(713\) 1.54976e6 0.114167
\(714\) 0 0
\(715\) 1.62699e7 1.19020
\(716\) 0 0
\(717\) 1.33556e7 0.970209
\(718\) 0 0
\(719\) 2.25941e7 1.62995 0.814973 0.579499i \(-0.196752\pi\)
0.814973 + 0.579499i \(0.196752\pi\)
\(720\) 0 0
\(721\) 3.81214e7 2.73105
\(722\) 0 0
\(723\) 1.32747e7 0.944451
\(724\) 0 0
\(725\) 1.92615e6 0.136096
\(726\) 0 0
\(727\) 1.31915e7 0.925672 0.462836 0.886444i \(-0.346832\pi\)
0.462836 + 0.886444i \(0.346832\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.54406e6 −0.106874
\(732\) 0 0
\(733\) −9.78681e6 −0.672793 −0.336396 0.941721i \(-0.609208\pi\)
−0.336396 + 0.941721i \(0.609208\pi\)
\(734\) 0 0
\(735\) 2.19888e7 1.50135
\(736\) 0 0
\(737\) −1.81212e7 −1.22891
\(738\) 0 0
\(739\) −2.14877e7 −1.44737 −0.723685 0.690130i \(-0.757553\pi\)
−0.723685 + 0.690130i \(0.757553\pi\)
\(740\) 0 0
\(741\) 1.38254e7 0.924977
\(742\) 0 0
\(743\) 8.99108e6 0.597503 0.298751 0.954331i \(-0.403430\pi\)
0.298751 + 0.954331i \(0.403430\pi\)
\(744\) 0 0
\(745\) −6.19668e6 −0.409043
\(746\) 0 0
\(747\) 4.87026e6 0.319338
\(748\) 0 0
\(749\) −1.12143e6 −0.0730414
\(750\) 0 0
\(751\) −2.19356e7 −1.41922 −0.709611 0.704594i \(-0.751129\pi\)
−0.709611 + 0.704594i \(0.751129\pi\)
\(752\) 0 0
\(753\) 3.46228e6 0.222523
\(754\) 0 0
\(755\) 2.24523e7 1.43348
\(756\) 0 0
\(757\) −1.43342e7 −0.909144 −0.454572 0.890710i \(-0.650208\pi\)
−0.454572 + 0.890710i \(0.650208\pi\)
\(758\) 0 0
\(759\) 1.51180e6 0.0952554
\(760\) 0 0
\(761\) −306000. −0.0191540 −0.00957702 0.999954i \(-0.503049\pi\)
−0.00957702 + 0.999954i \(0.503049\pi\)
\(762\) 0 0
\(763\) −1.17288e7 −0.729363
\(764\) 0 0
\(765\) 4.14484e6 0.256068
\(766\) 0 0
\(767\) −1.64594e7 −1.01024
\(768\) 0 0
\(769\) −1.22052e7 −0.744266 −0.372133 0.928179i \(-0.621373\pi\)
−0.372133 + 0.928179i \(0.621373\pi\)
\(770\) 0 0
\(771\) −1.33028e7 −0.805947
\(772\) 0 0
\(773\) 3.18344e7 1.91623 0.958116 0.286380i \(-0.0924521\pi\)
0.958116 + 0.286380i \(0.0924521\pi\)
\(774\) 0 0
\(775\) 4.48195e6 0.268048
\(776\) 0 0
\(777\) 1.19232e7 0.708503
\(778\) 0 0
\(779\) −2.88469e7 −1.70316
\(780\) 0 0
\(781\) −5.97767e6 −0.350675
\(782\) 0 0
\(783\) −1.04257e6 −0.0607717
\(784\) 0 0
\(785\) 2.75421e7 1.59523
\(786\) 0 0
\(787\) −1.58777e6 −0.0913799 −0.0456899 0.998956i \(-0.514549\pi\)
−0.0456899 + 0.998956i \(0.514549\pi\)
\(788\) 0 0
\(789\) 6.91538e6 0.395479
\(790\) 0 0
\(791\) −5.77572e7 −3.28220
