Properties

Label 756.4.t.d.269.5
Level $756$
Weight $4$
Character 756.269
Analytic conductor $44.605$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(269,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.269"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 214 x^{14} + 30952 x^{12} - 2415192 x^{10} + 136176800 x^{8} - 4497757024 x^{6} + \cdots + 7263930548224 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.5
Root \(2.90703 + 1.67838i\) of defining polynomial
Character \(\chi\) \(=\) 756.269
Dual form 756.4.t.d.593.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.90703 + 5.03513i) q^{5} +(-16.4502 + 8.50837i) q^{7} +(-30.5015 - 17.6100i) q^{11} -5.07550i q^{13} +(-39.0221 + 67.5883i) q^{17} +(-47.6118 + 27.4887i) q^{19} +(164.568 - 95.0136i) q^{23} +(45.5983 - 78.9786i) q^{25} -189.333i q^{29} +(71.5699 + 41.3209i) q^{31} +(-90.6618 - 58.0945i) q^{35} +(-116.269 - 201.384i) q^{37} -489.773 q^{41} +361.194 q^{43} +(262.717 + 455.039i) q^{47} +(198.215 - 279.928i) q^{49} +(278.692 + 160.903i) q^{53} -204.772i q^{55} +(172.411 - 298.625i) q^{59} +(673.393 - 388.784i) q^{61} +(25.5558 - 14.7547i) q^{65} +(198.380 - 343.604i) q^{67} +871.421i q^{71} +(-32.1813 - 18.5799i) q^{73} +(651.587 + 30.1702i) q^{77} +(-106.270 - 184.065i) q^{79} -376.941 q^{83} -453.754 q^{85} +(-770.458 - 1334.47i) q^{89} +(43.1843 + 83.4929i) q^{91} +(-276.818 - 159.821i) q^{95} -1440.86i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 50 q^{7} - 390 q^{19} - 284 q^{25} + 984 q^{31} - 182 q^{37} + 472 q^{43} + 130 q^{49} - 24 q^{61} - 1522 q^{67} + 4458 q^{73} + 434 q^{79} - 2616 q^{85} - 4560 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.90703 + 5.03513i 0.260013 + 0.450355i 0.966245 0.257625i \(-0.0829399\pi\)
−0.706232 + 0.707980i \(0.749607\pi\)
\(6\) 0 0
\(7\) −16.4502 + 8.50837i −0.888225 + 0.459409i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −30.5015 17.6100i −0.836050 0.482694i 0.0198698 0.999803i \(-0.493675\pi\)
−0.855920 + 0.517109i \(0.827008\pi\)
\(12\) 0 0
\(13\) 5.07550i 0.108284i −0.998533 0.0541420i \(-0.982758\pi\)
0.998533 0.0541420i \(-0.0172424\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −39.0221 + 67.5883i −0.556721 + 0.964269i 0.441046 + 0.897484i \(0.354607\pi\)
−0.997767 + 0.0667848i \(0.978726\pi\)
\(18\) 0 0
\(19\) −47.6118 + 27.4887i −0.574889 + 0.331912i −0.759100 0.650975i \(-0.774360\pi\)
0.184211 + 0.982887i \(0.441027\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 164.568 95.0136i 1.49195 0.861378i 0.491993 0.870599i \(-0.336268\pi\)
0.999957 + 0.00922090i \(0.00293515\pi\)
\(24\) 0 0
\(25\) 45.5983 78.9786i 0.364787 0.631829i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 189.333i 1.21235i −0.795331 0.606176i \(-0.792703\pi\)
0.795331 0.606176i \(-0.207297\pi\)
\(30\) 0 0
\(31\) 71.5699 + 41.3209i 0.414656 + 0.239402i 0.692788 0.721141i \(-0.256382\pi\)
−0.278132 + 0.960543i \(0.589715\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −90.6618 58.0945i −0.437847 0.280565i
\(36\) 0 0
\(37\) −116.269 201.384i −0.516608 0.894792i −0.999814 0.0192850i \(-0.993861\pi\)
0.483206 0.875507i \(-0.339472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −489.773 −1.86560 −0.932801 0.360392i \(-0.882643\pi\)
−0.932801 + 0.360392i \(0.882643\pi\)
\(42\) 0 0
\(43\) 361.194 1.28097 0.640483 0.767972i \(-0.278734\pi\)
0.640483 + 0.767972i \(0.278734\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 262.717 + 455.039i 0.815344 + 1.41222i 0.909081 + 0.416620i \(0.136785\pi\)
