Properties

Label 760.2.f.b.381.38
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.38
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30675 + 0.540742i) q^{2} -3.43603i q^{3} +(1.41520 + 1.41323i) q^{4} +1.00000i q^{5} +(1.85801 - 4.49004i) q^{6} +3.17203 q^{7} +(1.08511 + 2.61200i) q^{8} -8.80634 q^{9} +(-0.540742 + 1.30675i) q^{10} -3.55591i q^{11} +(4.85591 - 4.86266i) q^{12} -3.89826i q^{13} +(4.14506 + 1.71525i) q^{14} +3.43603 q^{15} +(0.00555789 + 4.00000i) q^{16} +2.19369 q^{17} +(-11.5077 - 4.76196i) q^{18} +1.00000i q^{19} +(-1.41323 + 1.41520i) q^{20} -10.8992i q^{21} +(1.92283 - 4.64669i) q^{22} +5.09453 q^{23} +(8.97491 - 3.72849i) q^{24} -1.00000 q^{25} +(2.10795 - 5.09405i) q^{26} +19.9508i q^{27} +(4.48905 + 4.48281i) q^{28} -4.27024i q^{29} +(4.49004 + 1.85801i) q^{30} -2.70355 q^{31} +(-2.15570 + 5.23000i) q^{32} -12.2182 q^{33} +(2.86661 + 1.18622i) q^{34} +3.17203i q^{35} +(-12.4627 - 12.4454i) q^{36} +0.572056i q^{37} +(-0.540742 + 1.30675i) q^{38} -13.3945 q^{39} +(-2.61200 + 1.08511i) q^{40} -2.34229 q^{41} +(5.89367 - 14.2426i) q^{42} +0.256294i q^{43} +(5.02533 - 5.03231i) q^{44} -8.80634i q^{45} +(6.65728 + 2.75483i) q^{46} -7.32127 q^{47} +(13.7441 - 0.0190971i) q^{48} +3.06179 q^{49} +(-1.30675 - 0.540742i) q^{50} -7.53761i q^{51} +(5.50914 - 5.51680i) q^{52} +7.59072i q^{53} +(-10.7882 + 26.0707i) q^{54} +3.55591 q^{55} +(3.44202 + 8.28534i) q^{56} +3.43603 q^{57} +(2.30910 - 5.58014i) q^{58} +9.58791i q^{59} +(4.86266 + 4.85591i) q^{60} +11.0779i q^{61} +(-3.53287 - 1.46193i) q^{62} -27.9340 q^{63} +(-5.64505 + 5.66863i) q^{64} +3.89826 q^{65} +(-15.9662 - 6.60692i) q^{66} -11.6238i q^{67} +(3.10450 + 3.10019i) q^{68} -17.5050i q^{69} +(-1.71525 + 4.14506i) q^{70} +4.55159 q^{71} +(-9.55588 - 23.0021i) q^{72} +4.26714 q^{73} +(-0.309335 + 0.747534i) q^{74} +3.43603i q^{75} +(-1.41323 + 1.41520i) q^{76} -11.2795i q^{77} +(-17.5033 - 7.24300i) q^{78} +16.6654 q^{79} +(-4.00000 + 0.00555789i) q^{80} +42.1325 q^{81} +(-3.06079 - 1.26658i) q^{82} +12.9625i q^{83} +(15.4031 - 15.4245i) q^{84} +2.19369i q^{85} +(-0.138589 + 0.334912i) q^{86} -14.6727 q^{87} +(9.28803 - 3.85857i) q^{88} -17.2015 q^{89} +(4.76196 - 11.5077i) q^{90} -12.3654i q^{91} +(7.20976 + 7.19974i) q^{92} +9.28950i q^{93} +(-9.56708 - 3.95892i) q^{94} -1.00000 q^{95} +(17.9705 + 7.40707i) q^{96} +11.0366 q^{97} +(4.00100 + 1.65564i) q^{98} +31.3146i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30675 + 0.540742i 0.924012 + 0.382362i
\(3\) 3.43603i 1.98380i −0.127038 0.991898i \(-0.540547\pi\)
0.127038 0.991898i \(-0.459453\pi\)
\(4\) 1.41520 + 1.41323i 0.707598 + 0.706615i
\(5\) 1.00000i 0.447214i
\(6\) 1.85801 4.49004i 0.758529 1.83305i
\(7\) 3.17203 1.19892 0.599458 0.800406i \(-0.295383\pi\)
0.599458 + 0.800406i \(0.295383\pi\)
\(8\) 1.08511 + 2.61200i 0.383646 + 0.923480i
\(9\) −8.80634 −2.93545
\(10\) −0.540742 + 1.30675i −0.170998 + 0.413231i
\(11\) 3.55591i 1.07215i −0.844171 0.536074i \(-0.819907\pi\)
0.844171 0.536074i \(-0.180093\pi\)
\(12\) 4.85591 4.86266i 1.40178 1.40373i
\(13\) 3.89826i 1.08118i −0.841286 0.540591i \(-0.818201\pi\)
0.841286 0.540591i \(-0.181799\pi\)
\(14\) 4.14506 + 1.71525i 1.10781 + 0.458420i
\(15\) 3.43603 0.887180
\(16\) 0.00555789 + 4.00000i 0.00138947 + 0.999999i
\(17\) 2.19369 0.532049 0.266024 0.963966i \(-0.414290\pi\)
0.266024 + 0.963966i \(0.414290\pi\)
\(18\) −11.5077 4.76196i −2.71239 1.12240i
\(19\) 1.00000i 0.229416i
\(20\) −1.41323 + 1.41520i −0.316008 + 0.316447i
\(21\) 10.8992i 2.37840i
\(22\) 1.92283 4.64669i 0.409949 0.990678i
\(23\) 5.09453 1.06228 0.531141 0.847283i \(-0.321763\pi\)
0.531141 + 0.847283i \(0.321763\pi\)
\(24\) 8.97491 3.72849i 1.83200 0.761075i
\(25\) −1.00000 −0.200000
\(26\) 2.10795 5.09405i 0.413403 0.999025i
\(27\) 19.9508i 3.83953i
\(28\) 4.48905 + 4.48281i 0.848350 + 0.847172i
\(29\) 4.27024i 0.792964i −0.918042 0.396482i \(-0.870231\pi\)
0.918042 0.396482i \(-0.129769\pi\)
\(30\) 4.49004 + 1.85801i 0.819766 + 0.339224i
\(31\) −2.70355 −0.485572 −0.242786 0.970080i \(-0.578061\pi\)
−0.242786 + 0.970080i \(0.578061\pi\)
\(32\) −2.15570 + 5.23000i −0.381078 + 0.924543i
\(33\) −12.2182 −2.12692
\(34\) 2.86661 + 1.18622i 0.491620 + 0.203435i
\(35\) 3.17203i 0.536171i
\(36\) −12.4627 12.4454i −2.07711 2.07423i
\(37\) 0.572056i 0.0940454i 0.998894 + 0.0470227i \(0.0149733\pi\)
−0.998894 + 0.0470227i \(0.985027\pi\)
\(38\) −0.540742 + 1.30675i −0.0877200 + 0.211983i
\(39\) −13.3945 −2.14484
\(40\) −2.61200 + 1.08511i −0.412993 + 0.171572i
\(41\) −2.34229 −0.365805 −0.182902 0.983131i \(-0.558549\pi\)
−0.182902 + 0.983131i \(0.558549\pi\)
\(42\) 5.89367 14.2426i 0.909412 2.19767i
\(43\) 0.256294i 0.0390844i 0.999809 + 0.0195422i \(0.00622087\pi\)
−0.999809 + 0.0195422i \(0.993779\pi\)
\(44\) 5.02533 5.03231i 0.757596 0.758650i
\(45\) 8.80634i 1.31277i
\(46\) 6.65728 + 2.75483i 0.981562 + 0.406177i
\(47\) −7.32127 −1.06792 −0.533959 0.845511i \(-0.679296\pi\)
−0.533959 + 0.845511i \(0.679296\pi\)
\(48\) 13.7441 0.0190971i 1.98379 0.00275643i
\(49\) 3.06179 0.437399
\(50\) −1.30675 0.540742i −0.184802 0.0764725i
\(51\) 7.53761i 1.05548i
\(52\) 5.50914 5.51680i 0.763980 0.765042i
\(53\) 7.59072i 1.04267i 0.853353 + 0.521333i \(0.174565\pi\)
−0.853353 + 0.521333i \(0.825435\pi\)
\(54\) −10.7882 + 26.0707i −1.46809 + 3.54777i
\(55\) 3.55591 0.479479
\(56\) 3.44202 + 8.28534i 0.459959 + 1.10718i
\(57\) 3.43603 0.455114
\(58\) 2.30910 5.58014i 0.303200 0.732709i
\(59\) 9.58791i 1.24824i 0.781329 + 0.624120i \(0.214542\pi\)
−0.781329 + 0.624120i \(0.785458\pi\)
\(60\) 4.86266 + 4.85591i 0.627767 + 0.626895i
\(61\) 11.0779i 1.41838i 0.705020 + 0.709188i \(0.250938\pi\)
−0.705020 + 0.709188i \(0.749062\pi\)
\(62\) −3.53287 1.46193i −0.448675 0.185665i
\(63\) −27.9340 −3.51935
\(64\) −5.64505 + 5.66863i −0.705631 + 0.708579i
\(65\) 3.89826 0.483519
\(66\) −15.9662 6.60692i −1.96530 0.813255i
\(67\) 11.6238i 1.42007i −0.704164 0.710037i \(-0.748678\pi\)
0.704164 0.710037i \(-0.251322\pi\)
\(68\) 3.10450 + 3.10019i 0.376477 + 0.375954i
\(69\) 17.5050i 2.10735i
\(70\) −1.71525 + 4.14506i −0.205012 + 0.495429i
\(71\) 4.55159 0.540174 0.270087 0.962836i \(-0.412948\pi\)
0.270087 + 0.962836i \(0.412948\pi\)
\(72\) −9.55588 23.0021i −1.12617 2.71083i
\(73\) 4.26714 0.499431 0.249716 0.968319i \(-0.419663\pi\)
0.249716 + 0.968319i \(0.419663\pi\)
\(74\) −0.309335 + 0.747534i −0.0359594 + 0.0868991i
\(75\) 3.43603i 0.396759i
\(76\) −1.41323 + 1.41520i −0.162109 + 0.162334i
