Properties

Label 760.2.w.a.267.1
Level $760$
Weight $2$
Character 760.267
Analytic conductor $6.069$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(267,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.267"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 760.267
Dual form 760.2.w.a.723.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(2.00000 - 2.00000i) q^{3} -2.00000i q^{4} +(1.00000 - 2.00000i) q^{5} +4.00000i q^{6} +(-3.00000 + 3.00000i) q^{7} +(2.00000 + 2.00000i) q^{8} -5.00000i q^{9} +(1.00000 + 3.00000i) q^{10} -4.00000 q^{11} +(-4.00000 - 4.00000i) q^{12} +(-4.00000 - 4.00000i) q^{13} -6.00000i q^{14} +(-2.00000 - 6.00000i) q^{15} -4.00000 q^{16} +(1.00000 + 1.00000i) q^{17} +(5.00000 + 5.00000i) q^{18} -1.00000i q^{19} +(-4.00000 - 2.00000i) q^{20} +12.0000i q^{21} +(4.00000 - 4.00000i) q^{22} +(-5.00000 - 5.00000i) q^{23} +8.00000 q^{24} +(-3.00000 - 4.00000i) q^{25} +8.00000 q^{26} +(-4.00000 - 4.00000i) q^{27} +(6.00000 + 6.00000i) q^{28} +10.0000 q^{29} +(8.00000 + 4.00000i) q^{30} -4.00000i q^{31} +(4.00000 - 4.00000i) q^{32} +(-8.00000 + 8.00000i) q^{33} -2.00000 q^{34} +(3.00000 + 9.00000i) q^{35} -10.0000 q^{36} +(1.00000 + 1.00000i) q^{38} -16.0000 q^{39} +(6.00000 - 2.00000i) q^{40} -2.00000 q^{41} +(-12.0000 - 12.0000i) q^{42} +(3.00000 - 3.00000i) q^{43} +8.00000i q^{44} +(-10.0000 - 5.00000i) q^{45} +10.0000 q^{46} +(-5.00000 + 5.00000i) q^{47} +(-8.00000 + 8.00000i) q^{48} -11.0000i q^{49} +(7.00000 + 1.00000i) q^{50} +4.00000 q^{51} +(-8.00000 + 8.00000i) q^{52} +(-2.00000 - 2.00000i) q^{53} +8.00000 q^{54} +(-4.00000 + 8.00000i) q^{55} -12.0000 q^{56} +(-2.00000 - 2.00000i) q^{57} +(-10.0000 + 10.0000i) q^{58} +(-12.0000 + 4.00000i) q^{60} +2.00000i q^{61} +(4.00000 + 4.00000i) q^{62} +(15.0000 + 15.0000i) q^{63} +8.00000i q^{64} +(-12.0000 + 4.00000i) q^{65} -16.0000i q^{66} +(10.0000 + 10.0000i) q^{67} +(2.00000 - 2.00000i) q^{68} -20.0000 q^{69} +(-12.0000 - 6.00000i) q^{70} -8.00000i q^{71} +(10.0000 - 10.0000i) q^{72} +(7.00000 - 7.00000i) q^{73} +(-14.0000 - 2.00000i) q^{75} -2.00000 q^{76} +(12.0000 - 12.0000i) q^{77} +(16.0000 - 16.0000i) q^{78} +8.00000 q^{79} +(-4.00000 + 8.00000i) q^{80} -1.00000 q^{81} +(2.00000 - 2.00000i) q^{82} +(-7.00000 + 7.00000i) q^{83} +24.0000 q^{84} +(3.00000 - 1.00000i) q^{85} +6.00000i q^{86} +(20.0000 - 20.0000i) q^{87} +(-8.00000 - 8.00000i) q^{88} -10.0000i q^{89} +(15.0000 - 5.00000i) q^{90} +24.0000 q^{91} +(-10.0000 + 10.0000i) q^{92} +(-8.00000 - 8.00000i) q^{93} -10.0000i q^{94} +(-2.00000 - 1.00000i) q^{95} -16.0000i q^{96} +(6.00000 + 6.00000i) q^{97} +(11.0000 + 11.0000i) q^{98} +20.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 4 q^{3} + 2 q^{5} - 6 q^{7} + 4 q^{8} + 2 q^{10} - 8 q^{11} - 8 q^{12} - 8 q^{13} - 4 q^{15} - 8 q^{16} + 2 q^{17} + 10 q^{18} - 8 q^{20} + 8 q^{22} - 10 q^{23} + 16 q^{24} - 6 q^{25} + 16 q^{26}+ \cdots + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.707107 + 0.707107i
\(3\) 2.00000 2.00000i 1.15470 1.15470i 0.169102 0.985599i \(-0.445913\pi\)
0.985599 0.169102i \(-0.0540867\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 4.00000i 1.63299i
\(7\) −3.00000 + 3.00000i −1.13389 + 1.13389i −0.144370 + 0.989524i \(0.546115\pi\)
−0.989524 + 0.144370i \(0.953885\pi\)
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) 5.00000i 1.66667i
\(10\) 1.00000 + 3.00000i 0.316228 + 0.948683i
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) −4.00000 4.00000i −1.15470 1.15470i
\(13\) −4.00000 4.00000i −1.10940 1.10940i −0.993229 0.116171i \(-0.962938\pi\)
−0.116171 0.993229i \(-0.537062\pi\)
\(14\) 6.00000i 1.60357i
\(15\) −2.00000 6.00000i −0.516398 1.54919i
\(16\) −4.00000 −1.00000
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 5.00000 + 5.00000i 1.17851 + 1.17851i
\(19\) 1.00000i 0.229416i
\(20\) −4.00000 2.00000i −0.894427 0.447214i
\(21\) 12.0000i 2.61861i
\(22\) 4.00000 4.00000i 0.852803 0.852803i
\(23\) −5.00000 5.00000i −1.04257 1.04257i −0.999053 0.0435195i \(-0.986143\pi\)
−0.0435195 0.999053i \(-0.513857\pi\)
\(24\) 8.00000 1.63299
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 8.00000 1.56893
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 6.00000 + 6.00000i 1.13389 + 1.13389i
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 8.00000 + 4.00000i 1.46059 + 0.730297i
\(31\) 4.00000i 0.718421i −0.933257 0.359211i \(-0.883046\pi\)
0.933257 0.359211i \(-0.116954\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) −8.00000 + 8.00000i −1.39262 + 1.39262i
\(34\) −2.00000 −0.342997
\(35\) 3.00000 + 9.00000i 0.507093 + 1.52128i
\(36\) −10.0000 −1.66667
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 1.00000 + 1.00000i 0.162221 + 0.162221i
\(39\) −16.0000 −2.56205
\(40\) 6.00000 2.00000i 0.948683 0.316228i
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) −12.0000 12.0000i −1.85164 1.85164i
\(43\) 3.00000 3.00000i 0.457496 0.457496i −0.440337 0.897833i \(-0.645141\pi\)
0.897833 + 0.440337i \(0.145141\pi\)
\(44\) 8.00000i 1.20605i
\(45\) −10.0000 5.00000i −1.49071 0.745356i
\(46\) 10.0000 1.47442
\(47\) −5.00000 + 5.00000i −0.729325 + 0.729325i −0.970485 0.241160i \(-0.922472\pi\)
0.241160 + 0.970485i \(0.422472\pi\)
\(48\) −8.00000 + 8.00000i −1.15470 + 1.15470i
\(49\) 11.0000i 1.57143i
\(50\) 7.00000 + 1.00000i 0.989949 + 0.141421i
\(51\) 4.00000 0.560112
\(52\) −8.00000 + 8.00000i −1.10940 + 1.10940i
\(53\) −2.00000 2.00000i −0.274721 0.274721i 0.556276 0.830997i \(-0.312230\pi\)
−0.830997 + 0.556276i \(0.812230\pi\)
\(54\) 8.00000 1.08866
\(55\) −4.00000 + 8.00000i −0.539360 + 1.07872i
\(56\) −12.0000 −1.60357
\(57\) −2.00000 2.00000i −0.264906 0.264906i
\(58\) −10.0000 + 10.0000i −1.31306 + 1.31306i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −12.0000 + 4.00000i −1.54919 + 0.516398i
\(61\) 2.00000i 0.256074i 0.991769 + 0.128037i \(0.0408676\pi\)
−0.991769 + 0.128037i \(0.959132\pi\)
\(62\) 4.00000 + 4.00000i 0.508001 + 0.508001i
\(63\) 15.0000 + 15.0000i 1.88982 + 1.88982i
\(64\) 8.00000i 1.00000i
\(65\) −12.0000 + 4.00000i −1.48842 + 0.496139i
\(66\) 16.0000i 1.96946i
\(67\) 10.0000 + 10.0000i 1.22169 + 1.22169i 0.967029 + 0.254665i \(0.0819652\pi\)
0.254665 + 0.967029i \(0.418035\pi\)
\(68\) 2.00000 2.00000i 0.242536 0.242536i
\(69\) −20.0000 −2.40772
\(70\) −12.0000 6.00000i −1.43427 0.717137i