−0.0937367 + 0.995597i \(0.529881\pi\)
\(48\) 0 0
\(49\) 198.215 279.928i 0.577888 0.816116i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 278.692 + 160.903i 0.722289 + 0.417014i 0.815594 0.578624i \(-0.196410\pi\)
−0.0933058 + 0.995637i \(0.529743\pi\)
\(54\) 0 0
\(55\) 204.772i 0.502026i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 172.411 298.625i 0.380441 0.658943i −0.610684 0.791874i \(-0.709106\pi\)
0.991125 + 0.132931i \(0.0424389\pi\)
\(60\) 0 0
\(61\) 673.393 388.784i 1.41343 0.816043i 0.417719 0.908576i \(-0.362830\pi\)
0.995710 + 0.0925333i \(0.0294965\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 25.5558 14.7547i 0.0487663 0.0281552i
\(66\) 0 0
\(67\) 198.380 343.604i 0.361731 0.626536i −0.626515 0.779409i \(-0.715519\pi\)
0.988246 + 0.152873i \(0.0488526\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 871.421i 1.45660i 0.685258 + 0.728300i \(0.259689\pi\)
−0.685258 + 0.728300i \(0.740311\pi\)
\(72\) 0 0
\(73\) −32.1813 18.5799i −0.0515963 0.0297892i 0.473980 0.880536i \(-0.342817\pi\)
−0.525576 + 0.850746i \(0.676150\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 651.587 + 30.1702i 0.964354 + 0.0446521i
\(78\) 0 0
\(79\) −106.270 184.065i −0.151346 0.262139i 0.780377 0.625310i \(-0.215027\pi\)
−0.931723 + 0.363171i \(0.881694\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −376.941 −0.498490 −0.249245 0.968440i \(-0.580182\pi\)
−0.249245 + 0.968440i \(0.580182\pi\)
\(84\) 0 0
\(85\) −453.754 −0.579018
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −770.458 1334.47i −0.917622 1.58937i −0.803017 0.595956i \(-0.796773\pi\)
−0.114605 0.993411i \(-0.536560\pi\)
\(90\) 0 0
\(91\) 43.1843 + 83.4929i 0.0497466 + 0.0961805i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −276.818 159.821i −0.298957 0.172603i
\(96\) 0 0
\(97\) 1440.86i 1.50822i −0.656750 0.754108i \(-0.728069\pi\)
0.656750 0.754108i \(-0.271931\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −494.128 + 855.854i −0.486807 + 0.843175i −0.999885 0.0151671i \(-0.995172\pi\)
0.513078 + 0.858342i \(0.328505\pi\)
\(102\) 0 0
\(103\) 384.982 222.270i 0.368286 0.212630i −0.304424 0.952537i \(-0.598464\pi\)
0.672709 + 0.739907i \(0.265131\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 694.572 401.011i 0.627541 0.362311i −0.152258 0.988341i \(-0.548655\pi\)
0.779799 + 0.626030i \(0.215321\pi\)
\(108\) 0 0
\(109\) 841.538 1457.59i 0.739492 1.28084i −0.213232 0.977002i \(-0.568399\pi\)
0.952724 0.303837i \(-0.0982678\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 698.403i 0.581418i 0.956812 + 0.290709i \(0.0938912\pi\)
−0.956812 + 0.290709i \(0.906109\pi\)
\(114\) 0 0
\(115\) 956.810 + 552.415i 0.775852 + 0.447939i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 66.8542 1443.85i 0.0515001 1.11225i
\(120\) 0 0
\(121\) −45.2726 78.4144i −0.0340140 0.0589139i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1256.98 0.899422
\(126\) 0 0
\(127\) 884.682 0.618133 0.309066 0.951041i \(-0.399984\pi\)
0.309066 + 0.951041i \(0.399984\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −368.903 638.959i −0.246040 0.426154i 0.716384 0.697707i \(-0.245796\pi\)
−0.962423 + 0.271553i \(0.912463\pi\)
\(132\) 0 0
\(133\) 549.337 857.291i 0.358147 0.558922i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 254.851 + 147.138i 0.158930 + 0.0917580i 0.577355 0.816493i \(-0.304085\pi\)
−0.418426 + 0.908251i \(0.637418\pi\)
