Properties

Label 760.2.f.b.381.20
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.20
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.188358 + 1.40161i) q^{2} +0.0766253i q^{3} +(-1.92904 - 0.528011i) q^{4} +1.00000i q^{5} +(-0.107399 - 0.0144330i) q^{6} +1.59941 q^{7} +(1.10342 - 2.60432i) q^{8} +2.99413 q^{9} +(-1.40161 - 0.188358i) q^{10} +0.418437i q^{11} +(0.0404590 - 0.147813i) q^{12} -6.12600i q^{13} +(-0.301262 + 2.24175i) q^{14} -0.0766253 q^{15} +(3.44241 + 2.03711i) q^{16} +2.23355 q^{17} +(-0.563969 + 4.19661i) q^{18} +1.00000i q^{19} +(0.528011 - 1.92904i) q^{20} +0.122555i q^{21} +(-0.586486 - 0.0788160i) q^{22} +4.81927 q^{23} +(0.199557 + 0.0845498i) q^{24} -1.00000 q^{25} +(8.58629 + 1.15388i) q^{26} +0.459302i q^{27} +(-3.08533 - 0.844506i) q^{28} -4.65242i q^{29} +(0.0144330 - 0.107399i) q^{30} +1.44903 q^{31} +(-3.50365 + 4.44122i) q^{32} -0.0320628 q^{33} +(-0.420708 + 3.13058i) q^{34} +1.59941i q^{35} +(-5.77580 - 1.58093i) q^{36} +10.2780i q^{37} +(-1.40161 - 0.188358i) q^{38} +0.469407 q^{39} +(2.60432 + 1.10342i) q^{40} -0.923621 q^{41} +(-0.171775 - 0.0230843i) q^{42} +4.94739i q^{43} +(0.220939 - 0.807182i) q^{44} +2.99413i q^{45} +(-0.907749 + 6.75475i) q^{46} +9.79140 q^{47} +(-0.156094 + 0.263776i) q^{48} -4.44189 q^{49} +(0.188358 - 1.40161i) q^{50} +0.171147i q^{51} +(-3.23460 + 11.8173i) q^{52} +3.92260i q^{53} +(-0.643764 - 0.0865133i) q^{54} -0.418437 q^{55} +(1.76482 - 4.16537i) q^{56} -0.0766253 q^{57} +(6.52090 + 0.876322i) q^{58} +8.15418i q^{59} +(0.147813 + 0.0404590i) q^{60} -10.8278i q^{61} +(-0.272936 + 2.03098i) q^{62} +4.78884 q^{63} +(-5.56493 - 5.74730i) q^{64} +6.12600 q^{65} +(0.00603930 - 0.0449397i) q^{66} +5.14793i q^{67} +(-4.30862 - 1.17934i) q^{68} +0.369278i q^{69} +(-2.24175 - 0.301262i) q^{70} +4.56590 q^{71} +(3.30378 - 7.79766i) q^{72} +3.75106 q^{73} +(-14.4058 - 1.93595i) q^{74} -0.0766253i q^{75} +(0.528011 - 1.92904i) q^{76} +0.669251i q^{77} +(-0.0884166 + 0.657927i) q^{78} -14.8533 q^{79} +(-2.03711 + 3.44241i) q^{80} +8.94719 q^{81} +(0.173972 - 1.29456i) q^{82} +0.561992i q^{83} +(0.0647105 - 0.236414i) q^{84} +2.23355i q^{85} +(-6.93433 - 0.931881i) q^{86} +0.356493 q^{87} +(1.08974 + 0.461711i) q^{88} -1.07995 q^{89} +(-4.19661 - 0.563969i) q^{90} -9.79799i q^{91} +(-9.29657 - 2.54463i) q^{92} +0.111032i q^{93} +(-1.84429 + 13.7238i) q^{94} -1.00000 q^{95} +(-0.340310 - 0.268468i) q^{96} -6.13874 q^{97} +(0.836667 - 6.22581i) q^{98} +1.25285i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.188358 + 1.40161i −0.133189 + 0.991091i
\(3\) 0.0766253i 0.0442396i 0.999755 + 0.0221198i \(0.00704153\pi\)
−0.999755 + 0.0221198i \(0.992958\pi\)
\(4\) −1.92904 0.528011i −0.964521 0.264006i
\(5\) 1.00000i 0.447214i
\(6\) −0.107399 0.0144330i −0.0438455 0.00589225i
\(7\) 1.59941 0.604520 0.302260 0.953226i \(-0.402259\pi\)
0.302260 + 0.953226i \(0.402259\pi\)
\(8\) 1.10342 2.60432i 0.390117 0.920765i
\(9\) 2.99413 0.998043
\(10\) −1.40161 0.188358i −0.443229 0.0595641i
\(11\) 0.418437i 0.126163i 0.998008 + 0.0630817i \(0.0200929\pi\)
−0.998008 + 0.0630817i \(0.979907\pi\)
\(12\) 0.0404590 0.147813i 0.0116795 0.0426701i
\(13\) 6.12600i 1.69905i −0.527550 0.849524i \(-0.676889\pi\)
0.527550 0.849524i \(-0.323111\pi\)
\(14\) −0.301262 + 2.24175i −0.0805156 + 0.599134i
\(15\) −0.0766253 −0.0197846
\(16\) 3.44241 + 2.03711i 0.860602 + 0.509278i
\(17\) 2.23355 0.541716 0.270858 0.962619i \(-0.412693\pi\)
0.270858 + 0.962619i \(0.412693\pi\)
\(18\) −0.563969 + 4.19661i −0.132929 + 0.989151i
\(19\) 1.00000i 0.229416i
\(20\) 0.528011 1.92904i 0.118067 0.431347i
\(21\) 0.122555i 0.0267437i
\(22\) −0.586486 0.0788160i −0.125039 0.0168036i
\(23\) 4.81927 1.00489 0.502443 0.864610i \(-0.332435\pi\)
0.502443 + 0.864610i \(0.332435\pi\)
\(24\) 0.199557 + 0.0845498i 0.0407343 + 0.0172586i
\(25\) −1.00000 −0.200000
\(26\) 8.58629 + 1.15388i 1.68391 + 0.226295i
\(27\) 0.459302i 0.0883927i
\(28\) −3.08533 0.844506i −0.583072 0.159597i
\(29\) 4.65242i 0.863933i −0.901890 0.431966i \(-0.857820\pi\)
0.901890 0.431966i \(-0.142180\pi\)
\(30\) 0.0144330 0.107399i 0.00263509 0.0196083i
\(31\) 1.44903 0.260253 0.130126 0.991497i \(-0.458462\pi\)
0.130126 + 0.991497i \(0.458462\pi\)
\(32\) −3.50365 + 4.44122i −0.619364 + 0.785104i
\(33\) −0.0320628 −0.00558142
\(34\) −0.420708 + 3.13058i −0.0721508 + 0.536890i
\(35\) 1.59941i 0.270350i
\(36\) −5.77580 1.58093i −0.962633 0.263489i
\(37\) 10.2780i 1.68969i 0.535008 + 0.844847i \(0.320309\pi\)
−0.535008 + 0.844847i \(0.679691\pi\)
\(38\) −1.40161 0.188358i −0.227372 0.0305557i
\(39\) 0.469407 0.0751652
\(40\) 2.60432 + 1.10342i 0.411779 + 0.174466i
\(41\) −0.923621 −0.144245 −0.0721226 0.997396i \(-0.522977\pi\)
−0.0721226 + 0.997396i \(0.522977\pi\)
\(42\) −0.171775 0.0230843i −0.0265055 0.00356198i
\(43\) 4.94739i 0.754470i 0.926118 + 0.377235i \(0.123125\pi\)
−0.926118 + 0.377235i \(0.876875\pi\)
\(44\) 0.220939 0.807182i 0.0333078 0.121687i
\(45\) 2.99413i 0.446338i
\(46\) −0.907749 + 6.75475i −0.133840 + 0.995934i
\(47\) 9.79140 1.42822 0.714111 0.700032i \(-0.246831\pi\)
0.714111 + 0.700032i \(0.246831\pi\)
\(48\) −0.156094 + 0.263776i −0.0225303 + 0.0380727i
\(49\) −4.44189 −0.634556
\(50\) 0.188358 1.40161i 0.0266379 0.198218i
\(51\) 0.171147i 0.0239653i
\(52\) −3.23460 + 11.8173i −0.448558 + 1.63877i
\(53\) 3.92260i 0.538811i 0.963027 + 0.269405i \(0.0868271\pi\)
−0.963027 + 0.269405i \(0.913173\pi\)
\(54\) −0.643764 0.0865133i −0.0876051 0.0117730i
\(55\) −0.418437 −0.0564220
\(56\) 1.76482 4.16537i 0.235834 0.556621i
\(57\) −0.0766253 −0.0101493
\(58\) 6.52090 + 0.876322i 0.856236 + 0.115067i
\(59\) 8.15418i 1.06158i 0.847502 + 0.530792i \(0.178106\pi\)
−0.847502 + 0.530792i \(0.821894\pi\)
\(60\) 0.147813 + 0.0404590i 0.0190826 + 0.00522323i
\(61\) 10.8278i 1.38636i −0.720767 0.693178i \(-0.756210\pi\)
0.720767 0.693178i \(-0.243790\pi\)
\(62\) −0.272936 + 2.03098i −0.0346629 + 0.257934i
\(63\) 4.78884 0.603337
\(64\) −5.56493 5.74730i −0.695617 0.718413i
\(65\) 6.12600 0.759837
\(66\) 0.00603930 0.0449397i 0.000743386 0.00553169i
\(67\) 5.14793i 0.628919i 0.949271 + 0.314460i \(0.101823\pi\)
−0.949271 + 0.314460i \(0.898177\pi\)
\(68\) −4.30862 1.17934i −0.522497 0.143016i
\(69\) 0.369278i 0.0444558i
\(70\) −2.24175 0.301262i −0.267941 0.0360077i
\(71\) 4.56590 0.541873 0.270936 0.962597i \(-0.412667\pi\)
0.270936 + 0.962597i \(0.412667\pi\)
\(72\) 3.30378 7.79766i 0.389354 0.918963i
\(73\) 3.75106 0.439028 0.219514 0.975609i \(-0.429553\pi\)
0.219514 + 0.975609i \(0.429553\pi\)
\(74\) −14.4058 1.93595i −1.67464 0.225049i
\(75\) 0.0766253i 0.00884793i
\(76\) 0.528011 1.92904i 0.0605670 0.221276i
