Properties

Label 768.2.k.b.575.1
Level $768$
Weight $2$
Character 768.575
Analytic conductor $6.133$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [768,2,Mod(191,768)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("768.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,0,0,0,0,-16,0,12,0,8,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 575.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 768.575
Dual form 768.2.k.b.191.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70711 + 0.292893i) q^{3} +(-1.41421 + 1.41421i) q^{5} +1.41421 q^{7} +(2.82843 - 1.00000i) q^{9} +(-4.00000 - 4.00000i) q^{11} +(3.00000 - 3.00000i) q^{13} +(2.00000 - 2.82843i) q^{15} +2.82843i q^{17} +(2.82843 + 2.82843i) q^{19} +(-2.41421 + 0.414214i) q^{21} +1.00000i q^{25} +(-4.53553 + 2.53553i) q^{27} +(7.07107 + 7.07107i) q^{29} -4.24264i q^{31} +(8.00000 + 5.65685i) q^{33} +(-2.00000 + 2.00000i) q^{35} +(5.00000 + 5.00000i) q^{37} +(-4.24264 + 6.00000i) q^{39} +2.82843 q^{41} +(-2.82843 + 2.82843i) q^{43} +(-2.58579 + 5.41421i) q^{45} +12.0000 q^{47} -5.00000 q^{49} +(-0.828427 - 4.82843i) q^{51} +(4.24264 - 4.24264i) q^{53} +11.3137 q^{55} +(-5.65685 - 4.00000i) q^{57} +(2.00000 + 2.00000i) q^{59} +(9.00000 - 9.00000i) q^{61} +(4.00000 - 1.41421i) q^{63} +8.48528i q^{65} +(7.07107 + 7.07107i) q^{67} +4.00000i q^{71} -4.00000i q^{73} +(-0.292893 - 1.70711i) q^{75} +(-5.65685 - 5.65685i) q^{77} +9.89949i q^{79} +(7.00000 - 5.65685i) q^{81} +(-4.00000 - 4.00000i) q^{85} +(-14.1421 - 10.0000i) q^{87} -5.65685 q^{89} +(4.24264 - 4.24264i) q^{91} +(1.24264 + 7.24264i) q^{93} -8.00000 q^{95} -8.00000 q^{97} +(-15.3137 - 7.31371i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 16 q^{11} + 12 q^{13} + 8 q^{15} - 4 q^{21} - 4 q^{27} + 32 q^{33} - 8 q^{35} + 20 q^{37} - 16 q^{45} + 48 q^{47} - 20 q^{49} + 8 q^{51} + 8 q^{59} + 36 q^{61} + 16 q^{63} - 4 q^{75} + 28 q^{81}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70711 + 0.292893i −0.985599 + 0.169102i
\(4\) 0 0
\(5\) −1.41421 + 1.41421i −0.632456 + 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0 0
\(7\) 1.41421 0.534522 0.267261 0.963624i \(-0.413881\pi\)
0.267261 + 0.963624i \(0.413881\pi\)
\(8\) 0 0
\(9\) 2.82843 1.00000i 0.942809 0.333333i
\(10\) 0 0
\(11\) −4.00000 4.00000i −1.20605 1.20605i −0.972297 0.233748i \(-0.924901\pi\)
−0.233748 0.972297i \(-0.575099\pi\)
\(12\) 0 0
\(13\) 3.00000 3.00000i 0.832050 0.832050i −0.155747 0.987797i \(-0.549778\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) 2.00000 2.82843i 0.516398 0.730297i
\(16\) 0 0
\(17\) 2.82843i 0.685994i 0.939336 + 0.342997i \(0.111442\pi\)
−0.939336 + 0.342997i \(0.888558\pi\)
\(18\) 0 0
\(19\) 2.82843 + 2.82843i 0.648886 + 0.648886i 0.952724 0.303838i \(-0.0982682\pi\)
−0.303838 + 0.952724i \(0.598268\pi\)
\(20\) 0 0
\(21\) −2.41421 + 0.414214i −0.526825 + 0.0903888i
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −4.53553 + 2.53553i −0.872864 + 0.487964i
\(28\) 0 0
\(29\) 7.07107 + 7.07107i 1.31306 + 1.31306i 0.919145 + 0.393919i \(0.128881\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 0 0
\(33\) 8.00000 + 5.65685i 1.39262 + 0.984732i
\(34\) 0 0
\(35\) −2.00000 + 2.00000i −0.338062 + 0.338062i
\(36\) 0 0
\(37\) 5.00000 + 5.00000i 0.821995 + 0.821995i 0.986394 0.164399i \(-0.0525685\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) −4.24264 + 6.00000i −0.679366 + 0.960769i
\(40\) 0 0
\(41\) 2.82843 0.441726 0.220863 0.975305i \(-0.429113\pi\)
0.220863 + 0.975305i \(0.429113\pi\)
\(42\) 0 0
\(43\) −2.82843 + 2.82843i −0.431331 + 0.431331i −0.889081 0.457750i \(-0.848656\pi\)
0.457750 + 0.889081i \(0.348656\pi\)
\(44\) 0 0
\(45\) −2.58579 + 5.41421i −0.385466 + 0.807103i
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) −0.828427 4.82843i −0.116003 0.676115i
\(52\) 0 0
\(53\) 4.24264 4.24264i 0.582772 0.582772i −0.352892 0.935664i \(-0.614802\pi\)
0.935664 + 0.352892i \(0.114802\pi\)
\(54\) 0 0
\(55\) 11.3137 1.52554
\(56\) 0 0
\(57\) −5.65685 4.00000i −0.749269 0.529813i
\(58\) 0 0
\(59\) 2.00000 + 2.00000i 0.260378 + 0.260378i 0.825208 0.564830i \(-0.191058\pi\)
−0.564830 + 0.825208i \(0.691058\pi\)
\(60\) 0 0
\(61\) 9.00000 9.00000i 1.15233 1.15233i 0.166248 0.986084i \(-0.446835\pi\)
0.986084 0.166248i \(-0.0531652\pi\)
\(62\) 0 0
\(63\) 4.00000 1.41421i 0.503953 0.178174i
\(64\) 0 0
\(65\) 8.48528i 1.05247i
\(66\) 0 0
\(67\) 7.07107 + 7.07107i 0.863868 + 0.863868i 0.991785 0.127917i \(-0.0408290\pi\)
−0.127917 + 0.991785i \(0.540829\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.00000i 0.474713i 0.971423 + 0.237356i \(0.0762809\pi\)
−0.971423 + 0.237356i \(0.923719\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 0 0
\(75\) −0.292893 1.70711i −0.0338204 0.197120i
\(76\) 0 0
\(77\) −5.65685 5.65685i −0.644658 0.644658i
\(78\) 0 0
\(79\) 9.89949i 1.11378i 0.830586 + 0.556890i \(0.188006\pi\)
−0.830586 + 0.556890i \(0.811994\pi\)
