Properties

Label 756.4.x.a.125.9
Level $756$
Weight $4$
Character 756.125
Analytic conductor $44.605$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(125,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 3])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.x (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 125.9
Character \(\chi\) \(=\) 756.125
Dual form 756.4.x.a.629.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.99997 + 5.19610i) q^{5} +(-0.375477 + 18.5165i) q^{7} +(39.3810 - 22.7366i) q^{11} +(-22.7627 - 13.1421i) q^{13} +19.7249 q^{17} +27.9162i q^{19} +(60.3466 + 34.8411i) q^{23} +(44.5004 + 77.0769i) q^{25} +(119.031 - 68.7227i) q^{29} +(138.202 + 79.7908i) q^{31} +(-95.0869 - 57.4998i) q^{35} -287.829 q^{37} +(20.4288 - 35.3837i) q^{41} +(55.4158 + 95.9830i) q^{43} +(-109.666 - 189.948i) q^{47} +(-342.718 - 13.9050i) q^{49} +209.770i q^{53} +272.837i q^{55} +(-413.880 + 716.860i) q^{59} +(-594.209 + 343.066i) q^{61} +(136.575 - 78.8515i) q^{65} +(-171.449 + 296.958i) q^{67} -387.476i q^{71} -220.721i q^{73} +(406.215 + 737.734i) q^{77} +(242.301 + 419.677i) q^{79} +(354.323 + 613.706i) q^{83} +(-59.1741 + 102.493i) q^{85} +140.929 q^{89} +(251.891 - 416.550i) q^{91} +(-145.055 - 83.7476i) q^{95} +(-1304.31 + 753.041i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{7} + 12 q^{11} + 408 q^{23} - 600 q^{25} + 84 q^{29} + 336 q^{37} + 84 q^{43} + 318 q^{49} - 2964 q^{65} - 588 q^{67} - 2400 q^{77} + 204 q^{79} - 360 q^{85} - 1080 q^{91} - 300 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.99997 + 5.19610i −0.268325 + 0.464753i −0.968430 0.249288i \(-0.919804\pi\)
0.700104 + 0.714041i \(0.253137\pi\)
\(6\) 0 0
\(7\) −0.375477 + 18.5165i −0.0202739 + 0.999794i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 39.3810 22.7366i 1.07944 0.623214i 0.148694 0.988883i \(-0.452493\pi\)
0.930745 + 0.365669i \(0.119160\pi\)
\(12\) 0 0
\(13\) −22.7627 13.1421i −0.485634 0.280381i 0.237127 0.971479i \(-0.423794\pi\)
−0.722761 + 0.691098i \(0.757127\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 19.7249 0.281411 0.140706 0.990051i \(-0.455063\pi\)
0.140706 + 0.990051i \(0.455063\pi\)
\(18\) 0 0
\(19\) 27.9162i 0.337074i 0.985695 + 0.168537i \(0.0539043\pi\)
−0.985695 + 0.168537i \(0.946096\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 60.3466 + 34.8411i 0.547093 + 0.315864i 0.747949 0.663757i \(-0.231039\pi\)
−0.200856 + 0.979621i \(0.564372\pi\)
\(24\) 0 0
\(25\) 44.5004 + 77.0769i 0.356003 + 0.616615i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 119.031 68.7227i 0.762191 0.440051i −0.0678907 0.997693i \(-0.521627\pi\)
0.830082 + 0.557641i \(0.188294\pi\)
\(30\) 0 0
\(31\) 138.202 + 79.7908i 0.800702 + 0.462286i 0.843717 0.536789i \(-0.180363\pi\)
−0.0430146 + 0.999074i \(0.513696\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −95.0869 57.4998i −0.459218 0.277693i
\(36\) 0 0
\(37\) −287.829 −1.27889 −0.639443 0.768839i \(-0.720835\pi\)
−0.639443 + 0.768839i \(0.720835\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 20.4288 35.3837i 0.0778157 0.134781i −0.824492 0.565874i \(-0.808539\pi\)
0.902307 + 0.431093i \(0.141872\pi\)
\(42\) 0 0
\(43\) 55.4158 + 95.9830i 0.196531 + 0.340402i 0.947401 0.320048i \(-0.103699\pi\)
−0.750870 + 0.660450i \(0.770366\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −109.666 189.948i −0.340351 0.589504i 0.644147 0.764902i \(-0.277212\pi\)
−0.984498 + 0.175397i \(0.943879\pi\)
\(48\) 0 0
\(49\) −342.718 13.9050i −0.999178 0.0405394i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 209.770i 0.543664i 0.962345 + 0.271832i \(0.0876295\pi\)
−0.962345 + 0.271832i \(0.912371\pi\)
\(54\) 0 0
\(55\) 272.837i 0.668897i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −413.880 + 716.860i −0.913263 + 1.58182i −0.103839 + 0.994594i \(0.533113\pi\)
−0.809425 + 0.587224i \(0.800221\pi\)
\(60\) 0 0
\(61\) −594.209 + 343.066i −1.24722 + 0.720085i −0.970555 0.240881i \(-0.922564\pi\)
−0.276668 + 0.960965i \(0.589230\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 136.575 78.8515i 0.260616 0.150467i
\(66\) 0 0
\(67\) −171.449 + 296.958i −0.312624 + 0.541480i −0.978930 0.204198i \(-0.934541\pi\)
0.666306 + 0.745679i \(0.267875\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 387.476i 0.647675i −0.946113 0.323838i \(-0.895027\pi\)
0.946113 0.323838i \(-0.104973\pi\)
\(72\) 0 0
\(73\) 220.721i 0.353882i −0.984221 0.176941i \(-0.943380\pi\)
0.984221 0.176941i \(-0.0566202\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 406.215 + 737.734i 0.601202 + 1.09185i
\(78\) 0 0
\(79\) 242.301 + 419.677i 0.345076 + 0.597688i 0.985367 0.170443i \(-0.0545200\pi\)