\(77\) 11.2795i 1.28542i
\(78\) −17.5033 7.24300i −1.98186 0.820108i
\(79\) 16.6654 1.87501 0.937504 0.347976i \(-0.113131\pi\)
0.937504 + 0.347976i \(0.113131\pi\)
\(80\) −4.00000 + 0.00555789i −0.447213 + 0.000621392i
\(81\) 42.1325 4.68139
\(82\) −3.06079 1.26658i −0.338008 0.139870i
\(83\) 12.9625i 1.42281i 0.702780 + 0.711407i \(0.251942\pi\)
−0.702780 + 0.711407i \(0.748058\pi\)
\(84\) 15.4031 15.4245i 1.68062 1.68295i
\(85\) 2.19369i 0.237939i
\(86\) −0.138589 + 0.334912i −0.0149444 + 0.0361145i
\(87\) −14.6727 −1.57308
\(88\) 9.28803 3.85857i 0.990108 0.411325i
\(89\) −17.2015 −1.82335 −0.911676 0.410910i \(-0.865211\pi\)
−0.911676 + 0.410910i \(0.865211\pi\)
\(90\) 4.76196 11.5077i 0.501954 1.21302i
\(91\) 12.3654i 1.29625i
\(92\) 7.20976 + 7.19974i 0.751669 + 0.750625i
\(93\) 9.28950i 0.963277i
\(94\) −9.56708 3.95892i −0.986769 0.408331i
\(95\) −1.00000 −0.102598
\(96\) 17.9705 + 7.40707i 1.83410 + 0.755981i
\(97\) 11.0366 1.12060 0.560299 0.828291i \(-0.310686\pi\)
0.560299 + 0.828291i \(0.310686\pi\)
\(98\) 4.00100 + 1.65564i 0.404162 + 0.167245i
\(99\) 31.3146i 3.14723i
\(100\) −1.41520 1.41323i −0.141520 0.141323i
\(101\) 1.65421i 0.164600i −0.996608 0.0823002i \(-0.973773\pi\)
0.996608 0.0823002i \(-0.0262266\pi\)
\(102\) 4.07590 9.84977i 0.403574 0.975273i
\(103\) −11.3034 −1.11376 −0.556878 0.830594i \(-0.688001\pi\)
−0.556878 + 0.830594i \(0.688001\pi\)
\(104\) 10.1822 4.23006i 0.998450 0.414791i
\(105\) 10.8992 1.06365
\(106\) −4.10462 + 9.91918i −0.398676 + 0.963436i
\(107\) 14.9784i 1.44802i 0.689789 + 0.724011i \(0.257703\pi\)
−0.689789 + 0.724011i \(0.742297\pi\)
\(108\) −28.1950 + 28.2342i −2.71307 + 2.71684i
\(109\) 8.80414i 0.843284i −0.906762 0.421642i \(-0.861454\pi\)
0.906762 0.421642i \(-0.138546\pi\)
\(110\) 4.64669 + 1.92283i 0.443045 + 0.183335i
\(111\) 1.96560 0.186567
\(112\) 0.0176298 + 12.6881i 0.00166586 + 1.19891i
\(113\) −2.15293 −0.202531 −0.101266 0.994859i \(-0.532289\pi\)
−0.101266 + 0.994859i \(0.532289\pi\)
\(114\) 4.49004 + 1.85801i 0.420531 + 0.174018i
\(115\) 5.09453i 0.475067i
\(116\) 6.03484 6.04323i 0.560321 0.561100i
\(117\) 34.3293i 3.17375i
\(118\) −5.18459 + 12.5290i −0.477280 + 1.15339i
\(119\) 6.95847 0.637882
\(120\) 3.72849 + 8.97491i 0.340363 + 0.819294i
\(121\) −1.64452 −0.149501
\(122\) −5.99027 + 14.4760i −0.542333 + 1.31060i
\(123\) 8.04820i 0.725681i
\(124\) −3.82606 3.82074i −0.343590 0.343113i
\(125\) 1.00000i 0.0894427i
\(126\) −36.5028 15.1051i −3.25192 1.34567i
\(127\) −3.18254 −0.282405 −0.141202 0.989981i \(-0.545097\pi\)
−0.141202 + 0.989981i \(0.545097\pi\)
\(128\) −10.4419 + 4.35497i −0.922946 + 0.384929i
\(129\) 0.880634 0.0775355
\(130\) 5.09405 + 2.10795i 0.446778 + 0.184880i
\(131\) 10.2612i 0.896522i 0.893903 + 0.448261i \(0.147956\pi\)
−0.893903 + 0.448261i \(0.852044\pi\)
\(132\) −17.2912 17.2672i −1.50501 1.50292i
\(133\) 3.17203i 0.275050i
\(134\) 6.28548 15.1894i 0.542983 1.31217i
\(135\) −19.9508 −1.71709
\(136\) 2.38041 + 5.72992i 0.204118 + 0.491336i
\(137\) −14.7917 −1.26374 −0.631868 0.775076i \(-0.717712\pi\)
−0.631868 + 0.775076i \(0.717712\pi\)
\(138\) 9.46568 22.8746i 0.805772 1.94722i
\(139\) 3.77326i 0.320044i 0.987113 + 0.160022i \(0.0511565\pi\)
−0.987113 + 0.160022i \(0.948843\pi\)
\(140\) −4.48281 + 4.48905i −0.378867 + 0.379394i
\(141\) 25.1561i 2.11853i
\(142\) 5.94779 + 2.46123i 0.499127 + 0.206542i
\(143\) −13.8619 −1.15919
\(144\) −0.0489447 35.2253i −0.00407872 2.93544i
\(145\) 4.27024 0.354624
\(146\) 5.57609 + 2.30742i 0.461480 + 0.190964i
\(147\) 10.5204i 0.867711i
\(148\) −0.808447 + 0.809571i −0.0664539 + 0.0665463i
\(149\) 20.0386i 1.64163i 0.571194 + 0.820815i \(0.306480\pi\)
−0.571194 + 0.820815i \(0.693520\pi\)
\(150\) −1.85801 + 4.49004i −0.151706 + 0.366610i
\(151\) 13.9175 1.13259 0.566295 0.824202i \(-0.308376\pi\)
0.566295 + 0.824202i \(0.308376\pi\)
\(152\) −2.61200 + 1.08511i −0.211861 + 0.0880144i
\(153\) −19.3184 −1.56180
\(154\) 6.09929 14.7395i 0.491495 1.18774i
\(155\) 2.70355i 0.217155i
\(156\) −18.9559 18.9296i −1.51769 1.51558i
\(157\) 5.09197i 0.406384i −0.979139 0.203192i \(-0.934868\pi\)
0.979139 0.203192i \(-0.0651315\pi\)
\(158\) 21.7776 + 9.01170i 1.73253 + 0.716932i
\(159\) 26.0820 2.06844
\(160\) −5.23000 2.15570i −0.413468 0.170423i
\(161\) 16.1600 1.27359
\(162\) 55.0567 + 22.7828i 4.32566 + 1.78999i
\(163\) 2.70054i 0.211522i 0.994392 + 0.105761i \(0.0337279\pi\)
−0.994392 + 0.105761i \(0.966272\pi\)
\(164\) −3.31480 3.31020i −0.258842 0.258483i
\(165\) 12.2182i 0.951189i
\(166\) −7.00935 + 16.9387i −0.544031 + 1.31470i
\(167\) 5.17113 0.400154 0.200077 0.979780i \(-0.435881\pi\)
0.200077 + 0.979780i \(0.435881\pi\)
\(168\) 28.4687 11.8269i 2.19641 0.912465i
\(169\) −2.19640 −0.168954
\(170\) −1.18622 + 2.86661i −0.0909791 + 0.219859i
\(171\) 8.80634i 0.673437i
\(172\) −0.362202 + 0.362706i −0.0276176 + 0.0276560i
\(173\) 15.5280i 1.18057i −0.807195 0.590285i \(-0.799016\pi\)
0.807195 0.590285i \(-0.200984\pi\)
\(174\) −19.1736 7.93415i −1.45354 0.601486i
\(175\) −3.17203 −0.239783
\(176\) 14.2236 0.0197634i 1.07215 0.00148972i
\(177\) 32.9444 2.47625
\(178\) −22.4780 9.30156i −1.68480 0.697181i
\(179\) 25.5098i 1.90669i −0.301880 0.953346i \(-0.597614\pi\)
0.301880 0.953346i \(-0.402386\pi\)
\(180\) 12.4454 12.4627i 0.927624 0.928914i
\(181\) 0.322469i 0.0239690i −0.999928 0.0119845i \(-0.996185\pi\)
0.999928 0.0119845i \(-0.00381487\pi\)
\(182\) 6.68649 16.1585i 0.495636 1.19775i
\(183\) 38.0639 2.81377
\(184\) 5.52815 + 13.3069i 0.407540 + 0.980997i
\(185\) −0.572056 −0.0420584
\(186\) −5.02323 + 12.1391i −0.368321 + 0.890079i
\(187\) 7.80058i 0.570435i
\(188\) −10.3610 10.3466i −0.755656 0.754607i
\(189\) 63.2845i 4.60327i
\(190\) −1.30675 0.540742i −0.0948017 0.0392296i
\(191\) −16.5576 −1.19806 −0.599032 0.800725i \(-0.704448\pi\)
−0.599032 + 0.800725i \(0.704448\pi\)
\(192\) 19.4776 + 19.3966i 1.40568 + 1.39983i
\(193\) 10.2572 0.738332 0.369166 0.929364i \(-0.379643\pi\)
0.369166 + 0.929364i \(0.379643\pi\)
\(194\) 14.4221 + 5.96796i 1.03545 + 0.428474i
\(195\) 13.3945i 0.959203i
\(196\) 4.33304 + 4.32702i 0.309503 + 0.309073i
\(197\) 3.19544i 0.227666i −0.993500 0.113833i \(-0.963687\pi\)
0.993500 0.113833i \(-0.0363128\pi\)
\(198\) −16.9331 + 40.9203i −1.20338 + 2.90808i
\(199\) 9.69079 0.686962 0.343481 0.939160i \(-0.388394\pi\)
0.343481 + 0.939160i \(0.388394\pi\)
\(200\) −1.08511 2.61200i −0.0767292 0.184696i
\(201\) −39.9398 −2.81714
\(202\) 0.894503 2.16165i 0.0629370 0.152093i