\(77\) 0.669251i 0.0762683i
\(78\) −0.0884166 + 0.657927i −0.0100112 + 0.0744956i
\(79\) −14.8533 −1.67113 −0.835565 0.549392i \(-0.814859\pi\)
−0.835565 + 0.549392i \(0.814859\pi\)
\(80\) −2.03711 + 3.44241i −0.227756 + 0.384873i
\(81\) 8.94719 0.994132
\(82\) 0.173972 1.29456i 0.0192119 0.142960i
\(83\) 0.561992i 0.0616866i 0.999524 + 0.0308433i \(0.00981928\pi\)
−0.999524 + 0.0308433i \(0.990181\pi\)
\(84\) 0.0647105 0.236414i 0.00706049 0.0257949i
\(85\) 2.23355i 0.242263i
\(86\) −6.93433 0.931881i −0.747748 0.100487i
\(87\) 0.356493 0.0382201
\(88\) 1.08974 + 0.461711i 0.116167 + 0.0492185i
\(89\) −1.07995 −0.114475 −0.0572374 0.998361i \(-0.518229\pi\)
−0.0572374 + 0.998361i \(0.518229\pi\)
\(90\) −4.19661 0.563969i −0.442362 0.0594475i
\(91\) 9.79799i 1.02711i
\(92\) −9.29657 2.54463i −0.969234 0.265296i
\(93\) 0.111032i 0.0115135i
\(94\) −1.84429 + 13.7238i −0.190224 + 1.41550i
\(95\) −1.00000 −0.102598
\(96\) −0.340310 0.268468i −0.0347327 0.0274004i
\(97\) −6.13874 −0.623295 −0.311647 0.950198i \(-0.600881\pi\)
−0.311647 + 0.950198i \(0.600881\pi\)
\(98\) 0.836667 6.22581i 0.0845161 0.628902i
\(99\) 1.25285i 0.125916i
\(100\) 1.92904 + 0.528011i 0.192904 + 0.0528011i
\(101\) 17.8006i 1.77122i −0.464428 0.885611i \(-0.653740\pi\)
0.464428 0.885611i \(-0.346260\pi\)
\(102\) −0.239881 0.0322369i −0.0237518 0.00319193i
\(103\) 13.9742 1.37692 0.688460 0.725274i \(-0.258287\pi\)
0.688460 + 0.725274i \(0.258287\pi\)
\(104\) −15.9541 6.75955i −1.56442 0.662828i
\(105\) −0.122555 −0.0119602
\(106\) −5.49797 0.738854i −0.534010 0.0717638i
\(107\) 0.472105i 0.0456401i 0.999740 + 0.0228200i \(0.00726448\pi\)
−0.999740 + 0.0228200i \(0.992736\pi\)
\(108\) 0.242516 0.886013i 0.0233362 0.0852566i
\(109\) 18.4823i 1.77029i −0.465319 0.885143i \(-0.654060\pi\)
0.465319 0.885143i \(-0.345940\pi\)
\(110\) 0.0788160 0.586486i 0.00751481 0.0559193i
\(111\) −0.787555 −0.0747514
\(112\) 5.50582 + 3.25818i 0.520251 + 0.307869i
\(113\) −6.50295 −0.611746 −0.305873 0.952072i \(-0.598948\pi\)
−0.305873 + 0.952072i \(0.598948\pi\)
\(114\) 0.0144330 0.107399i 0.00135177 0.0100588i
\(115\) 4.81927i 0.449399i
\(116\) −2.45653 + 8.97472i −0.228083 + 0.833281i
\(117\) 18.3420i 1.69572i
\(118\) −11.4290 1.53591i −1.05213 0.141392i
\(119\) 3.57236 0.327478
\(120\) −0.0845498 + 0.199557i −0.00771830 + 0.0182169i
\(121\) 10.8249 0.984083
\(122\) 15.1764 + 2.03950i 1.37400 + 0.184648i
\(123\) 0.0707727i 0.00638136i
\(124\) −2.79523 0.765102i −0.251019 0.0687082i
\(125\) 1.00000i 0.0894427i
\(126\) −0.902017 + 6.71210i −0.0803581 + 0.597961i
\(127\) −19.0423 −1.68973 −0.844866 0.534978i \(-0.820320\pi\)
−0.844866 + 0.534978i \(0.820320\pi\)
\(128\) 9.10370 6.71734i 0.804661 0.593734i
\(129\) −0.379095 −0.0333775
\(130\) −1.15388 + 8.58629i −0.101202 + 0.753068i
\(131\) 7.21435i 0.630320i 0.949038 + 0.315160i \(0.102058\pi\)
−0.949038 + 0.315160i \(0.897942\pi\)
\(132\) 0.0618505 + 0.0169295i 0.00538340 + 0.00147353i
\(133\) 1.59941i 0.138686i
\(134\) −7.21540 0.969654i −0.623316 0.0837654i
\(135\) −0.459302 −0.0395304
\(136\) 2.46454 5.81688i 0.211333 0.498793i
\(137\) 4.67144 0.399108 0.199554 0.979887i \(-0.436051\pi\)
0.199554 + 0.979887i \(0.436051\pi\)
\(138\) −0.517585 0.0695565i −0.0440597 0.00592104i
\(139\) 8.80887i 0.747158i 0.927598 + 0.373579i \(0.121870\pi\)
−0.927598 + 0.373579i \(0.878130\pi\)
\(140\) 0.844506 3.08533i 0.0713738 0.260758i
\(141\) 0.750269i 0.0631840i
\(142\) −0.860025 + 6.39963i −0.0721717 + 0.537045i
\(143\) 2.56334 0.214358
\(144\) 10.3070 + 6.09937i 0.858918 + 0.508281i
\(145\) 4.65242 0.386362
\(146\) −0.706543 + 5.25754i −0.0584739 + 0.435117i
\(147\) 0.340361i 0.0280725i
\(148\) 5.42690 19.8267i 0.446089 1.62975i
\(149\) 2.14796i 0.175967i 0.996122 + 0.0879837i \(0.0280424\pi\)
−0.996122 + 0.0879837i \(0.971958\pi\)
\(150\) 0.107399 + 0.0144330i 0.00876910 + 0.00117845i
\(151\) −17.2514 −1.40390 −0.701950 0.712226i \(-0.747687\pi\)
−0.701950 + 0.712226i \(0.747687\pi\)
\(152\) 2.60432 + 1.10342i 0.211238 + 0.0894991i
\(153\) 6.68754 0.540656
\(154\) −0.938032 0.126059i −0.0755888 0.0101581i
\(155\) 1.44903i 0.116389i
\(156\) −0.905506 0.247852i −0.0724985 0.0198440i
\(157\) 2.28962i 0.182732i −0.995817 0.0913660i \(-0.970877\pi\)
0.995817 0.0913660i \(-0.0291233\pi\)
\(158\) 2.79775 20.8186i 0.222577 1.65624i
\(159\) −0.300570 −0.0238368
\(160\) −4.44122 3.50365i −0.351109 0.276988i
\(161\) 7.70798 0.607474
\(162\) −1.68528 + 12.5405i −0.132408 + 0.985275i
\(163\) 15.2225i 1.19232i 0.802867 + 0.596158i \(0.203307\pi\)
−0.802867 + 0.596158i \(0.796693\pi\)
\(164\) 1.78170 + 0.487682i 0.139128 + 0.0380816i
\(165\) 0.0320628i 0.00249609i
\(166\) −0.787695 0.105856i −0.0611370 0.00821600i
\(167\) 15.3311 1.18636 0.593179 0.805071i \(-0.297873\pi\)
0.593179 + 0.805071i \(0.297873\pi\)
\(168\) 0.319173 + 0.135230i 0.0246247 + 0.0104332i
\(169\) −24.5279 −1.88676
\(170\) −3.13058 0.420708i −0.240104 0.0322668i
\(171\) 2.99413i 0.228967i
\(172\) 2.61228 9.54372i 0.199184 0.727702i
\(173\) 7.41336i 0.563627i −0.959469 0.281814i \(-0.909064\pi\)
0.959469 0.281814i \(-0.0909360\pi\)
\(174\) −0.0671484 + 0.499665i −0.00509051 + 0.0378795i
\(175\) −1.59941 −0.120904
\(176\) −0.852402 + 1.44043i −0.0642522 + 0.108576i
\(177\) −0.624817 −0.0469641
\(178\) 0.203418 1.51368i 0.0152468 0.113455i
\(179\) 15.8925i 1.18786i −0.804515 0.593932i \(-0.797575\pi\)
0.804515 0.593932i \(-0.202425\pi\)
\(180\) 1.58093 5.77580i 0.117836 0.430503i
\(181\) 10.0307i 0.745577i 0.927916 + 0.372789i \(0.121598\pi\)
−0.927916 + 0.372789i \(0.878402\pi\)
\(182\) 13.7330 + 1.84553i 1.01796 + 0.136800i
\(183\) 0.829682 0.0613318
\(184\) 5.31767 12.5509i 0.392024 0.925265i
\(185\) −10.2780 −0.755654
\(186\) −0.155624 0.0209138i −0.0114109 0.00153347i
\(187\) 0.934600i 0.0683447i
\(188\) −18.8880 5.16997i −1.37755 0.377059i
\(189\) 0.734612i 0.0534351i
\(190\) 0.188358 1.40161i 0.0136649 0.101684i
\(191\) −2.09111 −0.151307 −0.0756537 0.997134i \(-0.524104\pi\)
−0.0756537 + 0.997134i \(0.524104\pi\)
\(192\) 0.440389 0.426415i 0.0317823 0.0307738i
\(193\) −0.866146 −0.0623466 −0.0311733 0.999514i \(-0.509924\pi\)
−0.0311733 + 0.999514i \(0.509924\pi\)
\(194\) 1.15628 8.60414i 0.0830162 0.617741i
\(195\) 0.469407i 0.0336149i
\(196\) 8.56859 + 2.34537i 0.612042 + 0.167526i
\(197\) 21.3794i 1.52322i −0.648037 0.761609i \(-0.724410\pi\)
0.648037 0.761609i \(-0.275590\pi\)
\(198\) −1.75602 0.235985i −0.124795 0.0167707i
\(199\) −11.0393 −0.782557 −0.391279 0.920272i \(-0.627967\pi\)
−0.391279 + 0.920272i \(0.627967\pi\)
\(200\) −1.10342 + 2.60432i −0.0780235 + 0.184153i
\(201\) −0.394461 −0.0278232