\(80\) 0 0
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −4.00000 4.00000i −0.433861 0.433861i
\(86\) 0 0
\(87\) −14.1421 10.0000i −1.51620 1.07211i
\(88\) 0 0
\(89\) −5.65685 −0.599625 −0.299813 0.953998i \(-0.596924\pi\)
−0.299813 + 0.953998i \(0.596924\pi\)
\(90\) 0 0
\(91\) 4.24264 4.24264i 0.444750 0.444750i
\(92\) 0 0
\(93\) 1.24264 + 7.24264i 0.128856 + 0.751027i
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) −15.3137 7.31371i −1.53909 0.735055i
\(100\) 0 0
\(101\) −9.89949 + 9.89949i −0.985037 + 0.985037i −0.999890 0.0148531i \(-0.995272\pi\)
0.0148531 + 0.999890i \(0.495272\pi\)
\(102\) 0 0
\(103\) 4.24264 0.418040 0.209020 0.977911i \(-0.432973\pi\)
0.209020 + 0.977911i \(0.432973\pi\)
\(104\) 0 0
\(105\) 2.82843 4.00000i 0.276026 0.390360i
\(106\) 0 0
\(107\) 2.00000 + 2.00000i 0.193347 + 0.193347i 0.797141 0.603793i \(-0.206345\pi\)
−0.603793 + 0.797141i \(0.706345\pi\)
\(108\) 0 0
\(109\) −3.00000 + 3.00000i −0.287348 + 0.287348i −0.836031 0.548683i \(-0.815129\pi\)
0.548683 + 0.836031i \(0.315129\pi\)
\(110\) 0 0
\(111\) −10.0000 7.07107i −0.949158 0.671156i
\(112\) 0 0
\(113\) 16.9706i 1.59646i −0.602355 0.798228i \(-0.705771\pi\)
0.602355 0.798228i \(-0.294229\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.48528 11.4853i 0.507114 1.06181i
\(118\) 0 0
\(119\) 4.00000i 0.366679i
\(120\) 0 0
\(121\) 21.0000i 1.90909i
\(122\) 0 0
\(123\) −4.82843 + 0.828427i −0.435365 + 0.0746968i
\(124\) 0 0
\(125\) −8.48528 8.48528i −0.758947 0.758947i
\(126\) 0 0
\(127\) 4.24264i 0.376473i 0.982124 + 0.188237i \(0.0602772\pi\)
−0.982124 + 0.188237i \(0.939723\pi\)
\(128\) 0 0
\(129\) 4.00000 5.65685i 0.352180 0.498058i
\(130\) 0 0
\(131\) 6.00000 6.00000i 0.524222 0.524222i −0.394621 0.918844i \(-0.629124\pi\)
0.918844 + 0.394621i \(0.129124\pi\)
\(132\) 0 0
\(133\) 4.00000 + 4.00000i 0.346844 + 0.346844i
\(134\) 0 0
\(135\) 2.82843 10.0000i 0.243432 0.860663i
\(136\) 0 0
\(137\) 14.1421 1.20824 0.604122 0.796892i \(-0.293524\pi\)
0.604122 + 0.796892i \(0.293524\pi\)
\(138\) 0 0
\(139\) 9.89949 9.89949i 0.839664 0.839664i −0.149150 0.988815i \(-0.547654\pi\)
0.988815 + 0.149150i \(0.0476538\pi\)
\(140\) 0 0
\(141\) −20.4853 + 3.51472i −1.72517 + 0.295993i
\(142\) 0 0
\(143\) −24.0000 −2.00698
\(144\) 0 0
\(145\) −20.0000 −1.66091
\(146\) 0 0
\(147\) 8.53553 1.46447i 0.703999 0.120787i
\(148\) 0 0
\(149\) 4.24264 4.24264i 0.347571 0.347571i −0.511633 0.859204i \(-0.670959\pi\)
0.859204 + 0.511633i \(0.170959\pi\)
\(150\) 0 0
\(151\) 4.24264 0.345261 0.172631 0.984987i \(-0.444773\pi\)
0.172631 + 0.984987i \(0.444773\pi\)
\(152\) 0 0
\(153\) 2.82843 + 8.00000i 0.228665 + 0.646762i
\(154\) 0 0
\(155\) 6.00000 + 6.00000i 0.481932 + 0.481932i
\(156\) 0 0
\(157\) 3.00000 3.00000i 0.239426 0.239426i −0.577186 0.816612i \(-0.695849\pi\)
0.816612 + 0.577186i \(0.195849\pi\)
\(158\) 0 0
\(159\) −6.00000 + 8.48528i −0.475831 + 0.672927i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.48528 + 8.48528i 0.664619 + 0.664619i 0.956465 0.291847i \(-0.0942697\pi\)
−0.291847 + 0.956465i \(0.594270\pi\)
\(164\) 0 0
\(165\) −19.3137 + 3.31371i −1.50357 + 0.257972i
\(166\) 0 0
\(167\) 16.0000i 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 10.8284 + 5.17157i 0.828071 + 0.395480i
\(172\) 0 0
\(173\) −7.07107 7.07107i −0.537603 0.537603i 0.385221 0.922824i \(-0.374125\pi\)
−0.922824 + 0.385221i \(0.874125\pi\)
\(174\) 0 0
\(175\) 1.41421i 0.106904i
\(176\) 0 0
\(177\) −4.00000 2.82843i −0.300658 0.212598i
\(178\) 0 0
\(179\) −6.00000 + 6.00000i −0.448461 + 0.448461i −0.894843 0.446382i \(-0.852712\pi\)
0.446382 + 0.894843i \(0.352712\pi\)
\(180\) 0 0
\(181\) 3.00000 + 3.00000i 0.222988 + 0.222988i 0.809756 0.586767i \(-0.199600\pi\)
−0.586767 + 0.809756i \(0.699600\pi\)
\(182\) 0 0
\(183\) −12.7279 + 18.0000i −0.940875 + 1.33060i
\(184\) 0 0
\(185\) −14.1421 −1.03975
\(186\) 0 0
\(187\) 11.3137 11.3137i 0.827340 0.827340i
\(188\) 0 0
\(189\) −6.41421 + 3.58579i −0.466565 + 0.260828i
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) −2.48528 14.4853i −0.177975 1.03731i
\(196\) 0 0
\(197\) 12.7279 12.7279i 0.906827 0.906827i −0.0891879 0.996015i \(-0.528427\pi\)
0.996015 + 0.0891879i \(0.0284272\pi\)
\(198\) 0 0
\(199\) −15.5563 −1.10276 −0.551380 0.834254i \(-0.685899\pi\)
−0.551380 + 0.834254i \(0.685899\pi\)
\(200\) 0 0
\(201\) −14.1421 10.0000i −0.997509 0.705346i
\(202\) 0 0
\(203\) 10.0000 + 10.0000i 0.701862 + 0.701862i
\(204\) 0 0
\(205\) −4.00000 + 4.00000i −0.279372 + 0.279372i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 22.6274i 1.56517i
\(210\) 0 0
\(211\) −12.7279 12.7279i −0.876226 0.876226i 0.116916 0.993142i \(-0.462699\pi\)
−0.993142 + 0.116916i \(0.962699\pi\)
\(212\) 0 0
\(213\) −1.17157 6.82843i −0.0802749 0.467876i
\(214\) 0 0
\(215\) 8.00000i 0.545595i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 0 0