\(203\) 13.5454i 0.950697i
\(204\) 10.6524 10.6672i 0.745815 0.746852i
\(205\) 2.34229i 0.163593i
\(206\) −14.7707 6.11222i −1.02912 0.425859i
\(207\) −44.8641 −3.11827
\(208\) 15.5930 0.0216661i 1.08118 0.00150227i
\(209\) 3.55591 0.245968
\(210\) 14.2426 + 5.89367i 0.982830 + 0.406702i
\(211\) 17.0734i 1.17538i −0.809086 0.587690i \(-0.800037\pi\)
0.809086 0.587690i \(-0.199963\pi\)
\(212\) −10.7274 + 10.7424i −0.736764 + 0.737788i
\(213\) 15.6394i 1.07159i
\(214\) −8.09948 + 19.5731i −0.553669 + 1.33799i
\(215\) −0.256294 −0.0174791
\(216\) −52.1113 + 21.6489i −3.54573 + 1.47302i
\(217\) −8.57576 −0.582161
\(218\) 4.76077 11.5048i 0.322440 0.779205i
\(219\) 14.6620i 0.990769i
\(220\) 5.03231 + 5.02533i 0.339278 + 0.338807i
\(221\) 8.55158i 0.575241i
\(222\) 2.56855 + 1.06288i 0.172390 + 0.0713361i
\(223\) 2.02927 0.135890 0.0679450 0.997689i \(-0.478356\pi\)
0.0679450 + 0.997689i \(0.478356\pi\)
\(224\) −6.83796 + 16.5897i −0.456881 + 1.10845i
\(225\) 8.80634 0.587089
\(226\) −2.81335 1.16418i −0.187141 0.0774403i
\(227\) 24.2142i 1.60715i 0.595201 + 0.803577i \(0.297072\pi\)
−0.595201 + 0.803577i \(0.702928\pi\)
\(228\) 4.86266 + 4.85591i 0.322038 + 0.321590i
\(229\) 5.57019i 0.368089i −0.982918 0.184044i \(-0.941081\pi\)
0.982918 0.184044i \(-0.0589190\pi\)
\(230\) −2.75483 + 6.65728i −0.181648 + 0.438968i
\(231\) −38.7567 −2.55000
\(232\) 11.1539 4.63370i 0.732287 0.304218i
\(233\) −8.03878 −0.526638 −0.263319 0.964709i \(-0.584817\pi\)
−0.263319 + 0.964709i \(0.584817\pi\)
\(234\) −18.5633 + 44.8599i −1.21352 + 2.93258i
\(235\) 7.32127i 0.477587i
\(236\) −13.5499 + 13.5688i −0.882025 + 0.883251i
\(237\) 57.2630i 3.71963i
\(238\) 9.09298 + 3.76274i 0.589410 + 0.243902i
\(239\) 1.31933 0.0853406 0.0426703 0.999089i \(-0.486413\pi\)
0.0426703 + 0.999089i \(0.486413\pi\)
\(240\) 0.0190971 + 13.7441i 0.00123271 + 0.887180i
\(241\) −15.2205 −0.980436 −0.490218 0.871600i \(-0.663083\pi\)
−0.490218 + 0.871600i \(0.663083\pi\)
\(242\) −2.14897 0.889259i −0.138141 0.0571637i
\(243\) 84.9165i 5.44740i
\(244\) −15.6556 + 15.6773i −1.00225 + 1.00364i
\(245\) 3.06179i 0.195611i
\(246\) −4.35200 + 10.5170i −0.277473 + 0.670539i
\(247\) 3.89826 0.248040
\(248\) −2.93367 7.06167i −0.186288 0.448417i
\(249\) 44.5395 2.82257
\(250\) 0.540742 1.30675i 0.0341995 0.0826462i
\(251\) 12.4716i 0.787203i 0.919281 + 0.393602i \(0.128771\pi\)
−0.919281 + 0.393602i \(0.871229\pi\)
\(252\) −39.5321 39.4772i −2.49029 2.48683i
\(253\) 18.1157i 1.13892i
\(254\) −4.15879 1.72093i −0.260945 0.107981i
\(255\) 7.53761 0.472023
\(256\) −15.9999 + 0.0444631i −0.999996 + 0.00277894i
\(257\) −11.2331 −0.700700 −0.350350 0.936619i \(-0.613937\pi\)
−0.350350 + 0.936619i \(0.613937\pi\)
\(258\) 1.15077 + 0.476196i 0.0716437 + 0.0296467i
\(259\) 1.81458i 0.112752i
\(260\) 5.51680 + 5.50914i 0.342137 + 0.341662i
\(261\) 37.6052i 2.32770i
\(262\) −5.54864 + 13.4088i −0.342796 + 0.828397i
\(263\) −5.31570 −0.327780 −0.163890 0.986479i \(-0.552404\pi\)
−0.163890 + 0.986479i \(0.552404\pi\)
\(264\) −13.2582 31.9140i −0.815985 1.96417i
\(265\) −7.59072 −0.466294
\(266\) −1.71525 + 4.14506i −0.105169 + 0.254150i
\(267\) 59.1048i 3.61716i
\(268\) 16.4271 16.4500i 1.00345 1.00484i
\(269\) 19.1343i 1.16664i −0.812242 0.583320i \(-0.801753\pi\)
0.812242 0.583320i \(-0.198247\pi\)
\(270\) −26.0707 10.7882i −1.58661 0.656550i
\(271\) −11.6218 −0.705972 −0.352986 0.935629i \(-0.614834\pi\)
−0.352986 + 0.935629i \(0.614834\pi\)
\(272\) 0.0121923 + 8.77476i 0.000739268 + 0.532048i
\(273\) −42.4879 −2.57149
\(274\) −19.3290 7.99847i −1.16771 0.483205i
\(275\) 3.55591i 0.214430i
\(276\) 24.7386 24.7730i 1.48909 1.49116i
\(277\) 6.04042i 0.362934i 0.983397 + 0.181467i \(0.0580845\pi\)
−0.983397 + 0.181467i \(0.941916\pi\)
\(278\) −2.04036 + 4.93071i −0.122373 + 0.295725i
\(279\) 23.8084 1.42537
\(280\) −8.28534 + 3.44202i −0.495144 + 0.205700i
\(281\) 14.6782 0.875629 0.437814 0.899065i \(-0.355753\pi\)
0.437814 + 0.899065i \(0.355753\pi\)
\(282\) −13.6030 + 32.8728i −0.810046 + 1.95755i
\(283\) 10.9007i 0.647977i 0.946061 + 0.323989i \(0.105024\pi\)
−0.946061 + 0.323989i \(0.894976\pi\)
\(284\) 6.44139 + 6.43244i 0.382226 + 0.381695i
\(285\) 3.43603i 0.203533i
\(286\) −18.1140 7.49569i −1.07110 0.443230i
\(287\) −7.42983 −0.438569
\(288\) 18.9839 46.0572i 1.11863 2.71394i
\(289\) −12.1877 −0.716924
\(290\) 5.58014 + 2.30910i 0.327677 + 0.135595i
\(291\) 37.9222i 2.22304i
\(292\) 6.03884 + 6.03045i 0.353396 + 0.352906i
\(293\) 26.9466i 1.57423i −0.616803 0.787117i \(-0.711573\pi\)
0.616803 0.787117i \(-0.288427\pi\)
\(294\) 5.68884 13.7476i 0.331780 0.801775i
\(295\) −9.58791 −0.558229
\(296\) −1.49421 + 0.620746i −0.0868490 + 0.0360801i
\(297\) 70.9432 4.11654
\(298\) −10.8357 + 26.1855i −0.627698 + 1.51689i
\(299\) 19.8598i 1.14852i
\(300\) −4.85591 + 4.86266i −0.280356 + 0.280746i
\(301\) 0.812972i 0.0468589i
\(302\) 18.1867 + 7.52578i 1.04653 + 0.433060i
\(303\) −5.68394 −0.326534
\(304\) −4.00000 + 0.00555789i −0.229416 + 0.000318767i
\(305\) −11.0779 −0.634317
\(306\) −25.2443 10.4463i −1.44312 0.597174i
\(307\) 6.29461i 0.359252i −0.983735 0.179626i \(-0.942511\pi\)
0.983735 0.179626i \(-0.0574888\pi\)
\(308\) 15.9405 15.9627i 0.908294 0.909557i
\(309\) 38.8389i 2.20947i
\(310\) 1.46193 3.53287i 0.0830318 0.200654i
\(311\) −1.12709 −0.0639115 −0.0319558 0.999489i \(-0.510174\pi\)
−0.0319558 + 0.999489i \(0.510174\pi\)
\(312\) −14.5346 34.9865i −0.822861 1.98072i
\(313\) −16.9303 −0.956955 −0.478477 0.878100i \(-0.658811\pi\)
−0.478477 + 0.878100i \(0.658811\pi\)
\(314\) 2.75345 6.65394i 0.155386 0.375504i
\(315\) 27.9340i 1.57390i
\(316\) 23.5848 + 23.5521i 1.32675 + 1.32491i
\(317\) 13.0664i 0.733883i −0.930244 0.366942i \(-0.880405\pi\)
0.930244 0.366942i \(-0.119595\pi\)
\(318\) 34.0827 + 14.1036i 1.91126 + 0.790892i
\(319\) −15.1846 −0.850175
\(320\) −5.66863 5.64505i −0.316886 0.315568i
\(321\) 51.4665 2.87258
\(322\) 21.1171 + 8.73840i 1.17681 + 0.486972i
\(323\) 2.19369i 0.122060i
\(324\) 59.6258 + 59.5430i 3.31254 + 3.30794i
\(325\) 3.89826i 0.216236i
\(326\) −1.46029 + 3.52893i −0.0808782 + 0.195449i
\(327\) −30.2513 −1.67290
\(328\) −2.54166 6.11806i −0.140339 0.337813i
\(329\) −23.2233 −1.28034
\(330\) 6.60692 15.9662i 0.363699 0.878910i
\(331\) 16.2867i 0.895198i 0.894234 + 0.447599i \(0.147721\pi\)
−0.894234 + 0.447599i \(0.852279\pi\)
\(332\) −18.3189 + 18.3444i −1.00538 + 1.00678i
\(333\) 5.03771i 0.276065i
\(334\) 6.75738 + 2.79625i 0.369747 + 0.153004i
