Properties

Label 765.2.b.a.154.1
Level $765$
Weight $2$
Character 765.154
Analytic conductor $6.109$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(154,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.154"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 255)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 154.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 765.154
Dual form 765.2.b.a.154.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000 q^{4} +(2.00000 + 1.00000i) q^{5} -4.00000i q^{7} -3.00000i q^{8} +(1.00000 - 2.00000i) q^{10} -6.00000 q^{11} -4.00000i q^{13} -4.00000 q^{14} -1.00000 q^{16} -1.00000i q^{17} -4.00000 q^{19} +(2.00000 + 1.00000i) q^{20} +6.00000i q^{22} +(3.00000 + 4.00000i) q^{25} -4.00000 q^{26} -4.00000i q^{28} +8.00000 q^{31} -5.00000i q^{32} -1.00000 q^{34} +(4.00000 - 8.00000i) q^{35} +6.00000i q^{37} +4.00000i q^{38} +(3.00000 - 6.00000i) q^{40} +12.0000 q^{41} +6.00000i q^{43} -6.00000 q^{44} -4.00000i q^{47} -9.00000 q^{49} +(4.00000 - 3.00000i) q^{50} -4.00000i q^{52} +6.00000i q^{53} +(-12.0000 - 6.00000i) q^{55} -12.0000 q^{56} +8.00000 q^{59} +10.0000 q^{61} -8.00000i q^{62} -7.00000 q^{64} +(4.00000 - 8.00000i) q^{65} -2.00000i q^{67} -1.00000i q^{68} +(-8.00000 - 4.00000i) q^{70} -2.00000 q^{71} +6.00000i q^{73} +6.00000 q^{74} -4.00000 q^{76} +24.0000i q^{77} -4.00000 q^{79} +(-2.00000 - 1.00000i) q^{80} -12.0000i q^{82} -8.00000i q^{83} +(1.00000 - 2.00000i) q^{85} +6.00000 q^{86} +18.0000i q^{88} -6.00000 q^{89} -16.0000 q^{91} -4.00000 q^{94} +(-8.00000 - 4.00000i) q^{95} -6.00000i q^{97} +9.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 4 q^{5} + 2 q^{10} - 12 q^{11} - 8 q^{14} - 2 q^{16} - 8 q^{19} + 4 q^{20} + 6 q^{25} - 8 q^{26} + 16 q^{31} - 2 q^{34} + 8 q^{35} + 6 q^{40} + 24 q^{41} - 12 q^{44} - 18 q^{49} + 8 q^{50}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0 0
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 2.00000 + 1.00000i 0.447214 + 0.223607i
\(21\) 0 0
\(22\) 6.00000i 1.27920i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 4.00000 8.00000i 0.676123 1.35225i
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 0 0
\(52\) 4.00000i 0.554700i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) −12.0000 6.00000i −1.61808 0.809040i
\(56\) −12.0000 −1.60357
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 8.00000i 1.01600i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 4.00000 8.00000i 0.496139 0.992278i
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 0 0
\(70\) −8.00000 4.00000i −0.956183 0.478091i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 24.0000i 2.73505i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −2.00000 1.00000i −0.223607 0.111803i
\(81\) 0 0
\(82\) 12.0000i 1.32518i
\(83\) 8.00000i 0.878114i −0.898459 0.439057i \(-0.855313\pi\)
0.898459 0.439057i \(-0.144687\pi\)
\(84\) 0 0
\(85\) 1.00000 2.00000i 0.108465 0.216930i
\(86\) 6.00000 0.646997
\(87\) 0 0
\(88\) 18.0000i 1.91881i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −16.0000 −1.67726
\(92\) 0 0
\(93\) 0 0
\(94\) −4.00000 −0.412568
\(95\) −8.00000 4.00000i −0.820783 0.410391i
\(96\) 0 0
\(97\) 6.00000i 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 14.0000i 1.37946i 0.724066 + 0.689730i \(0.242271\pi\)
−0.724066 + 0.689730i \(0.757729\pi\)
\(104\) −12.0000 −1.17670
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) −6.00000 + 12.0000i −0.572078 + 1.14416i
\(111\) 0 0
\(112\) 4.00000i 0.377964i
\(113\) 2.00000i 0.188144i −0.995565 0.0940721i \(-0.970012\pi\)
0.995565 0.0940721i \(-0.0299884\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 8.00000i 0.736460i