\(219\) 1.17157 + 6.82843i 0.0791676 + 0.461422i
\(220\) 0 0
\(221\) 8.48528 + 8.48528i 0.570782 + 0.570782i
\(222\) 0 0
\(223\) 12.7279i 0.852325i 0.904647 + 0.426162i \(0.140135\pi\)
−0.904647 + 0.426162i \(0.859865\pi\)
\(224\) 0 0
\(225\) 1.00000 + 2.82843i 0.0666667 + 0.188562i
\(226\) 0 0
\(227\) 8.00000 8.00000i 0.530979 0.530979i −0.389885 0.920864i \(-0.627485\pi\)
0.920864 + 0.389885i \(0.127485\pi\)
\(228\) 0 0
\(229\) −5.00000 5.00000i −0.330409 0.330409i 0.522333 0.852742i \(-0.325062\pi\)
−0.852742 + 0.522333i \(0.825062\pi\)
\(230\) 0 0
\(231\) 11.3137 + 8.00000i 0.744387 + 0.526361i
\(232\) 0 0
\(233\) −11.3137 −0.741186 −0.370593 0.928795i \(-0.620845\pi\)
−0.370593 + 0.928795i \(0.620845\pi\)
\(234\) 0 0
\(235\) −16.9706 + 16.9706i −1.10704 + 1.10704i
\(236\) 0 0
\(237\) −2.89949 16.8995i −0.188342 1.09774i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) −10.2929 + 11.7071i −0.660289 + 0.751011i
\(244\) 0 0
\(245\) 7.07107 7.07107i 0.451754 0.451754i
\(246\) 0 0
\(247\) 16.9706 1.07981
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.00000 8.00000i −0.504956 0.504956i 0.408018 0.912974i \(-0.366220\pi\)
−0.912974 + 0.408018i \(0.866220\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 8.00000 + 5.65685i 0.500979 + 0.354246i
\(256\) 0 0
\(257\) 11.3137i 0.705730i 0.935674 + 0.352865i \(0.114792\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 7.07107 + 7.07107i 0.439375 + 0.439375i
\(260\) 0 0
\(261\) 27.0711 + 12.9289i 1.67566 + 0.800281i
\(262\) 0 0
\(263\) 4.00000i 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 0 0
\(265\) 12.0000i 0.737154i
\(266\) 0 0
\(267\) 9.65685 1.65685i 0.590990 0.101398i
\(268\) 0 0
\(269\) 4.24264 + 4.24264i 0.258678 + 0.258678i 0.824516 0.565838i \(-0.191447\pi\)
−0.565838 + 0.824516i \(0.691447\pi\)
\(270\) 0 0
\(271\) 21.2132i 1.28861i 0.764768 + 0.644305i \(0.222853\pi\)
−0.764768 + 0.644305i \(0.777147\pi\)
\(272\) 0 0
\(273\) −6.00000 + 8.48528i −0.363137 + 0.513553i
\(274\) 0 0
\(275\) 4.00000 4.00000i 0.241209 0.241209i
\(276\) 0 0
\(277\) −3.00000 3.00000i −0.180253 0.180253i 0.611213 0.791466i \(-0.290682\pi\)
−0.791466 + 0.611213i \(0.790682\pi\)
\(278\) 0 0
\(279\) −4.24264 12.0000i −0.254000 0.718421i
\(280\) 0 0
\(281\) −16.9706 −1.01238 −0.506189 0.862422i \(-0.668946\pi\)
−0.506189 + 0.862422i \(0.668946\pi\)
\(282\) 0 0
\(283\) 9.89949 9.89949i 0.588464 0.588464i −0.348751 0.937215i \(-0.613394\pi\)
0.937215 + 0.348751i \(0.113394\pi\)
\(284\) 0 0
\(285\) 13.6569 2.34315i 0.808962 0.138796i
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) 9.00000 0.529412
\(290\) 0 0
\(291\) 13.6569 2.34315i 0.800579 0.137358i
\(292\) 0 0
\(293\) −9.89949 + 9.89949i −0.578335 + 0.578335i −0.934444 0.356110i \(-0.884103\pi\)
0.356110 + 0.934444i \(0.384103\pi\)
\(294\) 0 0
\(295\) −5.65685 −0.329355
\(296\) 0 0
\(297\) 28.2843 + 8.00000i 1.64122 + 0.464207i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 + 4.00000i −0.230556 + 0.230556i
\(302\) 0 0
\(303\) 14.0000 19.7990i 0.804279 1.13742i
\(304\) 0 0
\(305\) 25.4558i 1.45760i
\(306\) 0 0
\(307\) −1.41421 1.41421i −0.0807134 0.0807134i 0.665597 0.746311i \(-0.268177\pi\)
−0.746311 + 0.665597i \(0.768177\pi\)
\(308\) 0 0
\(309\) −7.24264 + 1.24264i −0.412019 + 0.0706914i
\(310\) 0 0
\(311\) 28.0000i 1.58773i 0.608091 + 0.793867i \(0.291935\pi\)
−0.608091 + 0.793867i \(0.708065\pi\)
\(312\) 0 0
\(313\) 22.0000i 1.24351i −0.783210 0.621757i \(-0.786419\pi\)
0.783210 0.621757i \(-0.213581\pi\)
\(314\) 0 0
\(315\) −3.65685 + 7.65685i −0.206040 + 0.431415i
\(316\) 0 0
\(317\) 4.24264 + 4.24264i 0.238290 + 0.238290i 0.816142 0.577851i \(-0.196109\pi\)
−0.577851 + 0.816142i \(0.696109\pi\)
\(318\) 0 0
\(319\) 56.5685i 3.16723i
\(320\) 0 0
\(321\) −4.00000 2.82843i −0.223258 0.157867i
\(322\) 0 0
\(323\) −8.00000 + 8.00000i −0.445132 + 0.445132i
\(324\) 0 0
\(325\) 3.00000 + 3.00000i 0.166410 + 0.166410i
\(326\) 0 0
\(327\) 4.24264 6.00000i 0.234619 0.331801i
\(328\) 0 0
\(329\) 16.9706 0.935617
\(330\) 0 0
\(331\) −21.2132 + 21.2132i −1.16598 + 1.16598i −0.182841 + 0.983143i \(0.558529\pi\)
−0.983143 + 0.182841i \(0.941471\pi\)
\(332\) 0 0
\(333\) 19.1421 + 9.14214i 1.04898 + 0.500986i
\(334\) 0 0
\(335\) −20.0000 −1.09272
\(336\) 0 0
\(337\) 20.0000 1.08947 0.544735 0.838608i \(-0.316630\pi\)
0.544735 + 0.838608i \(0.316630\pi\)
\(338\) 0 0
\(339\) 4.97056 + 28.9706i 0.269964 + 1.57346i
\(340\) 0 0
\(341\) −16.9706 + 16.9706i −0.919007 + 0.919007i
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.0000 20.0000i −1.07366 1.07366i −0.997062 0.0765939i \(-0.975596\pi\)
−0.0765939 0.997062i \(-0.524404\pi\)
\(348\) 0 0
\(349\) −9.00000 + 9.00000i −0.481759 + 0.481759i −0.905693 0.423934i \(-0.860649\pi\)
0.423934 + 0.905693i \(0.360649\pi\)
\(350\) 0 0
\(351\) −6.00000 + 21.2132i −0.320256 + 1.13228i
\(352\) 0 0
\(353\) 11.3137i 0.602168i −0.953598 0.301084i \(-0.902652\pi\)