\(335\) 11.6238 0.635077
\(336\) 43.5968 0.0605767i 2.37840 0.00330473i
\(337\) 13.8164 0.752628 0.376314 0.926492i \(-0.377191\pi\)
0.376314 + 0.926492i \(0.377191\pi\)
\(338\) −2.87015 1.18769i −0.156115 0.0646016i
\(339\) 7.39756i 0.401780i
\(340\) −3.10019 + 3.10450i −0.168132 + 0.168365i
\(341\) 9.61360i 0.520606i
\(342\) 4.76196 11.5077i 0.257497 0.622264i
\(343\) −12.4921 −0.674511
\(344\) −0.669438 + 0.278108i −0.0360937 + 0.0149946i
\(345\) 17.5050 0.942436
\(346\) 8.39662 20.2912i 0.451405 1.09086i
\(347\) 12.4801i 0.669968i −0.942224 0.334984i \(-0.891269\pi\)
0.942224 0.334984i \(-0.108731\pi\)
\(348\) −20.7647 20.7359i −1.11311 1.11156i
\(349\) 28.5000i 1.52557i −0.646651 0.762786i \(-0.723831\pi\)
0.646651 0.762786i \(-0.276169\pi\)
\(350\) −4.14506 1.71525i −0.221563 0.0916841i
\(351\) 77.7732 4.15123
\(352\) 18.5974 + 7.66550i 0.991247 + 0.408572i
\(353\) −1.15159 −0.0612929 −0.0306465 0.999530i \(-0.509757\pi\)
−0.0306465 + 0.999530i \(0.509757\pi\)
\(354\) 43.0501 + 17.8144i 2.28809 + 0.946826i
\(355\) 4.55159i 0.241573i
\(356\) −24.3434 24.3096i −1.29020 1.28841i
\(357\) 23.9095i 1.26543i
\(358\) 13.7942 33.3349i 0.729047 1.76181i
\(359\) −13.7596 −0.726203 −0.363101 0.931750i \(-0.618282\pi\)
−0.363101 + 0.931750i \(0.618282\pi\)
\(360\) 23.0021 9.55588i 1.21232 0.503639i
\(361\) −1.00000 −0.0526316
\(362\) 0.174373 0.421387i 0.00916483 0.0221476i
\(363\) 5.65061i 0.296580i
\(364\) 17.4752 17.4995i 0.915947 0.917221i
\(365\) 4.26714i 0.223352i
\(366\) 49.7401 + 20.5828i 2.59995 + 1.07588i
\(367\) −22.3902 −1.16876 −0.584381 0.811480i \(-0.698662\pi\)
−0.584381 + 0.811480i \(0.698662\pi\)
\(368\) 0.0283149 + 20.3781i 0.00147601 + 1.06228i
\(369\) 20.6270 1.07380
\(370\) −0.747534 0.309335i −0.0388625 0.0160815i
\(371\) 24.0780i 1.25007i
\(372\) −13.1282 + 13.1465i −0.680666 + 0.681612i
\(373\) 30.0287i 1.55483i −0.628990 0.777413i \(-0.716531\pi\)
0.628990 0.777413i \(-0.283469\pi\)
\(374\) 4.21810 10.1934i 0.218113 0.527089i
\(375\) −3.43603 −0.177436
\(376\) −7.94442 19.1231i −0.409702 0.986200i
\(377\) −16.6465 −0.857338
\(378\) −34.2206 + 82.6971i −1.76012 + 4.25348i
\(379\) 2.11947i 0.108870i −0.998517 0.0544349i \(-0.982664\pi\)
0.998517 0.0544349i \(-0.0173357\pi\)
\(380\) −1.41520 1.41323i −0.0725980 0.0724972i
\(381\) 10.9353i 0.560233i
\(382\) −21.6366 8.95338i −1.10703 0.458095i
\(383\) −20.7268 −1.05909 −0.529546 0.848281i \(-0.677638\pi\)
−0.529546 + 0.848281i \(0.677638\pi\)
\(384\) 14.9638 + 35.8789i 0.763620 + 1.83094i
\(385\) 11.2795 0.574855
\(386\) 13.4036 + 5.54652i 0.682228 + 0.282310i
\(387\) 2.25701i 0.114730i
\(388\) 15.6190 + 15.5973i 0.792932 + 0.791831i
\(389\) 12.6399i 0.640868i −0.947271 0.320434i \(-0.896171\pi\)
0.947271 0.320434i \(-0.103829\pi\)
\(390\) 7.24300 17.5033i 0.366763 0.886316i
\(391\) 11.1758 0.565186
\(392\) 3.32240 + 7.99740i 0.167806 + 0.403929i
\(393\) 35.2577 1.77852
\(394\) 1.72791 4.17564i 0.0870508 0.210366i
\(395\) 16.6654i 0.838529i
\(396\) −44.2547 + 44.3162i −2.22388 + 2.22697i
\(397\) 10.5707i 0.530531i 0.964175 + 0.265265i \(0.0854596\pi\)
−0.964175 + 0.265265i \(0.914540\pi\)
\(398\) 12.6635 + 5.24022i 0.634761 + 0.262669i
\(399\) 10.8992 0.545643
\(400\) −0.00555789 4.00000i −0.000277895 0.200000i
\(401\) −21.3800 −1.06767 −0.533833 0.845590i \(-0.679249\pi\)
−0.533833 + 0.845590i \(0.679249\pi\)
\(402\) −52.1914 21.5971i −2.60307 1.07717i
\(403\) 10.5391i 0.524992i
\(404\) 2.33779 2.34104i 0.116309 0.116471i
\(405\) 42.1325i 2.09358i
\(406\) 7.32454 17.7004i 0.363511 0.878456i
\(407\) 2.03418 0.100831
\(408\) 19.6882 8.17917i 0.974711 0.404929i
\(409\) −1.08607 −0.0537026 −0.0268513 0.999639i \(-0.508548\pi\)
−0.0268513 + 0.999639i \(0.508548\pi\)
\(410\) 1.26658 3.06079i 0.0625517 0.151162i
\(411\) 50.8246i 2.50699i
\(412\) −15.9965 15.9743i −0.788092 0.786998i
\(413\) 30.4132i 1.49653i
\(414\) −58.6262 24.2599i −2.88132 1.19231i
\(415\) −12.9625 −0.636302
\(416\) 20.3879 + 8.40349i 0.999599 + 0.412015i
\(417\) 12.9651 0.634902
\(418\) 4.64669 + 1.92283i 0.227277 + 0.0940488i
\(419\) 24.3609i 1.19011i −0.803686 0.595053i \(-0.797131\pi\)
0.803686 0.595053i \(-0.202869\pi\)
\(420\) 15.4245 + 15.4031i 0.752640 + 0.751595i
\(421\) 18.8340i 0.917914i −0.888458 0.458957i \(-0.848223\pi\)
0.888458 0.458957i \(-0.151777\pi\)
\(422\) 9.23230 22.3107i 0.449421 1.08607i
\(423\) 64.4736 3.13481
\(424\) −19.8269 + 8.23681i −0.962881 + 0.400015i
\(425\) −2.19369 −0.106410
\(426\) 8.45689 20.4368i 0.409738 0.990167i
\(427\) 35.1393i 1.70051i
\(428\) −21.1680 + 21.1974i −1.02319 + 1.02462i
\(429\) 47.6298i 2.29959i
\(430\) −0.334912 0.138589i −0.0161509 0.00668334i
\(431\) 31.5923 1.52175 0.760875 0.648899i \(-0.224770\pi\)
0.760875 + 0.648899i \(0.224770\pi\)
\(432\) −79.8030 + 0.110884i −3.83952 + 0.00533492i
\(433\) 8.33702 0.400651 0.200326 0.979729i \(-0.435800\pi\)
0.200326 + 0.979729i \(0.435800\pi\)
\(434\) −11.2064 4.63728i −0.537924 0.222596i
\(435\) 14.6727i 0.703502i
\(436\) 12.4423 12.4596i 0.595877 0.596706i
\(437\) 5.09453i 0.243704i
\(438\) 7.92839 19.1596i 0.378833 0.915483i
\(439\) 34.0302 1.62417 0.812085 0.583539i \(-0.198332\pi\)
0.812085 + 0.583539i \(0.198332\pi\)
\(440\) 3.85857 + 9.28803i 0.183950 + 0.442790i
\(441\) −26.9632 −1.28396
\(442\) 4.62420 11.1748i 0.219951 0.531530i
\(443\) 18.2183i 0.865577i 0.901495 + 0.432789i \(0.142470\pi\)
−0.901495 + 0.432789i \(0.857530\pi\)
\(444\) 2.78171 + 2.77785i 0.132014 + 0.131831i
\(445\) 17.2015i 0.815428i
\(446\) 2.65175 + 1.09731i 0.125564 + 0.0519592i
\(447\) 68.8535 3.25666
\(448\) −17.9063 + 17.9811i −0.845993 + 0.849527i
\(449\) −39.4027 −1.85953 −0.929764 0.368156i \(-0.879989\pi\)
−0.929764 + 0.368156i \(0.879989\pi\)
\(450\) 11.5077 + 4.76196i 0.542478 + 0.224481i
\(451\) 8.32899i 0.392197i
\(452\) −3.04682 3.04259i −0.143311 0.143112i
\(453\) 47.8210i 2.24683i
\(454\) −13.0936 + 31.6419i −0.614515 + 1.48503i
\(455\) 12.3654 0.579699
\(456\) 3.72849 + 8.97491i 0.174603 + 0.420289i
\(457\) 9.88724 0.462506 0.231253 0.972894i \(-0.425718\pi\)
0.231253 + 0.972894i \(0.425718\pi\)
\(458\) 3.01204 7.27885i 0.140743 0.340118i
\(459\) 43.7659i 2.04282i
\(460\) −7.19974 + 7.20976i −0.335690 + 0.336157i
\(461\) 15.3988i 0.717195i 0.933492 + 0.358597i \(0.116745\pi\)
−0.933492 + 0.358597i \(0.883255\pi\)
\(462\) −50.6453 20.9574i −2.35623 0.975025i
\(463\) 17.6430 0.819941 0.409970 0.912099i \(-0.365539\pi\)
0.409970 + 0.912099i \(0.365539\pi\)
\(464\) 17.0810 0.0237336i 0.792963 0.00110180i