−0.640292 + 0.768132i \(0.721187\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 354.323 + 613.706i 0.468579 + 0.811602i 0.999355 0.0359099i \(-0.0114329\pi\)
−0.530776 + 0.847512i \(0.678100\pi\)
\(84\) 0 0
\(85\) −59.1741 + 102.493i −0.0755098 + 0.130787i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 140.929 0.167848 0.0839240 0.996472i \(-0.473255\pi\)
0.0839240 + 0.996472i \(0.473255\pi\)
\(90\) 0 0
\(91\) 251.891 416.550i 0.290169 0.479850i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −145.055 83.7476i −0.156656 0.0904455i
\(96\) 0 0
\(97\) −1304.31 + 753.041i −1.36528 + 0.788245i −0.990321 0.138796i \(-0.955677\pi\)
−0.374960 + 0.927041i \(0.622343\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 923.516 + 1599.58i 0.909834 + 1.57588i 0.814293 + 0.580454i \(0.197125\pi\)
0.0955414 + 0.995425i \(0.469542\pi\)
\(102\) 0 0
\(103\) −696.481 402.114i −0.666275 0.384674i 0.128389 0.991724i \(-0.459019\pi\)
−0.794664 + 0.607050i \(0.792353\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 282.997i 0.255685i 0.991794 + 0.127843i \(0.0408053\pi\)
−0.991794 + 0.127843i \(0.959195\pi\)
\(108\) 0 0
\(109\) 1826.43 1.60496 0.802478 0.596681i \(-0.203514\pi\)
0.802478 + 0.596681i \(0.203514\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 815.811 + 471.008i 0.679159 + 0.392113i 0.799538 0.600615i \(-0.205078\pi\)
−0.120379 + 0.992728i \(0.538411\pi\)
\(114\) 0 0
\(115\) −362.076 + 209.044i −0.293598 + 0.169509i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.40625 + 365.235i −0.00570529 + 0.281353i
\(120\) 0 0
\(121\) 368.410 638.105i 0.276792 0.479418i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1283.99 −0.918749
\(126\) 0 0
\(127\) 320.551 0.223971 0.111985 0.993710i \(-0.464279\pi\)
0.111985 + 0.993710i \(0.464279\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −306.907 + 531.578i −0.204691 + 0.354536i −0.950034 0.312145i \(-0.898952\pi\)
0.745343 + 0.666681i \(0.232286\pi\)
\(132\) 0 0
\(133\) −516.908 10.4819i −0.337005 0.00683379i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1515.86 + 875.182i −0.945318 + 0.545780i −0.891623 0.452778i \(-0.850433\pi\)
−0.0536948 + 0.998557i \(0.517100\pi\)
\(138\) 0 0
\(139\) −1120.72 647.048i −0.683872 0.394834i 0.117440 0.993080i \(-0.462531\pi\)
−0.801312 + 0.598246i \(0.795865\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1195.23 −0.698950
\(144\) 0 0
\(145\) 824.664i 0.472308i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2499.23 + 1442.93i 1.37413 + 0.793352i 0.991445 0.130528i \(-0.0416674\pi\)
0.382681 + 0.923880i \(0.375001\pi\)
\(150\) 0 0
\(151\) 1540.63 + 2668.45i 0.830297 + 1.43812i 0.897803 + 0.440398i \(0.145163\pi\)
−0.0675056 + 0.997719i \(0.521504\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −829.202 + 478.740i −0.429697 + 0.248086i
\(156\) 0 0
\(157\) −1090.13 629.388i −0.554153 0.319941i 0.196642 0.980475i \(-0.436996\pi\)
−0.750795 + 0.660535i \(0.770330\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −667.793 + 1104.32i −0.326891 + 0.540576i
\(162\) 0 0
\(163\) −2906.94 −1.39687 −0.698434 0.715675i \(-0.746119\pi\)
−0.698434 + 0.715675i \(0.746119\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 286.775 496.709i 0.132882 0.230159i −0.791904 0.610645i \(-0.790910\pi\)
0.924786 + 0.380487i \(0.124244\pi\)
\(168\) 0 0
\(169\) −753.072 1304.36i −0.342773 0.593700i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1931.13 + 3344.82i 0.848679 + 1.46995i 0.882388 + 0.470523i \(0.155935\pi\)
−0.0337092 + 0.999432i \(0.510732\pi\)
\(174\) 0 0
\(175\) −1443.90 + 795.048i −0.623706 + 0.343429i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2248.26i 0.938787i −0.882989 0.469394i \(-0.844473\pi\)
0.882989 0.469394i \(-0.155527\pi\)
\(180\) 0 0
\(181\) 166.407i 0.0683368i 0.999416 + 0.0341684i \(0.0108783\pi\)
−0.999416 + 0.0341684i \(0.989122\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 863.478 1495.59i 0.343157 0.594366i
\(186\) 0 0
\(187\) 776.787 448.478i 0.303766 0.175379i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1758.88 1015.49i 0.666324 0.384703i −0.128358 0.991728i \(-0.540971\pi\)
0.794682 + 0.607025i \(0.207637\pi\)
\(192\) 0 0
\(193\) 251.118 434.949i 0.0936573 0.162219i −0.815390 0.578912i \(-0.803478\pi\)
0.909047 + 0.416693i \(0.136811\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3949.11i 1.42823i −0.700026 0.714117i \(-0.746828\pi\)
0.700026 0.714117i \(-0.253172\pi\)
\(198\) 0 0
\(199\) 629.709i 0.224316i 0.993690 + 0.112158i \(0.0357763\pi\)
−0.993690 + 0.112158i \(0.964224\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1227.81 + 2229.84i 0.424508 + 0.770956i
\(204\) 0 0