0.953598 0.301084i \(-0.0973484\pi\)
\(354\) 0 0
\(355\) −5.65685 5.65685i −0.300235 0.300235i
\(356\) 0 0
\(357\) −1.17157 6.82843i −0.0620062 0.361399i
\(358\) 0 0
\(359\) 20.0000i 1.05556i 0.849381 + 0.527780i \(0.176975\pi\)
−0.849381 + 0.527780i \(0.823025\pi\)
\(360\) 0 0
\(361\) 3.00000i 0.157895i
\(362\) 0 0
\(363\) −6.15076 35.8492i −0.322831 1.88160i
\(364\) 0 0
\(365\) 5.65685 + 5.65685i 0.296093 + 0.296093i
\(366\) 0 0
\(367\) 18.3848i 0.959678i −0.877357 0.479839i \(-0.840695\pi\)
0.877357 0.479839i \(-0.159305\pi\)
\(368\) 0 0
\(369\) 8.00000 2.82843i 0.416463 0.147242i
\(370\) 0 0
\(371\) 6.00000 6.00000i 0.311504 0.311504i
\(372\) 0 0
\(373\) −9.00000 9.00000i −0.466002 0.466002i 0.434614 0.900617i \(-0.356885\pi\)
−0.900617 + 0.434614i \(0.856885\pi\)
\(374\) 0 0
\(375\) 16.9706 + 12.0000i 0.876356 + 0.619677i
\(376\) 0 0
\(377\) 42.4264 2.18507
\(378\) 0 0
\(379\) −14.1421 + 14.1421i −0.726433 + 0.726433i −0.969907 0.243475i \(-0.921713\pi\)
0.243475 + 0.969907i \(0.421713\pi\)
\(380\) 0 0
\(381\) −1.24264 7.24264i −0.0636624 0.371052i
\(382\) 0 0
\(383\) 28.0000 1.43073 0.715367 0.698749i \(-0.246260\pi\)
0.715367 + 0.698749i \(0.246260\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) −5.17157 + 10.8284i −0.262886 + 0.550440i
\(388\) 0 0
\(389\) −7.07107 + 7.07107i −0.358517 + 0.358517i −0.863266 0.504749i \(-0.831585\pi\)
0.504749 + 0.863266i \(0.331585\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −8.48528 + 12.0000i −0.428026 + 0.605320i
\(394\) 0 0
\(395\) −14.0000 14.0000i −0.704416 0.704416i
\(396\) 0 0
\(397\) 13.0000 13.0000i 0.652451 0.652451i −0.301131 0.953583i \(-0.597364\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) 0 0
\(399\) −8.00000 5.65685i −0.400501 0.283197i
\(400\) 0 0
\(401\) 31.1127i 1.55369i 0.629689 + 0.776847i \(0.283182\pi\)
−0.629689 + 0.776847i \(0.716818\pi\)
\(402\) 0 0
\(403\) −12.7279 12.7279i −0.634023 0.634023i
\(404\) 0 0
\(405\) −1.89949 + 17.8995i −0.0943867 + 0.889433i
\(406\) 0 0
\(407\) 40.0000i 1.98273i
\(408\) 0 0
\(409\) 8.00000i 0.395575i 0.980245 + 0.197787i \(0.0633755\pi\)
−0.980245 + 0.197787i \(0.936624\pi\)
\(410\) 0 0
\(411\) −24.1421 + 4.14214i −1.19084 + 0.204316i
\(412\) 0 0
\(413\) 2.82843 + 2.82843i 0.139178 + 0.139178i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −14.0000 + 19.7990i −0.685583 + 0.969561i
\(418\) 0 0
\(419\) −24.0000 + 24.0000i −1.17248 + 1.17248i −0.190859 + 0.981617i \(0.561127\pi\)
−0.981617 + 0.190859i \(0.938873\pi\)
\(420\) 0 0
\(421\) 11.0000 + 11.0000i 0.536107 + 0.536107i 0.922383 0.386276i \(-0.126239\pi\)
−0.386276 + 0.922383i \(0.626239\pi\)
\(422\) 0 0
\(423\) 33.9411 12.0000i 1.65027 0.583460i
\(424\) 0 0
\(425\) −2.82843 −0.137199
\(426\) 0 0
\(427\) 12.7279 12.7279i 0.615947 0.615947i
\(428\) 0 0
\(429\) 40.9706 7.02944i 1.97808 0.339384i
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 0 0
\(435\) 34.1421 5.85786i 1.63699 0.280863i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 4.24264 0.202490 0.101245 0.994862i \(-0.467717\pi\)
0.101245 + 0.994862i \(0.467717\pi\)
\(440\) 0 0
\(441\) −14.1421 + 5.00000i −0.673435 + 0.238095i
\(442\) 0 0
\(443\) 8.00000 + 8.00000i 0.380091 + 0.380091i 0.871135 0.491044i \(-0.163384\pi\)
−0.491044 + 0.871135i \(0.663384\pi\)
\(444\) 0 0
\(445\) 8.00000 8.00000i 0.379236 0.379236i
\(446\) 0 0
\(447\) −6.00000 + 8.48528i −0.283790 + 0.401340i
\(448\) 0 0
\(449\) 2.82843i 0.133482i −0.997770 0.0667409i \(-0.978740\pi\)
0.997770 0.0667409i \(-0.0212601\pi\)
\(450\) 0 0
\(451\) −11.3137 11.3137i −0.532742 0.532742i
\(452\) 0 0
\(453\) −7.24264 + 1.24264i −0.340289 + 0.0583844i
\(454\) 0 0
\(455\) 12.0000i 0.562569i
\(456\) 0 0
\(457\) 16.0000i 0.748448i −0.927338 0.374224i \(-0.877909\pi\)
0.927338 0.374224i \(-0.122091\pi\)
\(458\) 0 0
\(459\) −7.17157 12.8284i −0.334740 0.598780i
\(460\) 0 0
\(461\) −4.24264 4.24264i −0.197599 0.197599i 0.601371 0.798970i \(-0.294622\pi\)
−0.798970 + 0.601371i \(0.794622\pi\)
\(462\) 0 0
\(463\) 7.07107i 0.328620i 0.986409 + 0.164310i \(0.0525398\pi\)
−0.986409 + 0.164310i \(0.947460\pi\)
\(464\) 0 0
\(465\) −12.0000 8.48528i −0.556487 0.393496i
\(466\) 0 0
\(467\) −8.00000 + 8.00000i −0.370196 + 0.370196i −0.867548 0.497353i \(-0.834306\pi\)
0.497353 + 0.867548i \(0.334306\pi\)
\(468\) 0 0
\(469\) 10.0000 + 10.0000i 0.461757 + 0.461757i
\(470\) 0 0
\(471\) −4.24264 + 6.00000i −0.195491 + 0.276465i
\(472\) 0 0
\(473\) 22.6274 1.04041
\(474\) 0 0
\(475\) −2.82843 + 2.82843i −0.129777 + 0.129777i
\(476\) 0 0
\(477\) 7.75736 16.2426i 0.355185 0.743699i
\(478\) 0 0
\(479\) −8.00000 −0.365529 −0.182765 0.983157i \(-0.558505\pi\)
−0.182765 + 0.983157i \(0.558505\pi\)
\(480\) 0 0
\(481\) 30.0000 1.36788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.3137 11.3137i 0.513729 0.513729i
\(486\) 0 0
\(487\) −35.3553 −1.60210 −0.801052 0.598595i \(-0.795726\pi\)
−0.801052 + 0.598595i \(0.795726\pi\)
