Properties

Label 756.4.t.e.269.14
Level $756$
Weight $4$
Character 756.269
Analytic conductor $44.605$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(269,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.269"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.14
Character \(\chi\) \(=\) 756.269
Dual form 756.4.t.e.593.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.20808 + 12.4848i) q^{5} +(-12.6183 - 13.5565i) q^{7} +(22.8968 + 13.2194i) q^{11} -67.4385i q^{13} +(-25.9770 + 44.9935i) q^{17} +(73.1587 - 42.2382i) q^{19} +(-56.3688 + 32.5446i) q^{23} +(-41.4129 + 71.7292i) q^{25} -195.057i q^{29} +(-203.415 - 117.442i) q^{31} +(78.2955 - 255.253i) q^{35} +(-92.8867 - 160.885i) q^{37} +482.993 q^{41} +367.461 q^{43} +(173.462 + 300.444i) q^{47} +(-24.5561 + 342.120i) q^{49} +(-506.821 - 292.613i) q^{53} +381.147i q^{55} +(231.361 - 400.728i) q^{59} +(-81.8846 + 47.2761i) q^{61} +(841.953 - 486.102i) q^{65} +(257.763 - 446.458i) q^{67} +91.6789i q^{71} +(-6.35841 - 3.67103i) q^{73} +(-109.709 - 477.207i) q^{77} +(690.901 + 1196.68i) q^{79} +919.589 q^{83} -748.978 q^{85} +(-400.130 - 693.046i) q^{89} +(-914.228 + 850.960i) q^{91} +(1054.67 + 608.912i) q^{95} -682.165i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{7} + 72 q^{19} - 514 q^{25} - 714 q^{31} + 8 q^{37} + 368 q^{43} + 890 q^{49} + 1272 q^{61} + 1840 q^{67} + 324 q^{73} + 532 q^{79} - 1344 q^{85} - 4596 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.20808 + 12.4848i 0.644710 + 1.11667i 0.984368 + 0.176122i \(0.0563554\pi\)
−0.339658 + 0.940549i \(0.610311\pi\)
\(6\) 0 0
\(7\) −12.6183 13.5565i −0.681325 0.731981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 22.8968 + 13.2194i 0.627603 + 0.362347i 0.779823 0.626000i \(-0.215309\pi\)
−0.152220 + 0.988347i \(0.548642\pi\)
\(12\) 0 0
\(13\) 67.4385i 1.43877i −0.694609 0.719387i \(-0.744423\pi\)
0.694609 0.719387i \(-0.255577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −25.9770 + 44.9935i −0.370609 + 0.641914i −0.989659 0.143438i \(-0.954184\pi\)
0.619050 + 0.785351i \(0.287518\pi\)
\(18\) 0 0
\(19\) 73.1587 42.2382i 0.883355 0.510005i 0.0115920 0.999933i \(-0.496310\pi\)
0.871763 + 0.489927i \(0.162977\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −56.3688 + 32.5446i −0.511031 + 0.295044i −0.733257 0.679951i \(-0.762001\pi\)
0.222226 + 0.974995i \(0.428668\pi\)
\(24\) 0 0
\(25\) −41.4129 + 71.7292i −0.331303 + 0.573834i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 195.057i 1.24901i −0.781021 0.624504i \(-0.785301\pi\)
0.781021 0.624504i \(-0.214699\pi\)
\(30\) 0 0
\(31\) −203.415 117.442i −1.17853 0.680426i −0.222857 0.974851i \(-0.571538\pi\)
−0.955674 + 0.294425i \(0.904872\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 78.2955 255.253i 0.378125 1.23273i
\(36\) 0 0
\(37\) −92.8867 160.885i −0.412716 0.714845i 0.582470 0.812852i \(-0.302086\pi\)
−0.995186 + 0.0980076i \(0.968753\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 482.993 1.83978 0.919888 0.392181i \(-0.128279\pi\)
0.919888 + 0.392181i \(0.128279\pi\)
\(42\) 0 0
\(43\) 367.461 1.30319 0.651597 0.758566i \(-0.274100\pi\)
0.651597 + 0.758566i \(0.274100\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 173.462 + 300.444i 0.538340 + 0.932432i 0.998994 + 0.0448522i \(0.0142817\pi\)
−0.460654 + 0.887580i \(0.652385\pi\)
\(48\) 0 0
\(49\) −24.5561 + 342.120i −0.0715921 + 0.997434i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −506.821 292.613i −1.31353 0.758369i −0.330854 0.943682i \(-0.607337\pi\)
−0.982679 + 0.185313i \(0.940670\pi\)
\(54\) 0 0
\(55\) 381.147i 0.934435i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 231.361 400.728i 0.510518 0.884244i −0.489407 0.872055i \(-0.662787\pi\)
0.999926 0.0121884i \(-0.00387980\pi\)
\(60\) 0 0
\(61\) −81.8846 + 47.2761i −0.171873 + 0.0992309i −0.583469 0.812136i \(-0.698305\pi\)
0.411596 + 0.911367i \(0.364972\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 841.953 486.102i 1.60664 0.927593i
\(66\) 0 0
\(67\) 257.763 446.458i 0.470011 0.814082i −0.529401 0.848371i \(-0.677583\pi\)
0.999412 + 0.0342893i \(0.0109168\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 91.6789i 0.153243i 0.997060 + 0.0766217i \(0.0244134\pi\)
−0.997060 + 0.0766217i \(0.975587\pi\)
\(72\) 0 0
\(73\) −6.35841 3.67103i −0.0101945 0.00588578i 0.494894 0.868953i \(-0.335207\pi\)
−0.505089 + 0.863068i \(0.668540\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −109.709 477.207i −0.162371 0.706269i
\(78\) 0 0
\(79\) 690.901 + 1196.68i 0.983956 + 1.70426i 0.646489 + 0.762924i \(0.276237\pi\)