\(205\) 122.572 + 212.300i 0.0417599 + 0.0723302i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 634.720 + 1099.37i 0.210069 + 0.363851i
\(210\) 0 0
\(211\) −1494.95 + 2589.33i −0.487757 + 0.844820i −0.999901 0.0140797i \(-0.995518\pi\)
0.512144 + 0.858900i \(0.328851\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −664.983 −0.210937
\(216\) 0 0
\(217\) −1529.33 + 2529.05i −0.478424 + 0.791165i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −448.992 259.226i −0.136663 0.0789023i
\(222\) 0 0
\(223\) 2829.72 1633.74i 0.849740 0.490598i −0.0108230 0.999941i \(-0.503445\pi\)
0.860563 + 0.509344i \(0.170112\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2836.86 4913.59i −0.829468 1.43668i −0.898457 0.439063i \(-0.855311\pi\)
0.0689889 0.997617i \(-0.478023\pi\)
\(228\) 0 0
\(229\) 4528.48 + 2614.52i 1.30677 + 0.754465i 0.981556 0.191175i \(-0.0612298\pi\)
0.325215 + 0.945640i \(0.394563\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3433.84i 0.965487i −0.875762 0.482743i \(-0.839640\pi\)
0.875762 0.482743i \(-0.160360\pi\)
\(234\) 0 0
\(235\) 1315.98 0.365299
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −469.677 271.168i −0.127117 0.0733908i 0.435093 0.900385i \(-0.356715\pi\)
−0.562210 + 0.826995i \(0.690049\pi\)
\(240\) 0 0
\(241\) −3110.33 + 1795.75i −0.831343 + 0.479976i −0.854312 0.519760i \(-0.826021\pi\)
0.0229693 + 0.999736i \(0.492688\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1100.40 1739.08i 0.286946 0.453493i
\(246\) 0 0
\(247\) 366.876 635.448i 0.0945092 0.163695i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4334.39 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(252\) 0 0
\(253\) 3168.68 0.787404
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3282.88 5686.12i 0.796812 1.38012i −0.124870 0.992173i \(-0.539852\pi\)
0.921682 0.387946i \(-0.126815\pi\)
\(258\) 0 0
\(259\) 108.073 5329.57i 0.0259279 1.27862i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6274.79 + 3622.75i −1.47118 + 0.849386i −0.999476 0.0323711i \(-0.989694\pi\)
−0.471704 + 0.881757i \(0.656361\pi\)
\(264\) 0 0
\(265\) −1089.99 629.305i −0.252669 0.145879i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3455.87 0.783302 0.391651 0.920114i \(-0.371904\pi\)
0.391651 + 0.920114i \(0.371904\pi\)
\(270\) 0 0
\(271\) 2471.30i 0.553951i 0.960877 + 0.276975i \(0.0893321\pi\)
−0.960877 + 0.276975i \(0.910668\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3504.94 + 2023.58i 0.768567 + 0.443732i
\(276\) 0 0
\(277\) 2256.85 + 3908.97i 0.489533 + 0.847897i 0.999927 0.0120440i \(-0.00383381\pi\)
−0.510394 + 0.859941i \(0.670500\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2090.48 + 1206.94i −0.443799 + 0.256228i −0.705208 0.709001i \(-0.749146\pi\)
0.261409 + 0.965228i \(0.415813\pi\)
\(282\) 0 0
\(283\) 3893.62 + 2247.98i 0.817851 + 0.472187i 0.849675 0.527307i \(-0.176798\pi\)
−0.0318238 + 0.999493i \(0.510132\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 647.511 + 391.555i 0.133175 + 0.0805322i
\(288\) 0 0
\(289\) −4523.93 −0.920808
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1569.64 + 2718.69i −0.312966 + 0.542073i −0.979003 0.203845i \(-0.934656\pi\)
0.666037 + 0.745919i \(0.267989\pi\)
\(294\) 0 0
\(295\) −2483.25 4301.12i −0.490103 0.848884i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −915.768 1586.16i −0.177125 0.306789i
\(300\) 0 0
\(301\) −1798.07 + 990.065i −0.344316 + 0.189589i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4116.75i 0.772868i
\(306\) 0 0
\(307\) 10294.0i 1.91371i −0.290560 0.956857i \(-0.593842\pi\)
0.290560 0.956857i \(-0.406158\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3940.59 6825.30i 0.718489 1.24446i −0.243109 0.969999i \(-0.578167\pi\)
0.961598 0.274461i \(-0.0884994\pi\)
\(312\) 0 0
\(313\) 7096.84 4097.36i 1.28159 0.739925i 0.304449 0.952529i \(-0.401528\pi\)
0.977139 + 0.212604i \(0.0681943\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7590.80 + 4382.55i −1.34493 + 0.776494i −0.987526 0.157457i \(-0.949670\pi\)
−0.357401 + 0.933951i \(0.616337\pi\)
\(318\) 0 0
\(319\) 3125.05 5412.74i 0.548493 0.950017i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 550.644i 0.0948564i
\(324\) 0 0
\(325\) 2339.31i 0.399266i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3558.33 1959.31i 0.596283 0.328329i
\(330\) 0 0
\(331\) −3431.76 5943.98i −0.569869 0.987041i −0.996578 0.0826527i \(-0.973661\pi\)
0.426710 0.904389i \(-0.359673\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1028.68 1781.73i −0.167770 0.290586i
\(336\) 0 0
\(337\) 2323.81 4024.96i 0.375627 0.650605i −0.614794 0.788688i \(-0.710761\pi\)
0.990421 + 0.138083i \(0.0440941\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7256.70 1.15241