\(488\) 0 0
\(489\) −16.9706 12.0000i −0.767435 0.542659i
\(490\) 0 0
\(491\) −2.00000 2.00000i −0.0902587 0.0902587i 0.660536 0.750795i \(-0.270329\pi\)
−0.750795 + 0.660536i \(0.770329\pi\)
\(492\) 0 0
\(493\) −20.0000 + 20.0000i −0.900755 + 0.900755i
\(494\) 0 0
\(495\) 32.0000 11.3137i 1.43829 0.508513i
\(496\) 0 0
\(497\) 5.65685i 0.253745i
\(498\) 0 0
\(499\) −9.89949 9.89949i −0.443162 0.443162i 0.449911 0.893073i \(-0.351456\pi\)
−0.893073 + 0.449911i \(0.851456\pi\)
\(500\) 0 0
\(501\) 4.68629 + 27.3137i 0.209368 + 1.22029i
\(502\) 0 0
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 0 0
\(505\) 28.0000i 1.24598i
\(506\) 0 0
\(507\) 1.46447 + 8.53553i 0.0650392 + 0.379076i
\(508\) 0 0
\(509\) 4.24264 + 4.24264i 0.188052 + 0.188052i 0.794853 0.606802i \(-0.207548\pi\)
−0.606802 + 0.794853i \(0.707548\pi\)
\(510\) 0 0
\(511\) 5.65685i 0.250244i
\(512\) 0 0
\(513\) −20.0000 5.65685i −0.883022 0.249756i
\(514\) 0 0
\(515\) −6.00000 + 6.00000i −0.264392 + 0.264392i
\(516\) 0 0
\(517\) −48.0000 48.0000i −2.11104 2.11104i
\(518\) 0 0
\(519\) 14.1421 + 10.0000i 0.620771 + 0.438951i
\(520\) 0 0
\(521\) −36.7696 −1.61090 −0.805452 0.592661i \(-0.798077\pi\)
−0.805452 + 0.592661i \(0.798077\pi\)
\(522\) 0 0
\(523\) −25.4558 + 25.4558i −1.11311 + 1.11311i −0.120378 + 0.992728i \(0.538411\pi\)
−0.992728 + 0.120378i \(0.961589\pi\)
\(524\) 0 0
\(525\) −0.414214 2.41421i −0.0180778 0.105365i
\(526\) 0 0
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 7.65685 + 3.65685i 0.332279 + 0.158694i
\(532\) 0 0
\(533\) 8.48528 8.48528i 0.367538 0.367538i
\(534\) 0 0
\(535\) −5.65685 −0.244567
\(536\) 0 0
\(537\) 8.48528 12.0000i 0.366167 0.517838i
\(538\) 0 0
\(539\) 20.0000 + 20.0000i 0.861461 + 0.861461i
\(540\) 0 0
\(541\) −31.0000 + 31.0000i −1.33279 + 1.33279i −0.429934 + 0.902861i \(0.641463\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) 0 0
\(543\) −6.00000 4.24264i −0.257485 0.182069i
\(544\) 0 0
\(545\) 8.48528i 0.363470i
\(546\) 0 0
\(547\) 19.7990 + 19.7990i 0.846544 + 0.846544i 0.989700 0.143156i \(-0.0457252\pi\)
−0.143156 + 0.989700i \(0.545725\pi\)
\(548\) 0 0
\(549\) 16.4558 34.4558i 0.702318 1.47054i
\(550\) 0 0
\(551\) 40.0000i 1.70406i
\(552\) 0 0
\(553\) 14.0000i 0.595341i
\(554\) 0 0
\(555\) 24.1421 4.14214i 1.02478 0.175824i
\(556\) 0 0
\(557\) 18.3848 + 18.3848i 0.778988 + 0.778988i 0.979659 0.200671i \(-0.0643121\pi\)
−0.200671 + 0.979659i \(0.564312\pi\)
\(558\) 0 0
\(559\) 16.9706i 0.717778i
\(560\) 0 0
\(561\) −16.0000 + 22.6274i −0.675521 + 0.955330i
\(562\) 0 0
\(563\) 20.0000 20.0000i 0.842900 0.842900i −0.146336 0.989235i \(-0.546748\pi\)
0.989235 + 0.146336i \(0.0467479\pi\)
\(564\) 0 0
\(565\) 24.0000 + 24.0000i 1.00969 + 1.00969i
\(566\) 0 0
\(567\) 9.89949 8.00000i 0.415740 0.335968i
\(568\) 0 0
\(569\) −2.82843 −0.118574 −0.0592869 0.998241i \(-0.518883\pi\)
−0.0592869 + 0.998241i \(0.518883\pi\)
\(570\) 0 0
\(571\) 18.3848 18.3848i 0.769379 0.769379i −0.208618 0.977997i \(-0.566897\pi\)
0.977997 + 0.208618i \(0.0668966\pi\)
\(572\) 0 0
\(573\) −6.82843 + 1.17157i −0.285262 + 0.0489432i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −28.0000 −1.16566 −0.582828 0.812596i \(-0.698054\pi\)
−0.582828 + 0.812596i \(0.698054\pi\)
\(578\) 0 0
\(579\) −3.41421 + 0.585786i −0.141890 + 0.0243445i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −33.9411 −1.40570
\(584\) 0 0
\(585\) 8.48528 + 24.0000i 0.350823 + 0.992278i
\(586\) 0 0
\(587\) 14.0000 + 14.0000i 0.577842 + 0.577842i 0.934308 0.356466i \(-0.116019\pi\)
−0.356466 + 0.934308i \(0.616019\pi\)
\(588\) 0 0
\(589\) 12.0000 12.0000i 0.494451 0.494451i
\(590\) 0 0
\(591\) −18.0000 + 25.4558i −0.740421 + 1.04711i
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −5.65685 5.65685i −0.231908 0.231908i
\(596\) 0 0
\(597\) 26.5563 4.55635i 1.08688 0.186479i
\(598\) 0 0
\(599\) 32.0000i 1.30748i −0.756717 0.653742i \(-0.773198\pi\)
0.756717 0.653742i \(-0.226802\pi\)
\(600\) 0 0
\(601\) 20.0000i 0.815817i 0.913023 + 0.407909i \(0.133742\pi\)
−0.913023 + 0.407909i \(0.866258\pi\)
\(602\) 0 0
\(603\) 27.0711 + 12.9289i 1.10242 + 0.526507i
\(604\) 0 0
\(605\) −29.6985 29.6985i −1.20742 1.20742i
\(606\) 0 0
\(607\) 29.6985i 1.20542i −0.797959 0.602712i \(-0.794087\pi\)
0.797959 0.602712i \(-0.205913\pi\)
\(608\) 0 0
\(609\) −20.0000 14.1421i −0.810441 0.573068i
\(610\) 0 0
\(611\) 36.0000 36.0000i 1.45640 1.45640i
\(612\) 0 0
\(613\) 25.0000 + 25.0000i 1.00974 + 1.00974i 0.999952 + 0.00978840i \(0.00311579\pi\)
0.00978840 + 0.999952i \(0.496884\pi\)
\(614\) 0 0
\(615\) 5.65685 8.00000i 0.228106 0.322591i
\(616\) 0 0
\(617\) −28.2843 −1.13868 −0.569341 0.822102i \(-0.692802\pi\)
−0.569341 + 0.822102i \(0.692802\pi\)
\(618\) 0 0
\(619\) −9.89949 + 9.89949i −0.397894 + 0.397894i −0.877490 0.479595i \(-0.840783\pi\)
0.479595 + 0.877490i \(0.340783\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.00000 −0.320513
