Properties

Label 76.4
Level 76
Weight 4
Dimension 297
Nonzero newspaces 6
Newform subspaces 7
Sturm bound 1440
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 7 \)
Sturm bound: \(1440\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(76))\).

Total New Old
Modular forms 585 333 252
Cusp forms 495 297 198
Eisenstein series 90 36 54

Trace form

\( 297 q - 9 q^{2} - 9 q^{4} - 18 q^{5} - 9 q^{6} - 9 q^{8} - 18 q^{9} - 9 q^{10} - 9 q^{12} - 162 q^{13} - 9 q^{14} + 108 q^{15} - 9 q^{16} + 126 q^{17} + 378 q^{19} - 18 q^{20} + 234 q^{21} - 9 q^{22} - 18 q^{23}+ \cdots + 11439 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(76))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
76.4.a \(\chi_{76}(1, \cdot)\) 76.4.a.a 2 1
76.4.a.b 3
76.4.d \(\chi_{76}(75, \cdot)\) 76.4.d.a 28 1
76.4.e \(\chi_{76}(45, \cdot)\) 76.4.e.a 10 2
76.4.f \(\chi_{76}(27, \cdot)\) 76.4.f.a 56 2
76.4.i \(\chi_{76}(5, \cdot)\) 76.4.i.a 30 6
76.4.k \(\chi_{76}(3, \cdot)\) 76.4.k.a 168 6

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(76))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(76)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 2}\)