0.337467 + 0.941337i \(0.390430\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 919.589 1.21612 0.608060 0.793891i \(-0.291948\pi\)
0.608060 + 0.793891i \(0.291948\pi\)
\(84\) 0 0
\(85\) −748.978 −0.955742
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −400.130 693.046i −0.476559 0.825424i 0.523081 0.852283i \(-0.324783\pi\)
−0.999639 + 0.0268595i \(0.991449\pi\)
\(90\) 0 0
\(91\) −914.228 + 850.960i −1.05316 + 0.980273i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1054.67 + 608.912i 1.13902 + 0.657612i
\(96\) 0 0
\(97\) 682.165i 0.714056i −0.934094 0.357028i \(-0.883790\pi\)
0.934094 0.357028i \(-0.116210\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −176.897 + 306.395i −0.174276 + 0.301856i −0.939911 0.341421i \(-0.889092\pi\)
0.765634 + 0.643276i \(0.222425\pi\)
\(102\) 0 0
\(103\) 1359.55 784.937i 1.30059 0.750895i 0.320083 0.947389i \(-0.396289\pi\)
0.980505 + 0.196494i \(0.0629558\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1071.06 618.375i 0.967691 0.558697i 0.0691597 0.997606i \(-0.477968\pi\)
0.898532 + 0.438909i \(0.144635\pi\)
\(108\) 0 0
\(109\) −12.1052 + 20.9668i −0.0106373 + 0.0184244i −0.871295 0.490760i \(-0.836719\pi\)
0.860658 + 0.509184i \(0.170053\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 748.064i 0.622761i −0.950285 0.311380i \(-0.899209\pi\)
0.950285 0.311380i \(-0.100791\pi\)
\(114\) 0 0
\(115\) −812.622 469.168i −0.658934 0.380436i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 937.740 215.586i 0.722374 0.166073i
\(120\) 0 0
\(121\) −315.992 547.315i −0.237410 0.411206i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 607.990 0.435043
\(126\) 0 0
\(127\) 609.849 0.426105 0.213052 0.977041i \(-0.431659\pi\)
0.213052 + 0.977041i \(0.431659\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −50.4605 87.4001i −0.0336546 0.0582915i 0.848708 0.528862i \(-0.177381\pi\)
−0.882362 + 0.470571i \(0.844048\pi\)
\(132\) 0 0
\(133\) −1495.74 458.799i −0.975166 0.299120i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 667.573 + 385.424i 0.416311 + 0.240357i 0.693498 0.720459i \(-0.256069\pi\)
−0.277187 + 0.960816i \(0.589402\pi\)
\(138\) 0 0
\(139\) 1317.89i 0.804188i −0.915598 0.402094i \(-0.868282\pi\)
0.915598 0.402094i \(-0.131718\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 891.500 1544.12i 0.521335 0.902979i
\(144\) 0 0
\(145\) 2435.25 1405.99i 1.39473 0.805249i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2406.09 1389.16i 1.32292 0.763787i 0.338725 0.940885i \(-0.390004\pi\)
0.984193 + 0.177098i \(0.0566710\pi\)
\(150\) 0 0
\(151\) 528.173 914.822i 0.284650 0.493027i −0.687875 0.725830i \(-0.741456\pi\)
0.972524 + 0.232802i \(0.0747894\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3386.12i 1.75471i
\(156\) 0 0
\(157\) −2093.78 1208.84i −1.06434 0.614497i −0.137711 0.990472i \(-0.543974\pi\)
−0.926630 + 0.375975i \(0.877308\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1152.47 + 353.505i 0.564145 + 0.173044i
\(162\) 0 0
\(163\) 1516.60 + 2626.82i 0.728768 + 1.26226i 0.957404 + 0.288751i \(0.0932399\pi\)
−0.228637 + 0.973512i \(0.573427\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2494.60 −1.15592 −0.577958 0.816067i \(-0.696150\pi\)
−0.577958 + 0.816067i \(0.696150\pi\)
\(168\) 0 0
\(169\) −2350.95 −1.07007
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1621.57 2808.65i −0.712635 1.23432i −0.963865 0.266392i \(-0.914168\pi\)
0.251230 0.967927i \(-0.419165\pi\)
\(174\) 0 0
\(175\) 1494.96 343.689i 0.645761 0.148460i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1850.07 + 1068.14i 0.772516 + 0.446012i 0.833771 0.552110i \(-0.186177\pi\)
−0.0612553 + 0.998122i \(0.519510\pi\)
\(180\) 0 0
\(181\) 1751.31i 0.719194i 0.933108 + 0.359597i \(0.117086\pi\)
−0.933108 + 0.359597i \(0.882914\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1339.07 2319.34i 0.532164 0.921736i
\(186\) 0 0
\(187\) −1189.58 + 686.804i −0.465191 + 0.268578i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3375.53 + 1948.86i −1.27877 + 0.738296i −0.976622 0.214965i \(-0.931036\pi\)
−0.302145 + 0.953262i \(0.597703\pi\)
\(192\) 0 0
\(193\) −175.245 + 303.532i −0.0653595 + 0.113206i −0.896853 0.442328i \(-0.854153\pi\)
0.831494 + 0.555534i \(0.187486\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 139.013i 0.0502755i −0.999684 0.0251377i \(-0.991998\pi\)
0.999684 0.0251377i \(-0.00800244\pi\)
\(198\) 0 0
\(199\) −1933.25 1116.17i −0.688667 0.397602i 0.114445 0.993430i \(-0.463491\pi\)
−0.803113 + 0.595827i \(0.796824\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2644.29 + 2461.30i −0.914250 + 0.850981i
\(204\) 0 0