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 10.0000i 0.905357i
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 6.00000i 0.532414i −0.963916 0.266207i \(-0.914230\pi\)
0.963916 0.266207i \(-0.0857705\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 0 0
\(130\) −8.00000 4.00000i −0.701646 0.350823i
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) 0 0
\(133\) 16.0000i 1.38738i
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) 14.0000i 1.19610i −0.801459 0.598050i \(-0.795942\pi\)
0.801459 0.598050i \(-0.204058\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 4.00000 8.00000i 0.338062 0.676123i
\(141\) 0 0
\(142\) 2.00000i 0.167836i
\(143\) 24.0000i 2.00698i
\(144\) 0 0
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 12.0000i 0.973329i
\(153\) 0 0
\(154\) 24.0000 1.93398
\(155\) 16.0000 + 8.00000i 1.28515 + 0.642575i
\(156\) 0 0
\(157\) 4.00000i 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 4.00000i 0.318223i
\(159\) 0 0
\(160\) 5.00000 10.0000i 0.395285 0.790569i
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) −2.00000 1.00000i −0.153393 0.0766965i
\(171\) 0 0
\(172\) 6.00000i 0.457496i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 16.0000 12.0000i 1.20949 0.907115i
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) 6.00000i 0.449719i
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 16.0000i 1.18600i
\(183\) 0 0
\(184\) 0 0
\(185\) −6.00000 + 12.0000i −0.441129 + 0.882258i
\(186\) 0 0
\(187\) 6.00000i 0.438763i
\(188\) 4.00000i 0.291730i
\(189\) 0 0
\(190\) −4.00000 + 8.00000i −0.290191 + 0.580381i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) −9.00000 −0.642857
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 12.0000 9.00000i 0.848528 0.636396i
\(201\) 0 0
\(202\) 10.0000i 0.703598i
\(203\) 0 0
\(204\) 0 0
\(205\) 24.0000 + 12.0000i 1.67623 + 0.838116i
\(206\) 14.0000 0.975426
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) −6.00000 + 12.0000i −0.409197 + 0.818393i
\(216\) 0 0
\(217\) 32.0000i 2.17230i
\(218\) 14.0000i 0.948200i
\(219\) 0 0
\(220\) −12.0000 6.00000i −0.809040 0.404520i
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 22.0000i 1.47323i 0.676313 + 0.736614i \(0.263577\pi\)
−0.676313 + 0.736614i \(0.736423\pi\)
\(224\) −20.0000 −1.33631
\(225\) 0 0
\(226\) −2.00000 −0.133038
\(227\) 20.0000i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.0000i 1.44127i 0.693316 + 0.720634i \(0.256149\pi\)
−0.693316 + 0.720634i \(0.743851\pi\)
\(234\) 0 0
\(235\) 4.00000 8.00000i 0.260931 0.521862i
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 25.0000i 1.60706i
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) −18.0000 9.00000i −1.14998 0.574989i
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) 24.0000i 1.52400i
\(249\) 0 0
\(250\) 11.0000 2.00000i 0.695701 0.126491i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −6.00000 −0.376473
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 14.0000i 0.873296i −0.899632 0.436648i \(-0.856166\pi\)
0.899632 0.436648i \(-0.143834\pi\)
\(258\) 0 0
\(259\) 24.0000 1.49129
\(260\) 4.00000 8.00000i 0.248069 0.496139i
\(261\) 0 0
\(262\) 10.0000i 0.617802i
\(263\) 4.00000i 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 0 0
\(265\) −6.00000 + 12.0000i −0.368577 + 0.737154i
\(266\) 16.0000 0.981023
\(267\) 0 0
\(268\) 2.00000i 0.122169i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 0 0
\(274\) −14.0000 −0.845771
\(275\) −18.0000 24.0000i −1.08544 1.44725i
\(276\) 0 0
\(277\) 10.0000i 0.600842i 0.953807 + 0.300421i \(0.0971271\pi\)
−0.953807 + 0.300421i \(0.902873\pi\)