\(342\) 0 0
\(343\) 386.154 6340.70i 0.0607882 0.998151i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8295.04 4789.14i −1.28329 0.740907i −0.305840 0.952083i \(-0.598937\pi\)
−0.977448 + 0.211176i \(0.932271\pi\)
\(348\) 0 0
\(349\) −755.168 + 435.997i −0.115826 + 0.0668721i −0.556794 0.830651i \(-0.687969\pi\)
0.440968 + 0.897523i \(0.354635\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4148.63 + 7185.64i 0.625523 + 1.08344i 0.988440 + 0.151615i \(0.0484475\pi\)
−0.362917 + 0.931821i \(0.618219\pi\)
\(354\) 0 0
\(355\) 2013.36 + 1162.42i 0.301009 + 0.173788i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 976.696i 0.143588i 0.997419 + 0.0717939i \(0.0228724\pi\)
−0.997419 + 0.0717939i \(0.977128\pi\)
\(360\) 0 0
\(361\) 6079.69 0.886381
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1146.89 + 662.155i 0.164468 + 0.0949556i
\(366\) 0 0
\(367\) 6001.51 3464.97i 0.853614 0.492834i −0.00825490 0.999966i \(-0.502628\pi\)
0.861868 + 0.507132i \(0.169294\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3884.20 78.7640i −0.543552 0.0110222i
\(372\) 0 0
\(373\) 2259.68 3913.89i 0.313678 0.543307i −0.665477 0.746418i \(-0.731772\pi\)
0.979156 + 0.203111i \(0.0651053\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3612.63 −0.493528
\(378\) 0 0
\(379\) 2781.32 0.376958 0.188479 0.982077i \(-0.439644\pi\)
0.188479 + 0.982077i \(0.439644\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5449.44 9438.71i 0.727033 1.25926i −0.231099 0.972930i \(-0.574232\pi\)
0.958132 0.286327i \(-0.0924345\pi\)
\(384\) 0 0
\(385\) −5051.97 102.444i −0.668759 0.0135611i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1922.09 + 1109.72i −0.250524 + 0.144640i −0.620004 0.784598i \(-0.712869\pi\)
0.369480 + 0.929239i \(0.379536\pi\)
\(390\) 0 0
\(391\) 1190.33 + 687.237i 0.153958 + 0.0888877i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2907.58 −0.370370
\(396\) 0 0
\(397\) 10873.7i 1.37464i 0.726354 + 0.687321i \(0.241214\pi\)
−0.726354 + 0.687321i \(0.758786\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5301.00 + 3060.53i 0.660147 + 0.381136i 0.792333 0.610089i \(-0.208866\pi\)
−0.132186 + 0.991225i \(0.542200\pi\)
\(402\) 0 0
\(403\) −2097.23 3632.51i −0.259232 0.449003i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11335.0 + 6544.26i −1.38048 + 0.797020i
\(408\) 0 0
\(409\) 12155.0 + 7017.69i 1.46950 + 0.848416i 0.999415 0.0342045i \(-0.0108898\pi\)
0.470085 + 0.882621i \(0.344223\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −13118.3 7932.75i −1.56298 0.945145i
\(414\) 0 0
\(415\) −4251.83 −0.502926
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4144.18 7177.94i 0.483190 0.836910i −0.516624 0.856213i \(-0.672811\pi\)
0.999814 + 0.0193028i \(0.00614466\pi\)
\(420\) 0 0
\(421\) 7767.30 + 13453.4i 0.899181 + 1.55743i 0.828544 + 0.559924i \(0.189170\pi\)
0.0706368 + 0.997502i \(0.477497\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 877.765 + 1520.33i 0.100183 + 0.173522i
\(426\) 0 0
\(427\) −6129.26 11131.4i −0.694651 1.26157i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3167.89i 0.354041i −0.984207 0.177021i \(-0.943354\pi\)
0.984207 0.177021i \(-0.0566459\pi\)
\(432\) 0 0
\(433\) 2187.70i 0.242804i 0.992603 + 0.121402i \(0.0387391\pi\)
−0.992603 + 0.121402i \(0.961261\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −972.630 + 1684.65i −0.106470 + 0.184411i
\(438\) 0 0
\(439\) 1703.79 983.684i 0.185234 0.106945i −0.404516 0.914531i \(-0.632560\pi\)
0.589749 + 0.807586i \(0.299227\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2229.21 + 1287.04i −0.239081 + 0.138034i −0.614754 0.788719i \(-0.710745\pi\)
0.375673 + 0.926752i \(0.377412\pi\)
\(444\) 0 0
\(445\) −422.783 + 732.282i −0.0450379 + 0.0780079i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9168.11i 0.963630i −0.876273 0.481815i \(-0.839978\pi\)
0.876273 0.481815i \(-0.160022\pi\)
\(450\) 0 0
\(451\) 1857.93i 0.193983i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1408.77 + 2558.49i 0.145152 + 0.263613i
\(456\) 0 0
\(457\) 449.418 + 778.415i 0.0460019 + 0.0796777i 0.888110 0.459632i \(-0.152019\pi\)
−0.842108 + 0.539310i \(0.818685\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 750.955 + 1300.69i 0.0758686 + 0.131408i 0.901464 0.432855i \(-0.142494\pi\)
−0.825595 + 0.564263i \(0.809160\pi\)
\(462\) 0 0
\(463\) 515.882 893.534i 0.0517820 0.0896891i −0.838973 0.544174i \(-0.816843\pi\)
0.890755 + 0.454485i \(0.150177\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8619.68 0.854114 0.427057 0.904225i \(-0.359550\pi\)
0.427057 + 0.904225i \(0.359550\pi\)
\(468\) 0 0
