Properties

Label 756.4.t.e.269.10
Level $756$
Weight $4$
Character 756.269
Analytic conductor $44.605$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(269,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.269"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.10
Character \(\chi\) \(=\) 756.269
Dual form 756.4.t.e.593.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.13836 + 3.70374i) q^{5} +(-15.9269 + 9.45161i) q^{7} +(-35.6565 - 20.5863i) q^{11} -24.1846i q^{13} +(28.7633 - 49.8194i) q^{17} +(16.1346 - 9.31533i) q^{19} +(67.9773 - 39.2467i) q^{23} +(53.3549 - 92.4134i) q^{25} +202.514i q^{29} +(184.138 + 106.312i) q^{31} +(-69.0637 - 38.7783i) q^{35} +(116.462 + 201.719i) q^{37} +224.476 q^{41} -522.759 q^{43} +(190.401 + 329.785i) q^{47} +(164.334 - 301.070i) q^{49} +(569.999 + 329.089i) q^{53} -176.083i q^{55} +(-338.019 + 585.466i) q^{59} +(-126.822 + 73.2210i) q^{61} +(89.5734 - 51.7152i) q^{65} +(-221.248 + 383.212i) q^{67} -213.383i q^{71} +(-568.396 - 328.164i) q^{73} +(762.471 - 9.13483i) q^{77} +(247.191 + 428.148i) q^{79} +857.695 q^{83} +246.024 q^{85} +(339.378 + 587.821i) q^{89} +(228.583 + 385.186i) q^{91} +(69.0031 + 39.8390i) q^{95} -436.541i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{7} + 72 q^{19} - 514 q^{25} - 714 q^{31} + 8 q^{37} + 368 q^{43} + 890 q^{49} + 1272 q^{61} + 1840 q^{67} + 324 q^{73} + 532 q^{79} - 1344 q^{85} - 4596 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.13836 + 3.70374i 0.191260 + 0.331273i 0.945668 0.325133i \(-0.105409\pi\)
−0.754408 + 0.656406i \(0.772076\pi\)
\(6\) 0 0
\(7\) −15.9269 + 9.45161i −0.859973 + 0.510339i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −35.6565 20.5863i −0.977348 0.564272i −0.0758796 0.997117i \(-0.524176\pi\)
−0.901468 + 0.432845i \(0.857510\pi\)
\(12\) 0 0
\(13\) 24.1846i 0.515969i −0.966149 0.257984i \(-0.916942\pi\)
0.966149 0.257984i \(-0.0830583\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 28.7633 49.8194i 0.410360 0.710764i −0.584569 0.811344i \(-0.698736\pi\)
0.994929 + 0.100580i \(0.0320698\pi\)
\(18\) 0 0
\(19\) 16.1346 9.31533i 0.194818 0.112478i −0.399418 0.916769i \(-0.630788\pi\)
0.594236 + 0.804291i \(0.297455\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 67.9773 39.2467i 0.616272 0.355805i −0.159144 0.987255i \(-0.550873\pi\)
0.775416 + 0.631451i \(0.217540\pi\)
\(24\) 0 0
\(25\) 53.3549 92.4134i 0.426839 0.739307i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 202.514i 1.29675i 0.761320 + 0.648377i \(0.224552\pi\)
−0.761320 + 0.648377i \(0.775448\pi\)
\(30\) 0 0
\(31\) 184.138 + 106.312i 1.06684 + 0.615941i 0.927317 0.374277i \(-0.122109\pi\)
0.139525 + 0.990219i \(0.455442\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −69.0637 38.7783i −0.333540 0.187278i
\(36\) 0 0
\(37\) 116.462 + 201.719i 0.517467 + 0.896280i 0.999794 + 0.0202882i \(0.00645839\pi\)
−0.482327 + 0.875991i \(0.660208\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 224.476 0.855056 0.427528 0.904002i \(-0.359385\pi\)
0.427528 + 0.904002i \(0.359385\pi\)
\(42\) 0 0
\(43\) −522.759 −1.85395 −0.926977 0.375117i \(-0.877602\pi\)
−0.926977 + 0.375117i \(0.877602\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 190.401 + 329.785i 0.590913 + 1.02349i 0.994110 + 0.108378i \(0.0345656\pi\)
−0.403197 + 0.915113i \(0.632101\pi\)
\(48\) 0 0
\(49\) 164.334 301.070i 0.479109 0.877756i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 569.999 + 329.089i 1.47727 + 0.852904i 0.999670 0.0256725i \(-0.00817270\pi\)
0.477602 + 0.878576i \(0.341506\pi\)
\(54\) 0 0
\(55\) 176.083i 0.431691i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −338.019 + 585.466i −0.745870 + 1.29188i 0.203917 + 0.978988i \(0.434633\pi\)
−0.949787 + 0.312896i \(0.898701\pi\)
\(60\) 0 0
\(61\) −126.822 + 73.2210i −0.266196 + 0.153688i −0.627158 0.778892i \(-0.715782\pi\)
0.360962 + 0.932581i \(0.382449\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 89.5734 51.7152i 0.170926 0.0986843i
\(66\) 0 0
\(67\) −221.248 + 383.212i −0.403429 + 0.698759i −0.994137 0.108126i \(-0.965515\pi\)
0.590709 + 0.806885i \(0.298848\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 213.383i 0.356674i −0.983969 0.178337i \(-0.942928\pi\)
0.983969 0.178337i \(-0.0570717\pi\)
\(72\) 0 0
\(73\) −568.396 328.164i −0.911312 0.526146i −0.0304587 0.999536i \(-0.509697\pi\)
−0.880853 + 0.473390i \(0.843030\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 762.471 9.13483i 1.12846 0.0135196i
\(78\) 0 0
\(79\) 247.191 + 428.148i 0.352040 + 0.609752i 0.986607 0.163116i \(-0.0521546\pi\)