\(71\) 8.00000i 0.949425i −0.880141 0.474713i \(-0.842552\pi\)
0.880141 0.474713i \(-0.157448\pi\)
\(72\) 10.0000 10.0000i 1.17851 1.17851i
\(73\) 7.00000 7.00000i 0.819288 0.819288i −0.166717 0.986005i \(-0.553317\pi\)
0.986005 + 0.166717i \(0.0533166\pi\)
\(74\) 0 0
\(75\) −14.0000 2.00000i −1.61658 0.230940i
\(76\) −2.00000 −0.229416
\(77\) 12.0000 12.0000i 1.36753 1.36753i
\(78\) 16.0000 16.0000i 1.81164 1.81164i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −4.00000 + 8.00000i −0.447214 + 0.894427i
\(81\) −1.00000 −0.111111
\(82\) 2.00000 2.00000i 0.220863 0.220863i
\(83\) −7.00000 + 7.00000i −0.768350 + 0.768350i −0.977816 0.209466i \(-0.932827\pi\)
0.209466 + 0.977816i \(0.432827\pi\)
\(84\) 24.0000 2.61861
\(85\) 3.00000 1.00000i 0.325396 0.108465i
\(86\) 6.00000i 0.646997i
\(87\) 20.0000 20.0000i 2.14423 2.14423i
\(88\) −8.00000 8.00000i −0.852803 0.852803i
\(89\) 10.0000i 1.06000i −0.847998 0.529999i \(-0.822192\pi\)
0.847998 0.529999i \(-0.177808\pi\)
\(90\) 15.0000 5.00000i 1.58114 0.527046i
\(91\) 24.0000 2.51588
\(92\) −10.0000 + 10.0000i −1.04257 + 1.04257i
\(93\) −8.00000 8.00000i −0.829561 0.829561i
\(94\) 10.0000i 1.03142i
\(95\) −2.00000 1.00000i −0.205196 0.102598i
\(96\) 16.0000i 1.63299i
\(97\) 6.00000 + 6.00000i 0.609208 + 0.609208i 0.942739 0.333531i \(-0.108240\pi\)
−0.333531 + 0.942739i \(0.608240\pi\)
\(98\) 11.0000 + 11.0000i 1.11117 + 1.11117i
\(99\) 20.0000i 2.01008i
\(100\) −8.00000 + 6.00000i −0.800000 + 0.600000i
\(101\) 6.00000i 0.597022i −0.954406 0.298511i \(-0.903510\pi\)
0.954406 0.298511i \(-0.0964900\pi\)
\(102\) −4.00000 + 4.00000i −0.396059 + 0.396059i
\(103\) 6.00000 + 6.00000i 0.591198 + 0.591198i 0.937955 0.346757i \(-0.112717\pi\)
−0.346757 + 0.937955i \(0.612717\pi\)
\(104\) 16.0000i 1.56893i
\(105\) 24.0000 + 12.0000i 2.34216 + 1.17108i
\(106\) 4.00000 0.388514
\(107\) −4.00000 4.00000i −0.386695 0.386695i 0.486812 0.873507i \(-0.338160\pi\)
−0.873507 + 0.486812i \(0.838160\pi\)
\(108\) −8.00000 + 8.00000i −0.769800 + 0.769800i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) −4.00000 12.0000i −0.381385 1.14416i
\(111\) 0 0
\(112\) 12.0000 12.0000i 1.13389 1.13389i
\(113\) −2.00000 + 2.00000i −0.188144 + 0.188144i −0.794893 0.606749i \(-0.792473\pi\)
0.606749 + 0.794893i \(0.292473\pi\)
\(114\) 4.00000 0.374634
\(115\) −15.0000 + 5.00000i −1.39876 + 0.466252i
\(116\) 20.0000i 1.85695i
\(117\) −20.0000 + 20.0000i −1.84900 + 1.84900i
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 8.00000 16.0000i 0.730297 1.46059i
\(121\) 5.00000 0.454545
\(122\) −2.00000 2.00000i −0.181071 0.181071i
\(123\) −4.00000 + 4.00000i −0.360668 + 0.360668i
\(124\) −8.00000 −0.718421
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) −30.0000 −2.67261
\(127\) −2.00000 + 2.00000i −0.177471 + 0.177471i −0.790253 0.612781i \(-0.790051\pi\)
0.612781 + 0.790253i \(0.290051\pi\)
\(128\) −8.00000 8.00000i −0.707107 0.707107i
\(129\) 12.0000i 1.05654i
\(130\) 8.00000 16.0000i 0.701646 1.40329i
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 16.0000 + 16.0000i 1.39262 + 1.39262i
\(133\) 3.00000 + 3.00000i 0.260133 + 0.260133i
\(134\) −20.0000 −1.72774
\(135\) −12.0000 + 4.00000i −1.03280 + 0.344265i
\(136\) 4.00000i 0.342997i
\(137\) −5.00000 5.00000i −0.427179 0.427179i 0.460487 0.887666i \(-0.347675\pi\)
−0.887666 + 0.460487i \(0.847675\pi\)
\(138\) 20.0000 20.0000i 1.70251 1.70251i
\(139\) 2.00000i 0.169638i −0.996396 0.0848189i \(-0.972969\pi\)
0.996396 0.0848189i \(-0.0270312\pi\)
\(140\) 18.0000 6.00000i 1.52128 0.507093i
\(141\) 20.0000i 1.68430i
\(142\) 8.00000 + 8.00000i 0.671345 + 0.671345i
\(143\) 16.0000 + 16.0000i 1.33799 + 1.33799i
\(144\) 20.0000i 1.66667i
\(145\) 10.0000 20.0000i 0.830455 1.66091i
\(146\) 14.0000i 1.15865i
\(147\) −22.0000 22.0000i −1.81453 1.81453i
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 16.0000 12.0000i 1.30639 0.979796i
\(151\) 16.0000i 1.30206i −0.759051 0.651031i \(-0.774337\pi\)
0.759051 0.651031i \(-0.225663\pi\)
\(152\) 2.00000 2.00000i 0.162221 0.162221i
\(153\) 5.00000 5.00000i 0.404226 0.404226i
\(154\) 24.0000i 1.93398i
\(155\) −8.00000 4.00000i −0.642575 0.321288i
\(156\) 32.0000i 2.56205i
\(157\) 3.00000 3.00000i 0.239426 0.239426i −0.577186 0.816612i \(-0.695849\pi\)
0.816612 + 0.577186i \(0.195849\pi\)
\(158\) −8.00000 + 8.00000i −0.636446 + 0.636446i
\(159\) −8.00000 −0.634441
\(160\) −4.00000 12.0000i −0.316228 0.948683i
\(161\) 30.0000 2.36433
\(162\) 1.00000 1.00000i 0.0785674 0.0785674i
\(163\) 1.00000 1.00000i 0.0783260 0.0783260i −0.666858 0.745184i \(-0.732361\pi\)
0.745184 + 0.666858i \(0.232361\pi\)
\(164\) 4.00000i 0.312348i
\(165\) 8.00000 + 24.0000i 0.622799 + 1.86840i
\(166\) 14.0000i 1.08661i
\(167\) −16.0000 + 16.0000i −1.23812 + 1.23812i −0.277347 + 0.960770i \(0.589455\pi\)
−0.960770 + 0.277347i \(0.910545\pi\)
\(168\) −24.0000 + 24.0000i −1.85164 + 1.85164i
\(169\) 19.0000i 1.46154i
\(170\) −2.00000 + 4.00000i −0.153393 + 0.306786i
\(171\) −5.00000 −0.382360
\(172\) −6.00000 6.00000i −0.457496 0.457496i
\(173\) −10.0000 10.0000i −0.760286 0.760286i 0.216088 0.976374i \(-0.430670\pi\)
−0.976374 + 0.216088i \(0.930670\pi\)
\(174\) 40.0000i 3.03239i
\(175\) 21.0000 + 3.00000i 1.58745 + 0.226779i
\(176\) 16.0000 1.20605
\(177\) 0 0
\(178\) 10.0000 + 10.0000i 0.749532 + 0.749532i
\(179\) 16.0000i 1.19590i −0.801535 0.597948i \(-0.795983\pi\)
0.801535 0.597948i \(-0.204017\pi\)
\(180\) −10.0000 + 20.0000i −0.745356 + 1.49071i
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) −24.0000 + 24.0000i −1.77900 + 1.77900i
\(183\) 4.00000 + 4.00000i 0.295689 + 0.295689i
\(184\) 20.0000i 1.47442i
\(185\) 0 0
\(186\) 16.0000 1.17318
\(187\) −4.00000 4.00000i −0.292509 0.292509i
\(188\) 10.0000 + 10.0000i 0.729325 + 0.729325i
\(189\) 24.0000 1.74574
\(190\) 3.00000 1.00000i 0.217643 0.0725476i
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 16.0000 + 16.0000i 1.15470 + 1.15470i
\(193\) 6.00000 6.00000i 0.431889 0.431889i −0.457381 0.889271i \(-0.651213\pi\)
0.889271 + 0.457381i \(0.151213\pi\)
\(194\) −12.0000 −0.861550
\(195\) −16.0000 + 32.0000i −1.14578 + 2.29157i
\(196\) −22.0000 −1.57143
\(197\) −5.00000 + 5.00000i −0.356235 + 0.356235i −0.862423 0.506188i \(-0.831054\pi\)
0.506188 + 0.862423i \(0.331054\pi\)
\(198\) −20.0000 20.0000i −1.42134 1.42134i