\(202\) 24.9495 + 3.35288i 1.75544 + 0.235908i
\(203\) 7.44112i 0.522265i
\(204\) 0.0903673 0.330149i 0.00632697 0.0231151i
\(205\) 0.923621i 0.0645085i
\(206\) −2.63216 + 19.5864i −0.183391 + 1.36465i
\(207\) 14.4295 1.00292
\(208\) 12.4794 21.0882i 0.865287 1.46220i
\(209\) −0.418437 −0.0289439
\(210\) 0.0230843 0.171775i 0.00159297 0.0118536i
\(211\) 7.16443i 0.493220i −0.969115 0.246610i \(-0.920683\pi\)
0.969115 0.246610i \(-0.0793166\pi\)
\(212\) 2.07118 7.56686i 0.142249 0.519694i
\(213\) 0.349863i 0.0239723i
\(214\) −0.661709 0.0889248i −0.0452335 0.00607878i
\(215\) −4.94739 −0.337409
\(216\) 1.19617 + 0.506802i 0.0813889 + 0.0344835i
\(217\) 2.31759 0.157328
\(218\) 25.9051 + 3.48130i 1.75451 + 0.235783i
\(219\) 0.287426i 0.0194225i
\(220\) 0.807182 + 0.220939i 0.0544202 + 0.0148957i
\(221\) 13.6827i 0.920401i
\(222\) 0.148343 1.10385i 0.00995610 0.0740855i
\(223\) 18.2520 1.22224 0.611121 0.791537i \(-0.290719\pi\)
0.611121 + 0.791537i \(0.290719\pi\)
\(224\) −5.60377 + 7.10333i −0.374418 + 0.474611i
\(225\) −2.99413 −0.199609
\(226\) 1.22488 9.11462i 0.0814781 0.606296i
\(227\) 17.2330i 1.14379i −0.820326 0.571897i \(-0.806208\pi\)
0.820326 0.571897i \(-0.193792\pi\)
\(228\) 0.147813 + 0.0404590i 0.00978918 + 0.00267946i
\(229\) 18.3394i 1.21190i 0.795501 + 0.605952i \(0.207208\pi\)
−0.795501 + 0.605952i \(0.792792\pi\)
\(230\) −6.75475 0.907749i −0.445395 0.0598552i
\(231\) −0.0512816 −0.00337408
\(232\) −12.1164 5.13357i −0.795479 0.337035i
\(233\) −4.76361 −0.312075 −0.156037 0.987751i \(-0.549872\pi\)
−0.156037 + 0.987751i \(0.549872\pi\)
\(234\) 25.7085 + 3.45488i 1.68061 + 0.225852i
\(235\) 9.79140i 0.638721i
\(236\) 4.30550 15.7298i 0.280264 1.02392i
\(237\) 1.13814i 0.0739301i
\(238\) −0.672884 + 5.00708i −0.0436166 + 0.324560i
\(239\) 16.5810 1.07254 0.536269 0.844047i \(-0.319833\pi\)
0.536269 + 0.844047i \(0.319833\pi\)
\(240\) −0.263776 0.156094i −0.0170266 0.0100758i
\(241\) 3.92921 0.253103 0.126551 0.991960i \(-0.459609\pi\)
0.126551 + 0.991960i \(0.459609\pi\)
\(242\) −2.03896 + 15.1723i −0.131069 + 0.975315i
\(243\) 2.06349i 0.132373i
\(244\) −5.71719 + 20.8872i −0.366005 + 1.33717i
\(245\) 4.44189i 0.283782i
\(246\) 0.0991960 + 0.0133306i 0.00632450 + 0.000849929i
\(247\) 6.12600 0.389788
\(248\) 1.59888 3.77373i 0.101529 0.239632i
\(249\) −0.0430628 −0.00272899
\(250\) 1.40161 + 0.188358i 0.0886458 + 0.0119128i
\(251\) 3.19066i 0.201392i −0.994917 0.100696i \(-0.967893\pi\)
0.994917 0.100696i \(-0.0321070\pi\)
\(252\) −9.23787 2.52856i −0.581931 0.159284i
\(253\) 2.01656i 0.126780i
\(254\) 3.58678 26.6900i 0.225054 1.67468i
\(255\) −0.171147 −0.0107176
\(256\) 7.70035 + 14.0251i 0.481272 + 0.876571i
\(257\) −20.6005 −1.28502 −0.642510 0.766277i \(-0.722107\pi\)
−0.642510 + 0.766277i \(0.722107\pi\)
\(258\) 0.0714057 0.531345i 0.00444552 0.0330801i
\(259\) 16.4387i 1.02145i
\(260\) −11.8173 3.23460i −0.732879 0.200601i
\(261\) 13.9299i 0.862242i
\(262\) −10.1117 1.35888i −0.624705 0.0839520i
\(263\) −9.40056 −0.579663 −0.289832 0.957078i \(-0.593599\pi\)
−0.289832 + 0.957078i \(0.593599\pi\)
\(264\) −0.0353787 + 0.0835017i −0.00217741 + 0.00513918i
\(265\) −3.92260 −0.240963
\(266\) −2.24175 0.301262i −0.137451 0.0184716i
\(267\) 0.0827517i 0.00506432i
\(268\) 2.71816 9.93057i 0.166038 0.606606i
\(269\) 0.243729i 0.0148604i −0.999972 0.00743020i \(-0.997635\pi\)
0.999972 0.00743020i \(-0.00236513\pi\)
\(270\) 0.0865133 0.643764i 0.00526503 0.0391782i
\(271\) −30.1127 −1.82922 −0.914608 0.404341i \(-0.867501\pi\)
−0.914608 + 0.404341i \(0.867501\pi\)
\(272\) 7.68880 + 4.54999i 0.466202 + 0.275884i
\(273\) 0.750774 0.0454389
\(274\) −0.879904 + 6.54755i −0.0531569 + 0.395552i
\(275\) 0.418437i 0.0252327i
\(276\) 0.194983 0.712352i 0.0117366 0.0428786i
\(277\) 5.90425i 0.354752i −0.984143 0.177376i \(-0.943239\pi\)
0.984143 0.177376i \(-0.0567608\pi\)
\(278\) −12.3466 1.65922i −0.740501 0.0995136i
\(279\) 4.33857 0.259744
\(280\) 4.16537 + 1.76482i 0.248928 + 0.105468i
\(281\) −21.1827 −1.26366 −0.631828 0.775109i \(-0.717695\pi\)
−0.631828 + 0.775109i \(0.717695\pi\)
\(282\) −1.05159 0.141319i −0.0626211 0.00841544i
\(283\) 31.1409i 1.85113i 0.378586 + 0.925566i \(0.376410\pi\)
−0.378586 + 0.925566i \(0.623590\pi\)
\(284\) −8.80782 2.41085i −0.522648 0.143057i
\(285\) 0.0766253i 0.00453889i
\(286\) −0.482827 + 3.59282i −0.0285502 + 0.212448i
\(287\) −1.47725 −0.0871992
\(288\) −10.4904 + 13.2976i −0.618151 + 0.783568i
\(289\) −12.0112 −0.706544
\(290\) −0.876322 + 6.52090i −0.0514594 + 0.382920i
\(291\) 0.470383i 0.0275743i
\(292\) −7.23596 1.98060i −0.423452 0.115906i
\(293\) 23.7608i 1.38812i 0.719917 + 0.694060i \(0.244180\pi\)
−0.719917 + 0.694060i \(0.755820\pi\)
\(294\) 0.477055 + 0.0641098i 0.0278224 + 0.00373896i
\(295\) −8.15418 −0.474755
\(296\) 26.7672 + 11.3409i 1.55581 + 0.659179i
\(297\) −0.192189 −0.0111519
\(298\) −3.01061 0.404585i −0.174400 0.0234370i
\(299\) 29.5228i 1.70735i
\(300\) −0.0404590 + 0.147813i −0.00233590 + 0.00853401i
\(301\) 7.91290i 0.456092i
\(302\) 3.24945 24.1798i 0.186985 1.39139i
\(303\) 1.36397 0.0783582
\(304\) −2.03711 + 3.44241i −0.116836 + 0.197436i
\(305\) 10.8278 0.619997
\(306\) −1.25965 + 9.37335i −0.0720096 + 0.535839i
\(307\) 2.28377i 0.130342i −0.997874 0.0651708i \(-0.979241\pi\)
0.997874 0.0651708i \(-0.0207592\pi\)
\(308\) 0.353372 1.29101i 0.0201352 0.0735624i
\(309\) 1.07078i 0.0609144i
\(310\) −2.03098 0.272936i −0.115352 0.0155017i
\(311\) −18.1331 −1.02823 −0.514117 0.857720i \(-0.671880\pi\)
−0.514117 + 0.857720i \(0.671880\pi\)
\(312\) 0.517952 1.22248i 0.0293233 0.0692095i
\(313\) 11.7824 0.665983 0.332992 0.942930i \(-0.391942\pi\)
0.332992 + 0.942930i \(0.391942\pi\)
\(314\) 3.20917 + 0.431270i 0.181104 + 0.0243380i
\(315\) 4.78884i 0.269820i
\(316\) 28.6527 + 7.84272i 1.61184 + 0.441187i
\(317\) 3.75891i 0.211121i 0.994413 + 0.105561i \(0.0336637\pi\)
−0.994413 + 0.105561i \(0.966336\pi\)
\(318\) 0.0566149 0.421283i 0.00317481 0.0236244i
\(319\) 1.94674 0.108997
\(320\) 5.74730 5.56493i 0.321284 0.311089i
\(321\) −0.0361752 −0.00201910
\(322\) −1.45186 + 10.8036i −0.0809091 + 0.602062i
\(323\) 2.23355i 0.124278i
\(324\) −17.2595 4.72422i −0.958862 0.262456i
\(325\) 6.12600i 0.339810i
\(326\) −21.3360 2.86728i −1.18169 0.158804i
\(327\) 1.41621 0.0783168
\(328\) −1.01914 + 2.40540i −0.0562726 + 0.132816i
\(329\) 15.6605 0.863389
\(330\) 0.0449397 + 0.00603930i 0.00247385 + 0.000332452i
\(331\) 2.07032i 0.113795i −0.998380 0.0568976i \(-0.981879\pi\)
0.998380 0.0568976i \(-0.0181209\pi\)
\(332\) 0.296738 1.08411i 0.0162856 0.0594980i
\(333\) 30.7737i 1.68639i
\(334\) −2.88774 + 21.4883i −0.158010 + 1.17579i