\(469\) −5434.23 3286.12i −0.535031 0.323537i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4364.66 + 2519.94i 0.424286 + 0.244962i
\(474\) 0 0
\(475\) −2151.69 + 1242.28i −0.207845 + 0.119999i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2037.51 + 3529.07i 0.194355 + 0.336634i 0.946689 0.322149i \(-0.104405\pi\)
−0.752334 + 0.658782i \(0.771072\pi\)
\(480\) 0 0
\(481\) 6551.77 + 3782.66i 0.621070 + 0.358575i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9036.40i 0.846025i
\(486\) 0 0
\(487\) −14817.8 −1.37876 −0.689381 0.724399i \(-0.742117\pi\)
−0.689381 + 0.724399i \(0.742117\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6217.36 + 3589.59i 0.571457 + 0.329931i 0.757731 0.652567i \(-0.226308\pi\)
−0.186274 + 0.982498i \(0.559641\pi\)
\(492\) 0 0
\(493\) 2347.88 1355.55i 0.214489 0.123835i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7174.68 + 145.488i 0.647542 + 0.0131309i
\(498\) 0 0
\(499\) −5380.59 + 9319.46i −0.482702 + 0.836065i −0.999803 0.0198598i \(-0.993678\pi\)
0.517100 + 0.855925i \(0.327011\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11285.3 −1.00037 −0.500186 0.865918i \(-0.666735\pi\)
−0.500186 + 0.865918i \(0.666735\pi\)
\(504\) 0 0
\(505\) −11082.1 −0.976527
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5404.52 9360.91i 0.470631 0.815157i −0.528805 0.848744i \(-0.677360\pi\)
0.999436 + 0.0335864i \(0.0106929\pi\)
\(510\) 0 0
\(511\) 4086.96 + 82.8755i 0.353809 + 0.00717456i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4178.84 2412.66i 0.357557 0.206436i
\(516\) 0 0
\(517\) −8637.54 4986.89i −0.734775 0.424223i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3085.93 0.259495 0.129747 0.991547i \(-0.458583\pi\)
0.129747 + 0.991547i \(0.458583\pi\)
\(522\) 0 0
\(523\) 2155.94i 0.180254i 0.995930 + 0.0901268i \(0.0287272\pi\)
−0.995930 + 0.0901268i \(0.971273\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2726.01 + 1573.87i 0.225327 + 0.130092i
\(528\) 0 0
\(529\) −3655.69 6331.85i −0.300460 0.520412i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −930.030 + 536.953i −0.0755799 + 0.0436361i
\(534\) 0 0
\(535\) −1470.48 848.982i −0.118831 0.0686069i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −13812.7 + 7244.67i −1.10382 + 0.578942i
\(540\) 0 0
\(541\) 19410.4 1.54255 0.771273 0.636504i \(-0.219620\pi\)
0.771273 + 0.636504i \(0.219620\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5479.23 + 9490.31i −0.430651 + 0.745909i
\(546\) 0 0
\(547\) −2279.16 3947.62i −0.178153 0.308570i 0.763095 0.646286i \(-0.223679\pi\)
−0.941248 + 0.337716i \(0.890346\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1918.48 + 3322.90i 0.148330 + 0.256915i
\(552\) 0 0
\(553\) −7861.91 + 4328.97i −0.604561 + 0.332887i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4710.38i 0.358322i −0.983820 0.179161i \(-0.942662\pi\)
0.983820 0.179161i \(-0.0573383\pi\)
\(558\) 0 0
\(559\) 2913.11i 0.220414i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2316.26 + 4011.87i −0.173390 + 0.300320i −0.939603 0.342267i \(-0.888805\pi\)
0.766213 + 0.642587i \(0.222139\pi\)
\(564\) 0 0
\(565\) −4894.81 + 2826.02i −0.364471 + 0.210428i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6667.01 3849.20i 0.491205 0.283597i −0.233869 0.972268i \(-0.575139\pi\)
0.725074 + 0.688671i \(0.241805\pi\)
\(570\) 0 0
\(571\) −8556.34 + 14820.0i −0.627096 + 1.08616i 0.361036 + 0.932552i \(0.382423\pi\)
−0.988132 + 0.153610i \(0.950910\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6201.77i 0.449794i
\(576\) 0 0
\(577\) 2389.01i 0.172367i 0.996279 + 0.0861834i \(0.0274671\pi\)
−0.996279 + 0.0861834i \(0.972533\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11496.7 + 6330.38i −0.820935 + 0.452028i
\(582\) 0 0
\(583\) 4769.48 + 8260.97i 0.338819 + 0.586852i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7877.22 13643.7i −0.553880 0.959348i −0.997990 0.0633757i \(-0.979813\pi\)
0.444110 0.895972i \(-0.353520\pi\)
\(588\) 0 0
\(589\) −2227.45 + 3858.06i −0.155824 + 0.269896i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14439.8 0.999953 0.499976 0.866039i \(-0.333342\pi\)
0.499976 + 0.866039i \(0.333342\pi\)
\(594\) 0 0
\(595\) −1875.58 1134.18i −0.129229 0.0781458i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13069.6 + 7545.75i 0.891504 + 0.514710i 0.874434 0.485145i \(-0.161233\pi\)
0.0170695 + 0.999854i \(0.494566\pi\)
\(600\) 0 0
\(601\) −21885.4 + 12635.5i −1.48540 + 0.857595i −0.999862 0.0166219i \(-0.994709\pi\)
−0.485536 + 0.874217i \(0.661376\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2210.44 + 3828.59i 0.148541 + 0.257280i
\(606\) 0 0
\(607\) 16922.0 + 9769.93i 1.13154 + 0.653293i 0.944321 0.329025i \(-0.106720\pi\)