−0.634566 + 0.772868i \(0.718821\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 857.695 1.13427 0.567134 0.823625i \(-0.308052\pi\)
0.567134 + 0.823625i \(0.308052\pi\)
\(84\) 0 0
\(85\) 246.024 0.313942
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 339.378 + 587.821i 0.404203 + 0.700100i 0.994228 0.107285i \(-0.0342157\pi\)
−0.590026 + 0.807385i \(0.700882\pi\)
\(90\) 0 0
\(91\) 228.583 + 385.186i 0.263319 + 0.443719i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 69.0031 + 39.8390i 0.0745218 + 0.0430252i
\(96\) 0 0
\(97\) 436.541i 0.456949i −0.973550 0.228474i \(-0.926626\pi\)
0.973550 0.228474i \(-0.0733737\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 264.620 458.336i 0.260700 0.451546i −0.705728 0.708483i \(-0.749380\pi\)
0.966428 + 0.256937i \(0.0827133\pi\)
\(102\) 0 0
\(103\) 1176.86 679.459i 1.12582 0.649991i 0.182938 0.983124i \(-0.441439\pi\)
0.942880 + 0.333133i \(0.108106\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 235.668 136.063i 0.212924 0.122932i −0.389746 0.920923i \(-0.627437\pi\)
0.602670 + 0.797991i \(0.294104\pi\)
\(108\) 0 0
\(109\) −220.323 + 381.611i −0.193607 + 0.335337i −0.946443 0.322871i \(-0.895352\pi\)
0.752836 + 0.658208i \(0.228685\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1096.06i 0.912465i 0.889861 + 0.456233i \(0.150801\pi\)
−0.889861 + 0.456233i \(0.849199\pi\)
\(114\) 0 0
\(115\) 290.719 + 167.847i 0.235737 + 0.136103i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.7632 + 1065.33i 0.00983197 + 0.820661i
\(120\) 0 0
\(121\) 182.089 + 315.387i 0.136806 + 0.236955i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 990.956 0.709070
\(126\) 0 0
\(127\) −953.350 −0.666111 −0.333056 0.942907i \(-0.608080\pi\)
−0.333056 + 0.942907i \(0.608080\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 858.313 + 1486.64i 0.572452 + 0.991515i 0.996313 + 0.0857884i \(0.0273409\pi\)
−0.423862 + 0.905727i \(0.639326\pi\)
\(132\) 0 0
\(133\) −168.930 + 300.863i −0.110136 + 0.196151i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1838.55 + 1061.48i 1.14655 + 0.661962i 0.948045 0.318138i \(-0.103057\pi\)
0.198507 + 0.980099i \(0.436391\pi\)
\(138\) 0 0
\(139\) 1768.95i 1.07943i −0.841848 0.539715i \(-0.818532\pi\)
0.841848 0.539715i \(-0.181468\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −497.870 + 862.336i −0.291147 + 0.504281i
\(144\) 0 0
\(145\) −750.058 + 433.046i −0.429579 + 0.248018i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1922.68 1110.06i 1.05713 0.610333i 0.132491 0.991184i \(-0.457702\pi\)
0.924636 + 0.380851i \(0.124369\pi\)
\(150\) 0 0
\(151\) 298.447 516.925i 0.160843 0.278588i −0.774328 0.632784i \(-0.781912\pi\)
0.935171 + 0.354196i \(0.115245\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 909.330i 0.471221i
\(156\) 0 0
\(157\) −78.6406 45.4032i −0.0399758 0.0230801i 0.479879 0.877335i \(-0.340681\pi\)
−0.519855 + 0.854255i \(0.674014\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −711.725 + 1267.57i −0.348396 + 0.620490i
\(162\) 0 0
\(163\) −584.493 1012.37i −0.280865 0.486473i 0.690733 0.723110i \(-0.257288\pi\)
−0.971598 + 0.236637i \(0.923955\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 896.718 0.415510 0.207755 0.978181i \(-0.433384\pi\)
0.207755 + 0.978181i \(0.433384\pi\)
\(168\) 0 0
\(169\) 1612.11 0.733776
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −540.506 936.184i −0.237537 0.411426i 0.722470 0.691402i \(-0.243007\pi\)
−0.960007 + 0.279976i \(0.909673\pi\)
\(174\) 0 0
\(175\) 23.6754 + 1976.15i 0.0102268 + 0.853617i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3952.75 + 2282.12i 1.65052 + 0.952926i 0.976859 + 0.213882i \(0.0686109\pi\)
0.673657 + 0.739044i \(0.264722\pi\)
\(180\) 0 0
\(181\) 2695.13i 1.10678i 0.832922 + 0.553391i \(0.186666\pi\)
−0.832922 + 0.553391i \(0.813334\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −498.076 + 862.692i −0.197942 + 0.342845i
\(186\) 0 0
\(187\) −2051.19 + 1184.26i −0.802129 + 0.463109i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1241.02 + 716.501i −0.470140 + 0.271436i −0.716299 0.697794i \(-0.754165\pi\)
0.246158 + 0.969230i \(0.420832\pi\)
\(192\) 0 0
\(193\) 1899.26 3289.61i 0.708350 1.22690i −0.257119 0.966380i \(-0.582773\pi\)
0.965469 0.260518i \(-0.0838934\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1189.41i 0.430163i −0.976596 0.215082i \(-0.930998\pi\)
0.976596 0.215082i \(-0.0690017\pi\)
\(198\) 0 0
\(199\) −861.857 497.593i −0.307012 0.177254i 0.338577 0.940939i \(-0.390055\pi\)
−0.645589 + 0.763685i \(0.723388\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1914.08 3225.42i −0.661784 1.11517i