\(278\) 8.00000i 0.479808i
\(279\) 0 0
\(280\) −24.0000 12.0000i −1.43427 0.717137i
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 24.0000i 1.42665i 0.700832 + 0.713326i \(0.252812\pi\)
−0.700832 + 0.713326i \(0.747188\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) 24.0000 1.41915
\(287\) 48.0000i 2.83335i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 6.00000i 0.351123i
\(293\) 26.0000i 1.51894i 0.650545 + 0.759468i \(0.274541\pi\)
−0.650545 + 0.759468i \(0.725459\pi\)
\(294\) 0 0
\(295\) 16.0000 + 8.00000i 0.931556 + 0.465778i
\(296\) 18.0000 1.04623
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) 0 0
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 8.00000i 0.460348i
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 20.0000 + 10.0000i 1.14520 + 0.572598i
\(306\) 0 0
\(307\) 30.0000i 1.71219i −0.516818 0.856095i \(-0.672884\pi\)
0.516818 0.856095i \(-0.327116\pi\)
\(308\) 24.0000i 1.36753i
\(309\) 0 0
\(310\) 8.00000 16.0000i 0.454369 0.908739i
\(311\) 2.00000 0.113410 0.0567048 0.998391i \(-0.481941\pi\)
0.0567048 + 0.998391i \(0.481941\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 34.0000i 1.90963i 0.297200 + 0.954815i \(0.403947\pi\)
−0.297200 + 0.954815i \(0.596053\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −14.0000 7.00000i −0.782624 0.391312i
\(321\) 0 0
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) 16.0000 12.0000i 0.887520 0.665640i
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 36.0000i 1.98777i
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 8.00000i 0.439057i
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) 2.00000 4.00000i 0.109272 0.218543i
\(336\) 0 0
\(337\) 14.0000i 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) 3.00000i 0.163178i
\(339\) 0 0
\(340\) 1.00000 2.00000i 0.0542326 0.108465i
\(341\) −48.0000 −2.59935
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 18.0000 0.970495
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) −12.0000 16.0000i −0.641427 0.855236i
\(351\) 0 0
\(352\) 30.0000i 1.59901i
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) −4.00000 2.00000i −0.212298 0.106149i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 4.00000i 0.211407i
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 18.0000i 0.946059i
\(363\) 0 0
\(364\) −16.0000 −0.838628
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) 0 0
\(367\) 8.00000i 0.417597i 0.977959 + 0.208798i \(0.0669552\pi\)
−0.977959 + 0.208798i \(0.933045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 12.0000 + 6.00000i 0.623850 + 0.311925i
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) 16.0000i 0.828449i 0.910175 + 0.414224i \(0.135947\pi\)
−0.910175 + 0.414224i \(0.864053\pi\)
\(374\) 6.00000 0.310253
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) −8.00000 4.00000i −0.410391 0.205196i
\(381\) 0 0
\(382\) 0 0
\(383\) 16.0000i 0.817562i 0.912633 + 0.408781i \(0.134046\pi\)
−0.912633 + 0.408781i \(0.865954\pi\)
\(384\) 0 0
\(385\) −24.0000 + 48.0000i −1.22315 + 2.44631i
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) 6.00000i 0.304604i
\(389\) −34.0000 −1.72387 −0.861934 0.507020i \(-0.830747\pi\)
−0.861934 + 0.507020i \(0.830747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 27.0000i 1.36371i
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) −8.00000 4.00000i −0.402524 0.201262i
\(396\) 0 0
\(397\) 26.0000i 1.30490i −0.757831 0.652451i \(-0.773741\pi\)
0.757831 0.652451i \(-0.226259\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 0 0
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) 4.00000 0.199750 0.0998752 0.995000i \(-0.468156\pi\)