\(335\) −5.14793 −0.281261
\(336\) −0.249659 + 0.421885i −0.0136200 + 0.0230157i
\(337\) −22.0538 −1.20135 −0.600674 0.799494i \(-0.705101\pi\)
−0.600674 + 0.799494i \(0.705101\pi\)
\(338\) 4.62004 34.3787i 0.251297 1.86995i
\(339\) 0.498290i 0.0270634i
\(340\) 1.17934 4.30862i 0.0639587 0.233668i
\(341\) 0.606326i 0.0328344i
\(342\) −4.19661 0.563969i −0.226927 0.0304959i
\(343\) −18.3003 −0.988121
\(344\) 12.8846 + 5.45904i 0.694689 + 0.294332i
\(345\) −0.369278 −0.0198812
\(346\) 10.3907 + 1.39637i 0.558606 + 0.0750692i
\(347\) 25.1733i 1.35137i 0.737189 + 0.675687i \(0.236153\pi\)
−0.737189 + 0.675687i \(0.763847\pi\)
\(348\) −0.687690 0.188232i −0.0368641 0.0100903i
\(349\) 16.1246i 0.863129i 0.902082 + 0.431565i \(0.142038\pi\)
−0.902082 + 0.431565i \(0.857962\pi\)
\(350\) 0.301262 2.24175i 0.0161031 0.119827i
\(351\) 2.81368 0.150183
\(352\) −1.85837 1.46605i −0.0990514 0.0781410i
\(353\) 29.1352 1.55071 0.775355 0.631525i \(-0.217571\pi\)
0.775355 + 0.631525i \(0.217571\pi\)
\(354\) 0.117689 0.875752i 0.00625512 0.0465457i
\(355\) 4.56590i 0.242333i
\(356\) 2.08328 + 0.570227i 0.110413 + 0.0302220i
\(357\) 0.273733i 0.0144875i
\(358\) 22.2752 + 2.99349i 1.17728 + 0.158211i
\(359\) −10.5305 −0.555778 −0.277889 0.960613i \(-0.589635\pi\)
−0.277889 + 0.960613i \(0.589635\pi\)
\(360\) 7.79766 + 3.30378i 0.410973 + 0.174124i
\(361\) −1.00000 −0.0526316
\(362\) −14.0592 1.88937i −0.738935 0.0993030i
\(363\) 0.829462i 0.0435355i
\(364\) −5.17345 + 18.9007i −0.271162 + 0.990668i
\(365\) 3.75106i 0.196340i
\(366\) −0.156277 + 1.16289i −0.00816875 + 0.0607854i
\(367\) 12.4176 0.648193 0.324097 0.946024i \(-0.394940\pi\)
0.324097 + 0.946024i \(0.394940\pi\)
\(368\) 16.5899 + 9.81738i 0.864808 + 0.511766i
\(369\) −2.76544 −0.143963
\(370\) 1.93595 14.4058i 0.100645 0.748922i
\(371\) 6.27384i 0.325722i
\(372\) 0.0586262 0.214186i 0.00303963 0.0111050i
\(373\) 2.77605i 0.143738i −0.997414 0.0718691i \(-0.977104\pi\)
0.997414 0.0718691i \(-0.0228964\pi\)
\(374\) −1.30995 0.176040i −0.0677358 0.00910279i
\(375\) 0.0766253 0.00395691
\(376\) 10.8040 25.4999i 0.557174 1.31506i
\(377\) −28.5007 −1.46786
\(378\) −1.02964 0.138370i −0.0529591 0.00711699i
\(379\) 3.63901i 0.186923i −0.995623 0.0934616i \(-0.970207\pi\)
0.995623 0.0934616i \(-0.0297932\pi\)
\(380\) 1.92904 + 0.528011i 0.0989578 + 0.0270864i
\(381\) 1.45912i 0.0747531i
\(382\) 0.393878 2.93093i 0.0201525 0.149959i
\(383\) −34.7408 −1.77517 −0.887587 0.460641i \(-0.847620\pi\)
−0.887587 + 0.460641i \(0.847620\pi\)
\(384\) 0.514718 + 0.697574i 0.0262666 + 0.0355979i
\(385\) −0.669251 −0.0341082
\(386\) 0.163146 1.21400i 0.00830390 0.0617911i
\(387\) 14.8131i 0.752993i
\(388\) 11.8419 + 3.24132i 0.601181 + 0.164553i
\(389\) 13.5001i 0.684482i 0.939612 + 0.342241i \(0.111186\pi\)
−0.939612 + 0.342241i \(0.888814\pi\)
\(390\) −0.657927 0.0884166i −0.0333154 0.00447715i
\(391\) 10.7641 0.544363
\(392\) −4.90126 + 11.5681i −0.247551 + 0.584277i
\(393\) −0.552801 −0.0278851
\(394\) 29.9656 + 4.02698i 1.50965 + 0.202877i
\(395\) 14.8533i 0.747352i
\(396\) 0.661520 2.41681i 0.0332426 0.121449i
\(397\) 0.702333i 0.0352491i −0.999845 0.0176245i \(-0.994390\pi\)
0.999845 0.0176245i \(-0.00561036\pi\)
\(398\) 2.07935 15.4729i 0.104228 0.775585i
\(399\) −0.122555 −0.00613543
\(400\) −3.44241 2.03711i −0.172120 0.101856i
\(401\) 29.2258 1.45947 0.729734 0.683731i \(-0.239644\pi\)
0.729734 + 0.683731i \(0.239644\pi\)
\(402\) 0.0743000 0.552882i 0.00370575 0.0275753i
\(403\) 8.87674i 0.442182i
\(404\) −9.39889 + 34.3380i −0.467612 + 1.70838i
\(405\) 8.94719i 0.444590i
\(406\) 10.4296 + 1.40160i 0.517611 + 0.0695601i
\(407\) −4.30069 −0.213178
\(408\) 0.445720 + 0.188846i 0.0220664 + 0.00934929i
\(409\) −37.4701 −1.85278 −0.926389 0.376567i \(-0.877104\pi\)
−0.926389 + 0.376567i \(0.877104\pi\)
\(410\) 1.29456 + 0.173972i 0.0639337 + 0.00859184i
\(411\) 0.357950i 0.0176564i
\(412\) −26.9568 7.37854i −1.32807 0.363514i
\(413\) 13.0419i 0.641749i
\(414\) −2.71792 + 20.2246i −0.133578 + 0.993984i
\(415\) −0.561992 −0.0275871
\(416\) 27.2069 + 21.4634i 1.33393 + 1.05233i
\(417\) −0.674982 −0.0330540
\(418\) 0.0788160 0.586486i 0.00385502 0.0286860i
\(419\) 22.8832i 1.11792i 0.829196 + 0.558958i \(0.188799\pi\)
−0.829196 + 0.558958i \(0.811201\pi\)
\(420\) 0.236414 + 0.0647105i 0.0115358 + 0.00315755i
\(421\) 17.8464i 0.869778i −0.900484 0.434889i \(-0.856788\pi\)
0.900484 0.434889i \(-0.143212\pi\)
\(422\) 10.0418 + 1.34948i 0.488825 + 0.0656916i
\(423\) 29.3167 1.42543
\(424\) 10.2157 + 4.32827i 0.496118 + 0.210199i
\(425\) −2.23355 −0.108343
\(426\) −0.490373 0.0658997i −0.0237587 0.00319285i
\(427\) 17.3181i 0.838079i
\(428\) 0.249277 0.910710i 0.0120492 0.0440208i
\(429\) 0.196417i 0.00948310i
\(430\) 0.931881 6.93433i 0.0449393 0.334403i
\(431\) −30.7218 −1.47981 −0.739907 0.672709i \(-0.765131\pi\)
−0.739907 + 0.672709i \(0.765131\pi\)
\(432\) −0.935649 + 1.58110i −0.0450164 + 0.0760709i
\(433\) 7.96332 0.382693 0.191346 0.981523i \(-0.438715\pi\)
0.191346 + 0.981523i \(0.438715\pi\)
\(434\) −0.436537 + 3.24836i −0.0209544 + 0.155926i
\(435\) 0.356493i 0.0170925i
\(436\) −9.75887 + 35.6532i −0.467365 + 1.70748i
\(437\) 4.81927i 0.230537i
\(438\) −0.402860 0.0541391i −0.0192494 0.00258687i
\(439\) 22.1711 1.05817 0.529086 0.848568i \(-0.322535\pi\)
0.529086 + 0.848568i \(0.322535\pi\)
\(440\) −0.461711 + 1.08974i −0.0220112 + 0.0519514i
\(441\) −13.2996 −0.633314
\(442\) 19.1779 + 2.57726i 0.912201 + 0.122588i
\(443\) 13.8986i 0.660340i 0.943921 + 0.330170i \(0.107106\pi\)
−0.943921 + 0.330170i \(0.892894\pi\)
\(444\) 1.51923 + 0.415838i 0.0720994 + 0.0197348i
\(445\) 1.07995i 0.0511947i
\(446\) −3.43791 + 25.5822i −0.162790 + 1.21135i
\(447\) −0.164588 −0.00778473
\(448\) −8.90061 9.19229i −0.420514 0.434295i
\(449\) −9.93868 −0.469035 −0.234518 0.972112i \(-0.575351\pi\)
−0.234518 + 0.972112i \(0.575351\pi\)
\(450\) 0.563969 4.19661i 0.0265857 0.197830i
\(451\) 0.386477i 0.0181985i
\(452\) 12.5445 + 3.43363i 0.590042 + 0.161504i
\(453\) 1.32189i 0.0621080i
\(454\) 24.1540 + 3.24597i 1.13360 + 0.152341i
\(455\) 9.79799 0.459337
\(456\) −0.0845498 + 0.199557i −0.00395941 + 0.00934509i
\(457\) −33.5915 −1.57134 −0.785671 0.618644i \(-0.787682\pi\)
−0.785671 + 0.618644i \(0.787682\pi\)
\(458\) −25.7048 3.45439i −1.20111 0.161413i
\(459\) 1.02587i 0.0478837i
\(460\) 2.54463 9.29657i 0.118644 0.433455i
\(461\) 4.40905i 0.205350i 0.994715 + 0.102675i \(0.0327402\pi\)
−0.994715 + 0.102675i \(0.967260\pi\)
\(462\) 0.00965931 0.0718770i 0.000449392 0.00334402i
\(463\) 13.1734 0.612220 0.306110 0.951996i \(-0.400972\pi\)
0.306110 + 0.951996i \(0.400972\pi\)