\(204\) 0 0
\(205\) 480.010 + 831.401i 0.163538 + 0.283257i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −767.072 −0.253873
\(210\) 0 0
\(211\) 3662.87 1.19508 0.597542 0.801838i \(-0.296144\pi\)
0.597542 + 0.801838i \(0.296144\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1117.85 1936.16i −0.354588 0.614164i
\(216\) 0 0
\(217\) −3937.57 + 47.1742i −1.23179 + 0.0147576i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1204.86 695.627i −0.366732 0.211733i
\(222\) 0 0
\(223\) 1643.63i 0.493568i 0.969071 + 0.246784i \(0.0793738\pi\)
−0.969071 + 0.246784i \(0.920626\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.3747 + 26.6297i −0.00449539 + 0.00778624i −0.868264 0.496102i \(-0.834764\pi\)
0.863769 + 0.503888i \(0.168098\pi\)
\(228\) 0 0
\(229\) 5374.23 3102.81i 1.55083 0.895369i 0.552751 0.833347i \(-0.313578\pi\)
0.998075 0.0620228i \(-0.0197552\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1147.38 662.439i 0.322606 0.186257i −0.329947 0.943999i \(-0.607031\pi\)
0.652554 + 0.757742i \(0.273698\pi\)
\(234\) 0 0
\(235\) −814.292 + 1410.39i −0.226036 + 0.391506i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2248.29i 0.608492i −0.952593 0.304246i \(-0.901595\pi\)
0.952593 0.304246i \(-0.0984045\pi\)
\(240\) 0 0
\(241\) −4267.12 2463.62i −1.14054 0.658489i −0.193974 0.981007i \(-0.562138\pi\)
−0.946564 + 0.322517i \(0.895471\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1466.49 35.1438i 0.382411 0.00916431i
\(246\) 0 0
\(247\) −225.287 390.209i −0.0580352 0.100520i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6922.20 −1.74074 −0.870369 0.492400i \(-0.836120\pi\)
−0.870369 + 0.492400i \(0.836120\pi\)
\(252\) 0 0
\(253\) −3231.77 −0.803083
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 310.575 + 537.932i 0.0753819 + 0.130565i 0.901252 0.433295i \(-0.142649\pi\)
−0.825870 + 0.563860i \(0.809316\pi\)
\(258\) 0 0
\(259\) −3761.45 2112.00i −0.902414 0.506693i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2661.67 1536.72i −0.624052 0.360297i 0.154393 0.988010i \(-0.450658\pi\)
−0.778445 + 0.627713i \(0.783991\pi\)
\(264\) 0 0
\(265\) 2814.84i 0.652507i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 593.308 1027.64i 0.134478 0.232923i −0.790920 0.611920i \(-0.790398\pi\)
0.925398 + 0.378997i \(0.123731\pi\)
\(270\) 0 0
\(271\) −54.8423 + 31.6632i −0.0122931 + 0.00709743i −0.506134 0.862455i \(-0.668926\pi\)
0.493841 + 0.869552i \(0.335593\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3804.89 + 2196.76i −0.834341 + 0.481707i
\(276\) 0 0
\(277\) −2953.02 + 5114.79i −0.640542 + 1.10945i 0.344770 + 0.938687i \(0.387957\pi\)
−0.985312 + 0.170764i \(0.945377\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9070.73i 1.92567i −0.270085 0.962836i \(-0.587052\pi\)
0.270085 0.962836i \(-0.412948\pi\)
\(282\) 0 0
\(283\) 5747.96 + 3318.58i 1.20735 + 0.697065i 0.962180 0.272415i \(-0.0878223\pi\)
0.245172 + 0.969480i \(0.421156\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3575.22 + 2121.66i −0.735325 + 0.436368i
\(288\) 0 0
\(289\) 801.849 + 1388.84i 0.163210 + 0.282688i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5630.46 1.12265 0.561323 0.827597i \(-0.310293\pi\)
0.561323 + 0.827597i \(0.310293\pi\)
\(294\) 0 0
\(295\) −2891.22 −0.570621
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −949.165 1644.00i −0.183584 0.317977i
\(300\) 0 0
\(301\) 8325.95 4940.92i 1.59435 0.946145i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −542.383 313.145i −0.101825 0.0587889i
\(306\) 0 0
\(307\) 2412.89i 0.448570i −0.974524 0.224285i \(-0.927995\pi\)
0.974524 0.224285i \(-0.0720047\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3830.84 + 6635.22i −0.698480 + 1.20980i 0.270514 + 0.962716i \(0.412807\pi\)
−0.968993 + 0.247087i \(0.920527\pi\)
\(312\) 0 0
\(313\) −142.607 + 82.3340i −0.0257527 + 0.0148683i −0.512821 0.858496i \(-0.671400\pi\)
0.487068 + 0.873364i \(0.338066\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3217.61 1857.69i 0.570091 0.329142i −0.187095 0.982342i \(-0.559907\pi\)
0.757186 + 0.653200i \(0.226574\pi\)
\(318\) 0 0
\(319\) 4169.00 7220.92i 0.731722 1.26738i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1071.76i 0.184626i
\(324\) 0 0
\(325\) −2234.98 1290.36i −0.381459 0.220236i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6149.51 3452.86i −1.03050 0.578609i
\(330\) 0 0
\(331\) −1993.16 3452.25i −0.330979 0.573272i 0.651725 0.758455i \(-0.274045\pi\)
−0.982704 + 0.185183i \(0.940712\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1892.43 −0.308640
\(336\) 0 0
\(337\) 7112.94 1.14975 0.574876 0.818240i \(-0.305050\pi\)