\(792\) 0 0
\(793\) 1.32683e7 0.749260
\(794\) 0 0
\(795\) 7.22111e6 0.405216
\(796\) 0 0
\(797\) −602565. −0.0336014 −0.0168007 0.999859i \(-0.505348\pi\)
−0.0168007 + 0.999859i \(0.505348\pi\)
\(798\) 0 0
\(799\) 1.22880e6 0.0680948
\(800\) 0 0
\(801\) −1.12709e7 −0.620694
\(802\) 0 0
\(803\) 5.14471e6 0.281561
\(804\) 0 0
\(805\) −7.19263e6 −0.391199
\(806\) 0 0
\(807\) 1.11073e7 0.600379
\(808\) 0 0
\(809\) −4.61727e6 −0.248036 −0.124018 0.992280i \(-0.539578\pi\)
−0.124018 + 0.992280i \(0.539578\pi\)
\(810\) 0 0
\(811\) −1.46562e7 −0.782473 −0.391236 0.920290i \(-0.627953\pi\)
−0.391236 + 0.920290i \(0.627953\pi\)
\(812\) 0 0
\(813\) −2.74755e6 −0.145787
\(814\) 0 0
\(815\) −1.34878e7 −0.711288
\(816\) 0 0
\(817\) −4.59533e6 −0.240858
\(818\) 0 0
\(819\) 1.26189e7 0.657373
\(820\) 0 0
\(821\) −2.60620e7 −1.34943 −0.674714 0.738079i \(-0.735733\pi\)
−0.674714 + 0.738079i \(0.735733\pi\)
\(822\) 0 0
\(823\) −661397. −0.0340379 −0.0170190 0.999855i \(-0.505418\pi\)
−0.0170190 + 0.999855i \(0.505418\pi\)
\(824\) 0 0
\(825\) 4.37217e6 0.223646
\(826\) 0 0
\(827\) −2.73064e7 −1.38835 −0.694176 0.719805i \(-0.744231\pi\)
−0.694176 + 0.719805i \(0.744231\pi\)
\(828\) 0 0
\(829\) −2.82299e7 −1.42667 −0.713334 0.700825i \(-0.752816\pi\)
−0.713334 + 0.700825i \(0.752816\pi\)
\(830\) 0 0
\(831\) 6.95896e6 0.349576
\(832\) 0 0
\(833\) −2.79574e7 −1.39600
\(834\) 0 0
\(835\) −1.55210e7 −0.770377
\(836\) 0 0
\(837\) −2.42596e6 −0.119693
\(838\) 0 0
\(839\) 1.82539e7 0.895266 0.447633 0.894217i \(-0.352267\pi\)
0.447633 + 0.894217i \(0.352267\pi\)
\(840\) 0 0
\(841\) −1.84659e7 −0.900284
\(842\) 0 0
\(843\) 7.33816e6 0.355646
\(844\) 0 0
\(845\) −5.59680e6 −0.269648
\(846\) 0 0
\(847\) −7.14780e6 −0.342345
\(848\) 0 0
\(849\) 1.67660e6 0.0798288
\(850\) 0 0
\(851\) −2.67130e6 −0.126444
\(852\) 0 0
\(853\) −9.21479e6 −0.433624 −0.216812 0.976213i \(-0.569566\pi\)
−0.216812 + 0.976213i \(0.569566\pi\)
\(854\) 0 0
\(855\) 1.23356e7 0.577093
\(856\) 0 0
\(857\) −3.64148e7 −1.69366 −0.846830 0.531864i \(-0.821492\pi\)
−0.846830 + 0.531864i \(0.821492\pi\)
\(858\) 0 0
\(859\) −2.32507e7 −1.07511 −0.537555 0.843229i \(-0.680652\pi\)
−0.537555 + 0.843229i \(0.680652\pi\)
\(860\) 0 0
\(861\) −2.63296e7 −1.21042
\(862\) 0 0
\(863\) −2.69228e7 −1.23053 −0.615266 0.788319i \(-0.710952\pi\)
−0.615266 + 0.788319i \(0.710952\pi\)
\(864\) 0 0
\(865\) 4.04112e7 1.83638
\(866\) 0 0