\(464\) 9.47750 16.0155i 0.439982 0.743502i
\(465\) −0.111032 −0.00514899
\(466\) 0.897266 6.67675i 0.0415650 0.309294i
\(467\) 31.0554i 1.43707i −0.695489 0.718537i \(-0.744812\pi\)
0.695489 0.718537i \(-0.255188\pi\)
\(468\) −9.68480 + 35.3826i −0.447680 + 1.63556i
\(469\) 8.23364i 0.380194i
\(470\) −13.7238 1.84429i −0.633030 0.0850708i
\(471\) 0.175443 0.00808399
\(472\) 21.2361 + 8.99748i 0.977470 + 0.414143i
\(473\) −2.07017 −0.0951864
\(474\) 1.59523 + 0.214378i 0.0732715 + 0.00984671i
\(475\) 1.00000i 0.0458831i
\(476\) −6.89124 1.88625i −0.315860 0.0864560i
\(477\) 11.7448i 0.537756i
\(478\) −3.12317 + 23.2402i −0.142851 + 1.06298i
\(479\) 3.10822 0.142018 0.0710091 0.997476i \(-0.477378\pi\)
0.0710091 + 0.997476i \(0.477378\pi\)
\(480\) 0.268468 0.340310i 0.0122538 0.0155329i
\(481\) 62.9631 2.87087
\(482\) −0.740100 + 5.50724i −0.0337106 + 0.250848i
\(483\) 0.590626i 0.0268744i
\(484\) −20.8817 5.71567i −0.949169 0.259803i
\(485\) 6.13874i 0.278746i
\(486\) −2.89221 0.388675i −0.131193 0.0176306i
\(487\) −6.94489 −0.314703 −0.157351 0.987543i \(-0.550296\pi\)
−0.157351 + 0.987543i \(0.550296\pi\)
\(488\) −28.1990 11.9476i −1.27651 0.540841i
\(489\) −1.16643 −0.0527476
\(490\) 6.22581 + 0.836667i 0.281254 + 0.0377967i
\(491\) 38.9310i 1.75693i −0.477807 0.878465i \(-0.658568\pi\)
0.477807 0.878465i \(-0.341432\pi\)
\(492\) −0.0373688 + 0.136524i −0.00168471 + 0.00615496i
\(493\) 10.3914i 0.468006i
\(494\) −1.15388 + 8.58629i −0.0519157 + 0.386316i
\(495\) −1.25285 −0.0563115
\(496\) 4.98814 + 2.95183i 0.223974 + 0.132541i
\(497\) 7.30275 0.327573
\(498\) 0.00811123 0.0603574i 0.000363473 0.00270468i
\(499\) 12.3747i 0.553967i 0.960875 + 0.276984i \(0.0893348\pi\)
−0.960875 + 0.276984i \(0.910665\pi\)
\(500\) −0.528011 + 1.92904i −0.0236134 + 0.0862694i
\(501\) 1.17475i 0.0524840i
\(502\) 4.47207 + 0.600986i 0.199598 + 0.0268233i
\(503\) −28.2996 −1.26182 −0.630908 0.775857i \(-0.717318\pi\)
−0.630908 + 0.775857i \(0.717318\pi\)
\(504\) 5.28409 12.4717i 0.235372 0.555532i
\(505\) 17.8006 0.792114
\(506\) −2.82643 0.379835i −0.125650 0.0168857i
\(507\) 1.87946i 0.0834697i
\(508\) 36.7334 + 10.0546i 1.62978 + 0.446099i
\(509\) 18.3754i 0.814476i −0.913322 0.407238i \(-0.866492\pi\)
0.913322 0.407238i \(-0.133508\pi\)
\(510\) 0.0322369 0.239881i 0.00142747 0.0106221i
\(511\) 5.99948 0.265401
\(512\) −21.1083 + 8.15117i −0.932862 + 0.360234i
\(513\) −0.459302 −0.0202787
\(514\) 3.88027 28.8739i 0.171151 1.27357i
\(515\) 13.9742i 0.615777i
\(516\) 0.731290 + 0.200166i 0.0321933 + 0.00881183i
\(517\) 4.09708i 0.180189i
\(518\) −23.0408 3.09637i −1.01235 0.136047i
\(519\) 0.568051 0.0249347
\(520\) 6.75955 15.9541i 0.296426 0.699632i
\(521\) 0.684995 0.0300102 0.0150051 0.999887i \(-0.495224\pi\)
0.0150051 + 0.999887i \(0.495224\pi\)
\(522\) 19.5244 + 2.62382i 0.854560 + 0.114841i
\(523\) 30.8738i 1.35002i 0.737809 + 0.675009i \(0.235860\pi\)
−0.737809 + 0.675009i \(0.764140\pi\)
\(524\) 3.80925 13.9168i 0.166408 0.607957i
\(525\) 0.122555i 0.00534875i
\(526\) 1.77067 13.1760i 0.0772050 0.574499i
\(527\) 3.23648 0.140983
\(528\) −0.110373 0.0653155i −0.00480338 0.00284249i
\(529\) 0.225332 0.00979703
\(530\) 0.738854 5.49797i 0.0320938 0.238817i
\(531\) 24.4147i 1.05951i
\(532\) 0.844506 3.08533i 0.0366140 0.133766i
\(533\) 5.65810i 0.245080i
\(534\) 0.115986 + 0.0155870i 0.00501920 + 0.000674514i
\(535\) −0.472105 −0.0204109
\(536\) 13.4068 + 5.68032i 0.579087 + 0.245352i
\(537\) 1.21777 0.0525507
\(538\) 0.341613 + 0.0459083i 0.0147280 + 0.00197925i
\(539\) 1.85865i 0.0800577i
\(540\) 0.886013 + 0.242516i 0.0381279 + 0.0104362i
\(541\) 10.4596i 0.449693i −0.974394 0.224847i \(-0.927812\pi\)
0.974394 0.224847i \(-0.0721881\pi\)
\(542\) 5.67198 42.2064i 0.243632 1.81292i
\(543\) −0.768607 −0.0329841
\(544\) −7.82558 + 9.91970i −0.335519 + 0.425304i
\(545\) 18.4823 0.791696
\(546\) −0.141414 + 1.05229i −0.00605198 + 0.0450341i
\(547\) 25.4555i 1.08840i −0.838955 0.544200i \(-0.816833\pi\)
0.838955 0.544200i \(-0.183167\pi\)
\(548\) −9.01140 2.46657i −0.384948 0.105367i
\(549\) 32.4198i 1.38364i
\(550\) 0.586486 + 0.0788160i 0.0250079 + 0.00336072i
\(551\) 4.65242 0.198200
\(552\) 0.961716 + 0.407468i 0.0409334 + 0.0173430i
\(553\) −23.7565 −1.01023
\(554\) 8.27547 + 1.11211i 0.351591 + 0.0472492i
\(555\) 0.787555i 0.0334299i
\(556\) 4.65118 16.9927i 0.197254 0.720650i
\(557\) 27.8317i 1.17927i 0.807671 + 0.589633i \(0.200728\pi\)
−0.807671 + 0.589633i \(0.799272\pi\)
\(558\) −0.817206 + 6.08100i −0.0345951 + 0.257429i
\(559\) 30.3077 1.28188
\(560\) −3.25818 + 5.50582i −0.137683 + 0.232663i
\(561\) −0.0716140 −0.00302354
\(562\) 3.98994 29.6900i 0.168306 1.25240i
\(563\) 38.3026i 1.61426i −0.590373 0.807131i \(-0.701019\pi\)
0.590373 0.807131i \(-0.298981\pi\)
\(564\) 0.396150 1.44730i 0.0166809 0.0609423i
\(565\) 6.50295i 0.273581i
\(566\) −43.6475 5.86564i −1.83464 0.246551i
\(567\) 14.3102 0.600973
\(568\) 5.03810 11.8911i 0.211394 0.498938i
\(569\) 15.0616 0.631417 0.315708 0.948856i \(-0.397758\pi\)
0.315708 + 0.948856i \(0.397758\pi\)
\(570\) 0.107399 + 0.0144330i 0.00449845 + 0.000604532i
\(571\) 4.52134i 0.189212i 0.995515 + 0.0946061i \(0.0301592\pi\)
−0.995515 + 0.0946061i \(0.969841\pi\)
\(572\) −4.94480 1.35347i −0.206752 0.0565916i
\(573\) 0.160232i 0.00669378i
\(574\) 0.278252 2.07053i 0.0116140 0.0864223i
\(575\) −4.81927 −0.200977
\(576\) −16.6621 17.2082i −0.694255 0.717007i
\(577\) 10.6355 0.442760 0.221380 0.975188i \(-0.428944\pi\)
0.221380 + 0.975188i \(0.428944\pi\)
\(578\) 2.26242 16.8351i 0.0941041 0.700249i
\(579\) 0.0663687i 0.00275819i
\(580\) −8.97472 2.45653i −0.372655 0.102002i
\(581\) 0.898855i 0.0372908i
\(582\) 0.659295 + 0.0886004i 0.0273286 + 0.00367261i
\(583\) −1.64136 −0.0679781
\(584\) 4.13899 9.76895i 0.171273 0.404242i
\(585\) 18.3420 0.758350
\(586\) −33.3034 4.47554i −1.37575 0.184883i
\(587\) 31.3093i 1.29227i −0.763221 0.646137i \(-0.776383\pi\)
0.763221 0.646137i \(-0.223617\pi\)
\(588\) −0.179714 + 0.656571i −0.00741130 + 0.0270765i
\(589\) 1.44903i 0.0597061i
\(590\) 1.53591 11.4290i 0.0632323 0.470525i
\(591\) 1.63820 0.0673866
\(592\) −20.9374 + 35.3811i −0.860524 + 1.45415i
\(593\) −20.2319 −0.830823 −0.415412 0.909634i \(-0.636362\pi\)
−0.415412 + 0.909634i \(0.636362\pi\)
\(594\) 0.0362003 0.269374i 0.00148532 0.0110526i
\(595\) 3.57236i 0.146453i
\(596\) 1.13414 4.14350i 0.0464564 0.169724i
\(597\) 0.845892i 0.0346200i
\(598\) 41.3796 + 5.56087i 1.69214 + 0.227401i
\(599\) 8.58923 0.350946 0.175473 0.984484i \(-0.443854\pi\)
0.175473 + 0.984484i \(0.443854\pi\)
\(600\) −0.199557 0.0845498i −0.00814686 0.00345173i