\(138\) 0 0
\(139\) 1388.68i 0.847385i −0.905806 0.423693i \(-0.860734\pi\)
0.905806 0.423693i \(-0.139266\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −89.3799 + 154.810i −0.0522680 + 0.0905308i
\(144\) 0 0
\(145\) 953.314 550.396i 0.545989 0.315227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −430.804 + 248.725i −0.236865 + 0.136754i −0.613735 0.789512i \(-0.710334\pi\)
0.376870 + 0.926266i \(0.377000\pi\)
\(150\) 0 0
\(151\) 1375.74 2382.84i 0.741429 1.28419i −0.210415 0.977612i \(-0.567482\pi\)
0.951845 0.306581i \(-0.0991850\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 480.484i 0.248990i
\(156\) 0 0
\(157\) −1169.64 675.292i −0.594570 0.343275i 0.172332 0.985039i \(-0.444870\pi\)
−0.766902 + 0.641764i \(0.778203\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1898.76 + 2963.20i −0.929464 + 1.45051i
\(162\) 0 0
\(163\) −174.965 303.048i −0.0840755 0.145623i 0.820921 0.571041i \(-0.193460\pi\)
−0.904997 + 0.425418i \(0.860127\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −679.288 −0.314760 −0.157380 0.987538i \(-0.550305\pi\)
−0.157380 + 0.987538i \(0.550305\pi\)
\(168\) 0 0
\(169\) 2171.24 0.988275
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −571.274 989.476i −0.251059 0.434847i 0.712759 0.701409i \(-0.247445\pi\)
−0.963818 + 0.266563i \(0.914112\pi\)
\(174\) 0 0
\(175\) −78.1208 + 1687.18i −0.0337450 + 0.728793i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −789.128 455.603i −0.329510 0.190242i 0.326114 0.945331i \(-0.394261\pi\)
−0.655623 + 0.755088i \(0.727594\pi\)
\(180\) 0 0
\(181\) 470.211i 0.193097i 0.995328 + 0.0965483i \(0.0307802\pi\)
−0.995328 + 0.0965483i \(0.969220\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 675.995 1170.86i 0.268650 0.465315i
\(186\) 0 0
\(187\) 2380.47 1374.36i 0.930893 0.537451i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2486.11 1435.36i 0.941826 0.543764i 0.0512941 0.998684i \(-0.483665\pi\)
0.890532 + 0.454920i \(0.150332\pi\)
\(192\) 0 0
\(193\) −294.386 + 509.892i −0.109795 + 0.190170i −0.915687 0.401892i \(-0.868353\pi\)
0.805892 + 0.592062i \(0.201686\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4508.44i 1.63052i −0.579094 0.815261i \(-0.696594\pi\)
0.579094 0.815261i \(-0.303406\pi\)
\(198\) 0 0
\(199\) 807.278 + 466.082i 0.287570 + 0.166029i 0.636845 0.770992i \(-0.280239\pi\)
−0.349276 + 0.937020i \(0.613572\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1610.91 + 3114.55i 0.556965 + 1.07684i
\(204\) 0 0
\(205\) −1423.78 2466.07i −0.485080 0.840184i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1936.31 0.640847
\(210\) 0 0
\(211\) −3175.72 −1.03614 −0.518070 0.855338i \(-0.673349\pi\)
−0.518070 + 0.855338i \(0.673349\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1050.00 + 1818.66i 0.333068 + 0.576890i
\(216\) 0 0
\(217\) −1528.91 70.7925i −0.478291 0.0221461i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 343.045 + 198.057i 0.104415 + 0.0602840i
\(222\) 0 0
\(223\) 1875.86i 0.563305i 0.959517 + 0.281652i \(0.0908825\pi\)
−0.959517 + 0.281652i \(0.909118\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2164.36 + 3748.78i −0.632835 + 1.09610i 0.354135 + 0.935194i \(0.384775\pi\)
−0.986969 + 0.160908i \(0.948558\pi\)
\(228\) 0 0
\(229\) −4665.03 + 2693.36i −1.34617 + 0.777214i −0.987705 0.156327i \(-0.950035\pi\)
−0.358470 + 0.933541i \(0.616701\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −550.824 + 318.019i −0.154874 + 0.0894167i −0.575434 0.817848i \(-0.695167\pi\)
