Properties

Label 76.4.d
Level $76$
Weight $4$
Character orbit 76.d
Rep. character $\chi_{76}(75,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $1$
Sturm bound $40$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 76.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(40\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(76, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 28 28 0
Eisenstein series 4 4 0

Trace form

\( 28 q + 10 q^{4} - 4 q^{5} - 6 q^{6} + 192 q^{9} - 134 q^{16} - 80 q^{17} - 300 q^{20} - 26 q^{24} + 496 q^{25} - 90 q^{26} + 254 q^{28} - 16 q^{30} - 556 q^{36} - 626 q^{38} - 850 q^{42} + 976 q^{44} - 612 q^{45}+ \cdots - 5222 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(76, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
76.4.d.a 76.d 76.d $28$ $4.484$ None 76.4.d.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$