\(601\) −41.6027 −1.69701 −0.848505 0.529187i \(-0.822497\pi\)
−0.848505 + 0.529187i \(0.822497\pi\)
\(602\) −11.0908 1.49046i −0.452028 0.0607466i
\(603\) 15.4136i 0.627688i
\(604\) 33.2787 + 9.10894i 1.35409 + 0.370637i
\(605\) 10.8249i 0.440095i
\(606\) −0.256915 + 1.91176i −0.0104365 + 0.0776600i
\(607\) −21.1854 −0.859889 −0.429945 0.902855i \(-0.641467\pi\)
−0.429945 + 0.902855i \(0.641467\pi\)
\(608\) −4.44122 3.50365i −0.180115 0.142092i
\(609\) 0.570178 0.0231048
\(610\) −2.03950 + 15.1764i −0.0825770 + 0.614473i
\(611\) 59.9822i 2.42662i
\(612\) −12.9006 3.53110i −0.521474 0.142736i
\(613\) 28.8743i 1.16622i 0.812392 + 0.583111i \(0.198165\pi\)
−0.812392 + 0.583111i \(0.801835\pi\)
\(614\) 3.20096 + 0.430167i 0.129180 + 0.0173601i
\(615\) 0.0707727 0.00285383
\(616\) 1.74294 + 0.738464i 0.0702252 + 0.0297536i
\(617\) −9.80103 −0.394575 −0.197287 0.980346i \(-0.563213\pi\)
−0.197287 + 0.980346i \(0.563213\pi\)
\(618\) −1.50082 0.201690i −0.0603717 0.00811315i
\(619\) 25.3438i 1.01865i −0.860574 0.509326i \(-0.829895\pi\)
0.860574 0.509326i \(-0.170105\pi\)
\(620\) 0.765102 2.79523i 0.0307272 0.112259i
\(621\) 2.21350i 0.0888246i
\(622\) 3.41552 25.4156i 0.136950 1.01907i
\(623\) −1.72729 −0.0692023
\(624\) 1.61589 + 0.956234i 0.0646874 + 0.0382800i
\(625\) 1.00000 0.0400000
\(626\) −2.21932 + 16.5144i −0.0887019 + 0.660050i
\(627\) 0.0320628i 0.00128047i
\(628\) −1.20895 + 4.41678i −0.0482422 + 0.176249i
\(629\) 22.9565i 0.915334i
\(630\) −6.71210 0.902017i −0.267416 0.0359372i
\(631\) −22.5136 −0.896252 −0.448126 0.893970i \(-0.647908\pi\)
−0.448126 + 0.893970i \(0.647908\pi\)
\(632\) −16.3894 + 38.6828i −0.651937 + 1.53872i
\(633\) 0.548976 0.0218199
\(634\) −5.26854 0.708021i −0.209240 0.0281191i
\(635\) 19.0423i 0.755671i
\(636\) 0.579813 + 0.158704i 0.0229911 + 0.00629304i
\(637\) 27.2110i 1.07814i
\(638\) −0.366685 + 2.72858i −0.0145172 + 0.108026i
\(639\) 13.6709 0.540812
\(640\) 6.71734 + 9.10370i 0.265526 + 0.359855i
\(641\) 40.0549 1.58207 0.791037 0.611768i \(-0.209542\pi\)
0.791037 + 0.611768i \(0.209542\pi\)
\(642\) 0.00681389 0.0507036i 0.000268923 0.00200111i
\(643\) 22.0352i 0.868982i 0.900676 + 0.434491i \(0.143072\pi\)
−0.900676 + 0.434491i \(0.856928\pi\)
\(644\) −14.8690 4.06990i −0.585922 0.160376i
\(645\) 0.379095i 0.0149269i
\(646\) −3.13058 0.420708i −0.123171 0.0165525i
\(647\) 39.5234 1.55383 0.776914 0.629607i \(-0.216784\pi\)
0.776914 + 0.629607i \(0.216784\pi\)
\(648\) 9.87250 23.3013i 0.387828 0.915362i
\(649\) −3.41201 −0.133933
\(650\) −8.58629 1.15388i −0.336782 0.0452590i
\(651\) 0.177586i 0.00696013i
\(652\) 8.03764 29.3648i 0.314778 1.15001i
\(653\) 6.20188i 0.242698i 0.992610 + 0.121349i \(0.0387221\pi\)
−0.992610 + 0.121349i \(0.961278\pi\)
\(654\) −0.266756 + 1.98498i −0.0104310 + 0.0776190i
\(655\) −7.21435 −0.281888
\(656\) −3.17948 1.88152i −0.124138 0.0734609i
\(657\) 11.2312 0.438169
\(658\) −2.94978 + 21.9499i −0.114994 + 0.855697i
\(659\) 21.2302i 0.827010i 0.910502 + 0.413505i \(0.135696\pi\)
−0.910502 + 0.413505i \(0.864304\pi\)
\(660\) −0.0169295 + 0.0618505i −0.000658981 + 0.00240753i
\(661\) 18.6379i 0.724929i −0.931998 0.362465i \(-0.881935\pi\)
0.931998 0.362465i \(-0.118065\pi\)
\(662\) 2.90179 + 0.389963i 0.112781 + 0.0151563i
\(663\) 1.04844 0.0407182
\(664\) 1.46360 + 0.620112i 0.0567989 + 0.0240650i
\(665\) −1.59941 −0.0620224
\(666\) −43.1328 5.79648i −1.67136 0.224609i
\(667\) 22.4213i 0.868154i
\(668\) −29.5744 8.09500i −1.14427 0.313205i
\(669\) 1.39856i 0.0540716i
\(670\) 0.969654 7.21540i 0.0374610 0.278755i
\(671\) 4.53074 0.174907
\(672\) −0.544295 0.429390i −0.0209966 0.0165641i
\(673\) 44.9036 1.73091 0.865453 0.500990i \(-0.167031\pi\)
0.865453 + 0.500990i \(0.167031\pi\)
\(674\) 4.15402 30.9110i 0.160007 1.19065i
\(675\) 0.459302i 0.0176785i
\(676\) 47.3154 + 12.9510i 1.81982 + 0.498116i
\(677\) 1.59443i 0.0612791i −0.999530 0.0306395i \(-0.990246\pi\)
0.999530 0.0306395i \(-0.00975439\pi\)
\(678\) 0.698410 + 0.0938571i 0.0268223 + 0.00360456i
\(679\) −9.81836 −0.376794
\(680\) 5.81688 + 2.46454i 0.223067 + 0.0945109i
\(681\) 1.32048 0.0506010
\(682\) −0.849835 0.114206i −0.0325418 0.00437319i
\(683\) 29.8487i 1.14213i −0.820905 0.571065i \(-0.806531\pi\)
0.820905 0.571065i \(-0.193469\pi\)
\(684\) 1.58093 5.77580i 0.0604485 0.220843i
\(685\) 4.67144i 0.178486i
\(686\) 3.44701 25.6499i 0.131607 0.979318i
\(687\) −1.40527 −0.0536142
\(688\) −10.0784 + 17.0309i −0.384235 + 0.649298i
\(689\) 24.0299 0.915465
\(690\) 0.0695565 0.517585i 0.00264797 0.0197041i
\(691\) 43.4358i 1.65237i −0.563396 0.826187i \(-0.690505\pi\)
0.563396 0.826187i \(-0.309495\pi\)
\(692\) −3.91433 + 14.3007i −0.148801 + 0.543630i
\(693\) 2.00382i 0.0761190i
\(694\) −35.2833 4.74160i −1.33933 0.179989i
\(695\) −8.80887 −0.334139
\(696\) 0.393361 0.928421i 0.0149103 0.0351917i
\(697\) −2.06295 −0.0781400
\(698\) −22.6004 3.03720i −0.855439 0.114960i
\(699\) 0.365013i 0.0138061i
\(700\) 3.08533 + 0.844506i 0.116614 + 0.0319193i
\(701\) 38.0785i 1.43820i 0.694904 + 0.719102i \(0.255447\pi\)
−0.694904 + 0.719102i \(0.744553\pi\)
\(702\) −0.529981 + 3.94370i −0.0200028 + 0.148845i
\(703\) −10.2780 −0.387642
\(704\) 2.40488 2.32857i 0.0906374 0.0877614i
\(705\) −0.750269 −0.0282568
\(706\) −5.48786 + 40.8363i −0.206538 + 1.53689i
\(707\) 28.4704i 1.07074i
\(708\) 1.20530 + 0.329910i 0.0452979 + 0.0123988i
\(709\) 10.7427i 0.403449i 0.979442 + 0.201724i \(0.0646545\pi\)
−0.979442 + 0.201724i \(0.935345\pi\)
\(710\) −6.39963 0.860025i −0.240174 0.0322762i
\(711\) −44.4728 −1.66786
\(712\) −1.19164 + 2.81254i −0.0446586 + 0.105404i
\(713\) 6.98325 0.261525
\(714\) −0.383669 0.0515600i −0.0143584 0.00192958i
\(715\) 2.56334i 0.0958636i
\(716\) −8.39144 + 30.6574i −0.313603 + 1.14572i
\(717\) 1.27053i 0.0474487i
\(718\) 1.98351 14.7597i 0.0740238 0.550827i
\(719\) −1.90124 −0.0709043 −0.0354522 0.999371i \(-0.511287\pi\)
−0.0354522 + 0.999371i \(0.511287\pi\)
\(720\) −6.09937 + 10.3070i −0.227310 + 0.384120i
\(721\) 22.3505 0.832375
\(722\) 0.188358 1.40161i 0.00700997 0.0521627i
\(723\) 0.301077i 0.0111972i
\(724\) 5.29633 19.3497i 0.196837 0.719125i
\(725\) 4.65242i 0.172787i
\(726\) −1.16259 0.156236i −0.0431476 0.00579846i
\(727\) −32.4757 −1.20446 −0.602228 0.798324i \(-0.705720\pi\)
−0.602228 + 0.798324i \(0.705720\pi\)
\(728\) −25.5171 10.8113i −0.945725 0.400693i
\(729\) 26.6835 0.988276
\(730\) −5.25754 0.706543i −0.194590 0.0261503i
\(731\) 11.0503i 0.408708i
\(732\) −1.60049 0.438081i −0.0591559 0.0161919i
\(733\) 44.5108i 1.64404i −0.569456 0.822022i \(-0.692846\pi\)
0.569456 0.822022i \(-0.307154\pi\)
\(734\) −2.33896 + 17.4047i −0.0863325 + 0.642418i