\(867\) 7.50879e6 0.339252
\(868\) 0 0
\(869\) 1.72594e7 0.775311
\(870\) 0 0
\(871\) 3.38878e7 1.51356
\(872\) 0 0
\(873\) 6.90334e6 0.306566
\(874\) 0 0
\(875\) 2.74634e7 1.21265
\(876\) 0 0
\(877\) 8.06833e6 0.354229 0.177115 0.984190i \(-0.443324\pi\)
0.177115 + 0.984190i \(0.443324\pi\)
\(878\) 0 0
\(879\) −2.53225e6 −0.110544
\(880\) 0 0
\(881\) −3.51408e7 −1.52536 −0.762680 0.646776i \(-0.776117\pi\)
−0.762680 + 0.646776i \(0.776117\pi\)
\(882\) 0 0
\(883\) 4.42971e7 1.91194 0.955968 0.293472i \(-0.0948107\pi\)
0.955968 + 0.293472i \(0.0948107\pi\)
\(884\) 0 0
\(885\) −1.46858e7 −0.630290
\(886\) 0 0
\(887\) −4.24507e7 −1.81166 −0.905828 0.423645i \(-0.860750\pi\)
−0.905828 + 0.423645i \(0.860750\pi\)
\(888\) 0 0
\(889\) −1.74465e7 −0.740380
\(890\) 0 0
\(891\) −2.36654e6 −0.0998663
\(892\) 0 0
\(893\) 3.65708e6 0.153464
\(894\) 0 0
\(895\) −3.23203e6 −0.134871
\(896\) 0 0
\(897\) −2.82716e6 −0.117319
\(898\) 0 0
\(899\) 4.75921e6 0.196397
\(900\) 0 0
\(901\) −9.18121e6 −0.376780
\(902\) 0 0
\(903\) −4.19433e6 −0.171176
\(904\) 0 0
\(905\) −1.04988e7 −0.426109
\(906\) 0 0
\(907\) 8.87749e6 0.358321 0.179160 0.983820i \(-0.442662\pi\)
0.179160 + 0.983820i \(0.442662\pi\)
\(908\) 0 0
\(909\) −1.37642e7 −0.552510
\(910\) 0 0
\(911\) 3.01023e7 1.20172 0.600860 0.799354i \(-0.294825\pi\)
0.600860 + 0.799354i \(0.294825\pi\)
\(912\) 0 0
\(913\) −2.16876e7 −0.861060
\(914\) 0 0
\(915\) 1.18386e7 0.467464
\(916\) 0 0
\(917\) −4.97668e7 −1.95441
\(918\) 0 0
\(919\) 2.68865e6 0.105014 0.0525068 0.998621i \(-0.483279\pi\)
0.0525068 + 0.998621i \(0.483279\pi\)
\(920\) 0 0
\(921\) 2.11124e7 0.820141
\(922\) 0 0
\(923\) 1.11786e7 0.431901
\(924\) 0 0
\(925\) −7.72548e6 −0.296873
\(926\) 0 0
\(927\) 1.33695e7 0.510996
\(928\) 0 0
\(929\) 5.37353e6 0.204277 0.102139 0.994770i \(-0.467431\pi\)
0.102139 + 0.994770i \(0.467431\pi\)
\(930\) 0 0
\(931\) −8.32051e7 −3.14612
\(932\) 0 0
\(933\) 133530. 0.00502197
\(934\) 0 0
\(935\) −1.84572e7 −0.690458
\(936\) 0 0
\(937\) 3.12251e7 1.16186 0.580931 0.813953i \(-0.302688\pi\)
0.580931 + 0.813953i \(0.302688\pi\)
\(938\) 0 0
\(939\) 2.01577e7 0.746065
\(940\) 0 0
\(941\) −3.47494e7 −1.27930 −0.639651 0.768665i \(-0.720921\pi\)
−0.639651 + 0.768665i \(0.720921\pi\)
\(942\) 0 0
\(943\) 5.89893e6 0.216020
\(944\) 0 0
\(945\) 1.12592e7 0.410135
\(946\) 0 0
\(947\) 2.11046e7 0.764720 0.382360 0.924014i \(-0.375111\pi\)