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) 2.00000 14.0000i 0.141421 0.989949i
\(201\) 40.0000 2.82138
\(202\) 6.00000 + 6.00000i 0.422159 + 0.422159i
\(203\) −30.0000 + 30.0000i −2.10559 + 2.10559i
\(204\) 8.00000i 0.560112i
\(205\) −2.00000 + 4.00000i −0.139686 + 0.279372i
\(206\) −12.0000 −0.836080
\(207\) −25.0000 + 25.0000i −1.73762 + 1.73762i
\(208\) 16.0000 + 16.0000i 1.10940 + 1.10940i
\(209\) 4.00000i 0.276686i
\(210\) −36.0000 + 12.0000i −2.48424 + 0.828079i
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −4.00000 + 4.00000i −0.274721 + 0.274721i
\(213\) −16.0000 16.0000i −1.09630 1.09630i
\(214\) 8.00000 0.546869
\(215\) −3.00000 9.00000i −0.204598 0.613795i
\(216\) 16.0000i 1.08866i
\(217\) 12.0000 + 12.0000i 0.814613 + 0.814613i
\(218\) −6.00000 + 6.00000i −0.406371 + 0.406371i
\(219\) 28.0000i 1.89206i
\(220\) 16.0000 + 8.00000i 1.07872 + 0.539360i
\(221\) 8.00000i 0.538138i
\(222\) 0 0
\(223\) 10.0000 + 10.0000i 0.669650 + 0.669650i 0.957635 0.287985i \(-0.0929854\pi\)
−0.287985 + 0.957635i \(0.592985\pi\)
\(224\) 24.0000i 1.60357i
\(225\) −20.0000 + 15.0000i −1.33333 + 1.00000i
\(226\) 4.00000i 0.266076i
\(227\) 16.0000 + 16.0000i 1.06196 + 1.06196i 0.997949 + 0.0640079i \(0.0203883\pi\)
0.0640079 + 0.997949i \(0.479612\pi\)
\(228\) −4.00000 + 4.00000i −0.264906 + 0.264906i
\(229\) 24.0000 1.58596 0.792982 0.609245i \(-0.208527\pi\)
0.792982 + 0.609245i \(0.208527\pi\)
\(230\) 10.0000 20.0000i 0.659380 1.31876i
\(231\) 48.0000i 3.15817i
\(232\) 20.0000 + 20.0000i 1.31306 + 1.31306i
\(233\) −19.0000 + 19.0000i −1.24473 + 1.24473i −0.286716 + 0.958016i \(0.592563\pi\)
−0.958016 + 0.286716i \(0.907437\pi\)
\(234\) 40.0000i 2.61488i
\(235\) 5.00000 + 15.0000i 0.326164 + 0.978492i
\(236\) 0 0
\(237\) 16.0000 16.0000i 1.03931 1.03931i
\(238\) 6.00000 6.00000i 0.388922 0.388922i
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 8.00000 + 24.0000i 0.516398 + 1.54919i
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) −5.00000 + 5.00000i −0.321412 + 0.321412i
\(243\) 10.0000 10.0000i 0.641500 0.641500i
\(244\) 4.00000 0.256074
\(245\) −22.0000 11.0000i −1.40553 0.702764i
\(246\) 8.00000i 0.510061i
\(247\) −4.00000 + 4.00000i −0.254514 + 0.254514i
\(248\) 8.00000 8.00000i 0.508001 0.508001i
\(249\) 28.0000i 1.77443i
\(250\) 9.00000 13.0000i 0.569210 0.822192i
\(251\) −22.0000 −1.38863 −0.694314 0.719672i \(-0.744292\pi\)
−0.694314 + 0.719672i \(0.744292\pi\)
\(252\) 30.0000 30.0000i 1.88982 1.88982i
\(253\) 20.0000 + 20.0000i 1.25739 + 1.25739i
\(254\) 4.00000i 0.250982i
\(255\) 4.00000 8.00000i 0.250490 0.500979i
\(256\) 16.0000 1.00000
\(257\) −20.0000 20.0000i −1.24757 1.24757i −0.956792 0.290774i \(-0.906087\pi\)
−0.290774 0.956792i \(-0.593913\pi\)
\(258\) 12.0000 + 12.0000i 0.747087 + 0.747087i
\(259\) 0 0
\(260\) 8.00000 + 24.0000i 0.496139 + 1.48842i
\(261\) 50.0000i 3.09492i
\(262\) −6.00000 + 6.00000i −0.370681 + 0.370681i
\(263\) −7.00000 7.00000i −0.431638 0.431638i 0.457547 0.889185i \(-0.348728\pi\)
−0.889185 + 0.457547i \(0.848728\pi\)
\(264\) −32.0000 −1.96946
\(265\) −6.00000 + 2.00000i −0.368577 + 0.122859i
\(266\) −6.00000 −0.367884
\(267\) −20.0000 20.0000i −1.22398 1.22398i
\(268\) 20.0000 20.0000i 1.22169 1.22169i
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 8.00000 16.0000i 0.486864 0.973729i
\(271\) 2.00000i 0.121491i −0.998153 0.0607457i \(-0.980652\pi\)
0.998153 0.0607457i \(-0.0193479\pi\)
\(272\) −4.00000 4.00000i −0.242536 0.242536i
\(273\) 48.0000 48.0000i 2.90509 2.90509i
\(274\) 10.0000 0.604122
\(275\) 12.0000 + 16.0000i 0.723627 + 0.964836i
\(276\) 40.0000i 2.40772i
\(277\) 3.00000 3.00000i 0.180253 0.180253i −0.611213 0.791466i \(-0.709318\pi\)
0.791466 + 0.611213i \(0.209318\pi\)
\(278\) 2.00000 + 2.00000i 0.119952 + 0.119952i
\(279\) −20.0000 −1.19737
\(280\) −12.0000 + 24.0000i −0.717137 + 1.43427i
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) −20.0000 20.0000i −1.19098 1.19098i
\(283\) 9.00000 9.00000i 0.534994 0.534994i −0.387060 0.922055i \(-0.626509\pi\)
0.922055 + 0.387060i \(0.126509\pi\)
\(284\) −16.0000 −0.949425
\(285\) −6.00000 + 2.00000i −0.355409 + 0.118470i
\(286\) −32.0000 −1.89220
\(287\) 6.00000 6.00000i 0.354169 0.354169i
\(288\) −20.0000 20.0000i −1.17851 1.17851i
\(289\) 15.0000i 0.882353i
\(290\) 10.0000 + 30.0000i 0.587220 + 1.76166i
\(291\) 24.0000 1.40690
\(292\) −14.0000 14.0000i −0.819288 0.819288i
\(293\) 2.00000 + 2.00000i 0.116841 + 0.116841i 0.763110 0.646269i \(-0.223671\pi\)
−0.646269 + 0.763110i \(0.723671\pi\)
\(294\) 44.0000 2.56613
\(295\) 0 0
\(296\) 0 0
\(297\) 16.0000 + 16.0000i 0.928414 + 0.928414i
\(298\) −12.0000 + 12.0000i −0.695141 + 0.695141i
\(299\) 40.0000i 2.31326i
\(300\) −4.00000 + 28.0000i −0.230940 + 1.61658i
\(301\) 18.0000i 1.03750i
\(302\) 16.0000 + 16.0000i 0.920697 + 0.920697i
\(303\) −12.0000 12.0000i −0.689382 0.689382i
\(304\) 4.00000i 0.229416i
\(305\) 4.00000 + 2.00000i 0.229039 + 0.114520i
\(306\) 10.0000i 0.571662i
\(307\) −8.00000 8.00000i −0.456584 0.456584i 0.440948 0.897532i \(-0.354642\pi\)
−0.897532 + 0.440948i \(0.854642\pi\)
\(308\) −24.0000 24.0000i −1.36753 1.36753i
\(309\) 24.0000 1.36531
\(310\) 12.0000 4.00000i 0.681554 0.227185i
\(311\) 2.00000i 0.113410i −0.998391 0.0567048i \(-0.981941\pi\)
0.998391 0.0567048i \(-0.0180594\pi\)
\(312\) −32.0000 32.0000i −1.81164 1.81164i
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 6.00000i 0.338600i
\(315\) 45.0000 15.0000i 2.53546 0.845154i
\(316\) 16.0000i 0.900070i
\(317\) −12.0000 + 12.0000i −0.673987 + 0.673987i −0.958633 0.284646i \(-0.908124\pi\)
0.284646 + 0.958633i \(0.408124\pi\)
\(318\) 8.00000 8.00000i 0.448618 0.448618i
\(319\) −40.0000 −2.23957
\(320\) 16.0000 + 8.00000i 0.894427 + 0.447214i
\(321\) −16.0000 −0.893033
\(322\) −30.0000 + 30.0000i −1.67183 + 1.67183i
\(323\) 1.00000 1.00000i 0.0556415 0.0556415i
\(324\) 2.00000i 0.111111i
\(325\) −4.00000 + 28.0000i −0.221880 + 1.55316i
\(326\) 2.00000i 0.110770i
\(327\) 12.0000 12.0000i 0.663602 0.663602i
\(328\) −4.00000 4.00000i −0.220863 0.220863i
\(329\) 30.0000i 1.65395i
\(330\) −32.0000 16.0000i −1.76154 0.880771i
\(331\) −24.0000 −1.31916 −0.659580 0.751635i \(-0.729266\pi\)
−0.659580 + 0.751635i \(0.729266\pi\)
\(332\) 14.0000 + 14.0000i 0.768350 + 0.768350i
\(333\) 0 0