\(624\) 0 0
\(625\) 19.0000 0.760000
\(626\) 0 0
\(627\) 6.62742 + 38.6274i 0.264674 + 1.54263i
\(628\) 0 0
\(629\) −14.1421 + 14.1421i −0.563884 + 0.563884i
\(630\) 0 0
\(631\) 35.3553 1.40747 0.703737 0.710461i \(-0.251513\pi\)
0.703737 + 0.710461i \(0.251513\pi\)
\(632\) 0 0
\(633\) 25.4558 + 18.0000i 1.01178 + 0.715436i
\(634\) 0 0
\(635\) −6.00000 6.00000i −0.238103 0.238103i
\(636\) 0 0
\(637\) −15.0000 + 15.0000i −0.594322 + 0.594322i
\(638\) 0 0
\(639\) 4.00000 + 11.3137i 0.158238 + 0.447563i
\(640\) 0 0
\(641\) 2.82843i 0.111716i −0.998439 0.0558581i \(-0.982211\pi\)
0.998439 0.0558581i \(-0.0177894\pi\)
\(642\) 0 0
\(643\) −19.7990 19.7990i −0.780796 0.780796i 0.199169 0.979965i \(-0.436176\pi\)
−0.979965 + 0.199169i \(0.936176\pi\)
\(644\) 0 0
\(645\) 2.34315 + 13.6569i 0.0922613 + 0.537738i
\(646\) 0 0
\(647\) 40.0000i 1.57256i −0.617869 0.786281i \(-0.712004\pi\)
0.617869 0.786281i \(-0.287996\pi\)
\(648\) 0 0
\(649\) 16.0000i 0.628055i
\(650\) 0 0
\(651\) 1.75736 + 10.2426i 0.0688763 + 0.401441i
\(652\) 0 0
\(653\) 7.07107 + 7.07107i 0.276712 + 0.276712i 0.831795 0.555083i \(-0.187313\pi\)
−0.555083 + 0.831795i \(0.687313\pi\)
\(654\) 0 0
\(655\) 16.9706i 0.663095i
\(656\) 0 0
\(657\) −4.00000 11.3137i −0.156055 0.441390i
\(658\) 0 0
\(659\) 2.00000 2.00000i 0.0779089 0.0779089i −0.667078 0.744987i \(-0.732455\pi\)
0.744987 + 0.667078i \(0.232455\pi\)
\(660\) 0 0
\(661\) −23.0000 23.0000i −0.894596 0.894596i 0.100355 0.994952i \(-0.468002\pi\)
−0.994952 + 0.100355i \(0.968002\pi\)
\(662\) 0 0
\(663\) −16.9706 12.0000i −0.659082 0.466041i
\(664\) 0 0
\(665\) −11.3137 −0.438727
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −3.72792 21.7279i −0.144130 0.840050i
\(670\) 0 0
\(671\) −72.0000 −2.77953
\(672\) 0 0
\(673\) −48.0000 −1.85026 −0.925132 0.379646i \(-0.876046\pi\)
−0.925132 + 0.379646i \(0.876046\pi\)
\(674\) 0 0
\(675\) −2.53553 4.53553i −0.0975927 0.174573i
\(676\) 0 0
\(677\) 29.6985 29.6985i 1.14141 1.14141i 0.153212 0.988193i \(-0.451038\pi\)
0.988193 0.153212i \(-0.0489618\pi\)
\(678\) 0 0
\(679\) −11.3137 −0.434180
\(680\) 0 0
\(681\) −11.3137 + 16.0000i −0.433542 + 0.613121i
\(682\) 0 0
\(683\) −8.00000 8.00000i −0.306111 0.306111i 0.537288 0.843399i \(-0.319449\pi\)
−0.843399 + 0.537288i \(0.819449\pi\)
\(684\) 0 0
\(685\) −20.0000 + 20.0000i −0.764161 + 0.764161i
\(686\) 0 0
\(687\) 10.0000 + 7.07107i 0.381524 + 0.269778i
\(688\) 0 0
\(689\) 25.4558i 0.969790i
\(690\) 0 0
\(691\) −25.4558 25.4558i −0.968386 0.968386i 0.0311294 0.999515i \(-0.490090\pi\)
−0.999515 + 0.0311294i \(0.990090\pi\)
\(692\) 0 0
\(693\) −21.6569 10.3431i −0.822676 0.392904i
\(694\) 0 0
\(695\) 28.0000i 1.06210i
\(696\) 0 0
\(697\) 8.00000i 0.303022i
\(698\) 0 0
\(699\) 19.3137 3.31371i 0.730512 0.125336i
\(700\) 0 0
\(701\) −21.2132 21.2132i −0.801212 0.801212i 0.182073 0.983285i \(-0.441719\pi\)
−0.983285 + 0.182073i \(0.941719\pi\)
\(702\) 0 0
\(703\) 28.2843i 1.06676i
\(704\) 0 0
\(705\) 24.0000 33.9411i 0.903892 1.27830i
\(706\) 0 0
\(707\) −14.0000 + 14.0000i −0.526524 + 0.526524i
\(708\) 0 0
\(709\) −27.0000 27.0000i −1.01401 1.01401i −0.999901 0.0141058i \(-0.995510\pi\)
−0.0141058 0.999901i \(-0.504490\pi\)
\(710\) 0 0
\(711\) 9.89949 + 28.0000i 0.371260 + 1.05008i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 33.9411 33.9411i 1.26933 1.26933i
\(716\) 0 0
\(717\) −20.4853 + 3.51472i −0.765037 + 0.131260i
\(718\) 0 0
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) 6.00000 0.223452
\(722\) 0 0
\(723\) 3.41421 0.585786i 0.126976 0.0217856i
\(724\) 0 0
\(725\) −7.07107 + 7.07107i −0.262613 + 0.262613i
\(726\) 0 0
\(727\) −38.1838 −1.41616 −0.708079 0.706133i \(-0.750438\pi\)
−0.708079 + 0.706133i \(0.750438\pi\)
\(728\) 0 0
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0 0
\(731\) −8.00000 8.00000i −0.295891 0.295891i
\(732\) 0 0
\(733\) −1.00000 + 1.00000i −0.0369358 + 0.0369358i −0.725333 0.688398i \(-0.758314\pi\)
0.688398 + 0.725333i \(0.258314\pi\)
\(734\) 0 0
\(735\) −10.0000 + 14.1421i −0.368856 + 0.521641i
\(736\) 0 0
\(737\) 56.5685i 2.08373i
\(738\) 0 0
\(739\) 1.41421 + 1.41421i 0.0520227 + 0.0520227i 0.732640 0.680617i \(-0.238288\pi\)
−0.680617 + 0.732640i \(0.738288\pi\)
\(740\) 0 0
\(741\) −28.9706 + 4.97056i −1.06426 + 0.182598i
\(742\) 0 0
\(743\) 32.0000i 1.17397i −0.809599 0.586983i \(-0.800316\pi\)
0.809599 0.586983i \(-0.199684\pi\)
\(744\) 0 0
\(745\) 12.0000i 0.439646i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.82843 + 2.82843i 0.103348 + 0.103348i
\(750\) 0 0
\(751\) 32.5269i 1.18692i −0.804862 0.593462i \(-0.797761\pi\)
0.804862 0.593462i \(-0.202239\pi\)
\(752\) 0 0
\(753\) 16.0000 + 11.3137i 0.583072 + 0.412294i
\(754\) 0 0
\(755\) −6.00000 + 6.00000i −0.218362 + 0.218362i
\(756\) 0 0
\(757\) −5.00000 5.00000i −0.181728 0.181728i 0.610380 0.792108i \(-0.291017\pi\)