0.382360 + 0.924014i \(0.375111\pi\)
\(948\) 0 0
\(949\) −9.62093e6 −0.346778
\(950\) 0 0
\(951\) −1.78526e6 −0.0640103
\(952\) 0 0
\(953\) −1.22707e6 −0.0437661 −0.0218830 0.999761i \(-0.506966\pi\)
−0.0218830 + 0.999761i \(0.506966\pi\)
\(954\) 0 0
\(955\) 1.81749e7 0.644859
\(956\) 0 0
\(957\) 4.64263e6 0.163864
\(958\) 0 0
\(959\) −3.23943e7 −1.13742
\(960\) 0 0
\(961\) −1.75550e7 −0.613185
\(962\) 0 0
\(963\) −393298. −0.0136665
\(964\) 0 0
\(965\) −1.41715e7 −0.489888
\(966\) 0 0
\(967\) −2.09032e7 −0.718865 −0.359433 0.933171i \(-0.617030\pi\)
−0.359433 + 0.933171i \(0.617030\pi\)
\(968\) 0 0
\(969\) −1.56840e7 −0.536597
\(970\) 0 0
\(971\) 3.51130e7 1.19514 0.597572 0.801815i \(-0.296132\pi\)
0.597572 + 0.801815i \(0.296132\pi\)
\(972\) 0 0
\(973\) −8.19650e6 −0.277553
\(974\) 0 0
\(975\) −8.17623e6 −0.275449
\(976\) 0 0
\(977\) −2.99334e7 −1.00327 −0.501637 0.865078i \(-0.667269\pi\)
−0.501637 + 0.865078i \(0.667269\pi\)
\(978\) 0 0
\(979\) 5.01900e7 1.67363
\(980\) 0 0
\(981\) −4.11342e6 −0.136468
\(982\) 0 0
\(983\) 1.16148e7 0.383379 0.191689 0.981456i \(-0.438603\pi\)
0.191689 + 0.981456i \(0.438603\pi\)
\(984\) 0 0
\(985\) 1.71617e7 0.563598
\(986\) 0 0
\(987\) 3.33795e6 0.109065
\(988\) 0 0
\(989\) 939705. 0.0305493
\(990\) 0 0
\(991\) 5.48219e7 1.77325 0.886625 0.462488i \(-0.153043\pi\)
0.886625 + 0.462488i \(0.153043\pi\)
\(992\) 0 0
\(993\) 3.33502e7 1.07331
\(994\) 0 0
\(995\) −1.10891e7 −0.355090
\(996\) 0 0
\(997\) 1.86399e7 0.593888 0.296944 0.954895i \(-0.404032\pi\)
0.296944 + 0.954895i \(0.404032\pi\)
\(998\) 0 0
\(999\) 4.18160e6 0.132565
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.6.a.ba.1.2 5
4.3 odd 2 768.6.a.bc.1.2 5
8.3 odd 2 768.6.a.bb.1.4 5
8.5 even 2 768.6.a.bd.1.4 5
16.3 odd 4 96.6.d.a.49.9 10
16.5 even 4 24.6.d.a.13.1 10
16.11 odd 4 96.6.d.a.49.2 10
16.13 even 4 24.6.d.a.13.2 yes 10
48.5 odd 4 72.6.d.d.37.10 10
48.11 even 4 288.6.d.d.145.8 10
48.29 odd 4 72.6.d.d.37.9 10
48.35 even 4 288.6.d.d.145.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.6.d.a.13.1 10 16.5 even 4
24.6.d.a.13.2 yes 10 16.13 even 4
72.6.d.d.37.9 10 48.29 odd 4
72.6.d.d.37.10 10 48.5 odd 4
96.6.d.a.49.2 10 16.11 odd 4
96.6.d.a.49.9 10 16.3 odd 4
288.6.d.d.145.3 10 48.35 even 4
288.6.d.d.145.8 10 48.11 even 4
768.6.a.ba.1.2 5 1.1 even 1 trivial
768.6.a.bb.1.4 5 8.3 odd 2
768.6.a.bc.1.2 5 4.3 odd 2
768.6.a.bd.1.4 5 8.5 even 2