\(334\) 32.0000i 1.75096i
\(335\) 30.0000 10.0000i 1.63908 0.546358i
\(336\) 48.0000i 2.61861i
\(337\) 10.0000 + 10.0000i 0.544735 + 0.544735i 0.924913 0.380178i \(-0.124137\pi\)
−0.380178 + 0.924913i \(0.624137\pi\)
\(338\) −19.0000 19.0000i −1.03346 1.03346i
\(339\) 8.00000i 0.434500i
\(340\) −2.00000 6.00000i −0.108465 0.325396i
\(341\) 16.0000i 0.866449i
\(342\) 5.00000 5.00000i 0.270369 0.270369i
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 12.0000 0.646997
\(345\) −20.0000 + 40.0000i −1.07676 + 2.15353i
\(346\) 20.0000 1.07521
\(347\) 7.00000 + 7.00000i 0.375780 + 0.375780i 0.869577 0.493797i \(-0.164392\pi\)
−0.493797 + 0.869577i \(0.664392\pi\)
\(348\) −40.0000 40.0000i −2.14423 2.14423i
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) −24.0000 + 18.0000i −1.28285 + 0.962140i
\(351\) 32.0000i 1.70803i
\(352\) −16.0000 + 16.0000i −0.852803 + 0.852803i
\(353\) −9.00000 + 9.00000i −0.479022 + 0.479022i −0.904819 0.425797i \(-0.859994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 0 0
\(355\) −16.0000 8.00000i −0.849192 0.424596i
\(356\) −20.0000 −1.06000
\(357\) −12.0000 + 12.0000i −0.635107 + 0.635107i
\(358\) 16.0000 + 16.0000i 0.845626 + 0.845626i
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) −10.0000 30.0000i −0.527046 1.58114i
\(361\) −1.00000 −0.0526316
\(362\) 10.0000 + 10.0000i 0.525588 + 0.525588i
\(363\) 10.0000 10.0000i 0.524864 0.524864i
\(364\) 48.0000i 2.51588i
\(365\) −7.00000 21.0000i −0.366397 1.09919i
\(366\) −8.00000 −0.418167
\(367\) 21.0000 21.0000i 1.09619 1.09619i 0.101339 0.994852i \(-0.467687\pi\)
0.994852 0.101339i \(-0.0323127\pi\)
\(368\) 20.0000 + 20.0000i 1.04257 + 1.04257i
\(369\) 10.0000i 0.520579i
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) −16.0000 + 16.0000i −0.829561 + 0.829561i
\(373\) 10.0000 + 10.0000i 0.517780 + 0.517780i 0.916899 0.399119i \(-0.130684\pi\)
−0.399119 + 0.916899i \(0.630684\pi\)
\(374\) 8.00000 0.413670
\(375\) −18.0000 + 26.0000i −0.929516 + 1.34263i
\(376\) −20.0000 −1.03142
\(377\) −40.0000 40.0000i −2.06010 2.06010i
\(378\) −24.0000 + 24.0000i −1.23443 + 1.23443i
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) −2.00000 + 4.00000i −0.102598 + 0.205196i
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) −12.0000 12.0000i −0.613171 0.613171i 0.330600 0.943771i \(-0.392749\pi\)
−0.943771 + 0.330600i \(0.892749\pi\)
\(384\) −32.0000 −1.63299
\(385\) −12.0000 36.0000i −0.611577 1.83473i
\(386\) 12.0000i 0.610784i
\(387\) −15.0000 15.0000i −0.762493 0.762493i
\(388\) 12.0000 12.0000i 0.609208 0.609208i
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −16.0000 48.0000i −0.810191 2.43057i
\(391\) 10.0000i 0.505722i
\(392\) 22.0000 22.0000i 1.11117 1.11117i
\(393\) 12.0000 12.0000i 0.605320 0.605320i
\(394\) 10.0000i 0.503793i
\(395\) 8.00000 16.0000i 0.402524 0.805047i
\(396\) 40.0000 2.01008
\(397\) 13.0000 13.0000i 0.652451 0.652451i −0.301131 0.953583i \(-0.597364\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) 6.00000 6.00000i 0.300753 0.300753i
\(399\) 12.0000 0.600751
\(400\) 12.0000 + 16.0000i 0.600000 + 0.800000i
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) −40.0000 + 40.0000i −1.99502 + 1.99502i
\(403\) −16.0000 + 16.0000i −0.797017 + 0.797017i
\(404\) −12.0000 −0.597022
\(405\) −1.00000 + 2.00000i −0.0496904 + 0.0993808i
\(406\) 60.0000i 2.97775i
\(407\) 0 0
\(408\) 8.00000 + 8.00000i 0.396059 + 0.396059i
\(409\) 34.0000i 1.68119i 0.541663 + 0.840596i \(0.317795\pi\)
−0.541663 + 0.840596i \(0.682205\pi\)
\(410\) −2.00000 6.00000i −0.0987730 0.296319i
\(411\) −20.0000 −0.986527
\(412\) 12.0000 12.0000i 0.591198 0.591198i
\(413\) 0 0
\(414\) 50.0000i 2.45737i
\(415\) 7.00000 + 21.0000i 0.343616 + 1.03085i
\(416\) −32.0000 −1.56893
\(417\) −4.00000 4.00000i −0.195881 0.195881i
\(418\) −4.00000 4.00000i −0.195646 0.195646i
\(419\) 12.0000i 0.586238i −0.956076 0.293119i \(-0.905307\pi\)
0.956076 0.293119i \(-0.0946933\pi\)
\(420\) 24.0000 48.0000i 1.17108 2.34216i
\(421\) 26.0000i 1.26716i −0.773676 0.633581i \(-0.781584\pi\)
0.773676 0.633581i \(-0.218416\pi\)
\(422\) 8.00000 8.00000i 0.389434 0.389434i
\(423\) 25.0000 + 25.0000i 1.21554 + 1.21554i
\(424\) 8.00000i 0.388514i
\(425\) 1.00000 7.00000i 0.0485071 0.339550i
\(426\) 32.0000 1.55041
\(427\) −6.00000 6.00000i −0.290360 0.290360i
\(428\) −8.00000 + 8.00000i −0.386695 + 0.386695i
\(429\) 64.0000 3.08995
\(430\) 12.0000 + 6.00000i 0.578691 + 0.289346i
\(431\) 12.0000i 0.578020i 0.957326 + 0.289010i \(0.0933260\pi\)
−0.957326 + 0.289010i \(0.906674\pi\)
\(432\) 16.0000 + 16.0000i 0.769800 + 0.769800i
\(433\) 14.0000 14.0000i 0.672797 0.672797i −0.285563 0.958360i \(-0.592181\pi\)
0.958360 + 0.285563i \(0.0921805\pi\)
\(434\) −24.0000 −1.15204
\(435\) −20.0000 60.0000i −0.958927 2.87678i
\(436\) 12.0000i 0.574696i
\(437\) −5.00000 + 5.00000i −0.239182 + 0.239182i
\(438\) 28.0000 + 28.0000i 1.33789 + 1.33789i
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) −24.0000 + 8.00000i −1.14416 + 0.381385i
\(441\) −55.0000 −2.61905
\(442\) 8.00000 + 8.00000i 0.380521 + 0.380521i
\(443\) 21.0000 21.0000i 0.997740 0.997740i −0.00225734 0.999997i \(-0.500719\pi\)
0.999997 + 0.00225734i \(0.000718535\pi\)
\(444\) 0 0
\(445\) −20.0000 10.0000i −0.948091 0.474045i
\(446\) −20.0000 −0.947027
\(447\) 24.0000 24.0000i 1.13516 1.13516i
\(448\) −24.0000 24.0000i −1.13389 1.13389i
\(449\) 10.0000i 0.471929i 0.971762 + 0.235965i \(0.0758249\pi\)
−0.971762 + 0.235965i \(0.924175\pi\)
\(450\) 5.00000 35.0000i 0.235702 1.64992i
\(451\) 8.00000 0.376705
\(452\) 4.00000 + 4.00000i 0.188144 + 0.188144i
\(453\) −32.0000 32.0000i −1.50349 1.50349i
\(454\) −32.0000 −1.50183
\(455\) 24.0000 48.0000i 1.12514 2.25027i
\(456\) 8.00000i 0.374634i
\(457\) −15.0000 15.0000i −0.701670 0.701670i 0.263099 0.964769i \(-0.415256\pi\)
−0.964769 + 0.263099i \(0.915256\pi\)
\(458\) −24.0000 + 24.0000i −1.12145 + 1.12145i
\(459\) 8.00000i 0.373408i
\(460\) 10.0000 + 30.0000i 0.466252 + 1.39876i
\(461\) 20.0000i 0.931493i 0.884918 + 0.465746i \(0.154214\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 48.0000 + 48.0000i 2.23316 + 2.23316i
\(463\) 9.00000 + 9.00000i 0.418265 + 0.418265i 0.884606 0.466340i \(-0.154428\pi\)
−0.466340 + 0.884606i \(0.654428\pi\)
\(464\) −40.0000 −1.85695
\(465\) −24.0000 + 8.00000i −1.11297 + 0.370991i