0.420560 + 0.907265i \(0.361834\pi\)
\(234\) 0 0
\(235\) −1527.45 + 2645.62i −0.424000 + 0.734389i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 381.980i 0.103382i 0.998663 + 0.0516909i \(0.0164611\pi\)
−0.998663 + 0.0516909i \(0.983539\pi\)
\(240\) 0 0
\(241\) 3996.63 + 2307.45i 1.06824 + 0.616748i 0.927700 0.373327i \(-0.121783\pi\)
0.140539 + 0.990075i \(0.455117\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1985.69 + 184.280i 0.517800 + 0.0480541i
\(246\) 0 0
\(247\) 139.519 + 241.654i 0.0359408 + 0.0622512i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1890.20 −0.475332 −0.237666 0.971347i \(-0.576382\pi\)
−0.237666 + 0.971347i \(0.576382\pi\)
\(252\) 0 0
\(253\) −6692.77 −1.66313
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 806.150 + 1396.29i 0.195666 + 0.338904i 0.947119 0.320883i \(-0.103980\pi\)
−0.751452 + 0.659787i \(0.770646\pi\)
\(258\) 0 0
\(259\) 3626.09 + 2323.54i 0.869939 + 0.557442i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6367.98 3676.55i −1.49303 0.862000i −0.493060 0.869995i \(-0.664122\pi\)
−0.999968 + 0.00799526i \(0.997455\pi\)
\(264\) 0 0
\(265\) 1871.00i 0.433715i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −710.981 + 1231.46i −0.161150 + 0.279119i −0.935281 0.353905i \(-0.884854\pi\)
0.774132 + 0.633025i \(0.218187\pi\)
\(270\) 0 0
\(271\) −7126.20 + 4114.31i −1.59736 + 0.922239i −0.605372 + 0.795943i \(0.706976\pi\)
−0.991993 + 0.126296i \(0.959691\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2781.64 + 1605.98i −0.609960 + 0.352160i
\(276\) 0 0
\(277\) 4026.78 6974.60i 0.873451 1.51286i 0.0150480 0.999887i \(-0.495210\pi\)
0.858403 0.512975i \(-0.171457\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2085.65i 0.442774i 0.975186 + 0.221387i \(0.0710585\pi\)
−0.975186 + 0.221387i \(0.928942\pi\)
\(282\) 0 0
\(283\) 3472.02 + 2004.57i 0.729294 + 0.421058i 0.818164 0.574985i \(-0.194992\pi\)
−0.0888698 + 0.996043i \(0.528326\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8056.84 4167.17i 1.65707 0.857073i
\(288\) 0 0
\(289\) −588.954 1020.10i −0.119877 0.207632i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1664.93 −0.331968 −0.165984 0.986128i \(-0.553080\pi\)
−0.165984 + 0.986128i \(0.553080\pi\)
\(294\) 0 0
\(295\) 2004.82 0.395678
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −482.242 835.267i −0.0932735 0.161554i
\(300\) 0 0
\(301\) −5941.70 + 3073.17i −1.13779 + 0.588487i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3915.15 + 2260.41i 0.735019 + 0.424363i
\(306\) 0 0
\(307\) 2518.51i 0.468205i 0.972212 + 0.234103i \(0.0752152\pi\)
−0.972212 + 0.234103i \(0.924785\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1925.18 3334.50i 0.351018 0.607982i −0.635410 0.772175i \(-0.719169\pi\)
0.986428 + 0.164193i \(0.0525021\pi\)
\(312\) 0 0
\(313\) 2707.89 1563.40i 0.489007 0.282328i −0.235156 0.971958i \(-0.575560\pi\)
0.724162 + 0.689630i \(0.242227\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 245.222 141.579i 0.0434480 0.0250847i −0.478119 0.878295i \(-0.658681\pi\)
0.521567 + 0.853211i \(0.325348\pi\)
\(318\) 0 0
\(319\) −3334.16 + 5774.93i −0.585194 + 1.01359i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4290.66i 0.739130i
\(324\) 0 0
\(325\) −400.856 231.435i −0.0684170 0.0395006i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8193.37 5250.17i −1.37299 0.879791i
\(330\) 0 0
