Defining parameters
| Level: | \( N \) | = | \( 76 = 2^{2} \cdot 19 \) |
| Weight: | \( k \) | = | \( 4 \) |
| Nonzero newspaces: | \( 6 \) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(1440\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(76))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 585 | 333 | 252 |
| Cusp forms | 495 | 297 | 198 |
| Eisenstein series | 90 | 36 | 54 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(76))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(76))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(76)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 2}\)