\(465\) −9.28950 −0.430790
\(466\) −10.5047 4.34691i −0.486620 0.201367i
\(467\) 14.2647i 0.660093i 0.943965 + 0.330047i \(0.107064\pi\)
−0.943965 + 0.330047i \(0.892936\pi\)
\(468\) −48.5153 + 48.5827i −2.24262 + 2.24574i
\(469\) 36.8711i 1.70255i
\(470\) 3.95892 9.56708i 0.182611 0.441296i
\(471\) −17.4962 −0.806182
\(472\) −25.0436 + 10.4040i −1.15272 + 0.478882i
\(473\) 0.911358 0.0419043
\(474\) 30.9645 74.8285i 1.42225 3.43699i
\(475\) 1.00000i 0.0458831i
\(476\) 9.84759 + 9.83392i 0.451364 + 0.450737i
\(477\) 66.8465i 3.06069i
\(478\) 1.72404 + 0.713420i 0.0788558 + 0.0326311i
\(479\) 23.0752 1.05433 0.527166 0.849762i \(-0.323254\pi\)
0.527166 + 0.849762i \(0.323254\pi\)
\(480\) −7.40707 + 17.9705i −0.338085 + 0.820236i
\(481\) 2.23002 0.101680
\(482\) −19.8893 8.23034i −0.905935 0.374882i
\(483\) 55.5264i 2.52654i
\(484\) −2.32731 2.32408i −0.105787 0.105640i
\(485\) 11.0366i 0.501146i
\(486\) 45.9180 110.965i 2.08288 5.03346i
\(487\) 21.9580 0.995013 0.497507 0.867460i \(-0.334249\pi\)
0.497507 + 0.867460i \(0.334249\pi\)
\(488\) −28.9353 + 12.0208i −1.30984 + 0.544154i
\(489\) 9.27914 0.419617
\(490\) −1.65564 + 4.00100i −0.0747943 + 0.180747i
\(491\) 4.20600i 0.189814i −0.995486 0.0949070i \(-0.969745\pi\)
0.995486 0.0949070i \(-0.0302554\pi\)
\(492\) −11.3740 + 11.3898i −0.512778 + 0.513491i
\(493\) 9.36760i 0.421896i
\(494\) 5.09405 + 2.10795i 0.229192 + 0.0948412i
\(495\) −31.3146 −1.40748
\(496\) −0.0150261 10.8142i −0.000674690 0.485572i
\(497\) 14.4378 0.647623
\(498\) 58.2020 + 24.0844i 2.60809 + 1.07925i
\(499\) 36.9427i 1.65378i −0.562361 0.826892i \(-0.690107\pi\)
0.562361 0.826892i \(-0.309893\pi\)
\(500\) 1.41323 1.41520i 0.0632016 0.0632895i
\(501\) 17.7682i 0.793824i
\(502\) −6.74394 + 16.2973i −0.300997 + 0.727385i
\(503\) −13.7984 −0.615242 −0.307621 0.951509i \(-0.599533\pi\)
−0.307621 + 0.951509i \(0.599533\pi\)
\(504\) −30.3116 72.9635i −1.35019 3.25005i
\(505\) 1.65421 0.0736116
\(506\) 9.79592 23.6727i 0.435482 1.05238i
\(507\) 7.54691i 0.335170i
\(508\) −4.50392 4.49766i −0.199829 0.199551i
\(509\) 6.78272i 0.300639i 0.988637 + 0.150319i \(0.0480302\pi\)
−0.988637 + 0.150319i \(0.951970\pi\)
\(510\) 9.84977 + 4.07590i 0.436155 + 0.180484i
\(511\) 13.5355 0.598776
\(512\) −20.9320 8.59374i −0.925071 0.379793i
\(513\) −19.9508 −0.880848
\(514\) −14.6788 6.07420i −0.647455 0.267921i
\(515\) 11.3034i 0.498087i
\(516\) 1.24627 + 1.24454i 0.0548639 + 0.0547878i
\(517\) 26.0338i 1.14497i
\(518\) −0.981220 + 2.37120i −0.0431123 + 0.104185i
\(519\) −53.3546 −2.34201
\(520\) 4.23006 + 10.1822i 0.185500 + 0.446520i
\(521\) −12.6810 −0.555565 −0.277782 0.960644i \(-0.589599\pi\)
−0.277782 + 0.960644i \(0.589599\pi\)
\(522\) −20.3347 + 49.1406i −0.890026 + 2.15083i
\(523\) 9.56659i 0.418318i −0.977882 0.209159i \(-0.932927\pi\)
0.977882 0.209159i \(-0.0670726\pi\)
\(524\) −14.5014 + 14.5216i −0.633496 + 0.634377i
\(525\) 10.8992i 0.475681i
\(526\) −6.94629 2.87442i −0.302873 0.125331i
\(527\) −5.93077 −0.258348
\(528\) −0.0679077 48.8729i −0.00295530 2.12692i
\(529\) 2.95422 0.128444
\(530\) −9.91918 4.10462i −0.430862 0.178293i
\(531\) 84.4343i 3.66414i
\(532\) −4.48281 + 4.48905i −0.194355 + 0.194625i
\(533\) 9.13085i 0.395501i
\(534\) −31.9605 + 77.2353i −1.38307 + 3.34230i
\(535\) −14.9784 −0.647575
\(536\) 30.3614 12.6132i 1.31141 0.544806i
\(537\) −87.6525 −3.78249
\(538\) 10.3467 25.0038i 0.446080 1.07799i
\(539\) 10.8875i 0.468957i
\(540\) −28.2342 28.1950i −1.21501 1.21332i
\(541\) 25.6765i 1.10392i −0.833872 0.551959i \(-0.813881\pi\)
0.833872 0.551959i \(-0.186119\pi\)
\(542\) −15.1868 6.28438i −0.652327 0.269937i
\(543\) −1.10802 −0.0475495
\(544\) −4.72895 + 11.4730i −0.202752 + 0.491902i
\(545\) 8.80414 0.377128
\(546\) −55.5211 22.9750i −2.37609 0.983240i
\(547\) 25.9436i 1.10927i 0.832095 + 0.554634i \(0.187142\pi\)
−0.832095 + 0.554634i \(0.812858\pi\)
\(548\) −20.9331 20.9040i −0.894217 0.892975i
\(549\) 97.5554i 4.16356i
\(550\) −1.92283 + 4.64669i −0.0819898 + 0.198136i
\(551\) 4.27024 0.181918
\(552\) 45.7229 18.9949i 1.94610 0.808477i
\(553\) 52.8633 2.24798
\(554\) −3.26631 + 7.89332i −0.138772 + 0.335355i
\(555\) 1.96560i 0.0834352i
\(556\) −5.33249 + 5.33991i −0.226148 + 0.226462i
\(557\) 32.7815i 1.38900i 0.719494 + 0.694498i \(0.244374\pi\)
−0.719494 + 0.694498i \(0.755626\pi\)
\(558\) 31.1116 + 12.8742i 1.31706 + 0.545009i
\(559\) 0.999098 0.0422574
\(560\) −12.6881 + 0.0176298i −0.536171 + 0.000744996i
\(561\) −26.8031 −1.13163
\(562\) 19.1808 + 7.93713i 0.809092 + 0.334808i
\(563\) 9.12702i 0.384658i 0.981330 + 0.192329i \(0.0616041\pi\)
−0.981330 + 0.192329i \(0.938396\pi\)
\(564\) −35.5514 + 35.6009i −1.49699 + 1.49907i
\(565\) 2.15293i 0.0905746i
\(566\) −5.89445 + 14.2444i −0.247762 + 0.598739i
\(567\) 133.646 5.61260
\(568\) 4.93899 + 11.8887i 0.207236 + 0.498840i
\(569\) 24.7194 1.03629 0.518146 0.855292i \(-0.326623\pi\)
0.518146 + 0.855292i \(0.326623\pi\)
\(570\) −1.85801 + 4.49004i −0.0778234 + 0.188067i
\(571\) 37.2686i 1.55964i 0.626002 + 0.779821i \(0.284690\pi\)
−0.626002 + 0.779821i \(0.715310\pi\)
\(572\) −19.6172 19.5900i −0.820238 0.819099i
\(573\) 56.8924i 2.37671i
\(574\) −9.70893 4.01762i −0.405243 0.167692i
\(575\) −5.09453 −0.212457
\(576\) 49.7122 49.9199i 2.07134 2.07999i
\(577\) −23.6465 −0.984416 −0.492208 0.870478i \(-0.663810\pi\)
−0.492208 + 0.870478i \(0.663810\pi\)
\(578\) −15.9263 6.59041i −0.662447 0.274125i
\(579\) 35.2442i 1.46470i
\(580\) 6.04323 + 6.03484i 0.250931 + 0.250583i
\(581\) 41.1173i 1.70583i
\(582\) 20.5061 49.5548i 0.850006 2.05411i
\(583\) 26.9919 1.11789
\(584\) 4.63034 + 11.1458i 0.191605 + 0.461215i
\(585\) −34.3293 −1.41934
\(586\) 14.5711 35.2124i 0.601928 1.45461i
\(587\) 18.9649i 0.782763i −0.920228 0.391382i \(-0.871997\pi\)
0.920228 0.391382i \(-0.128003\pi\)
\(588\) 14.8678 14.8885i 0.613138 0.613990i
\(589\) 2.70355i 0.111398i
\(590\) −12.5290 5.18459i −0.515811 0.213446i
\(591\) −10.9796 −0.451642
\(592\) −2.28822 + 0.00317942i −0.0940453 + 0.000130674i
\(593\) −33.7430 −1.38566 −0.692830 0.721101i \(-0.743636\pi\)
−0.692830 + 0.721101i \(0.743636\pi\)
\(594\) 92.7051 + 38.3620i 3.80374 + 1.57401i
\(595\) 6.95847i 0.285269i
\(596\) −28.3192 + 28.3586i −1.16000 + 1.16161i
\(597\) 33.2979i 1.36279i
\(598\) 10.7390 25.9518i 0.439151 1.06125i
\(599\) 32.8572 1.34251 0.671254 0.741227i \(-0.265756\pi\)
0.671254 + 0.741227i \(0.265756\pi\)
\(600\) −8.97491 + 3.72849i −0.366399 + 0.152215i
\(601\) −15.7118 −0.640898 −0.320449 0.947266i \(-0.603834\pi\)