\(205\) 3481.45 + 6030.05i 1.18612 + 2.05443i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2233.46 0.739195
\(210\) 0 0
\(211\) −1852.94 −0.604557 −0.302279 0.953220i \(-0.597747\pi\)
−0.302279 + 0.953220i \(0.597747\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2648.69 + 4587.67i 0.840182 + 1.45524i
\(216\) 0 0
\(217\) 974.662 + 4239.52i 0.304905 + 1.32625i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3034.30 + 1751.85i 0.923569 + 0.533223i
\(222\) 0 0
\(223\) 1583.76i 0.475588i −0.971316 0.237794i \(-0.923576\pi\)
0.971316 0.237794i \(-0.0764244\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1384.34 + 2397.75i −0.404767 + 0.701076i −0.994294 0.106672i \(-0.965981\pi\)
0.589528 + 0.807748i \(0.299314\pi\)
\(228\) 0 0
\(229\) 4669.12 2695.72i 1.34736 0.777896i 0.359481 0.933152i \(-0.382954\pi\)
0.987874 + 0.155257i \(0.0496204\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 461.026 266.174i 0.129626 0.0748395i −0.433785 0.901016i \(-0.642822\pi\)
0.563411 + 0.826177i \(0.309489\pi\)
\(234\) 0 0
\(235\) −2500.65 + 4331.25i −0.694147 + 1.20230i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2324.65i 0.629159i 0.949231 + 0.314579i \(0.101863\pi\)
−0.949231 + 0.314579i \(0.898137\pi\)
\(240\) 0 0
\(241\) 5182.58 + 2992.17i 1.38523 + 0.799761i 0.992773 0.120011i \(-0.0382930\pi\)
0.392454 + 0.919772i \(0.371626\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4448.29 + 2159.45i −1.15996 + 0.563111i
\(246\) 0 0
\(247\) −2848.48 4933.71i −0.733783 1.27095i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1729.90 0.435021 0.217510 0.976058i \(-0.430206\pi\)
0.217510 + 0.976058i \(0.430206\pi\)
\(252\) 0 0
\(253\) −1720.88 −0.427633
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2563.06 4439.34i −0.622097 1.07750i −0.989095 0.147282i \(-0.952948\pi\)
0.366997 0.930222i \(-0.380386\pi\)
\(258\) 0 0
\(259\) −1008.95 + 3289.31i −0.242059 + 0.789142i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −540.225 311.899i −0.126661 0.0731275i 0.435331 0.900270i \(-0.356631\pi\)
−0.561992 + 0.827143i \(0.689965\pi\)
\(264\) 0 0
\(265\) 8436.73i 1.95571i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2620.06 + 4538.07i −0.593858 + 1.02859i 0.399849 + 0.916581i \(0.369062\pi\)
−0.993707 + 0.112011i \(0.964271\pi\)
\(270\) 0 0
\(271\) −2754.67 + 1590.41i −0.617471 + 0.356497i −0.775884 0.630876i \(-0.782696\pi\)
0.158413 + 0.987373i \(0.449362\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1896.44 + 1094.91i −0.415854 + 0.240093i
\(276\) 0 0
\(277\) 2142.77 3711.39i 0.464789 0.805039i −0.534403 0.845230i \(-0.679463\pi\)
0.999192 + 0.0401913i \(0.0127967\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3158.57i 0.670549i −0.942120 0.335275i \(-0.891171\pi\)
0.942120 0.335275i \(-0.108829\pi\)
\(282\) 0 0
\(283\) −4756.39 2746.11i −0.999075 0.576816i −0.0911008 0.995842i \(-0.529039\pi\)
−0.907975 + 0.419025i \(0.862372\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6094.56 6547.68i −1.25349 1.34668i
\(288\) 0 0
\(289\) 1106.89 + 1917.19i 0.225298 + 0.390227i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7977.45 −1.59061 −0.795303 0.606211i \(-0.792689\pi\)
−0.795303 + 0.606211i \(0.792689\pi\)
\(294\) 0 0
\(295\) 6670.66 1.31655
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2194.76 + 3801.43i 0.424502 + 0.735258i
\(300\) 0 0
\(301\) −4636.74 4981.48i −0.887898 0.953913i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1180.46 681.540i −0.221617 0.127950i
\(306\) 0 0
\(307\) 109.666i 0.0203875i 0.999948 + 0.0101937i \(0.00324482\pi\)
−0.999948 + 0.0101937i \(0.996755\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5068.16 + 8778.31i −0.924081 + 1.60055i −0.131048 + 0.991376i \(0.541834\pi\)
−0.793033 + 0.609179i \(0.791499\pi\)
\(312\) 0 0
\(313\) −4977.70 + 2873.88i −0.898902 + 0.518981i −0.876844 0.480775i \(-0.840355\pi\)
−0.0220583 + 0.999757i \(0.507022\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1809.45 + 1044.69i −0.320596 + 0.185096i −0.651658 0.758513i \(-0.725926\pi\)
0.331062 + 0.943609i \(0.392593\pi\)
\(318\) 0 0
\(319\) 2578.55 4466.18i 0.452574 0.783881i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4388.89i 0.756051i
\(324\) 0 0
\(325\) 4837.31 + 2792.82i 0.825617 + 0.476670i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1884.17 6142.63i 0.315738 1.02934i
\(330\) 0 0
\(331\) −2451.81 4246.66i −0.407141 0.705188i 0.587427 0.809277i \(-0.300141\pi\)
−0.994568 + 0.104089i \(0.966807\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7431.89 1.21208
\(336\) 0 0