\(466\) 38.0000i 1.76032i
\(467\) 23.0000 + 23.0000i 1.06431 + 1.06431i 0.997785 + 0.0665285i \(0.0211923\pi\)
0.0665285 + 0.997785i \(0.478808\pi\)
\(468\) 40.0000 + 40.0000i 1.84900 + 1.84900i
\(469\) −60.0000 −2.77054
\(470\) −20.0000 10.0000i −0.922531 0.461266i
\(471\) 12.0000i 0.552931i
\(472\) 0 0
\(473\) −12.0000 + 12.0000i −0.551761 + 0.551761i
\(474\) 32.0000i 1.46981i
\(475\) −4.00000 + 3.00000i −0.183533 + 0.137649i
\(476\) 12.0000i 0.550019i
\(477\) −10.0000 + 10.0000i −0.457869 + 0.457869i
\(478\) −18.0000 + 18.0000i −0.823301 + 0.823301i
\(479\) 8.00000 0.365529 0.182765 0.983157i \(-0.441495\pi\)
0.182765 + 0.983157i \(0.441495\pi\)
\(480\) −32.0000 16.0000i −1.46059 0.730297i
\(481\) 0 0
\(482\) 14.0000 14.0000i 0.637683 0.637683i
\(483\) 60.0000 60.0000i 2.73009 2.73009i
\(484\) 10.0000i 0.454545i
\(485\) 18.0000 6.00000i 0.817338 0.272446i
\(486\) 20.0000i 0.907218i
\(487\) −24.0000 + 24.0000i −1.08754 + 1.08754i −0.0917629 + 0.995781i \(0.529250\pi\)
−0.995781 + 0.0917629i \(0.970750\pi\)
\(488\) −4.00000 + 4.00000i −0.181071 + 0.181071i
\(489\) 4.00000i 0.180886i
\(490\) 33.0000 11.0000i 1.49079 0.496929i
\(491\) −30.0000 −1.35388 −0.676941 0.736038i \(-0.736695\pi\)
−0.676941 + 0.736038i \(0.736695\pi\)
\(492\) 8.00000 + 8.00000i 0.360668 + 0.360668i
\(493\) 10.0000 + 10.0000i 0.450377 + 0.450377i
\(494\) 8.00000i 0.359937i
\(495\) 40.0000 + 20.0000i 1.79787 + 0.898933i
\(496\) 16.0000i 0.718421i
\(497\) 24.0000 + 24.0000i 1.07655 + 1.07655i
\(498\) −28.0000 28.0000i −1.25471 1.25471i
\(499\) 6.00000i 0.268597i 0.990941 + 0.134298i \(0.0428781\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) 4.00000 + 22.0000i 0.178885 + 0.983870i
\(501\) 64.0000i 2.85931i
\(502\) 22.0000 22.0000i 0.981908 0.981908i
\(503\) −3.00000 3.00000i −0.133763 0.133763i 0.637055 0.770818i \(-0.280152\pi\)
−0.770818 + 0.637055i \(0.780152\pi\)
\(504\) 60.0000i 2.67261i
\(505\) −12.0000 6.00000i −0.533993 0.266996i
\(506\) −40.0000 −1.77822
\(507\) 38.0000 + 38.0000i 1.68764 + 1.68764i
\(508\) 4.00000 + 4.00000i 0.177471 + 0.177471i
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 4.00000 + 12.0000i 0.177123 + 0.531369i
\(511\) 42.0000i 1.85797i
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) −4.00000 + 4.00000i −0.176604 + 0.176604i
\(514\) 40.0000 1.76432
\(515\) 18.0000 6.00000i 0.793175 0.264392i
\(516\) −24.0000 −1.05654
\(517\) 20.0000 20.0000i 0.879599 0.879599i
\(518\) 0 0
\(519\) −40.0000 −1.75581
\(520\) −32.0000 16.0000i −1.40329 0.701646i
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 50.0000 + 50.0000i 2.18844 + 2.18844i
\(523\) −16.0000 + 16.0000i −0.699631 + 0.699631i −0.964331 0.264700i \(-0.914727\pi\)
0.264700 + 0.964331i \(0.414727\pi\)
\(524\) 12.0000i 0.524222i
\(525\) 48.0000 36.0000i 2.09489 1.57117i
\(526\) 14.0000 0.610429
\(527\) 4.00000 4.00000i 0.174243 0.174243i
\(528\) 32.0000 32.0000i 1.39262 1.39262i
\(529\) 27.0000i 1.17391i
\(530\) 4.00000 8.00000i 0.173749 0.347498i
\(531\) 0 0
\(532\) 6.00000 6.00000i 0.260133 0.260133i
\(533\) 8.00000 + 8.00000i 0.346518 + 0.346518i
\(534\) 40.0000 1.73097
\(535\) −12.0000 + 4.00000i −0.518805 + 0.172935i
\(536\) 40.0000i 1.72774i
\(537\) −32.0000 32.0000i −1.38090 1.38090i
\(538\) −14.0000 + 14.0000i −0.603583 + 0.603583i
\(539\) 44.0000i 1.89521i
\(540\) 8.00000 + 24.0000i 0.344265 + 1.03280i
\(541\) 2.00000i 0.0859867i 0.999075 + 0.0429934i \(0.0136894\pi\)
−0.999075 + 0.0429934i \(0.986311\pi\)
\(542\) 2.00000 + 2.00000i 0.0859074 + 0.0859074i
\(543\) −20.0000 20.0000i −0.858282 0.858282i
\(544\) 8.00000 0.342997
\(545\) 6.00000 12.0000i 0.257012 0.514024i
\(546\) 96.0000i 4.10842i
\(547\) −24.0000 24.0000i −1.02617 1.02617i −0.999648 0.0265176i \(-0.991558\pi\)
−0.0265176 0.999648i \(-0.508442\pi\)
\(548\) −10.0000 + 10.0000i −0.427179 + 0.427179i
\(549\) 10.0000 0.426790
\(550\) −28.0000 4.00000i −1.19392 0.170561i
\(551\) 10.0000i 0.426014i
\(552\) −40.0000 40.0000i −1.70251 1.70251i
\(553\) −24.0000 + 24.0000i −1.02058 + 1.02058i
\(554\) 6.00000i 0.254916i
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −21.0000 + 21.0000i −0.889799 + 0.889799i −0.994503 0.104705i \(-0.966610\pi\)
0.104705 + 0.994503i \(0.466610\pi\)
\(558\) 20.0000 20.0000i 0.846668 0.846668i
\(559\) −24.0000 −1.01509
\(560\) −12.0000 36.0000i −0.507093 1.52128i
\(561\) −16.0000 −0.675521
\(562\) −2.00000 + 2.00000i −0.0843649 + 0.0843649i
\(563\) −8.00000 + 8.00000i −0.337160 + 0.337160i −0.855297 0.518138i \(-0.826626\pi\)
0.518138 + 0.855297i \(0.326626\pi\)
\(564\) 40.0000 1.68430
\(565\) 2.00000 + 6.00000i 0.0841406 + 0.252422i
\(566\) 18.0000i 0.756596i
\(567\) 3.00000 3.00000i 0.125988 0.125988i
\(568\) 16.0000 16.0000i 0.671345 0.671345i
\(569\) 6.00000i 0.251533i −0.992060 0.125767i \(-0.959861\pi\)
0.992060 0.125767i \(-0.0401390\pi\)
\(570\) 4.00000 8.00000i 0.167542 0.335083i
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 32.0000 32.0000i 1.33799 1.33799i
\(573\) 0 0
\(574\) 12.0000i 0.500870i
\(575\) −5.00000 + 35.0000i −0.208514 + 1.45960i
\(576\) 40.0000 1.66667
\(577\) 3.00000 + 3.00000i 0.124892 + 0.124892i 0.766790 0.641898i \(-0.221853\pi\)
−0.641898 + 0.766790i \(0.721853\pi\)
\(578\) 15.0000 + 15.0000i 0.623918 + 0.623918i
\(579\) 24.0000i 0.997406i
\(580\) −40.0000 20.0000i −1.66091 0.830455i
\(581\) 42.0000i 1.74245i
\(582\) −24.0000 + 24.0000i −0.994832 + 0.994832i
\(583\) 8.00000 + 8.00000i 0.331326 + 0.331326i
\(584\) 28.0000 1.15865
\(585\) 20.0000 + 60.0000i 0.826898 + 2.48069i
\(586\) −4.00000 −0.165238
\(587\) 23.0000 + 23.0000i 0.949312 + 0.949312i 0.998776 0.0494643i \(-0.0157514\pi\)
−0.0494643 + 0.998776i \(0.515751\pi\)
\(588\) −44.0000 + 44.0000i −1.81453 + 1.81453i
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 20.0000i 0.822690i
\(592\) 0 0
\(593\) 31.0000 31.0000i 1.27302 1.27302i 0.328521 0.944497i \(-0.393450\pi\)
0.944497 0.328521i \(-0.106550\pi\)
\(594\) −32.0000 −1.31298
\(595\) −6.00000 + 12.0000i −0.245976 + 0.491952i
\(596\) 24.0000i 0.983078i
\(597\) −12.0000 + 12.0000i −0.491127 + 0.491127i
\(598\) −40.0000 40.0000i −1.63572 1.63572i
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) −24.0000 32.0000i −0.979796 1.30639i
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) −18.0000 18.0000i −0.733625 0.733625i