−0.320449 + 0.947266i \(0.603834\pi\)
\(602\) −0.439608 + 1.06235i −0.0179171 + 0.0432982i
\(603\) 102.363i 4.16855i
\(604\) 19.6960 + 19.6687i 0.801419 + 0.800306i
\(605\) 1.64452i 0.0668591i
\(606\) −7.42749 3.07355i −0.301721 0.124854i
\(607\) −13.8213 −0.560990 −0.280495 0.959856i \(-0.590499\pi\)
−0.280495 + 0.959856i \(0.590499\pi\)
\(608\) −5.23000 2.15570i −0.212105 0.0874253i
\(609\) −46.5423 −1.88599
\(610\) −14.4760 5.99027i −0.586116 0.242539i
\(611\) 28.5402i 1.15461i
\(612\) −27.3393 27.3013i −1.10513 1.10359i
\(613\) 3.38275i 0.136628i 0.997664 + 0.0683139i \(0.0217619\pi\)
−0.997664 + 0.0683139i \(0.978238\pi\)
\(614\) 3.40376 8.22548i 0.137365 0.331954i
\(615\) −8.04820 −0.324535
\(616\) 29.4619 12.2395i 1.18706 0.493144i
\(617\) 4.50352 0.181305 0.0906524 0.995883i \(-0.471105\pi\)
0.0906524 + 0.995883i \(0.471105\pi\)
\(618\) −21.0018 + 50.7527i −0.844817 + 2.04157i
\(619\) 0.735818i 0.0295750i −0.999891 0.0147875i \(-0.995293\pi\)
0.999891 0.0147875i \(-0.00470718\pi\)
\(620\) 3.82074 3.82606i 0.153445 0.153658i
\(621\) 101.640i 4.07866i
\(622\) −1.47283 0.609466i −0.0590550 0.0244374i
\(623\) −54.5636 −2.18605
\(624\) −0.0744455 53.5781i −0.00298020 2.14484i
\(625\) 1.00000 0.0400000
\(626\) −22.1236 9.15491i −0.884238 0.365904i
\(627\) 12.2182i 0.487950i
\(628\) 7.19613 7.20614i 0.287157 0.287556i
\(629\) 1.25491i 0.0500367i
\(630\) 15.1051 36.5028i 0.601801 1.45430i
\(631\) −18.0615 −0.719016 −0.359508 0.933142i \(-0.617055\pi\)
−0.359508 + 0.933142i \(0.617055\pi\)
\(632\) 18.0839 + 43.5300i 0.719339 + 1.73153i
\(633\) −58.6647 −2.33171
\(634\) 7.06557 17.0746i 0.280609 0.678117i
\(635\) 3.18254i 0.126295i
\(636\) 36.9111 + 36.8599i 1.46362 + 1.46159i
\(637\) 11.9357i 0.472908i
\(638\) −19.8425 8.21096i −0.785572 0.325075i
\(639\) −40.0828 −1.58565
\(640\) −4.35497 10.4419i −0.172145 0.412754i
\(641\) −31.9018 −1.26004 −0.630022 0.776577i \(-0.716954\pi\)
−0.630022 + 0.776577i \(0.716954\pi\)
\(642\) 67.2539 + 27.8301i 2.65430 + 1.09837i
\(643\) 9.49545i 0.374464i 0.982316 + 0.187232i \(0.0599516\pi\)
−0.982316 + 0.187232i \(0.940048\pi\)
\(644\) 22.8696 + 22.8378i 0.901188 + 0.899936i
\(645\) 0.880634i 0.0346749i
\(646\) −1.18622 + 2.86661i −0.0466713 + 0.112785i
\(647\) 36.2811 1.42636 0.713180 0.700981i \(-0.247254\pi\)
0.713180 + 0.700981i \(0.247254\pi\)
\(648\) 45.7186 + 110.050i 1.79600 + 4.32317i
\(649\) 34.0938 1.33830
\(650\) −2.10795 + 5.09405i −0.0826807 + 0.199805i
\(651\) 29.4666i 1.15489i
\(652\) −3.81648 + 3.82179i −0.149465 + 0.149673i
\(653\) 7.15546i 0.280015i −0.990150 0.140007i \(-0.955287\pi\)
0.990150 0.140007i \(-0.0447127\pi\)
\(654\) −39.5310 16.3582i −1.54578 0.639655i
\(655\) −10.2612 −0.400937
\(656\) −0.0130182 9.36916i −0.000508276 0.365804i
\(657\) −37.5779 −1.46605
\(658\) −30.3471 12.5578i −1.18305 0.489555i
\(659\) 1.20453i 0.0469217i 0.999725 + 0.0234609i \(0.00746851\pi\)
−0.999725 + 0.0234609i \(0.992531\pi\)
\(660\) 17.2672 17.2912i 0.672125 0.673059i
\(661\) 2.37847i 0.0925118i −0.998930 0.0462559i \(-0.985271\pi\)
0.998930 0.0462559i \(-0.0147290\pi\)
\(662\) −8.80691 + 21.2827i −0.342290 + 0.827174i
\(663\) −29.3835 −1.14116
\(664\) −33.8579 + 14.0658i −1.31394 + 0.545857i
\(665\) −3.17203 −0.123006
\(666\) 2.72410 6.58304i 0.105557 0.255087i
\(667\) 21.7549i 0.842352i
\(668\) 7.31816 + 7.30800i 0.283148 + 0.282755i
\(669\) 6.97264i 0.269578i
\(670\) 15.1894 + 6.28548i 0.586819 + 0.242829i
\(671\) 39.3919 1.52071
\(672\) 57.0029 + 23.4955i 2.19894 + 0.906358i
\(673\) 21.0551 0.811613 0.405806 0.913959i \(-0.366991\pi\)
0.405806 + 0.913959i \(0.366991\pi\)
\(674\) 18.0546 + 7.47112i 0.695438 + 0.287777i
\(675\) 19.9508i 0.767905i
\(676\) −3.10834 3.10402i −0.119551 0.119385i
\(677\) 6.45872i 0.248229i 0.992268 + 0.124114i \(0.0396090\pi\)
−0.992268 + 0.124114i \(0.960391\pi\)
\(678\) −4.00017 + 9.66677i −0.153626 + 0.371250i
\(679\) 35.0085 1.34350
\(680\) −5.72992 + 2.38041i −0.219732 + 0.0912845i
\(681\) 83.2009 3.18826
\(682\) −5.19848 + 12.5626i −0.199060 + 0.481046i
\(683\) 4.62399i 0.176932i 0.996079 + 0.0884661i \(0.0281965\pi\)
−0.996079 + 0.0884661i \(0.971804\pi\)
\(684\) 12.4454 12.4627i 0.475861 0.476523i
\(685\) 14.7917i 0.565160i
\(686\) −16.3241 6.75502i −0.623257 0.257908i
\(687\) −19.1394 −0.730212
\(688\) −1.02517 + 0.00142445i −0.0390844 + 5.43068e-5i
\(689\) 29.5906 1.12731
\(690\) 22.8746 + 9.46568i 0.870823 + 0.360352i
\(691\) 34.0866i 1.29672i −0.761336 0.648358i \(-0.775456\pi\)
0.761336 0.648358i \(-0.224544\pi\)
\(692\) 21.9446 21.9751i 0.834208 0.835368i
\(693\) 99.3308i 3.77327i
\(694\) 6.74853 16.3084i 0.256171 0.619059i
\(695\) −3.77326 −0.143128
\(696\) −15.9216 38.3251i −0.603505 1.45271i
\(697\) −5.13827 −0.194626
\(698\) 15.4112 37.2424i 0.583321 1.40965i
\(699\) 27.6215i 1.04474i
\(700\) −4.48905 4.48281i −0.169670 0.169434i
\(701\) 6.64815i 0.251097i 0.992087 + 0.125549i \(0.0400691\pi\)
−0.992087 + 0.125549i \(0.959931\pi\)
\(702\) 101.630 + 42.0553i 3.83579 + 1.58727i
\(703\) −0.572056 −0.0215755
\(704\) 20.1572 + 20.0733i 0.759702 + 0.756541i
\(705\) −25.1561 −0.947435
\(706\) −1.50484 0.622713i −0.0566354 0.0234361i
\(707\) 5.24722i 0.197342i
\(708\) 46.6227 + 46.5580i 1.75219 + 1.74976i
\(709\) 31.6102i 1.18715i −0.804780 0.593574i \(-0.797717\pi\)
0.804780 0.593574i \(-0.202283\pi\)
\(710\) −2.46123 + 5.94779i −0.0923685 + 0.223217i
\(711\) −146.761 −5.50398
\(712\) −18.6656 44.9302i −0.699522 1.68383i
\(713\) −13.7733 −0.515815
\(714\) 12.9289 31.2438i 0.483852 1.16927i
\(715\) 13.8619i 0.518404i
\(716\) 36.0512 36.1014i 1.34730 1.34917i
\(717\) 4.53328i 0.169298i
\(718\) −17.9803 7.44038i −0.671020 0.277673i
\(719\) 47.5177 1.77211 0.886055 0.463580i \(-0.153435\pi\)
0.886055 + 0.463580i \(0.153435\pi\)
\(720\) 35.2253 0.0489447i 1.31277 0.00182406i
\(721\) −35.8547 −1.33530
\(722\) −1.30675 0.540742i −0.0486322 0.0201243i
\(723\) 52.2980i 1.94498i
\(724\) 0.455724 0.456357i 0.0169368 0.0169604i
\(725\) 4.27024i 0.158593i
\(726\) −3.05552 + 7.38394i −0.113401 + 0.274044i
\(727\) 11.4234 0.423670 0.211835 0.977305i \(-0.432056\pi\)
0.211835 + 0.977305i \(0.432056\pi\)
\(728\) 32.2984 13.4179i 1.19706 0.497300i
\(729\) −165.379 −6.12513
\(730\) −2.30742 + 5.57609i −0.0854016 + 0.206380i
\(731\) 0.562230i 0.0207948i
\(732\) 53.8679 + 53.7931i 1.99101 + 1.98825i
\(733\) 13.3588i 0.493420i −0.969089 0.246710i \(-0.920650\pi\)
0.969089 0.246710i \(-0.0793495\pi\)
\(734\) −29.2585 12.1073i −1.07995 0.446890i