\(337\) −106.849 −0.0172713 −0.00863564 0.999963i \(-0.502749\pi\)
−0.00863564 + 0.999963i \(0.502749\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3105.04 5378.08i −0.493100 0.854074i
\(342\) 0 0
\(343\) 4947.80 3984.08i 0.778880 0.627173i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3852.00 + 2223.95i 0.595926 + 0.344058i 0.767437 0.641124i \(-0.221532\pi\)
−0.171511 + 0.985182i \(0.554865\pi\)
\(348\) 0 0
\(349\) 11885.5i 1.82297i 0.411337 + 0.911483i \(0.365062\pi\)
−0.411337 + 0.911483i \(0.634938\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4881.90 + 8455.69i −0.736082 + 1.27493i 0.218164 + 0.975912i \(0.429993\pi\)
−0.954247 + 0.299020i \(0.903340\pi\)
\(354\) 0 0
\(355\) −1144.59 + 660.829i −0.171123 + 0.0987977i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1124.21 + 649.062i −0.165274 + 0.0954212i −0.580356 0.814363i \(-0.697086\pi\)
0.415081 + 0.909784i \(0.363753\pi\)
\(360\) 0 0
\(361\) 138.627 240.110i 0.0202110 0.0350065i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 105.844i 0.0151785i
\(366\) 0 0
\(367\) −4909.59 2834.55i −0.698306 0.403167i 0.108410 0.994106i \(-0.465424\pi\)
−0.806716 + 0.590939i \(0.798757\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2428.43 + 10563.0i 0.339832 + 1.47818i
\(372\) 0 0
\(373\) −5015.85 8687.71i −0.696276 1.20599i −0.969749 0.244105i \(-0.921506\pi\)
0.273473 0.961880i \(-0.411828\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13154.4 −1.79704
\(378\) 0 0
\(379\) −247.479 −0.0335413 −0.0167707 0.999859i \(-0.505339\pi\)
−0.0167707 + 0.999859i \(0.505339\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5620.07 + 9734.25i 0.749797 + 1.29869i 0.947920 + 0.318509i \(0.103182\pi\)
−0.198123 + 0.980177i \(0.563485\pi\)
\(384\) 0 0
\(385\) 5167.02 4809.44i 0.683988 0.636654i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10416.4 6013.93i −1.35767 0.783852i −0.368362 0.929682i \(-0.620081\pi\)
−0.989310 + 0.145830i \(0.953415\pi\)
\(390\) 0 0
\(391\) 3381.64i 0.437384i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9960.15 + 17251.5i −1.26873 + 2.19751i
\(396\) 0 0
\(397\) −1590.74 + 918.415i −0.201101 + 0.116106i −0.597169 0.802116i \(-0.703708\pi\)
0.396068 + 0.918221i \(0.370374\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5462.80 3153.95i 0.680298 0.392770i −0.119669 0.992814i \(-0.538183\pi\)
0.799967 + 0.600044i \(0.204850\pi\)
\(402\) 0 0
\(403\) −7920.11 + 13718.0i −0.978979 + 1.69564i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4911.65i 0.598185i
\(408\) 0 0
\(409\) 909.488 + 525.093i 0.109954 + 0.0634821i 0.553969 0.832538i \(-0.313113\pi\)
−0.444014 + 0.896020i \(0.646446\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8351.85 + 1920.08i −0.995079 + 0.228768i
\(414\) 0 0
\(415\) 6628.47 + 11480.8i 0.784045 + 1.35801i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 167.910 0.0195774 0.00978871 0.999952i \(-0.496884\pi\)
0.00978871 + 0.999952i \(0.496884\pi\)
\(420\) 0 0
\(421\) 1746.98 0.202239 0.101120 0.994874i \(-0.467757\pi\)
0.101120 + 0.994874i \(0.467757\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2151.57 3726.62i −0.245568 0.425336i
\(426\) 0 0
\(427\) 1674.14 + 513.522i 0.189736 + 0.0581992i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9045.88 + 5222.64i 1.01096 + 0.583679i 0.911473 0.411360i \(-0.134946\pi\)
0.0994886 + 0.995039i \(0.468279\pi\)
\(432\) 0 0
\(433\) 16316.4i 1.81090i 0.424456 + 0.905448i \(0.360465\pi\)
−0.424456 + 0.905448i \(0.639535\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2749.25 + 4761.83i −0.300948 + 0.521257i
\(438\) 0 0
\(439\) 2692.73 1554.65i 0.292750 0.169019i −0.346432 0.938075i \(-0.612607\pi\)
0.639181 + 0.769056i \(0.279273\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2966.03 + 1712.44i −0.318104 + 0.183658i −0.650547 0.759466i \(-0.725460\pi\)
0.332443 + 0.943123i \(0.392127\pi\)
\(444\) 0 0
\(445\) 5768.34 9991.06i 0.614485 1.06432i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12905.8i 1.35648i −0.734840 0.678241i \(-0.762743\pi\)
0.734840 0.678241i \(-0.237257\pi\)
\(450\) 0 0
\(451\) 11059.0 + 6384.90i 1.15465 + 0.666637i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17213.9 5280.13i −1.77362 0.544036i
\(456\) 0 0
\(457\) −8161.27 14135.7i −0.835379 1.44692i −0.893721 0.448623i \(-0.851915\pi\)
0.0583421 0.998297i \(-0.481419\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18427.3 1.86170 0.930850 0.365402i \(-0.119069\pi\)
0.930850 + 0.365402i \(0.119069\pi\)
\(462\) 0 0
\(463\) 12510.6 1.25576 0.627881 0.778310i \(-0.283923\pi\)