0.187216 + 0.982319i \(0.440053\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5764.97i 0.381711i
\(612\) 0 0
\(613\) 22968.2 1.51334 0.756671 0.653796i \(-0.226825\pi\)
0.756671 + 0.653796i \(0.226825\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24539.5 + 14167.9i 1.60117 + 0.924437i 0.991253 + 0.131974i \(0.0421316\pi\)
0.609920 + 0.792463i \(0.291202\pi\)
\(618\) 0 0
\(619\) −17347.3 + 10015.5i −1.12641 + 0.650332i −0.943029 0.332710i \(-0.892037\pi\)
−0.183379 + 0.983042i \(0.558703\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −52.9157 + 2609.51i −0.00340292 + 0.167813i
\(624\) 0 0
\(625\) −1710.61 + 2962.87i −0.109479 + 0.189624i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5677.39 −0.359893
\(630\) 0 0
\(631\) 7219.42 0.455469 0.227734 0.973723i \(-0.426868\pi\)
0.227734 + 0.973723i \(0.426868\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −961.643 + 1665.61i −0.0600970 + 0.104091i
\(636\) 0 0
\(637\) 7618.45 + 4820.54i 0.473868 + 0.299838i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14946.4 8629.29i 0.920976 0.531726i 0.0370299 0.999314i \(-0.488210\pi\)
0.883946 + 0.467588i \(0.154877\pi\)
\(642\) 0 0
\(643\) −21951.3 12673.6i −1.34631 0.777291i −0.358584 0.933498i \(-0.616740\pi\)
−0.987724 + 0.156206i \(0.950074\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6799.46 −0.413160 −0.206580 0.978430i \(-0.566233\pi\)
−0.206580 + 0.978430i \(0.566233\pi\)
\(648\) 0 0
\(649\) 37640.9i 2.27663i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19452.8 11231.1i −1.16577 0.673058i −0.213090 0.977033i \(-0.568353\pi\)
−0.952680 + 0.303975i \(0.901686\pi\)
\(654\) 0 0
\(655\) −1841.42 3189.43i −0.109848 0.190262i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3236.46 + 1868.57i −0.191312 + 0.110454i −0.592597 0.805499i \(-0.701897\pi\)
0.401285 + 0.915953i \(0.368564\pi\)
\(660\) 0 0
\(661\) −10205.8 5892.33i −0.600545 0.346725i 0.168711 0.985666i \(-0.446040\pi\)
−0.769256 + 0.638941i \(0.779373\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1605.17 2654.46i 0.0936030 0.154790i
\(666\) 0 0
\(667\) 9577.50 0.555986
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15600.4 + 27020.6i −0.897534 + 1.55457i
\(672\) 0 0
\(673\) 5712.35 + 9894.08i 0.327184 + 0.566699i 0.981952 0.189131i \(-0.0605670\pi\)
−0.654768 + 0.755830i \(0.727234\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15013.5 + 26004.1i 0.852312 + 1.47625i 0.879116 + 0.476607i \(0.158134\pi\)
−0.0268044 + 0.999641i \(0.508533\pi\)
\(678\) 0 0
\(679\) −13453.9 24433.9i −0.760404 1.38098i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18482.4i 1.03545i 0.855548 + 0.517723i \(0.173220\pi\)
−0.855548 + 0.517723i \(0.826780\pi\)
\(684\) 0 0
\(685\) 10502.1i 0.585786i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2756.82 4774.94i 0.152433 0.264022i
\(690\) 0 0
\(691\) 16408.4 9473.38i 0.903334 0.521540i 0.0250537 0.999686i \(-0.492024\pi\)
0.878280 + 0.478146i \(0.158691\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6724.25 3882.25i 0.367001 0.211888i
\(696\) 0 0
\(697\) 402.956 697.941i 0.0218982 0.0379288i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9045.09i 0.487344i −0.969858 0.243672i \(-0.921648\pi\)
0.969858 0.243672i \(-0.0783521\pi\)
\(702\) 0 0
\(703\) 8035.08i 0.431079i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29965.2 + 16499.6i −1.59400 + 0.877698i
\(708\) 0 0
\(709\) −1866.89 3233.55i −0.0988893 0.171281i 0.812336 0.583190i \(-0.198196\pi\)
−0.911225 + 0.411909i \(0.864862\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5560.00 + 9630.20i 0.292039 + 0.505826i
\(714\) 0 0
\(715\) 3585.64 6210.51i 0.187546 0.324839i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 35410.2 1.83669 0.918343 0.395785i \(-0.129527\pi\)
0.918343 + 0.395785i \(0.129527\pi\)
\(720\) 0 0
\(721\) 7707.23 12745.4i 0.398103 0.658339i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10593.9 + 6116.37i 0.542685 + 0.313319i
\(726\) 0 0
\(727\) 2328.92 1344.60i 0.118810 0.0685951i −0.439417 0.898283i \(-0.644815\pi\)
0.558227 + 0.829688i \(0.311482\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1093.07 + 1893.25i 0.0553060 + 0.0957928i
\(732\) 0 0
\(733\) 10520.4 + 6073.96i 0.530123 + 0.306066i 0.741066 0.671432i \(-0.234320\pi\)
−0.210944 + 0.977498i \(0.567654\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15592.7i 0.779326i
\(738\) 0 0
\(739\) −33517.3 −1.66841 −0.834204 0.551456i \(-0.814072\pi\)
−0.834204 + 0.551456i \(0.814072\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21381.5 12344.6i −1.05573 0.609529i −0.131485 0.991318i \(-0.541975\pi\)
−0.924249 + 0.381790i \(0.875308\pi\)
\(744\) 0 0