\(603\) 50.0000 50.0000i 2.03616 2.03616i
\(604\) −32.0000 −1.30206
\(605\) 5.00000 10.0000i 0.203279 0.406558i
\(606\) 24.0000 0.974933
\(607\) −12.0000 + 12.0000i −0.487065 + 0.487065i −0.907379 0.420314i \(-0.861920\pi\)
0.420314 + 0.907379i \(0.361920\pi\)
\(608\) −4.00000 4.00000i −0.162221 0.162221i
\(609\) 120.000i 4.86265i
\(610\) −6.00000 + 2.00000i −0.242933 + 0.0809776i
\(611\) 40.0000 1.61823
\(612\) −10.0000 10.0000i −0.404226 0.404226i
\(613\) −19.0000 19.0000i −0.767403 0.767403i 0.210246 0.977649i \(-0.432574\pi\)
−0.977649 + 0.210246i \(0.932574\pi\)
\(614\) 16.0000 0.645707
\(615\) 4.00000 + 12.0000i 0.161296 + 0.483887i
\(616\) 48.0000 1.93398
\(617\) −33.0000 33.0000i −1.32853 1.32853i −0.906653 0.421877i \(-0.861371\pi\)
−0.421877 0.906653i \(-0.638629\pi\)
\(618\) −24.0000 + 24.0000i −0.965422 + 0.965422i
\(619\) 14.0000i 0.562708i −0.959604 0.281354i \(-0.909217\pi\)
0.959604 0.281354i \(-0.0907834\pi\)
\(620\) −8.00000 + 16.0000i −0.321288 + 0.642575i
\(621\) 40.0000i 1.60514i
\(622\) 2.00000 + 2.00000i 0.0801927 + 0.0801927i
\(623\) 30.0000 + 30.0000i 1.20192 + 1.20192i
\(624\) 64.0000 2.56205
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 18.0000i 0.719425i
\(627\) 8.00000 + 8.00000i 0.319489 + 0.319489i
\(628\) −6.00000 6.00000i −0.239426 0.239426i
\(629\) 0 0
\(630\) −30.0000 + 60.0000i −1.19523 + 2.39046i
\(631\) 26.0000i 1.03504i 0.855670 + 0.517522i \(0.173145\pi\)
−0.855670 + 0.517522i \(0.826855\pi\)
\(632\) 16.0000 + 16.0000i 0.636446 + 0.636446i
\(633\) −16.0000 + 16.0000i −0.635943 + 0.635943i
\(634\) 24.0000i 0.953162i
\(635\) 2.00000 + 6.00000i 0.0793676 + 0.238103i
\(636\) 16.0000i 0.634441i
\(637\) −44.0000 + 44.0000i −1.74334 + 1.74334i
\(638\) 40.0000 40.0000i 1.58362 1.58362i
\(639\) −40.0000 −1.58238
\(640\) −24.0000 + 8.00000i −0.948683 + 0.316228i
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 16.0000 16.0000i 0.631470 0.631470i
\(643\) 17.0000 17.0000i 0.670415 0.670415i −0.287397 0.957812i \(-0.592790\pi\)
0.957812 + 0.287397i \(0.0927899\pi\)
\(644\) 60.0000i 2.36433i
\(645\) −24.0000 12.0000i −0.944999 0.472500i
\(646\) 2.00000i 0.0786889i
\(647\) 33.0000 33.0000i 1.29736 1.29736i 0.367236 0.930128i \(-0.380304\pi\)
0.930128 0.367236i \(-0.119696\pi\)
\(648\) −2.00000 2.00000i −0.0785674 0.0785674i
\(649\) 0 0
\(650\) −24.0000 32.0000i −0.941357 1.25514i
\(651\) 48.0000 1.88127
\(652\) −2.00000 2.00000i −0.0783260 0.0783260i
\(653\) 13.0000 + 13.0000i 0.508729 + 0.508729i 0.914136 0.405407i \(-0.132870\pi\)
−0.405407 + 0.914136i \(0.632870\pi\)
\(654\) 24.0000i 0.938474i
\(655\) 6.00000 12.0000i 0.234439 0.468879i
\(656\) 8.00000 0.312348
\(657\) −35.0000 35.0000i −1.36548 1.36548i
\(658\) 30.0000 + 30.0000i 1.16952 + 1.16952i
\(659\) 28.0000i 1.09073i 0.838200 + 0.545363i \(0.183608\pi\)
−0.838200 + 0.545363i \(0.816392\pi\)
\(660\) 48.0000 16.0000i 1.86840 0.622799i
\(661\) 26.0000i 1.01128i 0.862744 + 0.505641i \(0.168744\pi\)
−0.862744 + 0.505641i \(0.831256\pi\)
\(662\) 24.0000 24.0000i 0.932786 0.932786i
\(663\) −16.0000 16.0000i −0.621389 0.621389i
\(664\) −28.0000 −1.08661
\(665\) 9.00000 3.00000i 0.349005 0.116335i
\(666\) 0 0
\(667\) −50.0000 50.0000i −1.93601 1.93601i
\(668\) 32.0000 + 32.0000i 1.23812 + 1.23812i
\(669\) 40.0000 1.54649
\(670\) −20.0000 + 40.0000i −0.772667 + 1.54533i
\(671\) 8.00000i 0.308837i
\(672\) 48.0000 + 48.0000i 1.85164 + 1.85164i
\(673\) −24.0000 + 24.0000i −0.925132 + 0.925132i −0.997386 0.0722542i \(-0.976981\pi\)
0.0722542 + 0.997386i \(0.476981\pi\)
\(674\) −20.0000 −0.770371
\(675\) −4.00000 + 28.0000i −0.153960 + 1.07772i
\(676\) 38.0000 1.46154
\(677\) 22.0000 22.0000i 0.845529 0.845529i −0.144043 0.989571i \(-0.546010\pi\)
0.989571 + 0.144043i \(0.0460103\pi\)
\(678\) −8.00000 8.00000i −0.307238 0.307238i
\(679\) −36.0000 −1.38155
\(680\) 8.00000 + 4.00000i 0.306786 + 0.153393i
\(681\) 64.0000 2.45249
\(682\) −16.0000 16.0000i −0.612672 0.612672i
\(683\) 28.0000 28.0000i 1.07139 1.07139i 0.0741426 0.997248i \(-0.476378\pi\)
0.997248 0.0741426i \(-0.0236220\pi\)
\(684\) 10.0000i 0.382360i
\(685\) −15.0000 + 5.00000i −0.573121 + 0.191040i
\(686\) −24.0000 −0.916324
\(687\) 48.0000 48.0000i 1.83131 1.83131i
\(688\) −12.0000 + 12.0000i −0.457496 + 0.457496i
\(689\) 16.0000i 0.609551i
\(690\) −20.0000 60.0000i −0.761387 2.28416i
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) −20.0000 + 20.0000i −0.760286 + 0.760286i
\(693\) −60.0000 60.0000i −2.27921 2.27921i
\(694\) −14.0000 −0.531433
\(695\) −4.00000 2.00000i −0.151729 0.0758643i
\(696\) 80.0000 3.03239
\(697\) −2.00000 2.00000i −0.0757554 0.0757554i
\(698\) −2.00000 + 2.00000i −0.0757011 + 0.0757011i
\(699\) 76.0000i 2.87458i
\(700\) 6.00000 42.0000i 0.226779 1.58745i
\(701\) 26.0000i 0.982006i 0.871158 + 0.491003i \(0.163370\pi\)
−0.871158 + 0.491003i \(0.836630\pi\)
\(702\) −32.0000 32.0000i −1.20776 1.20776i
\(703\) 0 0
\(704\) 32.0000i 1.20605i
\(705\) 40.0000 + 20.0000i 1.50649 + 0.753244i
\(706\) 18.0000i 0.677439i
\(707\) 18.0000 + 18.0000i 0.676960 + 0.676960i
\(708\) 0 0
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 24.0000 8.00000i 0.900704 0.300235i
\(711\) 40.0000i 1.50012i
\(712\) 20.0000 20.0000i 0.749532 0.749532i
\(713\) −20.0000 + 20.0000i −0.749006 + 0.749006i
\(714\) 24.0000i 0.898177i
\(715\) 48.0000 16.0000i 1.79510 0.598366i
\(716\) −32.0000 −1.19590
\(717\) 36.0000 36.0000i 1.34444 1.34444i
\(718\) −24.0000 + 24.0000i −0.895672 + 0.895672i
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 40.0000 + 20.0000i 1.49071 + 0.745356i
\(721\) −36.0000 −1.34071
\(722\) 1.00000 1.00000i 0.0372161 0.0372161i
\(723\) −28.0000 + 28.0000i −1.04133 + 1.04133i
\(724\) −20.0000 −0.743294
\(725\) −30.0000 40.0000i −1.11417 1.48556i
\(726\) 20.0000i 0.742270i
\(727\) 1.00000 1.00000i 0.0370879 0.0370879i −0.688320 0.725408i \(-0.741651\pi\)
0.725408 + 0.688320i \(0.241651\pi\)
\(728\) 48.0000 + 48.0000i 1.77900 + 1.77900i
\(729\) 43.0000i 1.59259i
\(730\) 28.0000 + 14.0000i 1.03633 + 0.518163i
\(731\) 6.00000 0.221918
\(732\) 8.00000 8.00000i 0.295689 0.295689i
\(733\) 5.00000 + 5.00000i 0.184679 + 0.184679i 0.793391 0.608712i \(-0.208314\pi\)
−0.608712 + 0.793391i \(0.708314\pi\)
\(734\) 42.0000i 1.55025i
\(735\) −66.0000 + 22.0000i −2.43445 + 0.811482i
\(736\) −40.0000 −1.47442