\(735\) 10.5204 0.388052
\(736\) −10.9823 + 26.6444i −0.404813 + 0.982126i
\(737\) −41.3333 −1.52253
\(738\) 26.9544 + 11.1539i 0.992204 + 0.410580i
\(739\) 34.3533i 1.26371i 0.775088 + 0.631853i \(0.217705\pi\)
−0.775088 + 0.631853i \(0.782295\pi\)
\(740\) −0.809571 0.808447i −0.0297604 0.0297191i
\(741\) 13.3945i 0.492061i
\(742\) −13.0200 + 31.4640i −0.477979 + 1.15508i
\(743\) −35.8483 −1.31515 −0.657573 0.753391i \(-0.728417\pi\)
−0.657573 + 0.753391i \(0.728417\pi\)
\(744\) −24.2641 + 10.0802i −0.889567 + 0.369557i
\(745\) −20.0386 −0.734159
\(746\) 16.2378 39.2400i 0.594507 1.43668i
\(747\) 114.152i 4.17659i
\(748\) 11.0240 11.0393i 0.403078 0.403639i
\(749\) 47.5121i 1.73606i
\(750\) −4.49004 1.85801i −0.163953 0.0678449i
\(751\) −25.1799 −0.918828 −0.459414 0.888222i \(-0.651941\pi\)
−0.459414 + 0.888222i \(0.651941\pi\)
\(752\) −0.0406908 29.2851i −0.00148384 1.06792i
\(753\) 42.8530 1.56165
\(754\) −21.7528 9.00147i −0.792191 0.327814i
\(755\) 13.9175i 0.506510i
\(756\) −89.4356 + 89.5600i −3.25274 + 3.25726i
\(757\) 42.5485i 1.54645i 0.634130 + 0.773226i \(0.281358\pi\)
−0.634130 + 0.773226i \(0.718642\pi\)
\(758\) 1.14609 2.76962i 0.0416277 0.100597i
\(759\) −62.2462 −2.25939
\(760\) −1.08511 2.61200i −0.0393612 0.0947471i
\(761\) 20.6747 0.749459 0.374729 0.927134i \(-0.377736\pi\)
0.374729 + 0.927134i \(0.377736\pi\)
\(762\) −5.91319 + 14.2897i −0.214212 + 0.517662i
\(763\) 27.9270i 1.01103i
\(764\) −23.4322 23.3997i −0.847747 0.846570i
\(765\) 19.3184i 0.698458i
\(766\) −27.0848 11.2079i −0.978613 0.404957i
\(767\) 37.3761 1.34957
\(768\) 0.152777 + 54.9763i 0.00551286 + 1.98379i
\(769\) 53.6971 1.93637 0.968183 0.250243i \(-0.0805105\pi\)
0.968183 + 0.250243i \(0.0805105\pi\)
\(770\) 14.7395 + 6.09929i 0.531173 + 0.219803i
\(771\) 38.5972i 1.39005i
\(772\) 14.5160 + 14.4958i 0.522442 + 0.521717i
\(773\) 26.8933i 0.967286i 0.875265 + 0.483643i \(0.160687\pi\)
−0.875265 + 0.483643i \(0.839313\pi\)
\(774\) 1.22046 2.94935i 0.0438685 0.106012i
\(775\) 2.70355 0.0971145
\(776\) 11.9760 + 28.8276i 0.429913 + 1.03485i
\(777\) 6.23496 0.223678
\(778\) 6.83492 16.5172i 0.245044 0.592170i
\(779\) 2.34229i 0.0839213i
\(780\) 18.9296 18.9559i 0.677788 0.678730i
\(781\) 16.1850i 0.579146i
\(782\) 14.6040 + 6.04324i 0.522239 + 0.216106i
\(783\) 85.1946 3.04461
\(784\) 0.0170171 + 12.2472i 0.000607755 + 0.437399i
\(785\) 5.09197 0.181740
\(786\) 46.0730 + 19.0653i 1.64337 + 0.680038i
\(787\) 17.6372i 0.628700i −0.949307 0.314350i \(-0.898214\pi\)
0.949307 0.314350i \(-0.101786\pi\)
\(788\) 4.51589 4.52217i 0.160872 0.161096i
\(789\) 18.2649i 0.650248i
\(790\) −9.01170 + 21.7776i −0.320622 + 0.774811i
\(791\) −6.82918 −0.242818
\(792\) −81.7935 + 33.9799i −2.90641 + 1.20742i
\(793\) 43.1843 1.53352
\(794\) −5.71605 + 13.8133i −0.202855 + 0.490217i
\(795\) 26.0820i 0.925033i
\(796\) 13.7144 + 13.6953i 0.486093 + 0.485418i
\(797\) 39.0071i 1.38170i −0.722996 0.690852i \(-0.757236\pi\)
0.722996 0.690852i \(-0.242764\pi\)
\(798\) 14.2426 + 5.89367i 0.504181 + 0.208634i
\(799\) −16.0606 −0.568184
\(800\) 2.15570 5.23000i 0.0762156 0.184909i
\(801\) 151.482 5.35235
\(802\) −27.9383 11.5611i −0.986536 0.408235i
\(803\) 15.1736i 0.535464i
\(804\) −56.5227 56.4442i −1.99340 1.99063i
\(805\) 16.1600i 0.569566i
\(806\) −5.69896 + 13.7720i −0.200737 + 0.485099i
\(807\) −65.7462 −2.31438
\(808\) 4.32080 1.79501i 0.152005 0.0631483i
\(809\) −16.3415 −0.574536 −0.287268 0.957850i \(-0.592747\pi\)
−0.287268 + 0.957850i \(0.592747\pi\)
\(810\) −22.7828 + 55.0567i −0.800507 + 1.93450i
\(811\) 51.7929i 1.81870i −0.416036 0.909348i \(-0.636581\pi\)
0.416036 0.909348i \(-0.363419\pi\)
\(812\) 19.1427 19.1693i 0.671777 0.672711i
\(813\) 39.9328i 1.40050i
\(814\) 2.65817 + 1.09997i 0.0931687 + 0.0385538i
\(815\) −2.70054 −0.0945957
\(816\) 30.1504 0.0418932i 1.05547 0.00146656i
\(817\) −0.256294 −0.00896658
\(818\) −1.41922 0.587283i −0.0496219 0.0205339i
\(819\) 108.894i 3.80506i
\(820\) 3.31020 3.31480i 0.115597 0.115758i
\(821\) 2.14965i 0.0750233i −0.999296 0.0375117i \(-0.988057\pi\)
0.999296 0.0375117i \(-0.0119431\pi\)
\(822\) −27.4830 + 66.4151i −0.958581 + 2.31649i
\(823\) −21.5839 −0.752367 −0.376183 0.926545i \(-0.622764\pi\)
−0.376183 + 0.926545i \(0.622764\pi\)
\(824\) −12.2655 29.5244i −0.427288 1.02853i
\(825\) 12.2182 0.425385
\(826\) −16.4457 + 39.7424i −0.572218 + 1.38282i
\(827\) 50.0918i 1.74186i 0.491404 + 0.870932i \(0.336484\pi\)
−0.491404 + 0.870932i \(0.663516\pi\)
\(828\) −63.4915 63.4034i −2.20648 2.20342i
\(829\) 26.7817i 0.930168i −0.885267 0.465084i \(-0.846024\pi\)
0.885267 0.465084i \(-0.153976\pi\)
\(830\) −16.9387 7.00935i −0.587951 0.243298i
\(831\) 20.7551 0.719986
\(832\) 22.0978 + 22.0059i 0.766103 + 0.762916i
\(833\) 6.71664 0.232718
\(834\) 16.9421 + 7.01076i 0.586657 + 0.242763i
\(835\) 5.17113i 0.178954i
\(836\) 5.03231 + 5.02533i 0.174046 + 0.173805i
\(837\) 53.9380i 1.86437i
\(838\) 13.1730 31.8336i 0.455052 1.09967i
\(839\) 18.8381 0.650363 0.325181 0.945652i \(-0.394575\pi\)
0.325181 + 0.945652i \(0.394575\pi\)
\(840\) 11.8269 + 28.4687i 0.408067 + 0.982264i
\(841\) 10.7650 0.371208
\(842\) 10.1843 24.6114i 0.350976 0.848164i
\(843\) 50.4348i 1.73707i
\(844\) 24.1286 24.1622i 0.830542 0.831697i
\(845\) 2.19640i 0.0755585i
\(846\) 84.2509 + 34.8636i 2.89660 + 1.19863i
\(847\) −5.21646 −0.179240
\(848\) −30.3629 + 0.0421884i −1.04266 + 0.00144876i
\(849\) 37.4551 1.28545
\(850\) −2.86661 1.18622i −0.0983239 0.0406871i
\(851\) 2.91435i 0.0999028i
\(852\) 22.1021 22.1328i 0.757205 0.758258i
\(853\) 0.774647i 0.0265234i 0.999912 + 0.0132617i \(0.00422145\pi\)
−0.999912 + 0.0132617i \(0.995779\pi\)
\(854\) −19.0013 + 45.9184i −0.650212 + 1.57129i
\(855\) 8.80634 0.301170
\(856\) −39.1237 + 16.2533i −1.33722 + 0.555528i
\(857\) 13.4855 0.460656 0.230328 0.973113i \(-0.426020\pi\)
0.230328 + 0.973113i \(0.426020\pi\)
\(858\) −25.7555 + 62.2403i −0.879277 + 2.12485i
\(859\) 1.95595i 0.0667360i 0.999443 + 0.0333680i \(0.0106233\pi\)
−0.999443 + 0.0333680i \(0.989377\pi\)
\(860\) −0.362706 0.362202i −0.0123682 0.0123510i
\(861\) 25.5291i 0.870031i
\(862\) 41.2833 + 17.0833i 1.40612 + 0.581860i
\(863\) 39.1386 1.33229 0.666147 0.745821i \(-0.267942\pi\)
0.666147 + 0.745821i \(0.267942\pi\)
\(864\) −104.343 43.0080i −3.54981 1.46316i
\(865\) 15.5280 0.527967
\(866\) 10.8944 + 4.50818i 0.370207 + 0.153194i
\(867\) 41.8774i 1.42223i
\(868\) −12.1364 12.1195i −0.411936 0.411364i
\(869\) 59.2608i 2.01029i