0.574876 + 0.818240i \(0.305050\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4377.13 7581.41i −0.695117 1.20398i
\(342\) 0 0
\(343\) 228.258 + 6348.35i 0.0359322 + 0.999354i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3424.22 1976.97i −0.529745 0.305848i 0.211168 0.977450i \(-0.432273\pi\)
−0.740913 + 0.671601i \(0.765607\pi\)
\(348\) 0 0
\(349\) 631.667i 0.0968836i 0.998826 + 0.0484418i \(0.0154255\pi\)
−0.998826 + 0.0484418i \(0.984574\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4963.73 + 8597.43i −0.748421 + 1.29630i 0.200159 + 0.979763i \(0.435854\pi\)
−0.948579 + 0.316539i \(0.897479\pi\)
\(354\) 0 0
\(355\) 790.314 456.288i 0.118156 0.0682176i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −678.529 + 391.749i −0.0997532 + 0.0575925i −0.549047 0.835792i \(-0.685009\pi\)
0.449293 + 0.893384i \(0.351676\pi\)
\(360\) 0 0
\(361\) −3255.95 + 5639.47i −0.474697 + 0.822200i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2806.92i 0.402523i
\(366\) 0 0
\(367\) 4531.71 + 2616.39i 0.644560 + 0.372137i 0.786369 0.617757i \(-0.211959\pi\)
−0.141809 + 0.989894i \(0.545292\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12188.8 + 146.028i −1.70569 + 0.0204351i
\(372\) 0 0
\(373\) −1131.18 1959.27i −0.157026 0.271976i 0.776769 0.629785i \(-0.216857\pi\)
−0.933795 + 0.357809i \(0.883524\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4897.71 0.669084
\(378\) 0 0
\(379\) −7342.89 −0.995196 −0.497598 0.867408i \(-0.665784\pi\)
−0.497598 + 0.867408i \(0.665784\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5824.04 10087.5i −0.777009 1.34582i −0.933658 0.358165i \(-0.883403\pi\)
0.156649 0.987654i \(-0.449931\pi\)
\(384\) 0 0
\(385\) 1664.27 + 2804.46i 0.220309 + 0.371243i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7596.76 + 4385.99i 0.990157 + 0.571667i 0.905321 0.424728i \(-0.139630\pi\)
0.0848357 + 0.996395i \(0.472963\pi\)
\(390\) 0 0
\(391\) 4515.46i 0.584032i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1057.17 + 1831.06i −0.134663 + 0.233243i
\(396\) 0 0
\(397\) −7151.28 + 4128.79i −0.904061 + 0.521960i −0.878516 0.477714i \(-0.841466\pi\)
−0.0255456 + 0.999674i \(0.508132\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9520.48 5496.65i 1.18561 0.684513i 0.228305 0.973590i \(-0.426682\pi\)
0.957306 + 0.289077i \(0.0933483\pi\)
\(402\) 0 0
\(403\) 2571.11 4453.29i 0.317806 0.550457i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9590.10i 1.16797i
\(408\) 0 0
\(409\) 2530.01 + 1460.70i 0.305871 + 0.176594i 0.645077 0.764117i \(-0.276825\pi\)
−0.339207 + 0.940712i \(0.610159\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −149.991 12519.5i −0.0178706 1.49163i
\(414\) 0 0
\(415\) 1834.06 + 3176.68i 0.216941 + 0.375752i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14677.0 −1.71126 −0.855632 0.517585i \(-0.826831\pi\)
−0.855632 + 0.517585i \(0.826831\pi\)
\(420\) 0 0
\(421\) −10512.8 −1.21701 −0.608507 0.793549i \(-0.708231\pi\)
−0.608507 + 0.793549i \(0.708231\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3069.32 5316.22i −0.350315 0.606764i
\(426\) 0 0
\(427\) 1327.84 2364.86i 0.150488 0.268018i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7588.24 4381.07i −0.848057 0.489626i 0.0119377 0.999929i \(-0.496200\pi\)
−0.859995 + 0.510303i \(0.829533\pi\)
\(432\) 0 0
\(433\) 5529.57i 0.613705i −0.951757 0.306853i \(-0.900724\pi\)
0.951757 0.306853i \(-0.0992758\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 731.193 1266.46i 0.0800405 0.138634i
\(438\) 0 0
\(439\) −7000.68 + 4041.84i −0.761103 + 0.439423i −0.829692 0.558222i \(-0.811484\pi\)
0.0685887 + 0.997645i \(0.478150\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7862.68 + 4539.52i −0.843266 + 0.486860i −0.858373 0.513026i \(-0.828525\pi\)
0.0151067 + 0.999886i \(0.495191\pi\)
\(444\) 0 0
\(445\) −1451.42 + 2513.94i −0.154616 + 0.267803i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5428.06i 0.570526i −0.958449 0.285263i \(-0.907919\pi\)
0.958449 0.285263i \(-0.0920809\pi\)
\(450\) 0 0
\(451\) −8004.03 4621.13i −0.835687 0.482484i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −937.837 + 1670.28i −0.0966296 + 0.172096i
\(456\) 0 0
\(457\) 1160.12 + 2009.39i 0.118749 + 0.205679i 0.919272 0.393623i \(-0.128778\pi\)
−0.800523 + 0.599302i \(0.795445\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3952.56 0.399326 0.199663 0.979865i \(-0.436015\pi\)
0.199663 + 0.979865i \(0.436015\pi\)
\(462\) 0 0
\(463\) 6118.93 0.614192 0.307096 0.951679i \(-0.400643\pi\)