\(331\) 5254.85 + 9101.66i 0.872606 + 1.51140i 0.859292 + 0.511486i \(0.170905\pi\)
0.0133139 + 0.999911i \(0.495762\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2306.79 0.376219
\(336\) 0 0
\(337\) −8431.97 −1.36296 −0.681482 0.731835i \(-0.738664\pi\)
−0.681482 + 0.731835i \(0.738664\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1455.33 2520.70i −0.231115 0.400303i
\(342\) 0 0
\(343\) −878.946 + 6291.35i −0.138363 + 0.990382i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7880.32 + 4549.70i 1.21913 + 0.703864i 0.964732 0.263236i \(-0.0847897\pi\)
0.254397 + 0.967100i \(0.418123\pi\)
\(348\) 0 0
\(349\) 8534.69i 1.30903i −0.756049 0.654515i \(-0.772873\pi\)
0.756049 0.654515i \(-0.227127\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1599.23 2769.94i 0.241128 0.417646i −0.719908 0.694070i \(-0.755816\pi\)
0.961036 + 0.276423i \(0.0891492\pi\)
\(354\) 0 0
\(355\) −4387.71 + 2533.25i −0.655988 + 0.378735i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11218.7 + 6477.11i −1.64930 + 0.952225i −0.671952 + 0.740594i \(0.734544\pi\)
−0.977350 + 0.211631i \(0.932123\pi\)
\(360\) 0 0
\(361\) −1918.25 + 3322.50i −0.279669 + 0.484400i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 216.049i 0.0309822i
\(366\) 0 0
\(367\) 5053.20 + 2917.47i 0.718733 + 0.414961i 0.814286 0.580464i \(-0.197129\pi\)
−0.0955532 + 0.995424i \(0.530462\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5953.55 275.665i −0.833134 0.0385763i
\(372\) 0 0
\(373\) −2536.02 4392.52i −0.352038 0.609748i 0.634568 0.772867i \(-0.281178\pi\)
−0.986606 + 0.163119i \(0.947845\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −960.959 −0.131278
\(378\) 0 0
\(379\) −5750.48 −0.779373 −0.389686 0.920948i \(-0.627417\pi\)
−0.389686 + 0.920948i \(0.627417\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2763.34 4786.24i −0.368668 0.638552i 0.620689 0.784056i \(-0.286853\pi\)
−0.989358 + 0.145505i \(0.953519\pi\)
\(384\) 0 0
\(385\) 1742.27 + 3368.53i 0.230635 + 0.445912i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6559.00 + 3786.84i 0.854895 + 0.493574i 0.862300 0.506399i \(-0.169024\pi\)
−0.00740420 + 0.999973i \(0.502357\pi\)
\(390\) 0 0
\(391\) 14830.5i 1.91819i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 617.862 1070.17i 0.0787038 0.136319i
\(396\) 0 0
\(397\) −8272.16 + 4775.94i −1.04576 + 0.603772i −0.921460 0.388473i \(-0.873003\pi\)
−0.124303 + 0.992244i \(0.539669\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12867.4 7428.97i 1.60241 0.925150i 0.611402 0.791320i \(-0.290606\pi\)
0.991004 0.133830i \(-0.0427276\pi\)
\(402\) 0 0
\(403\) 209.724 363.253i 0.0259234 0.0449006i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8190.01i 0.997454i
\(408\) 0 0
\(409\) −5030.51 2904.36i −0.608172 0.351129i 0.164077 0.986447i \(-0.447535\pi\)
−0.772250 + 0.635319i \(0.780869\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −295.381 + 6379.36i −0.0351931 + 0.760068i
\(414\) 0 0
\(415\) −1095.78 1897.95i −0.129614 0.224498i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 481.473 0.0561372 0.0280686 0.999606i \(-0.491064\pi\)
0.0280686 + 0.999606i \(0.491064\pi\)
\(420\) 0 0
\(421\) −4020.71 −0.465457 −0.232729 0.972542i \(-0.574765\pi\)
−0.232729 + 0.972542i \(0.574765\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3558.69 + 6163.83i 0.406169 + 0.703505i
\(426\) 0 0
\(427\) −7769.51 + 12125.0i −0.880545 + 1.37417i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5832.70 3367.51i −0.651859 0.376351i 0.137309 0.990528i \(-0.456155\pi\)