−0.792108 + 0.610380i \(0.791017\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8.48528 −0.307591 −0.153796 0.988103i \(-0.549150\pi\)
−0.153796 + 0.988103i \(0.549150\pi\)
\(762\) 0 0
\(763\) −4.24264 + 4.24264i −0.153594 + 0.153594i
\(764\) 0 0
\(765\) −15.3137 7.31371i −0.553668 0.264428i
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) −18.0000 −0.649097 −0.324548 0.945869i \(-0.605212\pi\)
−0.324548 + 0.945869i \(0.605212\pi\)
\(770\) 0 0
\(771\) −3.31371 19.3137i −0.119340 0.695566i
\(772\) 0 0
\(773\) −4.24264 + 4.24264i −0.152597 + 0.152597i −0.779277 0.626680i \(-0.784413\pi\)
0.626680 + 0.779277i \(0.284413\pi\)
\(774\) 0 0
\(775\) 4.24264 0.152400
\(776\) 0 0
\(777\) −14.1421 10.0000i −0.507346 0.358748i
\(778\) 0 0
\(779\) 8.00000 + 8.00000i 0.286630 + 0.286630i
\(780\) 0 0
\(781\) 16.0000 16.0000i 0.572525 0.572525i
\(782\) 0 0
\(783\) −50.0000 14.1421i −1.78685 0.505399i
\(784\) 0 0
\(785\) 8.48528i 0.302853i
\(786\) 0 0
\(787\) −8.48528 8.48528i −0.302468 0.302468i 0.539511 0.841979i \(-0.318609\pi\)
−0.841979 + 0.539511i \(0.818609\pi\)
\(788\) 0 0
\(789\) 1.17157 + 6.82843i 0.0417091 + 0.243098i
\(790\) 0 0
\(791\) 24.0000i 0.853342i
\(792\) 0 0
\(793\) 54.0000i 1.91760i
\(794\) 0 0
\(795\) −3.51472 20.4853i −0.124654 0.726538i
\(796\) 0 0
\(797\) −32.5269 32.5269i −1.15216 1.15216i −0.986118 0.166044i \(-0.946901\pi\)
−0.166044 0.986118i \(-0.553099\pi\)
\(798\) 0 0
\(799\) 33.9411i 1.20075i
\(800\) 0 0
\(801\) −16.0000 + 5.65685i −0.565332 + 0.199875i
\(802\) 0 0
\(803\) −16.0000 + 16.0000i −0.564628 + 0.564628i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.48528 6.00000i −0.298696 0.211210i
\(808\) 0 0
\(809\) 36.7696 1.29275 0.646374 0.763020i \(-0.276284\pi\)
0.646374 + 0.763020i \(0.276284\pi\)
\(810\) 0 0
\(811\) 14.1421 14.1421i 0.496598 0.496598i −0.413780 0.910377i \(-0.635792\pi\)
0.910377 + 0.413780i \(0.135792\pi\)
\(812\) 0 0
\(813\) −6.21320 36.2132i −0.217907 1.27005i
\(814\) 0 0
\(815\) −24.0000 −0.840683
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 0 0
\(819\) 7.75736 16.2426i 0.271064 0.567564i
\(820\) 0 0
\(821\) −26.8701 + 26.8701i −0.937771 + 0.937771i −0.998174 0.0604026i \(-0.980762\pi\)
0.0604026 + 0.998174i \(0.480762\pi\)
\(822\) 0 0
\(823\) 35.3553 1.23241 0.616205 0.787586i \(-0.288669\pi\)
0.616205 + 0.787586i \(0.288669\pi\)
\(824\) 0 0
\(825\) −5.65685 + 8.00000i −0.196946 + 0.278524i
\(826\) 0 0
\(827\) 30.0000 + 30.0000i 1.04320 + 1.04320i 0.999024 + 0.0441786i \(0.0140671\pi\)
0.0441786 + 0.999024i \(0.485933\pi\)
\(828\) 0 0
\(829\) −13.0000 + 13.0000i −0.451509 + 0.451509i −0.895855 0.444346i \(-0.853436\pi\)
0.444346 + 0.895855i \(0.353436\pi\)
\(830\) 0 0
\(831\) 6.00000 + 4.24264i 0.208138 + 0.147176i
\(832\) 0 0
\(833\) 14.1421i 0.489996i
\(834\) 0 0
\(835\) 22.6274 + 22.6274i 0.783054 + 0.783054i
\(836\) 0 0
\(837\) 10.7574 + 19.2426i 0.371829 + 0.665123i
\(838\) 0 0
\(839\) 36.0000i 1.24286i −0.783470 0.621429i \(-0.786552\pi\)
0.783470 0.621429i \(-0.213448\pi\)
\(840\) 0 0
\(841\) 71.0000i 2.44828i
\(842\) 0 0
\(843\) 28.9706 4.97056i 0.997799 0.171195i
\(844\) 0 0
\(845\) 7.07107 + 7.07107i 0.243252 + 0.243252i
\(846\) 0 0
\(847\) 29.6985i 1.02045i
\(848\) 0 0
\(849\) −14.0000 + 19.7990i −0.480479 + 0.679500i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 15.0000 + 15.0000i 0.513590 + 0.513590i 0.915625 0.402034i \(-0.131697\pi\)
−0.402034 + 0.915625i \(0.631697\pi\)
\(854\) 0 0
\(855\) −22.6274 + 8.00000i −0.773841 + 0.273594i
\(856\) 0 0
\(857\) 25.4558 0.869555 0.434778 0.900538i \(-0.356827\pi\)
0.434778 + 0.900538i \(0.356827\pi\)
\(858\) 0 0
\(859\) 14.1421 14.1421i 0.482523 0.482523i −0.423413 0.905937i \(-0.639168\pi\)
0.905937 + 0.423413i \(0.139168\pi\)
\(860\) 0 0
\(861\) −6.82843 + 1.17157i −0.232712 + 0.0399271i
\(862\) 0 0
\(863\) 28.0000 0.953131 0.476566 0.879139i \(-0.341881\pi\)
0.476566 + 0.879139i \(0.341881\pi\)
\(864\) 0 0
\(865\) 20.0000 0.680020
\(866\) 0 0
\(867\) −15.3640 + 2.63604i −0.521787 + 0.0895246i
\(868\) 0 0
\(869\) 39.5980 39.5980i 1.34327 1.34327i
\(870\) 0 0
\(871\) 42.4264 1.43756
\(872\) 0 0
\(873\) −22.6274 + 8.00000i −0.765822 + 0.270759i
\(874\) 0 0
\(875\) −12.0000 12.0000i −0.405674 0.405674i
\(876\) 0 0
\(877\) 15.0000 15.0000i 0.506514 0.506514i −0.406941 0.913455i \(-0.633404\pi\)
0.913455 + 0.406941i \(0.133404\pi\)
\(878\) 0 0
\(879\) 14.0000 19.7990i 0.472208 0.667803i
\(880\) 0 0
\(881\) 16.9706i 0.571753i −0.958267 0.285876i \(-0.907715\pi\)
0.958267 0.285876i \(-0.0922847\pi\)
\(882\) 0 0
\(883\) 31.1127 + 31.1127i 1.04703 + 1.04703i 0.998838 + 0.0481873i \(0.0153445\pi\)
0.0481873 + 0.998838i \(0.484656\pi\)
\(884\) 0 0
\(885\) 9.65685 1.65685i 0.324612 0.0556945i
\(886\) 0 0
\(887\) 44.0000i 1.47738i 0.674048 + 0.738688i \(0.264554\pi\)
−0.674048 + 0.738688i \(0.735446\pi\)
\(888\) 0 0
\(889\) 6.00000i 0.201234i
\(890\) 0 0
\(891\) −50.6274 5.37258i −1.69608 0.179988i
\(892\) 0 0