0.307096 + 0.951679i \(0.400643\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5237.11 + 9070.94i 0.518939 + 0.898829i 0.999758 + 0.0220087i \(0.00700616\pi\)
−0.480819 + 0.876820i \(0.659661\pi\)
\(468\) 0 0
\(469\) −98.1752 8194.54i −0.00966591 0.806799i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18639.8 + 10761.7i 1.81196 + 1.04614i
\(474\) 0 0
\(475\) 1988.07i 0.192040i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5289.17 + 9161.11i −0.504527 + 0.873866i 0.495460 + 0.868631i \(0.335000\pi\)
−0.999986 + 0.00523496i \(0.998334\pi\)
\(480\) 0 0
\(481\) 4878.48 2816.59i 0.462452 0.266997i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1616.84 933.480i 0.151375 0.0873962i
\(486\) 0 0
\(487\) −4253.22 + 7366.79i −0.395753 + 0.685464i −0.993197 0.116447i \(-0.962850\pi\)
0.597444 + 0.801910i \(0.296183\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 956.220i 0.0878892i 0.999034 + 0.0439446i \(0.0139925\pi\)
−0.999034 + 0.0439446i \(0.986007\pi\)
\(492\) 0 0
\(493\) 10089.1 + 5824.96i 0.921686 + 0.532136i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2016.81 + 3398.53i 0.182025 + 0.306730i
\(498\) 0 0
\(499\) 5702.62 + 9877.23i 0.511592 + 0.886104i 0.999910 + 0.0134376i \(0.00427746\pi\)
−0.488318 + 0.872666i \(0.662389\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 101.526 0.00899964 0.00449982 0.999990i \(-0.498568\pi\)
0.00449982 + 0.999990i \(0.498568\pi\)
\(504\) 0 0
\(505\) 2263.41 0.199446
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1164.58 + 2017.11i 0.101413 + 0.175652i 0.912267 0.409596i \(-0.134330\pi\)
−0.810854 + 0.585248i \(0.800997\pi\)
\(510\) 0 0
\(511\) 12154.5 145.617i 1.05222 0.0126061i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5033.08 + 2905.85i 0.430648 + 0.248635i
\(516\) 0 0
\(517\) 15678.6i 1.33374i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3994.60 + 6918.84i −0.335905 + 0.581804i −0.983658 0.180046i \(-0.942375\pi\)
0.647753 + 0.761850i \(0.275709\pi\)
\(522\) 0 0
\(523\) −8064.07 + 4655.80i −0.674220 + 0.389261i −0.797674 0.603089i \(-0.793936\pi\)
0.123453 + 0.992350i \(0.460603\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10592.8 6115.75i 0.875578 0.505515i
\(528\) 0 0
\(529\) −3002.89 + 5201.16i −0.246806 + 0.427481i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5428.86i 0.441182i
\(534\) 0 0
\(535\) 1007.88 + 581.901i 0.0814478 + 0.0470239i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12057.5 + 7352.07i −0.963549 + 0.587525i
\(540\) 0 0
\(541\) −1273.38 2205.56i −0.101196 0.175276i 0.810982 0.585071i \(-0.198934\pi\)
−0.912178 + 0.409795i \(0.865600\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1884.52 −0.148117
\(546\) 0 0
\(547\) 16319.2 1.27561 0.637807 0.770196i \(-0.279842\pi\)
0.637807 + 0.770196i \(0.279842\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1886.48 + 3267.48i 0.145856 + 0.252631i
\(552\) 0 0
\(553\) −7983.68 4482.73i −0.613925 0.344710i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22168.6 + 12799.0i 1.68638 + 0.973632i 0.957252 + 0.289254i \(0.0934072\pi\)
0.729127 + 0.684378i \(0.239926\pi\)
\(558\) 0 0
\(559\) 12642.7i 0.956583i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10293.7 + 17829.1i −0.770561 + 1.33465i 0.166695 + 0.986009i \(0.446691\pi\)
−0.937256 + 0.348642i \(0.886643\pi\)
\(564\) 0 0
\(565\) −4059.52 + 2343.76i −0.302275 + 0.174518i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10507.7 6066.64i 0.774178 0.446972i −0.0601850 0.998187i \(-0.519169\pi\)
0.834363 + 0.551215i \(0.185836\pi\)
\(570\) 0 0
\(571\) −917.059 + 1588.39i −0.0672114 + 0.116414i −0.897673 0.440663i \(-0.854744\pi\)
0.830461 + 0.557076i \(0.188077\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8376.02i 0.607485i
\(576\) 0 0
\(577\) 1014.52 + 585.733i 0.0731976 + 0.0422606i 0.536152 0.844121i \(-0.319877\pi\)
−0.462955 + 0.886382i \(0.653211\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13660.5 + 8106.60i −0.975441 + 0.578861i
\(582\) 0 0
\(583\) −13549.4 23468.3i −0.962540 1.66717i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28344.8 1.99304 0.996520 0.0833542i \(-0.0265633\pi\)
0.996520 + 0.0833542i \(0.0265633\pi\)
\(588\) 0 0
\(589\) 3961.32 0.277120
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3788.26 + 6561.47i 0.262336 + 0.454380i 0.966862 0.255298i \(-0.0821737\pi\)
−0.704526 + 0.709678i \(0.748840\pi\)
\(594\) 0 0
\(595\) −3918.41 + 2325.33i −0.269982 + 0.160217i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25265.0 + 14586.7i 1.72337 + 0.994988i 0.911680 + 0.410900i \(0.134786\pi\)
0.811690 + 0.584088i \(0.198548\pi\)
\(600\) 0 0