\(870\) 7.93415 19.1736i 0.268993 0.650045i
\(871\) −45.3126 −1.53536
\(872\) 22.9964 9.55350i 0.778756 0.323522i
\(873\) −97.1920 −3.28945
\(874\) −2.75483 + 6.65728i −0.0931834 + 0.225186i
\(875\) 3.17203i 0.107234i
\(876\) 20.7209 20.7497i 0.700093 0.701066i
\(877\) 21.0431i 0.710575i −0.934757 0.355287i \(-0.884383\pi\)
0.934757 0.355287i \(-0.115617\pi\)
\(878\) 44.4689 + 18.4015i 1.50075 + 0.621022i
\(879\) −92.5893 −3.12296
\(880\) 0.0197634 + 14.2236i 0.000666224 + 0.479479i
\(881\) 27.5240 0.927307 0.463653 0.886017i \(-0.346538\pi\)
0.463653 + 0.886017i \(0.346538\pi\)
\(882\) −35.2342 14.5801i −1.18640 0.490939i
\(883\) 12.3668i 0.416175i −0.978110 0.208088i \(-0.933276\pi\)
0.978110 0.208088i \(-0.0667239\pi\)
\(884\) 12.0854 12.1022i 0.406474 0.407040i
\(885\) 32.9444i 1.10741i
\(886\) −9.85140 + 23.8068i −0.330964 + 0.799804i
\(887\) −5.53534 −0.185858 −0.0929292 0.995673i \(-0.529623\pi\)
−0.0929292 + 0.995673i \(0.529623\pi\)
\(888\) 2.13290 + 5.13415i 0.0715756 + 0.172291i
\(889\) −10.0951 −0.338579
\(890\) 9.30156 22.4780i 0.311789 0.753465i
\(891\) 149.820i 5.01915i
\(892\) 2.87181 + 2.86783i 0.0961555 + 0.0960220i
\(893\) 7.32127i 0.244997i
\(894\) 89.9743 + 37.2320i 3.00919 + 1.24522i
\(895\) 25.5098 0.852698
\(896\) −33.1222 + 13.8141i −1.10653 + 0.461497i
\(897\) −68.2389 −2.27843
\(898\) −51.4895 21.3067i −1.71823 0.711014i
\(899\) 11.5448i 0.385042i
\(900\) 12.4627 + 12.4454i 0.415423 + 0.414846i
\(901\) 16.6517i 0.554749i
\(902\) −4.50383 + 10.8839i −0.149961 + 0.362395i
\(903\) 2.79340 0.0929585
\(904\) −2.33618 5.62346i −0.0777002 0.187033i
\(905\) 0.322469 0.0107192
\(906\) 25.8589 62.4902i 0.859103 2.07610i
\(907\) 6.97326i 0.231543i 0.993276 + 0.115772i \(0.0369341\pi\)
−0.993276 + 0.115772i \(0.963066\pi\)
\(908\) −34.2203 + 34.2678i −1.13564 + 1.13722i
\(909\) 14.5676i 0.483176i
\(910\) 16.1585 + 6.68649i 0.535649 + 0.221655i
\(911\) 54.8323 1.81668 0.908338 0.418237i \(-0.137352\pi\)
0.908338 + 0.418237i \(0.137352\pi\)
\(912\) 0.0190971 + 13.7441i 0.000632369 + 0.455113i
\(913\) 46.0934 1.52547
\(914\) 12.9202 + 5.34645i 0.427361 + 0.176845i
\(915\) 38.0639i 1.25835i
\(916\) 7.87196 7.88291i 0.260097 0.260459i
\(917\) 32.5487i 1.07485i
\(918\) −23.6660 + 57.1911i −0.781096 + 1.88759i
\(919\) 34.2473 1.12972 0.564858 0.825188i \(-0.308931\pi\)
0.564858 + 0.825188i \(0.308931\pi\)
\(920\) −13.3069 + 5.52815i −0.438715 + 0.182258i
\(921\) −21.6285 −0.712683
\(922\) −8.32679 + 20.1224i −0.274228 + 0.662697i
\(923\) 17.7432i 0.584026i
\(924\) −54.8483 54.7721i −1.80438 1.80187i
\(925\) 0.572056i 0.0188091i
\(926\) 23.0550 + 9.54033i 0.757635 + 0.313515i
\(927\) 99.5415 3.26937
\(928\) 22.3334 + 9.20538i 0.733129 + 0.302181i
\(929\) −31.3912 −1.02991 −0.514955 0.857217i \(-0.672192\pi\)
−0.514955 + 0.857217i \(0.672192\pi\)
\(930\) −12.1391 5.02323i −0.398056 0.164718i
\(931\) 3.06179i 0.100346i
\(932\) −11.3764 11.3606i −0.372648 0.372130i
\(933\) 3.87273i 0.126787i
\(934\) −7.71355 + 18.6405i −0.252395 + 0.609934i
\(935\) 7.80058 0.255106
\(936\) −89.6681 + 37.2513i −2.93089 + 1.21760i
\(937\) −7.52591 −0.245861 −0.122930 0.992415i \(-0.539229\pi\)
−0.122930 + 0.992415i \(0.539229\pi\)
\(938\) 19.9378 48.1814i 0.650991 1.57318i
\(939\) 58.1730i 1.89840i
\(940\) 10.3466 10.3610i 0.337470 0.337940i
\(941\) 16.3023i 0.531440i 0.964050 + 0.265720i \(0.0856096\pi\)
−0.964050 + 0.265720i \(0.914390\pi\)
\(942\) −22.8632 9.46093i −0.744922 0.308254i
\(943\) −11.9329 −0.388588
\(944\) −38.3516 + 0.0532886i −1.24824 + 0.00173440i
\(945\) −63.2845 −2.05865
\(946\) 1.19092 + 0.492810i 0.0387201 + 0.0160226i
\(947\) 20.0256i 0.650745i 0.945586 + 0.325372i \(0.105490\pi\)
−0.945586 + 0.325372i \(0.894510\pi\)
\(948\) 80.9258 81.0383i 2.62835 2.63200i
\(949\) 16.6344i 0.539976i
\(950\) 0.540742 1.30675i 0.0175440 0.0423966i
\(951\) −44.8967 −1.45587
\(952\) 7.55073 + 18.1755i 0.244721 + 0.589071i
\(953\) −44.2155 −1.43228 −0.716140 0.697957i \(-0.754093\pi\)
−0.716140 + 0.697957i \(0.754093\pi\)
\(954\) 36.1467 87.3517i 1.17029 2.82811i
\(955\) 16.5576i 0.535790i
\(956\) 1.86712 + 1.86452i 0.0603868 + 0.0603030i
\(957\) 52.1749i 1.68657i
\(958\) 30.1535 + 12.4777i 0.974217 + 0.403137i
\(959\) −46.9196 −1.51511
\(960\) −19.3966 + 19.4776i −0.626022 + 0.628637i
\(961\) −23.6908 −0.764219
\(962\) 2.91408 + 1.20587i 0.0939537 + 0.0388787i
\(963\) 131.905i 4.25059i
\(964\) −21.5399 21.5100i −0.693754 0.692791i
\(965\) 10.2572i 0.330192i
\(966\) 30.0255 72.5591i 0.966053 2.33455i
\(967\) 49.0693 1.57796 0.788981 0.614418i \(-0.210609\pi\)
0.788981 + 0.614418i \(0.210609\pi\)
\(968\) −1.78449 4.29547i −0.0573556 0.138062i
\(969\) 7.53761 0.242143
\(970\) −5.96796 + 14.4221i −0.191620 + 0.463065i
\(971\) 1.20151i 0.0385582i 0.999814 + 0.0192791i \(0.00613711\pi\)
−0.999814 + 0.0192791i \(0.993863\pi\)
\(972\) 120.007 120.174i 3.84922 3.85457i
\(973\) 11.9689i 0.383706i
\(974\) 28.6937 + 11.8736i 0.919405 + 0.380456i
\(975\) 13.3945 0.428969
\(976\) −44.3114 + 0.0615696i −1.41837 + 0.00197079i
\(977\) −17.4709 −0.558942 −0.279471 0.960154i \(-0.590159\pi\)
−0.279471 + 0.960154i \(0.590159\pi\)
\(978\) 12.1255 + 5.01762i 0.387731 + 0.160446i
\(979\) 61.1669i 1.95490i
\(980\) −4.32702 + 4.33304i −0.138222 + 0.138414i
\(981\) 77.5322i 2.47541i
\(982\) 2.27436 5.49619i 0.0725778 0.175391i
\(983\) −14.6484 −0.467210 −0.233605 0.972332i \(-0.575052\pi\)
−0.233605 + 0.972332i \(0.575052\pi\)
\(984\) −21.0219 + 8.73322i −0.670152 + 0.278405i
\(985\) 3.19544 0.101815
\(986\) 5.06546 12.2411i 0.161317 0.389837i
\(987\) 79.7961i 2.53994i
\(988\) 5.51680 + 5.50914i 0.175513 + 0.175269i
\(989\) 1.30570i 0.0415187i
\(990\) −40.9203 16.9331i −1.30053 0.538169i
\(991\) 39.8960 1.26734 0.633668 0.773605i \(-0.281548\pi\)
0.633668 + 0.773605i \(0.281548\pi\)
\(992\) 5.82806 14.1396i 0.185041 0.448933i
\(993\) 55.9617 1.77589
\(994\) 18.8666 + 7.80712i 0.598412 + 0.247627i
\(995\) 9.69079i 0.307219i
\(996\) 63.0320 + 62.9445i 1.99725 + 1.99447i
\(997\) 9.17278i 0.290505i 0.989395 + 0.145252i \(0.0463994\pi\)
−0.989395 + 0.145252i \(0.953601\pi\)
\(998\) 19.9765 48.2749i 0.632345 1.52812i
\(999\) −11.4130 −0.361090
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.38 yes 44
4.3 odd 2 3040.2.f.b.1521.44 44
8.3 odd 2 3040.2.f.b.1521.1 44
8.5 even 2 inner 760.2.f.b.381.37 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.37 44 8.5 even 2 inner
760.2.f.b.381.38 yes 44 1.1 even 1 trivial
3040.2.f.b.1521.1 44 8.3 odd 2
3040.2.f.b.1521.44 44 4.3 odd 2