0.627881 + 0.778310i \(0.283923\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5742.61 9946.49i −0.569029 0.985586i −0.996662 0.0816344i \(-0.973986\pi\)
0.427634 0.903952i \(-0.359347\pi\)
\(468\) 0 0
\(469\) −9304.93 + 2139.20i −0.916123 + 0.210616i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8413.67 + 4857.63i 0.817888 + 0.472208i
\(474\) 0 0
\(475\) 6996.82i 0.675866i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7009.77 + 12141.3i −0.668653 + 1.15814i 0.309629 + 0.950858i \(0.399795\pi\)
−0.978281 + 0.207283i \(0.933538\pi\)
\(480\) 0 0
\(481\) −10849.8 + 6264.14i −1.02850 + 0.593805i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8516.67 4917.10i 0.797365 0.460359i
\(486\) 0 0
\(487\) −2400.43 + 4157.66i −0.223355 + 0.386862i −0.955825 0.293938i \(-0.905034\pi\)
0.732470 + 0.680799i \(0.238367\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14112.9i 1.29717i 0.761144 + 0.648583i \(0.224638\pi\)
−0.761144 + 0.648583i \(0.775362\pi\)
\(492\) 0 0
\(493\) 8776.32 + 5067.01i 0.801756 + 0.462894i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1242.84 1156.83i 0.112171 0.104409i
\(498\) 0 0
\(499\) −7997.90 13852.8i −0.717506 1.24276i −0.961985 0.273102i \(-0.911950\pi\)
0.244480 0.969654i \(-0.421383\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1347.36 0.119435 0.0597173 0.998215i \(-0.480980\pi\)
0.0597173 + 0.998215i \(0.480980\pi\)
\(504\) 0 0
\(505\) −5100.35 −0.449431
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3587.33 6213.44i −0.312388 0.541073i 0.666490 0.745514i \(-0.267796\pi\)
−0.978879 + 0.204441i \(0.934462\pi\)
\(510\) 0 0
\(511\) 30.4662 + 132.520i 0.00263747 + 0.0114723i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19599.5 + 11315.8i 1.67701 + 0.968220i
\(516\) 0 0
\(517\) 9172.27i 0.780263i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5766.64 9988.12i 0.484916 0.839899i −0.514934 0.857230i \(-0.672183\pi\)
0.999850 + 0.0173307i \(0.00551682\pi\)
\(522\) 0 0
\(523\) −8238.61 + 4756.56i −0.688813 + 0.397686i −0.803167 0.595754i \(-0.796853\pi\)
0.114354 + 0.993440i \(0.463520\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10568.3 6101.59i 0.873549 0.504344i
\(528\) 0 0
\(529\) −3965.20 + 6867.94i −0.325898 + 0.564472i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 32572.3i 2.64702i
\(534\) 0 0
\(535\) 15440.5 + 8914.59i 1.24776 + 0.720395i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5084.89 + 7508.82i −0.406348 + 0.600051i
\(540\) 0 0
\(541\) −4538.52 7860.95i −0.360677 0.624711i 0.627395 0.778701i \(-0.284121\pi\)
−0.988072 + 0.153990i \(0.950788\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −349.021 −0.0274320
\(546\) 0 0
\(547\) −2085.88 −0.163045 −0.0815227 0.996671i \(-0.525978\pi\)
−0.0815227 + 0.996671i \(0.525978\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8238.87 14270.1i −0.637001 1.10332i
\(552\) 0 0
\(553\) 7504.70 24466.2i 0.577093 1.88139i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16794.3 + 9696.17i 1.27755 + 0.737594i 0.976397 0.215982i \(-0.0692952\pi\)
0.301153 + 0.953576i \(0.402629\pi\)
\(558\) 0 0
\(559\) 24781.0i 1.87500i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10006.8 17332.3i 0.749087 1.29746i −0.199173 0.979964i \(-0.563826\pi\)
0.948261 0.317493i \(-0.102841\pi\)
\(564\) 0 0
\(565\) 9339.40 5392.11i 0.695419 0.401500i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15536.4 + 8969.96i −1.14468 + 0.660879i −0.947584 0.319506i \(-0.896483\pi\)
−0.197092 + 0.980385i \(0.563150\pi\)
\(570\) 0 0
\(571\) 6927.55 11998.9i 0.507721 0.879399i −0.492239 0.870460i \(-0.663821\pi\)
0.999960 0.00893868i \(-0.00284531\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5391.06i 0.390996i
\(576\) 0 0
\(577\) −9548.15 5512.63i −0.688899 0.397736i 0.114300 0.993446i \(-0.463537\pi\)
−0.803200 + 0.595710i \(0.796871\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11603.7 12466.4i −0.828573 0.890177i
\(582\) 0 0
\(583\) −7736.38 13399.8i −0.549585 0.951909i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6502.77 −0.457237 −0.228618 0.973516i \(-0.573421\pi\)
−0.228618 + 0.973516i \(0.573421\pi\)
\(588\) 0 0
\(589\) −19842.1 −1.38808
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6411.44 + 11104.9i 0.443990 + 0.769013i 0.997981 0.0635092i \(-0.0202292\pi\)
−0.553991 + 0.832523i \(0.686896\pi\)
\(594\) 0 0
\(595\) 9450.84 + 10153.5i 0.651171 + 0.699585i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5354.89 + 3091.65i 0.365267 + 0.210887i 0.671389 0.741105i \(-0.265698\pi\)
−0.306122 + 0.951992i \(0.599031\pi\)
\(600\) 0 0
\(601\) 3115.47i 0.211452i −0.994395 0.105726i \(-0.966283\pi\)