\(601\) 20302.1i 1.37793i 0.724793 + 0.688967i \(0.241935\pi\)
−0.724793 + 0.688967i \(0.758065\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −778.742 + 1348.82i −0.0523312 + 0.0906403i
\(606\) 0 0
\(607\) 4664.27 2692.92i 0.311890 0.180069i −0.335882 0.941904i \(-0.609034\pi\)
0.647772 + 0.761835i \(0.275701\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7975.71 4604.78i 0.528089 0.304892i
\(612\) 0 0
\(613\) 13571.5 23506.5i 0.894203 1.54881i 0.0594159 0.998233i \(-0.481076\pi\)
0.834787 0.550572i \(-0.185590\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22863.1i 1.49179i −0.666063 0.745896i \(-0.732022\pi\)
0.666063 0.745896i \(-0.267978\pi\)
\(618\) 0 0
\(619\) −18682.0 10786.0i −1.21307 0.700367i −0.249645 0.968338i \(-0.580314\pi\)
−0.963427 + 0.267970i \(0.913647\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10961.1 6154.51i −0.704892 0.395787i
\(624\) 0 0
\(625\) −4550.34 7881.43i −0.291222 0.504411i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13399.3 0.849391
\(630\) 0 0
\(631\) −9149.66 −0.577246 −0.288623 0.957443i \(-0.593197\pi\)
−0.288623 + 0.957443i \(0.593197\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2038.60 3530.96i −0.127401 0.220664i
\(636\) 0 0
\(637\) −7281.25 3974.35i −0.452894 0.247205i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9934.51 + 5735.69i 0.612152 + 0.353426i 0.773807 0.633421i \(-0.218350\pi\)
−0.161655 + 0.986847i \(0.551683\pi\)
\(642\) 0 0
\(643\) 21804.8i 1.33732i 0.743568 + 0.668660i \(0.233132\pi\)
−0.743568 + 0.668660i \(0.766868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13667.6 + 23673.0i −0.830495 + 1.43846i 0.0671520 + 0.997743i \(0.478609\pi\)
−0.897647 + 0.440716i \(0.854725\pi\)
\(648\) 0 0
\(649\) 24105.1 13917.1i 1.45795 0.841747i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8234.37 + 4754.12i −0.493470 + 0.284905i −0.726013 0.687681i \(-0.758629\pi\)
0.232543 + 0.972586i \(0.425295\pi\)
\(654\) 0 0
\(655\) −3670.76 + 6357.94i −0.218975 + 0.379275i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1178.95i 0.0696896i 0.999393 + 0.0348448i \(0.0110937\pi\)
−0.999393 + 0.0348448i \(0.988906\pi\)
\(660\) 0 0
\(661\) 11846.9 + 6839.83i 0.697113 + 0.402479i 0.806271 0.591546i \(-0.201482\pi\)
−0.109158 + 0.994024i \(0.534815\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1475.55 + 17.6779i −0.0860442 + 0.00103086i
\(666\) 0 0
\(667\) 7948.00 + 13766.3i 0.461391 + 0.799153i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6029.39 0.346888
\(672\) 0 0
\(673\) −13877.3 −0.794845 −0.397422 0.917636i \(-0.630095\pi\)
−0.397422 + 0.917636i \(0.630095\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5249.25 9091.96i −0.297998 0.516148i 0.677680 0.735357i \(-0.262986\pi\)
−0.975678 + 0.219209i \(0.929652\pi\)
\(678\) 0 0
\(679\) 4126.02 + 6952.76i 0.233199 + 0.392964i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20028.5 + 11563.4i 1.12206 + 0.647823i 0.941927 0.335819i \(-0.109013\pi\)
0.180136 + 0.983642i \(0.442346\pi\)
\(684\) 0 0
\(685\) 9079.33i 0.506428i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7958.88 13785.2i 0.440072 0.762226i
\(690\) 0 0
\(691\) 8736.41 5043.97i 0.480968 0.277687i −0.239852 0.970809i \(-0.577099\pi\)
0.720820 + 0.693123i \(0.243766\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6551.75 3782.65i 0.357586 0.206452i
\(696\) 0 0
\(697\) 6456.67 11183.3i 0.350881 0.607743i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11673.0i 0.628937i 0.949268 + 0.314468i \(0.101826\pi\)
−0.949268 + 0.314468i \(0.898174\pi\)
\(702\) 0 0
\(703\) 3758.15 + 2169.77i 0.201624 + 0.116407i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 117.421 + 9800.98i 0.00624622 + 0.521363i
\(708\) 0 0
\(709\) 3302.77 + 5720.57i 0.174948 + 0.303019i 0.940143 0.340779i \(-0.110691\pi\)
−0.765195 + 0.643798i \(0.777358\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16689.6 0.876619
\(714\) 0 0
\(715\) −4258.49 −0.222739
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6329.61 10963.2i −0.328310 0.568649i 0.653867 0.756610i \(-0.273146\pi\)
−0.982177 + 0.187961i \(0.939812\pi\)
\(720\) 0 0
\(721\) −12321.7 + 21944.9i −0.636457 + 1.13352i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18715.0 + 10805.1i 0.958699 + 0.553505i
\(726\) 0 0
\(727\) 20978.8i 1.07023i −0.844778 0.535117i \(-0.820267\pi\)
0.844778 0.535117i \(-0.179733\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15036.3 + 26043.6i −0.760788 + 1.31772i
\(732\) 0 0
\(733\) −25434.5 + 14684.6i −1.28164 + 0.739956i −0.977148 0.212558i \(-0.931821\pi\)
−0.304494 + 0.952514i \(0.598487\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15777.8 9109.33i 0.788580 0.455287i