0.0998752 + 0.995000i \(0.468156\pi\)
\(402\) 0 0
\(403\) 32.0000i 1.59403i
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) 0 0
\(407\) 36.0000i 1.78445i
\(408\) 0 0
\(409\) 6.00000 0.296681 0.148340 0.988936i \(-0.452607\pi\)
0.148340 + 0.988936i \(0.452607\pi\)
\(410\) 12.0000 24.0000i 0.592638 1.18528i
\(411\) 0 0
\(412\) 14.0000i 0.689730i
\(413\) 32.0000i 1.57462i
\(414\) 0 0
\(415\) 8.00000 16.0000i 0.392705 0.785409i
\(416\) −20.0000 −0.980581
\(417\) 0 0
\(418\) 24.0000i 1.17388i
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) −30.0000 −1.46211 −0.731055 0.682318i \(-0.760972\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(422\) 20.0000i 0.973585i
\(423\) 0 0
\(424\) 18.0000 0.874157
\(425\) 4.00000 3.00000i 0.194029 0.145521i
\(426\) 0 0
\(427\) 40.0000i 1.93574i
\(428\) 4.00000i 0.193347i
\(429\) 0 0
\(430\) 12.0000 + 6.00000i 0.578691 + 0.289346i
\(431\) 14.0000 0.674356 0.337178 0.941441i \(-0.390528\pi\)
0.337178 + 0.941441i \(0.390528\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) −32.0000 −1.53605
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) −18.0000 + 36.0000i −0.858116 + 1.71623i
\(441\) 0 0
\(442\) 4.00000i 0.190261i
\(443\) 4.00000i 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) −12.0000 6.00000i −0.568855 0.284427i
\(446\) 22.0000 1.04173
\(447\) 0 0
\(448\) 28.0000i 1.32288i
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) −72.0000 −3.39035
\(452\) 2.00000i 0.0940721i
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) −32.0000 16.0000i −1.50018 0.750092i
\(456\) 0 0
\(457\) 28.0000i 1.30978i 0.755722 + 0.654892i \(0.227286\pi\)
−0.755722 + 0.654892i \(0.772714\pi\)
\(458\) 26.0000i 1.21490i
\(459\) 0 0
\(460\) 0 0
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 0 0
\(463\) 22.0000i 1.02243i −0.859454 0.511213i \(-0.829196\pi\)
0.859454 0.511213i \(-0.170804\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 22.0000 1.01913
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) −8.00000 4.00000i −0.369012 0.184506i
\(471\) 0 0
\(472\) 24.0000i 1.10469i
\(473\) 36.0000i 1.65528i
\(474\) 0 0
\(475\) −12.0000 16.0000i −0.550598 0.734130i
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 12.0000i 0.548867i
\(479\) 18.0000 0.822441 0.411220 0.911536i \(-0.365103\pi\)
0.411220 + 0.911536i \(0.365103\pi\)
\(480\) 0 0
\(481\) 24.0000 1.09431
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 25.0000 1.13636
\(485\) 6.00000 12.0000i 0.272446 0.544892i
\(486\) 0 0
\(487\) 24.0000i 1.08754i 0.839233 + 0.543772i \(0.183004\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(488\) 30.0000i 1.35804i
\(489\) 0 0
\(490\) −9.00000 + 18.0000i −0.406579 + 0.813157i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 2.00000 + 11.0000i 0.0894427 + 0.491935i
\(501\) 0 0
\(502\) 12.0000i 0.535586i
\(503\) 40.0000i 1.78351i −0.452517 0.891756i \(-0.649474\pi\)
0.452517 0.891756i \(-0.350526\pi\)
\(504\) 0 0
\(505\) −20.0000 10.0000i −0.889988 0.444994i
\(506\) 0 0
\(507\) 0 0
\(508\) 6.00000i 0.266207i
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) 11.0000i 0.486136i
\(513\) 0 0
\(514\) −14.0000 −0.617514
\(515\) −14.0000 + 28.0000i −0.616914 + 1.23383i
\(516\) 0 0
\(517\) 24.0000i 1.05552i
\(518\) 24.0000i 1.05450i
\(519\) 0 0
\(520\) −24.0000 12.0000i −1.05247 0.526235i
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 30.0000i 1.31181i 0.754844 + 0.655904i \(0.227712\pi\)
−0.754844 + 0.655904i \(0.772288\pi\)
\(524\) 10.0000 0.436852
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 8.00000i 0.348485i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 12.0000 + 6.00000i 0.521247 + 0.260623i