\(735\) 0.340361 0.0125544
\(736\) −16.8850 + 21.4034i −0.622390 + 0.788941i
\(737\) −2.15408 −0.0793466
\(738\) 0.520893 3.87608i 0.0191743 0.142680i
\(739\) 37.4635i 1.37812i −0.724706 0.689058i \(-0.758025\pi\)
0.724706 0.689058i \(-0.241975\pi\)
\(740\) 19.8267 + 5.42690i 0.728845 + 0.199497i
\(741\) 0.469407i 0.0172441i
\(742\) −8.79350 1.18173i −0.322820 0.0433827i
\(743\) 36.0557 1.32276 0.661378 0.750053i \(-0.269972\pi\)
0.661378 + 0.750053i \(0.269972\pi\)
\(744\) 0.289163 + 0.122515i 0.0106012 + 0.00449161i
\(745\) −2.14796 −0.0786950
\(746\) 3.89095 + 0.522891i 0.142458 + 0.0191444i
\(747\) 1.68268i 0.0615659i
\(748\) 0.493479 1.80288i 0.0180434 0.0659199i
\(749\) 0.755089i 0.0275903i
\(750\) −0.0144330 + 0.107399i −0.000527019 + 0.00392166i
\(751\) −4.40322 −0.160676 −0.0803379 0.996768i \(-0.525600\pi\)
−0.0803379 + 0.996768i \(0.525600\pi\)
\(752\) 33.7060 + 19.9462i 1.22913 + 0.727362i
\(753\) 0.244485 0.00890953
\(754\) 5.36835 39.9470i 0.195504 1.45479i
\(755\) 17.2514i 0.627843i
\(756\) 0.387883 1.41710i 0.0141072 0.0515393i
\(757\) 32.5290i 1.18229i −0.806567 0.591143i \(-0.798677\pi\)
0.806567 0.591143i \(-0.201323\pi\)
\(758\) 5.10048 + 0.685437i 0.185258 + 0.0248962i
\(759\) −0.154519 −0.00560869
\(760\) −1.10342 + 2.60432i −0.0400252 + 0.0944685i
\(761\) −7.46645 −0.270658 −0.135329 0.990801i \(-0.543209\pi\)
−0.135329 + 0.990801i \(0.543209\pi\)
\(762\) 2.04513 + 0.274838i 0.0740871 + 0.00995632i
\(763\) 29.5608i 1.07017i
\(764\) 4.03384 + 1.10413i 0.145939 + 0.0399460i
\(765\) 6.68754i 0.241789i
\(766\) 6.54372 48.6932i 0.236434 1.75936i
\(767\) 49.9526 1.80368
\(768\) −1.07468 + 0.590042i −0.0387792 + 0.0212913i
\(769\) 16.9192 0.610123 0.305061 0.952333i \(-0.401323\pi\)
0.305061 + 0.952333i \(0.401323\pi\)
\(770\) 0.126059 0.938032i 0.00454285 0.0338043i
\(771\) 1.57852i 0.0568488i
\(772\) 1.67083 + 0.457335i 0.0601346 + 0.0164598i
\(773\) 7.99802i 0.287669i 0.989602 + 0.143834i \(0.0459432\pi\)
−0.989602 + 0.143834i \(0.954057\pi\)
\(774\) −20.7623 2.79017i −0.746284 0.100291i
\(775\) −1.44903 −0.0520506
\(776\) −6.77360 + 15.9872i −0.243158 + 0.573908i
\(777\) −1.25962 −0.0451887
\(778\) −18.9219 2.54286i −0.678384 0.0911658i
\(779\) 0.923621i 0.0330921i
\(780\) 0.247852 0.905506i 0.00887452 0.0324223i
\(781\) 1.91054i 0.0683645i
\(782\) −2.02750 + 15.0871i −0.0725034 + 0.539513i
\(783\) 2.13686 0.0763653
\(784\) −15.2908 9.04862i −0.546100 0.323165i
\(785\) 2.28962 0.0817202
\(786\) 0.104125 0.774814i 0.00371400 0.0276367i
\(787\) 46.8865i 1.67132i 0.549245 + 0.835661i \(0.314915\pi\)
−0.549245 + 0.835661i \(0.685085\pi\)
\(788\) −11.2886 + 41.2417i −0.402138 + 1.46918i
\(789\) 0.720320i 0.0256441i
\(790\) 20.8186 + 2.79775i 0.740693 + 0.0995393i
\(791\) −10.4009 −0.369813
\(792\) 3.26283 + 1.38242i 0.115939 + 0.0491222i
\(793\) −66.3310 −2.35548
\(794\) 0.984400 + 0.132290i 0.0349350 + 0.00469480i
\(795\) 0.300570i 0.0106601i
\(796\) 21.2953 + 5.82889i 0.754793 + 0.206599i
\(797\) 10.1191i 0.358437i 0.983809 + 0.179219i \(0.0573570\pi\)
−0.983809 + 0.179219i \(0.942643\pi\)
\(798\) 0.0230843 0.171775i 0.000817175 0.00608077i
\(799\) 21.8696 0.773691
\(800\) 3.50365 4.44122i 0.123873 0.157021i
\(801\) −3.23352 −0.114251
\(802\) −5.50493 + 40.9633i −0.194386 + 1.44647i
\(803\) 1.56958i 0.0553893i
\(804\) 0.760933 + 0.208280i 0.0268360 + 0.00734547i
\(805\) 7.70798i 0.271671i
\(806\) 12.4418 + 1.67201i 0.438243 + 0.0588940i
\(807\) 0.0186758 0.000657418
\(808\) −46.3583 19.6415i −1.63088 0.690984i
\(809\) 21.1587 0.743902 0.371951 0.928252i \(-0.378689\pi\)
0.371951 + 0.928252i \(0.378689\pi\)
\(810\) −12.5405 1.68528i −0.440628 0.0592146i
\(811\) 26.1282i 0.917485i 0.888569 + 0.458742i \(0.151700\pi\)
−0.888569 + 0.458742i \(0.848300\pi\)
\(812\) −3.92900 + 14.3542i −0.137881 + 0.503735i
\(813\) 2.30739i 0.0809239i
\(814\) 0.810071 6.02791i 0.0283930 0.211278i
\(815\) −15.2225 −0.533220
\(816\) −0.348645 + 0.589156i −0.0122050 + 0.0206246i
\(817\) −4.94739 −0.173087
\(818\) 7.05781 52.5186i 0.246770 1.83627i
\(819\) 29.3364i 1.02510i
\(820\) −0.487682 + 1.78170i −0.0170306 + 0.0622198i
\(821\) 12.3934i 0.432532i 0.976335 + 0.216266i \(0.0693878\pi\)
−0.976335 + 0.216266i \(0.930612\pi\)
\(822\) −0.501708 0.0674229i −0.0174991 0.00235164i
\(823\) −50.9542 −1.77615 −0.888076 0.459696i \(-0.847958\pi\)
−0.888076 + 0.459696i \(0.847958\pi\)
\(824\) 15.4194 36.3933i 0.537160 1.26782i
\(825\) 0.0320628 0.00111628
\(826\) −18.2797 2.45655i −0.636031 0.0854742i
\(827\) 4.93899i 0.171745i −0.996306 0.0858727i \(-0.972632\pi\)
0.996306 0.0858727i \(-0.0273678\pi\)
\(828\) −27.8351 7.61894i −0.967337 0.264776i
\(829\) 19.1519i 0.665172i 0.943073 + 0.332586i \(0.107921\pi\)
−0.943073 + 0.332586i \(0.892079\pi\)
\(830\) 0.105856 0.787695i 0.00367431 0.0273413i
\(831\) 0.452414 0.0156941
\(832\) −35.2080 + 34.0908i −1.22062 + 1.18189i
\(833\) −9.92119 −0.343749
\(834\) 0.127138 0.946064i 0.00440244 0.0327595i
\(835\) 15.3311i 0.530555i
\(836\) 0.807182 + 0.220939i 0.0279170 + 0.00764134i
\(837\) 0.665541i 0.0230044i
\(838\) −32.0734 4.31024i −1.10796 0.148895i
\(839\) 10.0369 0.346512 0.173256 0.984877i \(-0.444571\pi\)
0.173256 + 0.984877i \(0.444571\pi\)
\(840\) −0.135230 + 0.319173i −0.00466587 + 0.0110125i
\(841\) 7.35499 0.253620
\(842\) 25.0137 + 3.36151i 0.862029 + 0.115845i
\(843\) 1.62313i 0.0559037i
\(844\) −3.78290 + 13.8205i −0.130213 + 0.475721i
\(845\) 24.5279i 0.843786i
\(846\) −5.52205 + 41.0907i −0.189852 + 1.41273i
\(847\) 17.3135 0.594898
\(848\) −7.99077 + 13.5032i −0.274404 + 0.463701i
\(849\) −2.38618 −0.0818934
\(850\) 0.420708 3.13058i 0.0144302 0.107378i
\(851\) 49.5325i 1.69795i
\(852\) 0.184732 0.674901i 0.00632881 0.0231217i
\(853\) 25.4072i 0.869927i 0.900448 + 0.434963i \(0.143239\pi\)
−0.900448 + 0.434963i \(0.856761\pi\)
\(854\) 24.2732 + 3.26200i 0.830613 + 0.111623i
\(855\) −2.99413 −0.102397
\(856\) 1.22951 + 0.520929i 0.0420238 + 0.0178050i
\(857\) −24.3216 −0.830812 −0.415406 0.909636i \(-0.636360\pi\)
−0.415406 + 0.909636i \(0.636360\pi\)
\(858\) −0.275301 0.0369968i −0.00939861 0.00126305i
\(859\) 10.9494i 0.373590i −0.982399 0.186795i \(-0.940190\pi\)
0.982399 0.186795i \(-0.0598101\pi\)
\(860\) 9.54372 + 2.61228i 0.325438 + 0.0890779i
\(861\) 0.113195i 0.00385766i
\(862\) 5.78670 43.0600i 0.197096 1.46663i
\(863\) 53.6234 1.82536 0.912681 0.408672i \(-0.134008\pi\)
0.912681 + 0.408672i \(0.134008\pi\)
\(864\) −2.03986 1.60923i −0.0693975 0.0547472i
\(865\) 7.41336 0.252062
\(866\) −1.49996 + 11.1615i −0.0509706 + 0.379283i
\(867\) 0.920365i 0.0312572i
\(868\) −4.47072 1.22371i −0.151746 0.0415355i
\(869\) 6.21517i 0.210835i