\(738\) 0 0
\(739\) 604.945 1047.80i 0.0301127 0.0521567i −0.850576 0.525852i \(-0.823747\pi\)
0.880689 + 0.473695i \(0.157080\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5344.74i 0.263902i 0.991256 + 0.131951i \(0.0421242\pi\)
−0.991256 + 0.131951i \(0.957876\pi\)
\(744\) 0 0
\(745\) 8222.74 + 4747.40i 0.404373 + 0.233465i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2467.45 + 4394.50i −0.120372 + 0.214381i
\(750\) 0 0
\(751\) −12394.5 21468.0i −0.602241 1.04311i −0.992481 0.122398i \(-0.960941\pi\)
0.390240 0.920713i \(-0.372392\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2552.74 0.123051
\(756\) 0 0
\(757\) 7531.15 0.361591 0.180795 0.983521i \(-0.442133\pi\)
0.180795 + 0.983521i \(0.442133\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10714.8 + 18558.6i 0.510397 + 0.884034i 0.999927 + 0.0120477i \(0.00383500\pi\)
−0.489530 + 0.871986i \(0.662832\pi\)
\(762\) 0 0
\(763\) −97.7650 8160.31i −0.00463871 0.387186i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14159.2 + 8174.84i 0.666572 + 0.384845i
\(768\) 0 0
\(769\) 5672.41i 0.265998i 0.991116 + 0.132999i \(0.0424607\pi\)
−0.991116 + 0.132999i \(0.957539\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15382.4 + 26643.1i −0.715739 + 1.23970i 0.246935 + 0.969032i \(0.420577\pi\)
−0.962674 + 0.270664i \(0.912757\pi\)
\(774\) 0 0
\(775\) 19649.3 11344.5i 0.910739 0.525816i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3621.84 2091.07i 0.166580 0.0961750i
\(780\) 0 0
\(781\) −4392.75 + 7608.47i −0.201261 + 0.348595i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 388.353i 0.0176572i
\(786\) 0 0
\(787\) −2009.12 1159.96i −0.0910003 0.0525390i 0.453809 0.891099i \(-0.350065\pi\)
−0.544810 + 0.838560i \(0.683398\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10359.5 17456.9i −0.465666 0.784696i
\(792\) 0 0
\(793\) 1770.82 + 3067.15i 0.0792984 + 0.137349i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8031.15 0.356936 0.178468 0.983946i \(-0.442886\pi\)
0.178468 + 0.983946i \(0.442886\pi\)
\(798\) 0 0
\(799\) 21906.3 0.969947
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13511.3 + 23402.3i 0.593779 + 1.02846i
\(804\) 0 0
\(805\) −6216.69 + 74.4794i −0.272186 + 0.00326094i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9791.93 + 5653.37i 0.425545 + 0.245688i 0.697447 0.716637i \(-0.254319\pi\)
−0.271902 + 0.962325i \(0.587653\pi\)
\(810\) 0 0
\(811\) 34258.3i 1.48332i −0.670777 0.741659i \(-0.734039\pi\)
0.670777 0.741659i \(-0.265961\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2499.71 4329.62i 0.107437 0.186086i
\(816\) 0 0
\(817\) −8434.53 + 4869.68i −0.361183 + 0.208529i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15485.0 8940.25i 0.658257 0.380045i −0.133355 0.991068i \(-0.542575\pi\)
0.791613 + 0.611023i \(0.209242\pi\)
\(822\) 0 0
\(823\) −12259.4 + 21233.9i −0.519241 + 0.899352i 0.480509 + 0.876990i \(0.340452\pi\)
−0.999750 + 0.0223618i \(0.992881\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25814.5i 1.08544i −0.839914 0.542720i \(-0.817394\pi\)
0.839914 0.542720i \(-0.182606\pi\)
\(828\) 0 0
\(829\) −24726.9 14276.1i −1.03595 0.598104i −0.117265 0.993101i \(-0.537413\pi\)
−0.918683 + 0.394996i \(0.870746\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10272.4 16846.8i −0.427270 0.700729i
\(834\) 0 0
\(835\) 1917.50 + 3321.21i 0.0794705 + 0.137647i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −41794.9 −1.71981 −0.859904 0.510455i \(-0.829477\pi\)
−0.859904 + 0.510455i \(0.829477\pi\)
\(840\) 0 0
\(841\) −16622.8 −0.681570
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3447.26 + 5970.82i 0.140342 + 0.243080i
\(846\) 0 0
\(847\) −5881.04 3302.12i −0.238577 0.133958i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15833.6 + 9141.53i 0.637801 + 0.368235i
\(852\) 0 0
\(853\) 23442.1i 0.940962i 0.882410 + 0.470481i \(0.155920\pi\)
−0.882410 + 0.470481i \(0.844080\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17726.7 + 30703.5i −0.706572 + 1.22382i 0.259550 + 0.965730i \(0.416426\pi\)
−0.966121 + 0.258088i \(0.916907\pi\)
\(858\) 0 0
\(859\) −38342.8 + 22137.2i −1.52298 + 0.879293i −0.523350 + 0.852118i \(0.675318\pi\)
−0.999631 + 0.0271751i \(0.991349\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32865.7 18975.0i 1.29636 0.748455i 0.316588 0.948563i \(-0.397463\pi\)
0.979774 + 0.200108i \(0.0641293\pi\)
\(864\) 0 0
\(865\) 2311.59 4003.79i 0.0908628 0.157379i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20355.0i 0.794586i
\(870\) 0 0