\(531\) 0 0
\(532\) 16.0000i 0.693688i
\(533\) 48.0000i 2.07911i
\(534\) 0 0
\(535\) −4.00000 + 8.00000i −0.172935 + 0.345870i
\(536\) −6.00000 −0.259161
\(537\) 0 0
\(538\) 0 0
\(539\) 54.0000 2.32594
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 8.00000i 0.343629i
\(543\) 0 0
\(544\) −5.00000 −0.214373
\(545\) 28.0000 + 14.0000i 1.19939 + 0.599694i
\(546\) 0 0
\(547\) 20.0000i 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 14.0000i 0.598050i
\(549\) 0 0
\(550\) −24.0000 + 18.0000i −1.02336 + 0.767523i
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) 8.00000 0.339276
\(557\) 2.00000i 0.0847427i 0.999102 + 0.0423714i \(0.0134913\pi\)
−0.999102 + 0.0423714i \(0.986509\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) −4.00000 + 8.00000i −0.169031 + 0.338062i
\(561\) 0 0
\(562\) 6.00000i 0.253095i
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) 0 0
\(565\) 2.00000 4.00000i 0.0841406 0.168281i
\(566\) 24.0000 1.00880
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 24.0000i 1.00349i
\(573\) 0 0
\(574\) −48.0000 −2.00348
\(575\) 0 0
\(576\) 0 0
\(577\) 20.0000i 0.832611i 0.909225 + 0.416305i \(0.136675\pi\)
−0.909225 + 0.416305i \(0.863325\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 0 0
\(580\) 0 0
\(581\) −32.0000 −1.32758
\(582\) 0 0
\(583\) 36.0000i 1.49097i
\(584\) 18.0000 0.744845
\(585\) 0 0
\(586\) 26.0000 1.07405
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 8.00000 16.0000i 0.329355 0.658710i
\(591\) 0 0
\(592\) 6.00000i 0.246598i
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) −8.00000 4.00000i −0.327968 0.163984i
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 0 0
\(599\) −4.00000 −0.163436 −0.0817178 0.996656i \(-0.526041\pi\)
−0.0817178 + 0.996656i \(0.526041\pi\)
\(600\) 0 0
\(601\) −18.0000 −0.734235 −0.367118 0.930175i \(-0.619655\pi\)
−0.367118 + 0.930175i \(0.619655\pi\)
\(602\) 24.0000i 0.978167i
\(603\) 0 0
\(604\) −8.00000 −0.325515
\(605\) 50.0000 + 25.0000i 2.03279 + 1.01639i
\(606\) 0 0
\(607\) 32.0000i 1.29884i −0.760430 0.649420i \(-0.775012\pi\)
0.760430 0.649420i \(-0.224988\pi\)
\(608\) 20.0000i 0.811107i
\(609\) 0 0
\(610\) 10.0000 20.0000i 0.404888 0.809776i
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 28.0000i 1.13091i −0.824779 0.565455i \(-0.808701\pi\)
0.824779 0.565455i \(-0.191299\pi\)
\(614\) −30.0000 −1.21070
\(615\) 0 0
\(616\) 72.0000 2.90096
\(617\) 6.00000i 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) 16.0000 + 8.00000i 0.642575 + 0.321288i
\(621\) 0 0
\(622\) 2.00000i 0.0801927i
\(623\) 24.0000i 0.961540i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 4.00000i 0.159617i
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 12.0000i 0.477334i
\(633\) 0 0
\(634\) 34.0000 1.35031
\(635\) 6.00000 12.0000i 0.238103 0.476205i
\(636\) 0 0
\(637\) 36.0000i 1.42637i
\(638\) 0 0
\(639\) 0 0
\(640\) 3.00000 6.00000i 0.118585 0.237171i
\(641\) −8.00000 −0.315981 −0.157991 0.987441i \(-0.550502\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) 44.0000i 1.73519i 0.497271 + 0.867595i \(0.334335\pi\)
−0.497271 + 0.867595i \(0.665665\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) 24.0000i 0.943537i −0.881722 0.471769i \(-0.843616\pi\)
0.881722 0.471769i \(-0.156384\pi\)
\(648\) 0 0
\(649\) −48.0000 −1.88416
\(650\) −12.0000 16.0000i −0.470679 0.627572i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 6.00000i 0.234798i −0.993085 0.117399i \(-0.962544\pi\)
0.993085 0.117399i \(-0.0374557\pi\)
\(654\) 0 0
\(655\) 20.0000 + 10.0000i 0.781465 + 0.390732i