0.994395 0.105726i \(-0.0337167\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4555.40 7890.18i 0.306121 0.530217i
\(606\) 0 0
\(607\) −18993.0 + 10965.6i −1.27002 + 0.733246i −0.974991 0.222243i \(-0.928662\pi\)
−0.295028 + 0.955489i \(0.595329\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20261.5 11698.0i 1.34156 0.774550i
\(612\) 0 0
\(613\) 2882.20 4992.11i 0.189903 0.328922i −0.755314 0.655363i \(-0.772516\pi\)
0.945218 + 0.326440i \(0.105849\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22744.4i 1.48405i −0.670374 0.742023i \(-0.733866\pi\)
0.670374 0.742023i \(-0.266134\pi\)
\(618\) 0 0
\(619\) −2684.28 1549.77i −0.174298 0.100631i 0.410313 0.911945i \(-0.365419\pi\)
−0.584611 + 0.811314i \(0.698753\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4346.29 + 14169.4i −0.279503 + 0.911214i
\(624\) 0 0
\(625\) 9559.06 + 16556.8i 0.611780 + 1.05963i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9651.68 0.611825
\(630\) 0 0
\(631\) 24192.9 1.52631 0.763157 0.646213i \(-0.223648\pi\)
0.763157 + 0.646213i \(0.223648\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4395.84 + 7613.82i 0.274714 + 0.475819i
\(636\) 0 0
\(637\) 23072.0 + 1656.03i 1.43508 + 0.103005i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 25451.7 + 14694.5i 1.56830 + 0.905459i 0.996367 + 0.0851596i \(0.0271400\pi\)
0.571934 + 0.820300i \(0.306193\pi\)
\(642\) 0 0
\(643\) 13562.2i 0.831791i −0.909412 0.415896i \(-0.863468\pi\)
0.909412 0.415896i \(-0.136532\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1405.74 + 2434.81i −0.0854176 + 0.147948i −0.905569 0.424199i \(-0.860556\pi\)
0.820152 + 0.572146i \(0.193889\pi\)
\(648\) 0 0
\(649\) 10594.8 6116.92i 0.640806 0.369969i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12738.9 7354.83i 0.763420 0.440761i −0.0671024 0.997746i \(-0.521375\pi\)
0.830522 + 0.556985i \(0.188042\pi\)
\(654\) 0 0
\(655\) 727.446 1259.97i 0.0433949 0.0751622i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22037.4i 1.30266i −0.758794 0.651331i \(-0.774211\pi\)
0.758794 0.651331i \(-0.225789\pi\)
\(660\) 0 0
\(661\) −20052.8 11577.5i −1.17998 0.681260i −0.223967 0.974597i \(-0.571901\pi\)
−0.956009 + 0.293337i \(0.905234\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5053.42 21981.0i −0.294682 1.28179i
\(666\) 0 0
\(667\) 6348.06 + 10995.2i 0.368512 + 0.638282i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2499.86 −0.143824
\(672\) 0 0
\(673\) −10001.3 −0.572843 −0.286421 0.958104i \(-0.592466\pi\)
−0.286421 + 0.958104i \(0.592466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3229.72 5594.03i −0.183350 0.317572i 0.759669 0.650310i \(-0.225361\pi\)
−0.943019 + 0.332738i \(0.892028\pi\)
\(678\) 0 0
\(679\) −9247.76 + 8607.78i −0.522675 + 0.486504i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29593.9 + 17086.0i 1.65795 + 0.957217i 0.973660 + 0.228006i \(0.0732206\pi\)
0.684289 + 0.729211i \(0.260113\pi\)
\(684\) 0 0
\(685\) 11112.7i 0.619844i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19733.4 + 34179.3i −1.09112 + 1.88988i
\(690\) 0 0
\(691\) −24700.4 + 14260.8i −1.35984 + 0.785104i −0.989602 0.143833i \(-0.954057\pi\)
−0.370238 + 0.928937i \(0.620724\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16453.6 9499.47i 0.898014 0.518468i
\(696\) 0 0
\(697\) −12546.7 + 21731.6i −0.681838 + 1.18098i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5740.86i 0.309314i 0.987968 + 0.154657i \(0.0494273\pi\)
−0.987968 + 0.154657i \(0.950573\pi\)
\(702\) 0 0
\(703\) −13590.9 7846.73i −0.729149 0.420975i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6385.77 1468.08i 0.339691 0.0780948i
\(708\) 0 0
\(709\) 10839.9 + 18775.3i 0.574193 + 0.994531i 0.996129 + 0.0879058i \(0.0280174\pi\)
−0.421936 + 0.906626i \(0.638649\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 15288.4 0.803022
\(714\) 0 0
\(715\) 25704.0 1.34444
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 63.8988 + 110.676i 0.00331436 + 0.00574063i 0.867678 0.497127i \(-0.165612\pi\)
−0.864363 + 0.502868i \(0.832278\pi\)
\(720\) 0 0
\(721\) −27796.2 8526.14i −1.43576 0.440402i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13991.3 + 8077.89i 0.716723 + 0.413800i
\(726\) 0 0
\(727\) 165.101i 0.00842264i 0.999991 + 0.00421132i \(0.00134051\pi\)
−0.999991 + 0.00421132i \(0.998659\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9545.55 + 16533.4i −0.482975 + 0.836538i
\(732\) 0 0
\(733\) 10591.8 6115.17i 0.533720 0.308143i −0.208810 0.977956i \(-0.566959\pi\)
0.742530 + 0.669813i \(0.233626\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11803.9 6814.96i 0.589960 0.340614i