\(871\) 9267.83 + 5350.78i 0.360538 + 0.208157i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15782.9 + 9366.12i −0.609781 + 0.361866i
\(876\) 0 0
\(877\) −622.088 1077.49i −0.0239526 0.0414871i 0.853801 0.520600i \(-0.174292\pi\)
−0.877753 + 0.479113i \(0.840958\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13355.7 0.510745 0.255373 0.966843i \(-0.417802\pi\)
0.255373 + 0.966843i \(0.417802\pi\)
\(882\) 0 0
\(883\) 36500.1 1.39108 0.695542 0.718485i \(-0.255164\pi\)
0.695542 + 0.718485i \(0.255164\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9794.39 16964.4i −0.370759 0.642174i 0.618923 0.785451i \(-0.287569\pi\)
−0.989683 + 0.143278i \(0.954236\pi\)
\(888\) 0 0
\(889\) 15183.9 9010.69i 0.572838 0.339942i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6144.11 + 3547.30i 0.230241 + 0.132929i
\(894\) 0 0
\(895\) 19519.9i 0.729028i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −21529.6 + 37290.4i −0.798724 + 1.38343i
\(900\) 0 0
\(901\) 32790.1 18931.4i 1.21243 0.699995i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9982.06 + 5763.15i −0.366646 + 0.211683i
\(906\) 0 0
\(907\) 16841.8 29170.9i 0.616565 1.06792i −0.373543 0.927613i \(-0.621857\pi\)
0.990108 0.140309i \(-0.0448095\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48956.2i 1.78045i −0.455520 0.890226i \(-0.650547\pi\)
0.455520 0.890226i \(-0.349453\pi\)
\(912\) 0 0
\(913\) −30582.4 17656.7i −1.10857 0.640036i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −27721.4 15565.2i −0.998302 0.560532i
\(918\) 0 0
\(919\) 23650.1 + 40963.2i 0.848906 + 1.47035i 0.882185 + 0.470902i \(0.156072\pi\)
−0.0332794 + 0.999446i \(0.510595\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5160.57 −0.184033
\(924\) 0 0
\(925\) 24855.3 0.883501
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19097.8 33078.4i −0.674467 1.16821i −0.976624 0.214953i \(-0.931040\pi\)
0.302158 0.953258i \(-0.402293\pi\)
\(930\) 0 0
\(931\) −153.097 6388.48i −0.00538943 0.224892i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8772.36 5064.72i −0.306831 0.177149i
\(936\) 0 0
\(937\) 38926.2i 1.35716i −0.734525 0.678582i \(-0.762595\pi\)
0.734525 0.678582i \(-0.237405\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23277.1 + 40317.1i −0.806388 + 1.39670i 0.108962 + 0.994046i \(0.465247\pi\)
−0.915350 + 0.402659i \(0.868086\pi\)
\(942\) 0 0
\(943\) 15259.3 8809.95i 0.526947 0.304233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2755.38 1590.82i 0.0945490 0.0545879i −0.451980 0.892028i \(-0.649282\pi\)
0.546529 + 0.837440i \(0.315949\pi\)
\(948\) 0 0
\(949\) −7936.50 + 13746.4i −0.271475 + 0.470208i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 37411.6i 1.27165i −0.771834 0.635824i \(-0.780660\pi\)
0.771834 0.635824i \(-0.219340\pi\)
\(954\) 0 0
\(955\) −5307.47 3064.27i −0.179838 0.103830i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −39315.1 + 471.017i −1.32383 + 0.0158602i
\(960\) 0 0
\(961\) 7708.94 + 13352.3i 0.258767 + 0.448198i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16245.1 0.541917
\(966\) 0 0
\(967\) −53691.7 −1.78553 −0.892766 0.450521i \(-0.851238\pi\)
−0.892766 + 0.450521i \(0.851238\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19762.8 34230.1i −0.653159 1.13131i −0.982352 0.187042i \(-0.940110\pi\)
0.329193 0.944263i \(-0.393223\pi\)
\(972\) 0 0
\(973\) 16719.5 + 28174.0i 0.550875 + 0.928281i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −721.916 416.798i −0.0236398 0.0136485i 0.488134 0.872769i \(-0.337678\pi\)
−0.511773 + 0.859121i \(0.671011\pi\)
\(978\) 0 0
\(979\) 27946.1i 0.912321i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23795.5 41215.0i 0.772084 1.33729i −0.164336 0.986405i \(-0.552548\pi\)
0.936419 0.350884i \(-0.114119\pi\)
\(984\) 0 0
\(985\) 4405.28 2543.39i 0.142501 0.0822731i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −35535.8 + 20516.6i −1.14254 + 0.659646i
\(990\) 0 0
\(991\) −3373.33 + 5842.78i −0.108131 + 0.187288i −0.915013 0.403425i \(-0.867820\pi\)
0.806882 + 0.590712i \(0.201153\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4256.13i 0.135606i
\(996\) 0 0
\(997\) 45419.1 + 26222.7i 1.44277 + 0.832981i 0.998034 0.0626825i \(-0.0199656\pi\)
0.444732 + 0.895664i \(0.353299\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.t.e.269.10 yes 32
3.2 odd 2 inner 756.4.t.e.269.7 32
7.5 odd 6 inner 756.4.t.e.593.7 yes 32
21.5 even 6 inner 756.4.t.e.593.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.t.e.269.7 32 3.2 odd 2 inner
756.4.t.e.269.10 yes 32 1.1 even 1 trivial
756.4.t.e.593.7 yes 32 7.5 odd 6 inner
756.4.t.e.593.10 yes 32 21.5 even 6 inner