\(656\) −12.0000 −0.468521
\(657\) 0 0
\(658\) 16.0000i 0.623745i
\(659\) −32.0000 −1.24654 −0.623272 0.782006i \(-0.714197\pi\)
−0.623272 + 0.782006i \(0.714197\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 4.00000i 0.155464i
\(663\) 0 0
\(664\) −24.0000 −0.931381
\(665\) −16.0000 + 32.0000i −0.620453 + 1.24091i
\(666\) 0 0
\(667\) 0 0
\(668\) 8.00000i 0.309529i
\(669\) 0 0
\(670\) −4.00000 2.00000i −0.154533 0.0772667i
\(671\) −60.0000 −2.31627
\(672\) 0 0
\(673\) 22.0000i 0.848038i −0.905653 0.424019i \(-0.860619\pi\)
0.905653 0.424019i \(-0.139381\pi\)
\(674\) −14.0000 −0.539260
\(675\) 0 0
\(676\) −3.00000 −0.115385
\(677\) 26.0000i 0.999261i 0.866239 + 0.499631i \(0.166531\pi\)
−0.866239 + 0.499631i \(0.833469\pi\)
\(678\) 0 0
\(679\) −24.0000 −0.921035
\(680\) −6.00000 3.00000i −0.230089 0.115045i
\(681\) 0 0
\(682\) 48.0000i 1.83801i
\(683\) 44.0000i 1.68361i 0.539779 + 0.841807i \(0.318508\pi\)
−0.539779 + 0.841807i \(0.681492\pi\)
\(684\) 0 0
\(685\) 14.0000 28.0000i 0.534913 1.06983i
\(686\) 8.00000 0.305441
\(687\) 0 0
\(688\) 6.00000i 0.228748i
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 16.0000 + 8.00000i 0.606915 + 0.303457i
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 14.0000i 0.529908i
\(699\) 0 0
\(700\) 16.0000 12.0000i 0.604743 0.453557i
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 24.0000i 0.905177i
\(704\) 42.0000 1.58293
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 40.0000i 1.50435i
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) −2.00000 + 4.00000i −0.0750587 + 0.150117i
\(711\) 0 0
\(712\) 18.0000i 0.674579i
\(713\) 0 0
\(714\) 0 0
\(715\) −24.0000 + 48.0000i −0.897549 + 1.79510i
\(716\) −4.00000 −0.149487
\(717\) 0 0
\(718\) 20.0000i 0.746393i
\(719\) −18.0000 −0.671287 −0.335643 0.941989i \(-0.608954\pi\)
−0.335643 + 0.941989i \(0.608954\pi\)
\(720\) 0 0
\(721\) 56.0000 2.08555
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) 18.0000 0.668965
\(725\) 0 0
\(726\) 0 0
\(727\) 38.0000i 1.40934i 0.709534 + 0.704671i \(0.248905\pi\)
−0.709534 + 0.704671i \(0.751095\pi\)
\(728\) 48.0000i 1.77900i
\(729\) 0 0
\(730\) 12.0000 + 6.00000i 0.444140 + 0.222070i
\(731\) 6.00000 0.221918
\(732\) 0 0
\(733\) 20.0000i 0.738717i −0.929287 0.369358i \(-0.879577\pi\)
0.929287 0.369358i \(-0.120423\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000i 0.442026i
\(738\) 0 0
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) −6.00000 + 12.0000i −0.220564 + 0.441129i
\(741\) 0 0
\(742\) 24.0000i 0.881068i
\(743\) 24.0000i 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) 0 0
\(745\) 12.0000 + 6.00000i 0.439646 + 0.219823i
\(746\) 16.0000 0.585802
\(747\) 0 0
\(748\) 6.00000i 0.219382i
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) 4.00000i 0.145865i
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 8.00000i −0.582300 0.291150i
\(756\) 0 0
\(757\) 8.00000i 0.290765i 0.989376 + 0.145382i \(0.0464413\pi\)
−0.989376 + 0.145382i \(0.953559\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −12.0000 + 24.0000i −0.435286 + 0.870572i
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 56.0000i 2.02734i
\(764\) 0 0
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 32.0000i 1.15545i
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 48.0000 + 24.0000i 1.72980 + 0.864900i
\(771\) 0 0
\(772\) 14.0000i 0.503871i
\(773\) 30.0000i 1.07903i 0.841978 + 0.539513i \(0.181391\pi\)
−0.841978 + 0.539513i \(0.818609\pi\)
\(774\) 0 0
\(775\) 24.0000 + 32.0000i 0.862105 + 1.14947i
\(776\) −18.0000 −0.646162
\(777\) 0 0
\(778\) 34.0000i 1.21896i
\(779\) −48.0000 −1.71978