\(738\) 0 0
\(739\) −2182.80 + 3780.72i −0.108654 + 0.188195i −0.915225 0.402942i \(-0.867988\pi\)
0.806571 + 0.591137i \(0.201321\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26621.6i 1.31447i −0.753686 0.657234i \(-0.771726\pi\)
0.753686 0.657234i \(-0.228274\pi\)
\(744\) 0 0
\(745\) 34686.6 + 20026.3i 1.70580 + 0.984843i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21897.9 6716.90i −1.06827 0.327677i
\(750\) 0 0
\(751\) 12129.2 + 21008.4i 0.589349 + 1.02078i 0.994318 + 0.106452i \(0.0339491\pi\)
−0.404969 + 0.914331i \(0.632718\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15228.4 0.734066
\(756\) 0 0
\(757\) −8702.59 −0.417835 −0.208917 0.977933i \(-0.566994\pi\)
−0.208917 + 0.977933i \(0.566994\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16901.0 29273.5i −0.805075 1.39443i −0.916240 0.400629i \(-0.868792\pi\)
0.111165 0.993802i \(-0.464542\pi\)
\(762\) 0 0
\(763\) 436.984 100.462i 0.0207338 0.00476668i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −27024.5 15602.6i −1.27223 0.734521i
\(768\) 0 0
\(769\) 3781.67i 0.177335i 0.996061 + 0.0886675i \(0.0282608\pi\)
−0.996061 + 0.0886675i \(0.971739\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7306.10 12654.5i 0.339951 0.588813i −0.644472 0.764628i \(-0.722923\pi\)
0.984423 + 0.175815i \(0.0562561\pi\)
\(774\) 0 0
\(775\) 16848.0 9727.22i 0.780903 0.450854i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 35335.1 20400.7i 1.62518 0.938296i
\(780\) 0 0
\(781\) −1211.94 + 2099.15i −0.0555273 + 0.0961760i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 34853.7i 1.58469i
\(786\) 0 0
\(787\) 9515.26 + 5493.64i 0.430982 + 0.248827i 0.699765 0.714373i \(-0.253288\pi\)
−0.268783 + 0.963201i \(0.586621\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10141.1 + 9439.31i −0.455849 + 0.424302i
\(792\) 0 0
\(793\) 3188.23 + 5522.17i 0.142771 + 0.247286i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26825.7 1.19224 0.596119 0.802896i \(-0.296709\pi\)
0.596119 + 0.802896i \(0.296709\pi\)
\(798\) 0 0
\(799\) −18024.1 −0.798055
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −97.0580 168.109i −0.00426538 0.00738786i
\(804\) 0 0
\(805\) 3893.67 + 16936.4i 0.170477 + 0.741527i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1110.89 + 641.370i 0.0482777 + 0.0278731i 0.523945 0.851752i \(-0.324460\pi\)
−0.475667 + 0.879625i \(0.657793\pi\)
\(810\) 0 0
\(811\) 16526.3i 0.715557i −0.933806 0.357779i \(-0.883534\pi\)
0.933806 0.357779i \(-0.116466\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −21863.5 + 37868.7i −0.939688 + 1.62759i
\(816\) 0 0
\(817\) 26883.0 15520.9i 1.15118 0.664636i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19174.8 11070.6i 0.815111 0.470605i −0.0336167 0.999435i \(-0.510703\pi\)
0.848728 + 0.528830i \(0.177369\pi\)
\(822\) 0 0
\(823\) −14924.7 + 25850.3i −0.632129 + 1.09488i 0.354986 + 0.934872i \(0.384486\pi\)
−0.987116 + 0.160009i \(0.948848\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25515.2i 1.07285i −0.843946 0.536427i \(-0.819774\pi\)
0.843946 0.536427i \(-0.180226\pi\)
\(828\) 0 0
\(829\) −18525.0 10695.4i −0.776116 0.448091i 0.0589359 0.998262i \(-0.481229\pi\)
−0.835052 + 0.550171i \(0.814563\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −14755.3 9992.12i −0.613734 0.415614i
\(834\) 0 0
\(835\) −17981.3 31144.5i −0.745231 1.29078i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 25411.3 1.04564 0.522821 0.852442i \(-0.324879\pi\)
0.522821 + 0.852442i \(0.324879\pi\)
\(840\) 0 0
\(841\) −13658.4 −0.560023
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −16945.8 29351.0i −0.689887 1.19492i
\(846\) 0 0
\(847\) −3432.37 + 11189.9i −0.139242 + 0.453944i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10471.8 + 6045.91i 0.421821 + 0.243538i
\(852\) 0 0
\(853\) 26049.3i 1.04562i −0.852450 0.522809i \(-0.824884\pi\)
0.852450 0.522809i \(-0.175116\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14248.5 + 24679.2i −0.567935 + 0.983692i 0.428835 + 0.903383i \(0.358924\pi\)
−0.996770 + 0.0803090i \(0.974409\pi\)
\(858\) 0 0
\(859\) 17656.8 10194.1i 0.701329 0.404913i −0.106513 0.994311i \(-0.533969\pi\)
0.807842 + 0.589399i \(0.200635\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25128.5 + 14507.9i −0.991174 + 0.572255i −0.905625 0.424079i \(-0.860598\pi\)
−0.0855492 + 0.996334i \(0.527264\pi\)
\(864\) 0 0
\(865\) 23376.8 40489.9i 0.918886 1.59156i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 36533.3i 1.42613i
\(870\) 0 0
\(871\) −30108.4 17383.1i −1.17128 0.676239i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7671.82 8242.21i −0.296405 0.318443i