\(745\) −14995.2 + 8657.49i −0.737426 + 0.425753i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5240.10 106.259i −0.255633 0.00518373i
\(750\) 0 0
\(751\) −4794.74 + 8304.74i −0.232973 + 0.403521i −0.958682 0.284481i \(-0.908179\pi\)
0.725709 + 0.688002i \(0.241512\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18487.4 −0.891159
\(756\) 0 0
\(757\) −13621.8 −0.654022 −0.327011 0.945021i \(-0.606041\pi\)
−0.327011 + 0.945021i \(0.606041\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −839.906 + 1454.76i −0.0400086 + 0.0692970i −0.885336 0.464951i \(-0.846072\pi\)
0.845328 + 0.534248i \(0.179405\pi\)
\(762\) 0 0
\(763\) −685.783 + 33819.0i −0.0325387 + 1.60463i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18842.0 10878.5i 0.887023 0.512123i
\(768\) 0 0
\(769\) −30695.1 17721.8i −1.43939 0.831034i −0.441586 0.897219i \(-0.645584\pi\)
−0.997807 + 0.0661849i \(0.978917\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13901.4 0.646829 0.323415 0.946257i \(-0.395169\pi\)
0.323415 + 0.946257i \(0.395169\pi\)
\(774\) 0 0
\(775\) 14202.9i 0.658300i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 987.778 + 570.294i 0.0454311 + 0.0262297i
\(780\) 0 0
\(781\) −8809.91 15259.2i −0.403641 0.699126i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6540.73 3776.29i 0.297387 0.171696i
\(786\) 0 0
\(787\) 3906.63 + 2255.49i 0.176946 + 0.102160i 0.585857 0.810415i \(-0.300758\pi\)
−0.408911 + 0.912574i \(0.634091\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9027.72 + 14929.1i −0.405801 + 0.671070i
\(792\) 0 0
\(793\) 18034.4 0.807592
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15620.6 + 27055.6i −0.694240 + 1.20246i 0.276196 + 0.961101i \(0.410926\pi\)
−0.970436 + 0.241358i \(0.922407\pi\)
\(798\) 0 0
\(799\) −2163.16 3746.70i −0.0957785 0.165893i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5018.45 8692.21i −0.220544 0.381994i
\(804\) 0 0
\(805\) −3734.81 6782.85i −0.163521 0.296974i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42276.5i 1.83728i 0.395091 + 0.918642i \(0.370713\pi\)
−0.395091 + 0.918642i \(0.629287\pi\)
\(810\) 0 0
\(811\) 29402.1i 1.27305i −0.771254 0.636527i \(-0.780370\pi\)
0.771254 0.636527i \(-0.219630\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8720.74 15104.8i 0.374815 0.649198i
\(816\) 0 0
\(817\) −2679.48 + 1547.00i −0.114741 + 0.0662455i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −36104.3 + 20844.8i −1.53477 + 0.886103i −0.535643 + 0.844445i \(0.679931\pi\)
−0.999132 + 0.0416579i \(0.986736\pi\)
\(822\) 0 0
\(823\) 4162.09 7208.95i 0.176284 0.305332i −0.764321 0.644836i \(-0.776926\pi\)
0.940605 + 0.339504i \(0.110259\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7260.76i 0.305298i 0.988280 + 0.152649i \(0.0487804\pi\)
−0.988280 + 0.152649i \(0.951220\pi\)
\(828\) 0 0
\(829\) 26509.9i 1.11065i 0.831634 + 0.555324i \(0.187406\pi\)
−0.831634 + 0.555324i \(0.812594\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6760.08 274.275i −0.281180 0.0114082i
\(834\) 0 0
\(835\) 1720.63 + 2980.22i 0.0713113 + 0.123515i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4438.40 7687.53i −0.182635 0.316332i 0.760142 0.649757i \(-0.225129\pi\)
−0.942777 + 0.333424i \(0.891796\pi\)
\(840\) 0 0
\(841\) −2748.88 + 4761.19i −0.112710 + 0.195219i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9036.78 0.367899
\(846\) 0 0
\(847\) 11677.1 + 7061.25i 0.473708 + 0.286455i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −17369.5 10028.3i −0.699669 0.403954i
\(852\) 0 0
\(853\) 13168.8 7603.02i 0.528596 0.305185i −0.211849 0.977302i \(-0.567948\pi\)
0.740444 + 0.672118i \(0.234615\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11826.9 20484.8i −0.471410 0.816506i 0.528055 0.849210i \(-0.322922\pi\)
−0.999465 + 0.0327038i \(0.989588\pi\)
\(858\) 0 0
\(859\) 25545.4 + 14748.7i 1.01467 + 0.585818i 0.912555 0.408954i \(-0.134107\pi\)
0.102112 + 0.994773i \(0.467440\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36862.0i 1.45399i −0.686640 0.726997i \(-0.740915\pi\)
0.686640 0.726997i \(-0.259085\pi\)
\(864\) 0 0
\(865\) −23173.4 −0.910888
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 19084.1 + 11018.2i 0.744976 + 0.430112i
\(870\) 0 0
\(871\) 7805.27 4506.38i 0.303641 0.175307i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 482.109 23775.0i 0.0186266 0.918560i
\(876\) 0 0
\(877\) 4353.93 7541.22i 0.167642 0.290364i −0.769949 0.638106i \(-0.779718\pi\)
0.937590 + 0.347742i \(0.113052\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18950.2 −0.724685 −0.362342 0.932045i \(-0.618023\pi\)
−0.362342 + 0.932045i \(0.618023\pi\)
\(882\) 0 0
\(883\) 5510.89 0.210030 0.105015 0.994471i \(-0.466511\pi\)