\(737\) −40.0000 40.0000i −1.47342 1.47342i
\(738\) −10.0000 10.0000i −0.368105 0.368105i
\(739\) 20.0000i 0.735712i −0.929883 0.367856i \(-0.880092\pi\)
0.929883 0.367856i \(-0.119908\pi\)
\(740\) 0 0
\(741\) 16.0000i 0.587775i
\(742\) −12.0000 + 12.0000i −0.440534 + 0.440534i
\(743\) −20.0000 20.0000i −0.733729 0.733729i 0.237628 0.971356i \(-0.423630\pi\)
−0.971356 + 0.237628i \(0.923630\pi\)
\(744\) 32.0000i 1.17318i
\(745\) 12.0000 24.0000i 0.439646 0.879292i
\(746\) −20.0000 −0.732252
\(747\) 35.0000 + 35.0000i 1.28058 + 1.28058i
\(748\) −8.00000 + 8.00000i −0.292509 + 0.292509i
\(749\) 24.0000 0.876941
\(750\) −8.00000 44.0000i −0.292119 1.60665i
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 20.0000 20.0000i 0.729325 0.729325i
\(753\) −44.0000 + 44.0000i −1.60345 + 1.60345i
\(754\) 80.0000 2.91343
\(755\) −32.0000 16.0000i −1.16460 0.582300i
\(756\) 48.0000i 1.74574i
\(757\) 9.00000 9.00000i 0.327111 0.327111i −0.524376 0.851487i \(-0.675701\pi\)
0.851487 + 0.524376i \(0.175701\pi\)
\(758\) −16.0000 16.0000i −0.581146 0.581146i
\(759\) 80.0000 2.90382
\(760\) −2.00000 6.00000i −0.0725476 0.217643i
\(761\) 16.0000 0.580000 0.290000 0.957027i \(-0.406345\pi\)
0.290000 + 0.957027i \(0.406345\pi\)
\(762\) −8.00000 8.00000i −0.289809 0.289809i
\(763\) −18.0000 + 18.0000i −0.651644 + 0.651644i
\(764\) 0 0
\(765\) −5.00000 15.0000i −0.180775 0.542326i
\(766\) 24.0000 0.867155
\(767\) 0 0
\(768\) 32.0000 32.0000i 1.15470 1.15470i
\(769\) 2.00000i 0.0721218i −0.999350 0.0360609i \(-0.988519\pi\)
0.999350 0.0360609i \(-0.0114810\pi\)
\(770\) 48.0000 + 24.0000i 1.72980 + 0.864900i
\(771\) −80.0000 −2.88113
\(772\) −12.0000 12.0000i −0.431889 0.431889i
\(773\) −16.0000 16.0000i −0.575480 0.575480i 0.358175 0.933655i \(-0.383399\pi\)
−0.933655 + 0.358175i \(0.883399\pi\)
\(774\) 30.0000 1.07833
\(775\) −16.0000 + 12.0000i −0.574737 + 0.431053i
\(776\) 24.0000i 0.861550i
\(777\) 0 0
\(778\) −6.00000 + 6.00000i −0.215110 + 0.215110i
\(779\) 2.00000i 0.0716574i
\(780\) 64.0000 + 32.0000i 2.29157 + 1.14578i
\(781\) 32.0000i 1.14505i
\(782\) 10.0000 + 10.0000i 0.357599 + 0.357599i
\(783\) −40.0000 40.0000i −1.42948 1.42948i
\(784\) 44.0000i 1.57143i
\(785\) −3.00000 9.00000i −0.107075 0.321224i
\(786\) 24.0000i 0.856052i
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 10.0000 + 10.0000i 0.356235 + 0.356235i
\(789\) −28.0000 −0.996826
\(790\) 8.00000 + 24.0000i 0.284627 + 0.853882i
\(791\) 12.0000i 0.426671i
\(792\) −40.0000 + 40.0000i −1.42134 + 1.42134i
\(793\) 8.00000 8.00000i 0.284088 0.284088i
\(794\) 26.0000i 0.922705i
\(795\) −8.00000 + 16.0000i −0.283731 + 0.567462i
\(796\) 12.0000i 0.425329i
\(797\) 10.0000 10.0000i 0.354218 0.354218i −0.507458 0.861676i \(-0.669415\pi\)
0.861676 + 0.507458i \(0.169415\pi\)
\(798\) −12.0000 + 12.0000i −0.424795 + 0.424795i
\(799\) −10.0000 −0.353775
\(800\) −28.0000 4.00000i −0.989949 0.141421i
\(801\) −50.0000 −1.76666
\(802\) −6.00000 + 6.00000i −0.211867 + 0.211867i
\(803\) −28.0000 + 28.0000i −0.988099 + 0.988099i
\(804\) 80.0000i 2.82138i
\(805\) 30.0000 60.0000i 1.05736 2.11472i
\(806\) 32.0000i 1.12715i
\(807\) 28.0000 28.0000i 0.985647 0.985647i
\(808\) 12.0000 12.0000i 0.422159 0.422159i
\(809\) 40.0000i 1.40633i −0.711029 0.703163i \(-0.751771\pi\)
0.711029 0.703163i \(-0.248229\pi\)
\(810\) −1.00000 3.00000i −0.0351364 0.105409i
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 60.0000 + 60.0000i 2.10559 + 2.10559i
\(813\) −4.00000 4.00000i −0.140286 0.140286i
\(814\) 0 0
\(815\) −1.00000 3.00000i −0.0350285 0.105085i
\(816\) −16.0000 −0.560112
\(817\) −3.00000 3.00000i −0.104957 0.104957i
\(818\) −34.0000 34.0000i −1.18878 1.18878i
\(819\) 120.000i 4.19314i
\(820\) 8.00000 + 4.00000i 0.279372 + 0.139686i
\(821\) 24.0000i 0.837606i 0.908077 + 0.418803i \(0.137550\pi\)
−0.908077 + 0.418803i \(0.862450\pi\)
\(822\) 20.0000 20.0000i 0.697580 0.697580i
\(823\) −15.0000 15.0000i −0.522867 0.522867i 0.395569 0.918436i \(-0.370547\pi\)
−0.918436 + 0.395569i \(0.870547\pi\)
\(824\) 24.0000i 0.836080i
\(825\) 56.0000 + 8.00000i 1.94967 + 0.278524i
\(826\) 0 0
\(827\) −18.0000 18.0000i −0.625921 0.625921i 0.321118 0.947039i \(-0.395941\pi\)
−0.947039 + 0.321118i \(0.895941\pi\)
\(828\) 50.0000 + 50.0000i 1.73762 + 1.73762i
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) −28.0000 14.0000i −0.971894 0.485947i
\(831\) 12.0000i 0.416275i
\(832\) 32.0000 32.0000i 1.10940 1.10940i
\(833\) 11.0000 11.0000i 0.381127 0.381127i
\(834\) 8.00000 0.277017
\(835\) 16.0000 + 48.0000i 0.553703 + 1.66111i
\(836\) 8.00000 0.276686
\(837\) −16.0000 + 16.0000i −0.553041 + 0.553041i
\(838\) 12.0000 + 12.0000i 0.414533 + 0.414533i
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 24.0000 + 72.0000i 0.828079 + 2.48424i
\(841\) 71.0000 2.44828
\(842\) 26.0000 + 26.0000i 0.896019 + 0.896019i
\(843\) 4.00000 4.00000i 0.137767 0.137767i
\(844\) 16.0000i 0.550743i
\(845\) 38.0000 + 19.0000i 1.30724 + 0.653620i
\(846\) −50.0000 −1.71904
\(847\) −15.0000 + 15.0000i −0.515406 + 0.515406i
\(848\) 8.00000 + 8.00000i 0.274721 + 0.274721i
\(849\) 36.0000i 1.23552i
\(850\) 6.00000 + 8.00000i 0.205798 + 0.274398i
\(851\) 0 0
\(852\) −32.0000 + 32.0000i −1.09630 + 1.09630i
\(853\) 23.0000 + 23.0000i 0.787505 + 0.787505i 0.981085 0.193580i \(-0.0620098\pi\)
−0.193580 + 0.981085i \(0.562010\pi\)
\(854\) 12.0000 0.410632
\(855\) −5.00000 + 10.0000i −0.170996 + 0.341993i
\(856\) 16.0000i 0.546869i
\(857\) 24.0000 + 24.0000i 0.819824 + 0.819824i 0.986082 0.166258i \(-0.0531684\pi\)
−0.166258 + 0.986082i \(0.553168\pi\)
\(858\) −64.0000 + 64.0000i −2.18492 + 2.18492i
\(859\) 12.0000i 0.409435i −0.978821 0.204717i \(-0.934372\pi\)
0.978821 0.204717i \(-0.0656275\pi\)
\(860\) −18.0000 + 6.00000i −0.613795 + 0.204598i
\(861\) 24.0000i 0.817918i
\(862\) −12.0000 12.0000i −0.408722 0.408722i
\(863\) −16.0000 16.0000i −0.544646 0.544646i 0.380241 0.924887i \(-0.375841\pi\)
−0.924887 + 0.380241i \(0.875841\pi\)
\(864\) −32.0000 −1.08866
\(865\) −30.0000 + 10.0000i −1.02003 + 0.340010i
\(866\) 28.0000i 0.951479i
\(867\) −30.0000 30.0000i −1.01885 1.01885i
\(868\) 24.0000 24.0000i 0.814613 0.814613i
\(869\) −32.0000 −1.08553
\(870\) 80.0000 + 40.0000i 2.71225 + 1.35613i
\(871\) 80.0000i 2.71070i
\(872\) 12.0000 + 12.0000i 0.406371 + 0.406371i