\(876\) 0 0
\(877\) 5471.32 + 9476.60i 0.210665 + 0.364883i 0.951923 0.306338i \(-0.0991037\pi\)
−0.741258 + 0.671220i \(0.765770\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −13436.8 −0.513845 −0.256922 0.966432i \(-0.582708\pi\)
−0.256922 + 0.966432i \(0.582708\pi\)
\(882\) 0 0
\(883\) −42178.7 −1.60751 −0.803753 0.594963i \(-0.797167\pi\)
−0.803753 + 0.594963i \(0.797167\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4490.76 7778.23i −0.169994 0.294439i 0.768423 0.639942i \(-0.221042\pi\)
−0.938418 + 0.345503i \(0.887708\pi\)
\(888\) 0 0
\(889\) −7695.26 8267.40i −0.290316 0.311901i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 25380.4 + 14653.4i 0.951091 + 0.549113i
\(894\) 0 0
\(895\) 30796.8i 1.15020i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22907.9 + 39677.7i −0.849858 + 1.47200i
\(900\) 0 0
\(901\) 26331.4 15202.5i 0.973615 0.562117i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −21864.7 + 12623.6i −0.803104 + 0.463672i
\(906\) 0 0
\(907\) 22692.2 39304.0i 0.830740 1.43888i −0.0667129 0.997772i \(-0.521251\pi\)
0.897453 0.441111i \(-0.145416\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 33841.9i 1.23077i 0.788226 + 0.615386i \(0.211000\pi\)
−0.788226 + 0.615386i \(0.789000\pi\)
\(912\) 0 0
\(913\) 21055.6 + 12156.5i 0.763240 + 0.440657i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −548.111 + 1786.91i −0.0197385 + 0.0643499i
\(918\) 0 0
\(919\) 605.250 + 1048.32i 0.0217251 + 0.0376290i 0.876684 0.481068i \(-0.159751\pi\)
−0.854958 + 0.518696i \(0.826417\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6182.69 0.220483
\(924\) 0 0
\(925\) 15386.8 0.546936
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17197.4 + 29786.7i 0.607350 + 1.05196i 0.991675 + 0.128763i \(0.0411006\pi\)
−0.384326 + 0.923198i \(0.625566\pi\)
\(930\) 0 0
\(931\) 12654.0 + 26066.2i 0.445455 + 0.917601i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17149.2 9901.08i −0.599827 0.346310i
\(936\) 0 0
\(937\) 7755.34i 0.270391i −0.990819 0.135195i \(-0.956834\pi\)
0.990819 0.135195i \(-0.0431662\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9177.67 + 15896.2i −0.317942 + 0.550692i −0.980058 0.198709i \(-0.936325\pi\)
0.662116 + 0.749401i \(0.269658\pi\)
\(942\) 0 0
\(943\) −27225.7 + 15718.8i −0.940182 + 0.542815i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19440.4 11223.9i 0.667082 0.385140i −0.127888 0.991789i \(-0.540820\pi\)
0.794970 + 0.606649i \(0.207486\pi\)
\(948\) 0 0
\(949\) −247.569 + 428.802i −0.00846830 + 0.0146675i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 725.850i 0.0246722i −0.999924 0.0123361i \(-0.996073\pi\)
0.999924 0.0123361i \(-0.00392680\pi\)
\(954\) 0 0
\(955\) −48662.1 28095.1i −1.64887 0.951975i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3198.67 13913.3i −0.107706 0.468493i
\(960\) 0 0
\(961\) 12689.7 + 21979.2i 0.425958 + 0.737781i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5052.71 −0.168552
\(966\) 0 0
\(967\) −12685.9 −0.421872 −0.210936 0.977500i \(-0.567651\pi\)
−0.210936 + 0.977500i \(0.567651\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10598.8 + 18357.7i 0.350291 + 0.606722i 0.986300 0.164959i \(-0.0527492\pi\)
−0.636009 + 0.771682i \(0.719416\pi\)
\(972\) 0 0
\(973\) −17866.0 + 16629.6i −0.588650 + 0.547914i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12691.6 + 7327.51i 0.415599 + 0.239946i 0.693193 0.720752i \(-0.256203\pi\)
−0.277593 + 0.960699i \(0.589537\pi\)
\(978\) 0 0
\(979\) 21158.0i 0.690718i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18204.1 + 31530.4i −0.590661 + 1.02305i 0.403483 + 0.914987i \(0.367799\pi\)
−0.994144 + 0.108067i \(0.965534\pi\)
\(984\) 0 0
\(985\) 1735.55 1002.02i 0.0561412 0.0324131i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20713.4 + 11958.9i −0.665972 + 0.384499i
\(990\) 0 0
\(991\) 12174.7 21087.2i 0.390254 0.675940i −0.602229 0.798324i \(-0.705720\pi\)
0.992483 + 0.122384i \(0.0390538\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 32181.6i 1.02535i
\(996\) 0 0
\(997\) −36125.2 20856.9i −1.14754 0.662532i −0.199253 0.979948i \(-0.563851\pi\)
−0.948286 + 0.317416i \(0.897185\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.t.e.269.14 yes 32
3.2 odd 2 inner 756.4.t.e.269.3 32
7.5 odd 6 inner 756.4.t.e.593.3 yes 32
21.5 even 6 inner 756.4.t.e.593.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.t.e.269.3 32 3.2 odd 2 inner
756.4.t.e.269.14 yes 32 1.1 even 1 trivial
756.4.t.e.593.3 yes 32 7.5 odd 6 inner
756.4.t.e.593.14 yes 32 21.5 even 6 inner