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 4.00000 8.00000i 0.142766 0.285532i
\(786\) 0 0
\(787\) 20.0000i 0.712923i 0.934310 + 0.356462i \(0.116017\pi\)
−0.934310 + 0.356462i \(0.883983\pi\)
\(788\) 6.00000i 0.213741i
\(789\) 0 0
\(790\) −4.00000 + 8.00000i −0.142314 + 0.284627i
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) 40.0000i 1.42044i
\(794\) −26.0000 −0.922705
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) 22.0000i 0.779280i 0.920967 + 0.389640i \(0.127401\pi\)
−0.920967 + 0.389640i \(0.872599\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 20.0000 15.0000i 0.707107 0.530330i
\(801\) 0 0
\(802\) 4.00000i 0.141245i
\(803\) 36.0000i 1.27041i
\(804\) 0 0
\(805\) 0 0
\(806\) −32.0000 −1.12715
\(807\) 0 0
\(808\) 30.0000i 1.05540i
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −36.0000 −1.26180
\(815\) 4.00000 8.00000i 0.140114 0.280228i
\(816\) 0 0
\(817\) 24.0000i 0.839654i
\(818\) 6.00000i 0.209785i
\(819\) 0 0
\(820\) 24.0000 + 12.0000i 0.838116 + 0.419058i
\(821\) 20.0000 0.698005 0.349002 0.937122i \(-0.386521\pi\)
0.349002 + 0.937122i \(0.386521\pi\)
\(822\) 0 0
\(823\) 12.0000i 0.418294i 0.977884 + 0.209147i \(0.0670687\pi\)
−0.977884 + 0.209147i \(0.932931\pi\)
\(824\) 42.0000 1.46314
\(825\) 0 0
\(826\) −32.0000 −1.11342
\(827\) 44.0000i 1.53003i −0.644013 0.765015i \(-0.722732\pi\)
0.644013 0.765015i \(-0.277268\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) −16.0000 8.00000i −0.555368 0.277684i
\(831\) 0 0
\(832\) 28.0000i 0.970725i
\(833\) 9.00000i 0.311832i
\(834\) 0 0
\(835\) 8.00000 16.0000i 0.276851 0.553703i
\(836\) 24.0000 0.830057
\(837\) 0 0
\(838\) 18.0000i 0.621800i
\(839\) −22.0000 −0.759524 −0.379762 0.925084i \(-0.623994\pi\)
−0.379762 + 0.925084i \(0.623994\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 30.0000i 1.03387i
\(843\) 0 0
\(844\) −20.0000 −0.688428
\(845\) −6.00000 3.00000i −0.206406 0.103203i
\(846\) 0 0
\(847\) 100.000i 3.43604i
\(848\) 6.00000i 0.206041i
\(849\) 0 0
\(850\) −3.00000 4.00000i −0.102899 0.137199i
\(851\) 0 0
\(852\) 0 0
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 30.0000i 1.02478i −0.858753 0.512390i \(-0.828760\pi\)
0.858753 0.512390i \(-0.171240\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) −6.00000 + 12.0000i −0.204598 + 0.409197i
\(861\) 0 0
\(862\) 14.0000i 0.476842i
\(863\) 24.0000i 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0 0
\(865\) −6.00000 + 12.0000i −0.204006 + 0.408012i
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) 32.0000i 1.08615i
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 42.0000i 1.42230i
\(873\) 0 0
\(874\) 0 0
\(875\) 44.0000 8.00000i 1.48747 0.270449i
\(876\) 0 0
\(877\) 34.0000i 1.14810i −0.818821 0.574049i \(-0.805372\pi\)
0.818821 0.574049i \(-0.194628\pi\)
\(878\) 8.00000i 0.269987i
\(879\) 0 0
\(880\) 12.0000 + 6.00000i 0.404520 + 0.202260i
\(881\) 20.0000 0.673817 0.336909 0.941537i \(-0.390619\pi\)
0.336909 + 0.941537i \(0.390619\pi\)
\(882\) 0 0
\(883\) 22.0000i 0.740359i 0.928960 + 0.370179i \(0.120704\pi\)
−0.928960 + 0.370179i \(0.879296\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) 48.0000i 1.61168i 0.592132 + 0.805841i \(0.298286\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(888\) 0 0
\(889\) −24.0000 −0.804934
\(890\) −6.00000 + 12.0000i −0.201120 + 0.402241i
\(891\) 0 0
\(892\) 22.0000i 0.736614i
\(893\) 16.0000i 0.535420i
\(894\) 0 0
\(895\) −8.00000 4.00000i −0.267411 0.133705i
\(896\) −12.0000 −0.400892
\(897\) 0 0
\(898\) 36.0000i 1.20134i
\(899\) 0 0
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) 72.0000i 2.39734i