0.105015 + 0.994471i \(0.466511\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12652.8 21915.3i 0.478962 0.829586i −0.520747 0.853711i \(-0.674347\pi\)
0.999709 + 0.0241247i \(0.00767987\pi\)
\(888\) 0 0
\(889\) −120.359 + 5935.47i −0.00454075 + 0.223925i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5302.61 3061.46i 0.198707 0.114723i
\(894\) 0 0
\(895\) 11682.2 + 6744.71i 0.436304 + 0.251900i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 21933.8 0.813717
\(900\) 0 0
\(901\) 4137.70i 0.152993i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −864.669 499.217i −0.0317598 0.0183365i
\(906\) 0 0
\(907\) 9256.41 + 16032.6i 0.338869 + 0.586938i 0.984220 0.176948i \(-0.0566224\pi\)
−0.645351 + 0.763886i \(0.723289\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 27338.9 15784.1i 0.994266 0.574040i 0.0877196 0.996145i \(-0.472042\pi\)
0.906547 + 0.422105i \(0.138709\pi\)
\(912\) 0 0
\(913\) 27907.2 + 16112.2i 1.01160 + 0.584050i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9727.70 5882.42i −0.350313 0.211837i
\(918\) 0 0
\(919\) 2352.27 0.0844332 0.0422166 0.999108i \(-0.486558\pi\)
0.0422166 + 0.999108i \(0.486558\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5092.23 + 8820.01i −0.181596 + 0.314533i
\(924\) 0 0
\(925\) −12808.5 22185.0i −0.455287 0.788580i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4728.40 8189.83i −0.166990 0.289235i 0.770370 0.637597i \(-0.220071\pi\)
−0.937360 + 0.348362i \(0.886738\pi\)
\(930\) 0 0
\(931\) 388.174 9567.38i 0.0136648 0.336797i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5381.68i 0.188235i
\(936\) 0 0
\(937\) 34791.9i 1.21302i −0.795075 0.606511i \(-0.792569\pi\)
0.795075 0.606511i \(-0.207431\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5515.38 9552.92i 0.191069 0.330942i −0.754535 0.656259i \(-0.772138\pi\)
0.945605 + 0.325317i \(0.105471\pi\)
\(942\) 0 0
\(943\) 2465.62 1423.52i 0.0851448 0.0491584i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26402.6 15243.5i 0.905985 0.523071i 0.0268478 0.999640i \(-0.491453\pi\)
0.879137 + 0.476569i \(0.158120\pi\)
\(948\) 0 0
\(949\) −2900.72 + 5024.20i −0.0992218 + 0.171857i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21378.9i 0.726685i −0.931656 0.363343i \(-0.881635\pi\)
0.931656 0.363343i \(-0.118365\pi\)
\(954\) 0 0
\(955\) 12185.7i 0.412902i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15636.1 28396.9i −0.526502 0.956189i
\(960\) 0 0
\(961\) −2162.36 3745.31i −0.0725842 0.125720i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1506.69 + 2609.67i 0.0502613 + 0.0870550i
\(966\) 0 0
\(967\) 1999.31 3462.91i 0.0664877 0.115160i −0.830865 0.556474i \(-0.812154\pi\)
0.897353 + 0.441314i \(0.145487\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 48223.6 1.59379 0.796895 0.604118i \(-0.206475\pi\)
0.796895 + 0.604118i \(0.206475\pi\)
\(972\) 0 0
\(973\) 12401.8 20508.8i 0.408618 0.675727i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3157.95 + 1823.24i 0.103410 + 0.0597038i 0.550813 0.834629i \(-0.314318\pi\)
−0.447403 + 0.894332i \(0.647651\pi\)
\(978\) 0 0
\(979\) 5549.94 3204.26i 0.181182 0.104605i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10473.4 + 18140.5i 0.339828 + 0.588600i 0.984400 0.175944i \(-0.0562978\pi\)
−0.644572 + 0.764544i \(0.722964\pi\)
\(984\) 0 0
\(985\) 20519.9 + 11847.2i 0.663776 + 0.383232i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7722.99i 0.248308i
\(990\) 0 0
\(991\) 6732.72 0.215814 0.107907 0.994161i \(-0.465585\pi\)
0.107907 + 0.994161i \(0.465585\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3272.03 1889.11i −0.104252 0.0601897i
\(996\) 0 0
\(997\) 35961.0 20762.1i 1.14232 0.659520i 0.195318 0.980740i \(-0.437426\pi\)
0.947005 + 0.321220i \(0.104093\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.x.a.125.9 48
3.2 odd 2 252.4.x.a.41.10 48
7.6 odd 2 inner 756.4.x.a.125.16 48
9.2 odd 6 inner 756.4.x.a.629.16 48
9.4 even 3 2268.4.f.a.1133.32 48
9.5 odd 6 2268.4.f.a.1133.17 48
9.7 even 3 252.4.x.a.209.15 yes 48
21.20 even 2 252.4.x.a.41.15 yes 48
63.13 odd 6 2268.4.f.a.1133.18 48
63.20 even 6 inner 756.4.x.a.629.9 48
63.34 odd 6 252.4.x.a.209.10 yes 48
63.41 even 6 2268.4.f.a.1133.31 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.x.a.41.10 48 3.2 odd 2
252.4.x.a.41.15 yes 48 21.20 even 2
252.4.x.a.209.10 yes 48 63.34 odd 6
252.4.x.a.209.15 yes 48 9.7 even 3
756.4.x.a.125.9 48 1.1 even 1 trivial
756.4.x.a.125.16 48 7.6 odd 2 inner
756.4.x.a.629.9 48 63.20 even 6 inner
756.4.x.a.629.16 48 9.2 odd 6 inner
2268.4.f.a.1133.17 48 9.5 odd 6
2268.4.f.a.1133.18 48 63.13 odd 6
2268.4.f.a.1133.31 48 63.41 even 6
2268.4.f.a.1133.32 48 9.4 even 3