\(870\) −0.499665 0.0671484i −0.0169402 0.00227654i
\(871\) 31.5362 1.06856
\(872\) −48.1338 20.3937i −1.63002 0.690619i
\(873\) −18.3802 −0.622075
\(874\) −6.75475 0.907749i −0.228483 0.0307051i
\(875\) 1.59941i 0.0540699i
\(876\) 0.151764 0.554457i 0.00512764 0.0187334i
\(877\) 5.84805i 0.197475i −0.995114 0.0987374i \(-0.968520\pi\)
0.995114 0.0987374i \(-0.0314804\pi\)
\(878\) −4.17612 + 31.0754i −0.140937 + 1.04874i
\(879\) −1.82068 −0.0614099
\(880\) −1.44043 0.852402i −0.0485569 0.0287345i
\(881\) 21.6921 0.730824 0.365412 0.930846i \(-0.380928\pi\)
0.365412 + 0.930846i \(0.380928\pi\)
\(882\) 2.50509 18.6409i 0.0843507 0.627671i
\(883\) 14.0901i 0.474169i −0.971489 0.237084i \(-0.923808\pi\)
0.971489 0.237084i \(-0.0761918\pi\)
\(884\) −7.22464 + 26.3946i −0.242991 + 0.887747i
\(885\) 0.624817i 0.0210030i
\(886\) −19.4804 2.61791i −0.654457 0.0879504i
\(887\) 23.2610 0.781028 0.390514 0.920597i \(-0.372297\pi\)
0.390514 + 0.920597i \(0.372297\pi\)
\(888\) −0.869003 + 2.05104i −0.0291618 + 0.0688285i
\(889\) −30.4565 −1.02148
\(890\) 1.51368 + 0.203418i 0.0507386 + 0.00681859i
\(891\) 3.74383i 0.125423i
\(892\) −35.2088 9.63725i −1.17888 0.322679i
\(893\) 9.79140i 0.327657i
\(894\) 0.0310015 0.230688i 0.00103684 0.00771538i
\(895\) 15.8925 0.531229
\(896\) 14.5605 10.7438i 0.486434 0.358924i
\(897\) 2.26220 0.0755325
\(898\) 1.87203 13.9302i 0.0624705 0.464856i
\(899\) 6.74148i 0.224841i
\(900\) 5.77580 + 1.58093i 0.192527 + 0.0526978i
\(901\) 8.76133i 0.291882i
\(902\) 0.541691 + 0.0727961i 0.0180363 + 0.00242384i
\(903\) −0.606328 −0.0201773
\(904\) −7.17547 + 16.9357i −0.238653 + 0.563274i
\(905\) −10.0307 −0.333432
\(906\) 1.85279 + 0.248990i 0.0615547 + 0.00827213i
\(907\) 13.2234i 0.439077i 0.975604 + 0.219538i \(0.0704551\pi\)
−0.975604 + 0.219538i \(0.929545\pi\)
\(908\) −9.09920 + 33.2431i −0.301968 + 1.10321i
\(909\) 53.2971i 1.76775i
\(910\) −1.84553 + 13.7330i −0.0611788 + 0.455244i
\(911\) −50.2776 −1.66577 −0.832885 0.553446i \(-0.813312\pi\)
−0.832885 + 0.553446i \(0.813312\pi\)
\(912\) −0.263776 0.156094i −0.00873448 0.00516880i
\(913\) −0.235158 −0.00778259
\(914\) 6.32723 47.0823i 0.209286 1.55734i
\(915\) 0.829682i 0.0274284i
\(916\) 9.68343 35.3776i 0.319950 1.16891i
\(917\) 11.5387i 0.381041i
\(918\) −1.43788 0.193232i −0.0474571 0.00637760i
\(919\) 32.5485 1.07368 0.536839 0.843685i \(-0.319618\pi\)
0.536839 + 0.843685i \(0.319618\pi\)
\(920\) 12.5509 + 5.31767i 0.413791 + 0.175318i
\(921\) 0.174994 0.00576626
\(922\) −6.17979 0.830482i −0.203521 0.0273505i
\(923\) 27.9707i 0.920668i
\(924\) 0.0989243 + 0.0270772i 0.00325437 + 0.000890776i
\(925\) 10.2780i 0.337939i
\(926\) −2.48132 + 18.4640i −0.0815412 + 0.606765i
\(927\) 41.8406 1.37422
\(928\) 20.6624 + 16.3004i 0.678277 + 0.535088i
\(929\) 30.4672 0.999598 0.499799 0.866141i \(-0.333407\pi\)
0.499799 + 0.866141i \(0.333407\pi\)
\(930\) 0.0209138 0.155624i 0.000685791 0.00510312i
\(931\) 4.44189i 0.145577i
\(932\) 9.18921 + 2.51524i 0.301003 + 0.0823895i
\(933\) 1.38945i 0.0454887i
\(934\) 43.5277 + 5.84955i 1.42427 + 0.191403i
\(935\) −0.934600 −0.0305647
\(936\) −47.7685 20.2390i −1.56136 0.661531i
\(937\) 29.5282 0.964645 0.482323 0.875994i \(-0.339793\pi\)
0.482323 + 0.875994i \(0.339793\pi\)
\(938\) −11.5404 1.55087i −0.376807 0.0506378i
\(939\) 0.902833i 0.0294628i
\(940\) 5.16997 18.8880i 0.168626 0.616060i
\(941\) 32.4760i 1.05869i 0.848407 + 0.529344i \(0.177562\pi\)
−0.848407 + 0.529344i \(0.822438\pi\)
\(942\) −0.0330462 + 0.245904i −0.00107670 + 0.00801197i
\(943\) −4.45117 −0.144950
\(944\) −16.6110 + 28.0700i −0.540641 + 0.913602i
\(945\) −0.734612 −0.0238969
\(946\) 0.389933 2.90158i 0.0126778 0.0943384i
\(947\) 37.7594i 1.22701i −0.789689 0.613507i \(-0.789758\pi\)
0.789689 0.613507i \(-0.210242\pi\)
\(948\) −0.600950 + 2.19552i −0.0195180 + 0.0713072i
\(949\) 22.9790i 0.745930i
\(950\) 1.40161 + 0.188358i 0.0454744 + 0.00611115i
\(951\) −0.288027 −0.00933993
\(952\) 3.94181 9.30357i 0.127755 0.301530i
\(953\) −31.0548 −1.00597 −0.502983 0.864297i \(-0.667764\pi\)
−0.502983 + 0.864297i \(0.667764\pi\)
\(954\) −16.4616 2.21222i −0.532965 0.0716234i
\(955\) 2.09111i 0.0676667i
\(956\) −31.9855 8.75496i −1.03448 0.283156i
\(957\) 0.149170i 0.00482197i
\(958\) −0.585459 + 4.35652i −0.0189153 + 0.140753i
\(959\) 7.47154 0.241269
\(960\) 0.426415 + 0.440389i 0.0137625 + 0.0142135i
\(961\) −28.9003 −0.932268
\(962\) −11.8596 + 88.2500i −0.382370 + 2.84529i
\(963\) 1.41354i 0.0455508i
\(964\) −7.57962 2.07467i −0.244123 0.0668206i
\(965\) 0.866146i 0.0278822i
\(966\) −0.827830 0.111249i −0.0266350 0.00357939i
\(967\) 3.27492 0.105314 0.0526572 0.998613i \(-0.483231\pi\)
0.0526572 + 0.998613i \(0.483231\pi\)
\(968\) 11.9444 28.1915i 0.383908 0.906109i
\(969\) −0.171147 −0.00549802
\(970\) 8.60414 + 1.15628i 0.276262 + 0.0371260i
\(971\) 44.6586i 1.43316i 0.697504 + 0.716581i \(0.254294\pi\)
−0.697504 + 0.716581i \(0.745706\pi\)
\(972\) 1.08954 3.98055i 0.0349471 0.127676i
\(973\) 14.0890i 0.451672i
\(974\) 1.30813 9.73405i 0.0419151 0.311899i
\(975\) −0.469407 −0.0150330
\(976\) 22.0574 37.2736i 0.706040 1.19310i
\(977\) −18.8785 −0.603975 −0.301988 0.953312i \(-0.597650\pi\)
−0.301988 + 0.953312i \(0.597650\pi\)
\(978\) 0.219706 1.63488i 0.00702543 0.0522777i
\(979\) 0.451892i 0.0144425i
\(980\) −2.34537 + 8.56859i −0.0749200 + 0.273714i
\(981\) 55.3385i 1.76682i
\(982\) 54.5662 + 7.33297i 1.74128 + 0.234004i
\(983\) 19.2445 0.613803 0.306902 0.951741i \(-0.400708\pi\)
0.306902 + 0.951741i \(0.400708\pi\)
\(984\) −0.184315 0.0780919i −0.00587573 0.00248948i
\(985\) 21.3794 0.681204
\(986\) 14.5648 + 1.95731i 0.463836 + 0.0623335i
\(987\) 1.19999i 0.0381960i
\(988\) −11.8173 3.23460i −0.375959 0.102906i
\(989\) 23.8428i 0.758156i
\(990\) 0.235985 1.75602i 0.00750010 0.0558098i
\(991\) −44.1785 −1.40338 −0.701688 0.712484i \(-0.747570\pi\)
−0.701688 + 0.712484i \(0.747570\pi\)
\(992\) −5.07688 + 6.43545i −0.161191 + 0.204326i
\(993\) 0.158639 0.00503426
\(994\) −1.37553 + 10.2356i −0.0436292 + 0.324654i
\(995\) 11.0393i 0.349970i
\(996\) 0.0830699 + 0.0227376i 0.00263217 + 0.000720469i
\(997\) 6.24439i 0.197762i −0.995099 0.0988809i \(-0.968474\pi\)
0.995099 0.0988809i \(-0.0315263\pi\)
\(998\) −17.3445 2.33088i −0.549032 0.0737826i
\(999\) −4.72071 −0.149357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.20 yes 44
4.3 odd 2 3040.2.f.b.1521.22 44
8.3 odd 2 3040.2.f.b.1521.23 44
8.5 even 2 inner 760.2.f.b.381.19 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.19 44 8.5 even 2 inner
760.2.f.b.381.20 yes 44 1.1 even 1 trivial
3040.2.f.b.1521.22 44 4.3 odd 2
3040.2.f.b.1521.23 44 8.3 odd 2