\(873\) 30.0000 30.0000i 1.01535 1.01535i
\(874\) 10.0000i 0.338255i
\(875\) 27.0000 39.0000i 0.912767 1.31844i
\(876\) −56.0000 −1.89206
\(877\) 22.0000 22.0000i 0.742887 0.742887i −0.230245 0.973133i \(-0.573953\pi\)
0.973133 + 0.230245i \(0.0739529\pi\)
\(878\) −20.0000 + 20.0000i −0.674967 + 0.674967i
\(879\) 8.00000 0.269833
\(880\) 16.0000 32.0000i 0.539360 1.07872i
\(881\) −12.0000 −0.404290 −0.202145 0.979356i \(-0.564791\pi\)
−0.202145 + 0.979356i \(0.564791\pi\)
\(882\) 55.0000 55.0000i 1.85195 1.85195i
\(883\) −9.00000 + 9.00000i −0.302874 + 0.302874i −0.842137 0.539263i \(-0.818703\pi\)
0.539263 + 0.842137i \(0.318703\pi\)
\(884\) −16.0000 −0.538138
\(885\) 0 0
\(886\) 42.0000i 1.41102i
\(887\) −22.0000 + 22.0000i −0.738688 + 0.738688i −0.972324 0.233636i \(-0.924937\pi\)
0.233636 + 0.972324i \(0.424937\pi\)
\(888\) 0 0
\(889\) 12.0000i 0.402467i
\(890\) 30.0000 10.0000i 1.00560 0.335201i
\(891\) 4.00000 0.134005
\(892\) 20.0000 20.0000i 0.669650 0.669650i
\(893\) 5.00000 + 5.00000i 0.167319 + 0.167319i
\(894\) 48.0000i 1.60536i
\(895\) −32.0000 16.0000i −1.06964 0.534821i
\(896\) 48.0000 1.60357
\(897\) 80.0000 + 80.0000i 2.67112 + 2.67112i
\(898\) −10.0000 10.0000i −0.333704 0.333704i
\(899\) 40.0000i 1.33407i
\(900\) 30.0000 + 40.0000i 1.00000 + 1.33333i
\(901\) 4.00000i 0.133259i
\(902\) −8.00000 + 8.00000i −0.266371 + 0.266371i
\(903\) 36.0000 + 36.0000i 1.19800 + 1.19800i
\(904\) −8.00000 −0.266076
\(905\) −20.0000 10.0000i −0.664822 0.332411i
\(906\) 64.0000 2.12626
\(907\) −4.00000 4.00000i −0.132818 0.132818i 0.637573 0.770390i \(-0.279939\pi\)
−0.770390 + 0.637573i \(0.779939\pi\)
\(908\) 32.0000 32.0000i 1.06196 1.06196i
\(909\) −30.0000 −0.995037
\(910\) 24.0000 + 72.0000i 0.795592 + 2.38678i
\(911\) 8.00000i 0.265052i −0.991180 0.132526i \(-0.957691\pi\)
0.991180 0.132526i \(-0.0423088\pi\)
\(912\) 8.00000 + 8.00000i 0.264906 + 0.264906i
\(913\) 28.0000 28.0000i 0.926665 0.926665i
\(914\) 30.0000 0.992312
\(915\) 12.0000 4.00000i 0.396708 0.132236i
\(916\) 48.0000i 1.58596i
\(917\) −18.0000 + 18.0000i −0.594412 + 0.594412i
\(918\) 8.00000 + 8.00000i 0.264039 + 0.264039i
\(919\) −14.0000 −0.461817 −0.230909 0.972975i \(-0.574170\pi\)
−0.230909 + 0.972975i \(0.574170\pi\)
\(920\) −40.0000 20.0000i −1.31876 0.659380i
\(921\) −32.0000 −1.05444
\(922\) −20.0000 20.0000i −0.658665 0.658665i
\(923\) −32.0000 + 32.0000i −1.05329 + 1.05329i
\(924\) −96.0000 −3.15817
\(925\) 0 0
\(926\) −18.0000 −0.591517
\(927\) 30.0000 30.0000i 0.985329 0.985329i
\(928\) 40.0000 40.0000i 1.31306 1.31306i
\(929\) 12.0000i 0.393707i −0.980433 0.196854i \(-0.936928\pi\)
0.980433 0.196854i \(-0.0630724\pi\)
\(930\) 16.0000 32.0000i 0.524661 1.04932i
\(931\) −11.0000 −0.360510
\(932\) 38.0000 + 38.0000i 1.24473 + 1.24473i
\(933\) −4.00000 4.00000i −0.130954 0.130954i
\(934\) −46.0000 −1.50517
\(935\) −12.0000 + 4.00000i −0.392442 + 0.130814i
\(936\) −80.0000 −2.61488
\(937\) 21.0000 + 21.0000i 0.686040 + 0.686040i 0.961354 0.275314i \(-0.0887819\pi\)
−0.275314 + 0.961354i \(0.588782\pi\)
\(938\) 60.0000 60.0000i 1.95907 1.95907i
\(939\) 36.0000i 1.17482i
\(940\) 30.0000 10.0000i 0.978492 0.326164i
\(941\) 22.0000i 0.717180i −0.933495 0.358590i \(-0.883258\pi\)
0.933495 0.358590i \(-0.116742\pi\)
\(942\) 12.0000 + 12.0000i 0.390981 + 0.390981i
\(943\) 10.0000 + 10.0000i 0.325645 + 0.325645i
\(944\) 0 0
\(945\) 24.0000 48.0000i 0.780720 1.56144i
\(946\) 24.0000i 0.780307i
\(947\) 7.00000 + 7.00000i 0.227469 + 0.227469i 0.811635 0.584165i \(-0.198578\pi\)
−0.584165 + 0.811635i \(0.698578\pi\)
\(948\) −32.0000 32.0000i −1.03931 1.03931i
\(949\) −56.0000 −1.81784
\(950\) 1.00000 7.00000i 0.0324443 0.227110i
\(951\) 48.0000i 1.55651i
\(952\) −12.0000 12.0000i −0.388922 0.388922i
\(953\) −32.0000 + 32.0000i −1.03658 + 1.03658i −0.0372767 + 0.999305i \(0.511868\pi\)
−0.999305 + 0.0372767i \(0.988132\pi\)
\(954\) 20.0000i 0.647524i
\(955\) 0 0
\(956\) 36.0000i 1.16432i
\(957\) −80.0000 + 80.0000i −2.58603 + 2.58603i
\(958\) −8.00000 + 8.00000i −0.258468 + 0.258468i
\(959\) 30.0000 0.968751
\(960\) 48.0000 16.0000i 1.54919 0.516398i
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) −20.0000 + 20.0000i −0.644491 + 0.644491i
\(964\) 28.0000i 0.901819i
\(965\) −6.00000 18.0000i −0.193147 0.579441i
\(966\) 120.000i 3.86094i
\(967\) −37.0000 + 37.0000i −1.18984 + 1.18984i −0.212728 + 0.977111i \(0.568235\pi\)
−0.977111 + 0.212728i \(0.931765\pi\)
\(968\) 10.0000 + 10.0000i 0.321412 + 0.321412i
\(969\) 4.00000i 0.128499i
\(970\) −12.0000 + 24.0000i −0.385297 + 0.770594i
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) −20.0000 20.0000i −0.641500 0.641500i
\(973\) 6.00000 + 6.00000i 0.192351 + 0.192351i
\(974\) 48.0000i 1.53802i
\(975\) 48.0000 + 64.0000i 1.53723 + 2.04964i
\(976\) 8.00000i 0.256074i
\(977\) 32.0000 + 32.0000i 1.02377 + 1.02377i 0.999711 + 0.0240602i \(0.00765934\pi\)
0.0240602 + 0.999711i \(0.492341\pi\)
\(978\) 4.00000 + 4.00000i 0.127906 + 0.127906i
\(979\) 40.0000i 1.27841i
\(980\) −22.0000 + 44.0000i −0.702764 + 1.40553i
\(981\) 30.0000i 0.957826i
\(982\) 30.0000 30.0000i 0.957338 0.957338i
\(983\) −20.0000 20.0000i −0.637901 0.637901i 0.312136 0.950037i \(-0.398955\pi\)
−0.950037 + 0.312136i \(0.898955\pi\)
\(984\) −16.0000 −0.510061
\(985\) 5.00000 + 15.0000i 0.159313 + 0.477940i
\(986\) −20.0000 −0.636930
\(987\) −60.0000 60.0000i −1.90982 1.90982i
\(988\) 8.00000 + 8.00000i 0.254514 + 0.254514i
\(989\) −30.0000 −0.953945
\(990\) −60.0000 + 20.0000i −1.90693 + 0.635642i
\(991\) 8.00000i 0.254128i −0.991894 0.127064i \(-0.959445\pi\)
0.991894 0.127064i \(-0.0405554\pi\)
\(992\) −16.0000 16.0000i −0.508001 0.508001i
\(993\) −48.0000 + 48.0000i −1.52323 + 1.52323i
\(994\) −48.0000 −1.52247
\(995\) −6.00000 + 12.0000i −0.190213 + 0.380426i
\(996\) 56.0000 1.77443
\(997\) −41.0000 + 41.0000i −1.29848 + 1.29848i −0.369089 + 0.929394i \(0.620330\pi\)
−0.929394 + 0.369089i \(0.879670\pi\)
\(998\) −6.00000 6.00000i −0.189927 0.189927i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.w.a.267.1 2
5.3 odd 4 760.2.w.b.723.1 yes 2
8.3 odd 2 760.2.w.b.267.1 yes 2
40.3 even 4 inner 760.2.w.a.723.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.w.a.267.1 2 1.1 even 1 trivial
760.2.w.a.723.1 yes 2 40.3 even 4 inner
760.2.w.b.267.1 yes 2 8.3 odd 2
760.2.w.b.723.1 yes 2 5.3 odd 4