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 36.0000 + 18.0000i 1.19668 + 0.598340i
\(906\) 0 0
\(907\) 24.0000i 0.796907i 0.917189 + 0.398453i \(0.130453\pi\)
−0.917189 + 0.398453i \(0.869547\pi\)
\(908\) 20.0000i 0.663723i
\(909\) 0 0
\(910\) −16.0000 + 32.0000i −0.530395 + 1.06079i
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) 48.0000i 1.58857i
\(914\) 28.0000 0.926158
\(915\) 0 0
\(916\) −26.0000 −0.859064
\(917\) 40.0000i 1.32092i
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 26.0000i 0.856264i
\(923\) 8.00000i 0.263323i
\(924\) 0 0
\(925\) −24.0000 + 18.0000i −0.789115 + 0.591836i
\(926\) −22.0000 −0.722965
\(927\) 0 0
\(928\) 0 0
\(929\) −56.0000 −1.83730 −0.918650 0.395072i \(-0.870720\pi\)
−0.918650 + 0.395072i \(0.870720\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 22.0000i 0.720634i
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) −6.00000 + 12.0000i −0.196221 + 0.392442i
\(936\) 0 0
\(937\) 60.0000i 1.96011i 0.198715 + 0.980057i \(0.436323\pi\)
−0.198715 + 0.980057i \(0.563677\pi\)
\(938\) 8.00000i 0.261209i
\(939\) 0 0
\(940\) 4.00000 8.00000i 0.130466 0.260931i
\(941\) 16.0000 0.521585 0.260793 0.965395i \(-0.416016\pi\)
0.260793 + 0.965395i \(0.416016\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) −36.0000 −1.17046
\(947\) 44.0000i 1.42981i 0.699223 + 0.714904i \(0.253530\pi\)
−0.699223 + 0.714904i \(0.746470\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) −16.0000 + 12.0000i −0.519109 + 0.389331i
\(951\) 0 0
\(952\) 12.0000i 0.388922i
\(953\) 26.0000i 0.842223i −0.907009 0.421111i \(-0.861640\pi\)
0.907009 0.421111i \(-0.138360\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) 18.0000i 0.581554i
\(959\) −56.0000 −1.80833
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 24.0000i 0.773791i
\(963\) 0 0
\(964\) −22.0000 −0.708572
\(965\) 14.0000 28.0000i 0.450676 0.901352i
\(966\) 0 0
\(967\) 6.00000i 0.192947i 0.995336 + 0.0964735i \(0.0307563\pi\)
−0.995336 + 0.0964735i \(0.969244\pi\)
\(968\) 75.0000i 2.41059i
\(969\) 0 0
\(970\) −12.0000 6.00000i −0.385297 0.192648i
\(971\) 32.0000 1.02693 0.513464 0.858111i \(-0.328362\pi\)
0.513464 + 0.858111i \(0.328362\pi\)
\(972\) 0 0
\(973\) 32.0000i 1.02587i
\(974\) 24.0000 0.769010
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 18.0000i 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) 36.0000 1.15056
\(980\) −18.0000 9.00000i −0.574989 0.287494i
\(981\) 0 0
\(982\) 0 0
\(983\) 24.0000i 0.765481i 0.923856 + 0.382741i \(0.125020\pi\)
−0.923856 + 0.382741i \(0.874980\pi\)
\(984\) 0 0
\(985\) −6.00000 + 12.0000i −0.191176 + 0.382352i
\(986\) 0 0
\(987\) 0 0
\(988\) 16.0000i 0.509028i
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 40.0000i 1.27000i
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) −40.0000 20.0000i −1.26809 0.634043i
\(996\) 0 0
\(997\) 46.0000i 1.45683i −0.685134 0.728417i \(-0.740256\pi\)
0.685134 0.728417i \(-0.259744\pi\)
\(998\) 32.0000i 1.01294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.b.a.154.1 2
3.2 odd 2 255.2.b.a.154.2 yes 2
5.2 odd 4 3825.2.a.m.1.1 1
5.3 odd 4 3825.2.a.c.1.1 1
5.4 even 2 inner 765.2.b.a.154.2 2
12.11 even 2 4080.2.m.a.2449.2 2
15.2 even 4 1275.2.a.b.1.1 1
15.8 even 4 1275.2.a.f.1.1 1
15.14 odd 2 255.2.b.a.154.1 2
60.59 even 2 4080.2.m.a.2449.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.b.a.154.1 2 15.14 odd 2
255.2.b.a.154.2 yes 2 3.2 odd 2
765.2.b.a.154.1 2 1.1 even 1 trivial
765.2.b.a.154.2 2 5.4 even 2 inner
1275.2.a.b.1.1 1 15.2 even 4
1275.2.a.f.1.1 1 15.8 even 4
3825.2.a.c.1.1 1 5.3 odd 4
3825.2.a.m.1.1 1 5.2 odd 4
4080.2.m.a.2449.1 2 60.59 even 2
4080.2.m.a.2449.2 2 12.11 even 2