\(893\) 33.9411 + 33.9411i 1.13580 + 1.13580i
\(894\) 0 0
\(895\) 16.9706i 0.567263i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.0000 30.0000i 1.00056 1.00056i
\(900\) 0 0
\(901\) 12.0000 + 12.0000i 0.399778 + 0.399778i
\(902\) 0 0
\(903\) 5.65685 8.00000i 0.188248 0.266223i
\(904\) 0 0
\(905\) −8.48528 −0.282060
\(906\) 0 0
\(907\) −31.1127 + 31.1127i −1.03308 + 1.03308i −0.0336464 + 0.999434i \(0.510712\pi\)
−0.999434 + 0.0336464i \(0.989288\pi\)
\(908\) 0 0
\(909\) −18.1005 + 37.8995i −0.600356 + 1.25705i
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −7.45584 43.4558i −0.246483 1.43661i
\(916\) 0 0
\(917\) 8.48528 8.48528i 0.280209 0.280209i
\(918\) 0 0
\(919\) −21.2132 −0.699759 −0.349880 0.936795i \(-0.613777\pi\)
−0.349880 + 0.936795i \(0.613777\pi\)
\(920\) 0 0
\(921\) 2.82843 + 2.00000i 0.0931998 + 0.0659022i
\(922\) 0 0
\(923\) 12.0000 + 12.0000i 0.394985 + 0.394985i
\(924\) 0 0
\(925\) −5.00000 + 5.00000i −0.164399 + 0.164399i
\(926\) 0 0
\(927\) 12.0000 4.24264i 0.394132 0.139347i
\(928\) 0 0
\(929\) 59.3970i 1.94875i 0.224927 + 0.974376i \(0.427786\pi\)
−0.224927 + 0.974376i \(0.572214\pi\)
\(930\) 0 0
\(931\) −14.1421 14.1421i −0.463490 0.463490i
\(932\) 0 0
\(933\) −8.20101 47.7990i −0.268489 1.56487i
\(934\) 0 0
\(935\) 32.0000i 1.04651i
\(936\) 0 0
\(937\) 18.0000i 0.588034i −0.955800 0.294017i \(-0.905008\pi\)
0.955800 0.294017i \(-0.0949923\pi\)
\(938\) 0 0
\(939\) 6.44365 + 37.5563i 0.210281 + 1.22561i
\(940\) 0 0
\(941\) −21.2132 21.2132i −0.691531 0.691531i 0.271038 0.962569i \(-0.412633\pi\)
−0.962569 + 0.271038i \(0.912633\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.00000 14.1421i 0.130120 0.460044i
\(946\) 0 0
\(947\) −34.0000 + 34.0000i −1.10485 + 1.10485i −0.111035 + 0.993816i \(0.535417\pi\)
−0.993816 + 0.111035i \(0.964583\pi\)
\(948\) 0 0
\(949\) −12.0000 12.0000i −0.389536 0.389536i
\(950\) 0 0
\(951\) −8.48528 6.00000i −0.275154 0.194563i
\(952\) 0 0
\(953\) −14.1421 −0.458109 −0.229054 0.973414i \(-0.573563\pi\)
−0.229054 + 0.973414i \(0.573563\pi\)
\(954\) 0 0
\(955\) −5.65685 + 5.65685i −0.183052 + 0.183052i
\(956\) 0 0
\(957\) 16.5685 + 96.5685i 0.535585 + 3.12162i
\(958\) 0 0
\(959\) 20.0000 0.645834
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 7.65685 + 3.65685i 0.246739 + 0.117840i
\(964\) 0 0
\(965\) −2.82843 + 2.82843i −0.0910503 + 0.0910503i
\(966\) 0 0
\(967\) −1.41421 −0.0454780 −0.0227390 0.999741i \(-0.507239\pi\)
−0.0227390 + 0.999741i \(0.507239\pi\)
\(968\) 0 0
\(969\) 11.3137 16.0000i 0.363449 0.513994i
\(970\) 0 0
\(971\) 12.0000 + 12.0000i 0.385098 + 0.385098i 0.872935 0.487837i \(-0.162214\pi\)
−0.487837 + 0.872935i \(0.662214\pi\)
\(972\) 0 0
\(973\) 14.0000 14.0000i 0.448819 0.448819i
\(974\) 0 0
\(975\) −6.00000 4.24264i −0.192154 0.135873i
\(976\) 0 0
\(977\) 19.7990i 0.633426i 0.948521 + 0.316713i \(0.102579\pi\)
−0.948521 + 0.316713i \(0.897421\pi\)
\(978\) 0 0
\(979\) 22.6274 + 22.6274i 0.723175 + 0.723175i
\(980\) 0 0
\(981\) −5.48528 + 11.4853i −0.175132 + 0.366697i
\(982\) 0 0
\(983\) 28.0000i 0.893061i 0.894768 + 0.446531i \(0.147341\pi\)
−0.894768 + 0.446531i \(0.852659\pi\)
\(984\) 0 0
\(985\) 36.0000i 1.14706i
\(986\) 0 0
\(987\) −28.9706 + 4.97056i −0.922143 + 0.158215i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 12.7279i 0.404316i −0.979353 0.202158i \(-0.935205\pi\)
0.979353 0.202158i \(-0.0647954\pi\)
\(992\) 0 0
\(993\) 30.0000 42.4264i 0.952021 1.34636i
\(994\) 0 0
\(995\) 22.0000 22.0000i 0.697447 0.697447i
\(996\) 0 0
\(997\) 21.0000 + 21.0000i 0.665077 + 0.665077i 0.956572 0.291496i \(-0.0941528\pi\)
−0.291496 + 0.956572i \(0.594153\pi\)
\(998\) 0 0
\(999\) −35.3553 10.0000i −1.11859 0.316386i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 768.2.k.b.575.1 yes 4
3.2 odd 2 768.2.k.d.575.1 yes 4
4.3 odd 2 768.2.k.d.575.2 yes 4
8.3 odd 2 768.2.k.a.575.1 yes 4
8.5 even 2 768.2.k.c.575.2 yes 4
12.11 even 2 inner 768.2.k.b.575.2 yes 4
16.3 odd 4 768.2.k.d.191.1 yes 4
16.5 even 4 768.2.k.c.191.1 yes 4
16.11 odd 4 768.2.k.a.191.2 yes 4
16.13 even 4 inner 768.2.k.b.191.2 yes 4
24.5 odd 2 768.2.k.a.575.2 yes 4
24.11 even 2 768.2.k.c.575.1 yes 4
48.5 odd 4 768.2.k.a.191.1 4
48.11 even 4 768.2.k.c.191.2 yes 4
48.29 odd 4 768.2.k.d.191.2 yes 4
48.35 even 4 inner 768.2.k.b.191.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
768.2.k.a.191.1 4 48.5 odd 4
768.2.k.a.191.2 yes 4 16.11 odd 4
768.2.k.a.575.1 yes 4 8.3 odd 2
768.2.k.a.575.2 yes 4 24.5 odd 2
768.2.k.b.191.1 yes 4 48.35 even 4 inner
768.2.k.b.191.2 yes 4 16.13 even 4 inner
768.2.k.b.575.1 yes 4 1.1 even 1 trivial
768.2.k.b.575.2 yes 4 12.11 even 2 inner
768.2.k.c.191.1 yes 4 16.5 even 4
768.2.k.c.191.2 yes 4 48.11 even 4
768.2.k.c.575.1 yes 4 24.11 even 2
768.2.k.c.575.2 yes 4 8.5 even 2
768.2.k.d.191.1 yes 4 16.3 odd 4
768.2.k.d.191.2 yes 4 48.29 odd 4
768.2.k.d.575.1 yes 4 3.2 odd 2
768.2.k.d.575.2 yes 4 4.3 odd 2