−0.789168 + 0.614177i \(0.789488\pi\)
\(432\) 0 0
\(433\) 1566.34i 0.173841i −0.996215 0.0869207i \(-0.972297\pi\)
0.996215 0.0869207i \(-0.0277027\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5223.59 + 9047.53i −0.571804 + 0.990393i
\(438\) 0 0
\(439\) 1356.35 783.086i 0.147460 0.0851359i −0.424455 0.905449i \(-0.639534\pi\)
0.571915 + 0.820313i \(0.306201\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3642.26 2102.86i 0.390630 0.225530i −0.291803 0.956478i \(-0.594255\pi\)
0.682433 + 0.730948i \(0.260922\pi\)
\(444\) 0 0
\(445\) 4479.49 7758.70i 0.477187 0.826512i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11447.3i 1.20319i 0.798801 + 0.601595i \(0.205468\pi\)
−0.798801 + 0.601595i \(0.794532\pi\)
\(450\) 0 0
\(451\) 14938.8 + 8624.92i 1.55974 + 0.900514i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −294.859 + 460.154i −0.0303807 + 0.0474118i
\(456\) 0 0
\(457\) −7976.27 13815.3i −0.816442 1.41412i −0.908288 0.418346i \(-0.862610\pi\)
0.0918453 0.995773i \(-0.470723\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8977.52 −0.906995 −0.453497 0.891258i \(-0.649824\pi\)
−0.453497 + 0.891258i \(0.649824\pi\)
\(462\) 0 0
\(463\) −12198.9 −1.22447 −0.612235 0.790676i \(-0.709729\pi\)
−0.612235 + 0.790676i \(0.709729\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6134.37 + 10625.0i 0.607848 + 1.05282i 0.991594 + 0.129385i \(0.0413002\pi\)
−0.383747 + 0.923438i \(0.625366\pi\)
\(468\) 0 0
\(469\) −339.872 + 7340.23i −0.0334623 + 0.722687i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11017.0 6360.64i −1.07095 0.618314i
\(474\) 0 0
\(475\) 5013.75i 0.484309i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9254.77 16029.7i 0.882801 1.52906i 0.0345865 0.999402i \(-0.488989\pi\)
0.848214 0.529654i \(-0.177678\pi\)
\(480\) 0 0
\(481\) −1022.12 + 590.124i −0.0968916 + 0.0559404i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7254.90 4188.62i 0.679233 0.392156i
\(486\) 0 0
\(487\) 7936.33 13746.1i 0.738459 1.27905i −0.214731 0.976673i \(-0.568887\pi\)
0.953189 0.302374i \(-0.0977793\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3988.61i 0.366605i −0.983057 0.183303i \(-0.941321\pi\)
0.983057 0.183303i \(-0.0586788\pi\)
\(492\) 0 0
\(493\) 12796.7 + 7388.17i 1.16903 + 0.674942i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7414.37 14335.0i −0.669175 1.29379i
\(498\) 0 0
\(499\) 4207.05 + 7286.83i 0.377422 + 0.653714i 0.990686 0.136164i \(-0.0434774\pi\)
−0.613265 + 0.789878i \(0.710144\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12481.8 1.10643 0.553215 0.833038i \(-0.313401\pi\)
0.553215 + 0.833038i \(0.313401\pi\)
\(504\) 0 0
\(505\) −5745.78 −0.506305
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2203.68 + 3816.88i 0.191898 + 0.332378i 0.945879 0.324518i \(-0.105202\pi\)
−0.753981 + 0.656896i \(0.771869\pi\)
\(510\) 0 0
\(511\) 687.471 + 31.8317i 0.0595146 + 0.00275568i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2238.31 + 1292.29i 0.191518 + 0.110573i
\(516\) 0 0
\(517\) 18505.8i 1.57424i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4627.22 8014.57i 0.389102 0.673944i −0.603227 0.797569i \(-0.706119\pi\)
0.992329 + 0.123625i \(0.0394521\pi\)
\(522\) 0 0
\(523\) 6598.60 3809.70i 0.551695 0.318521i −0.198110 0.980180i \(-0.563480\pi\)
0.749805 + 0.661658i \(0.230147\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5585.62 + 3224.86i −0.461695 + 0.266560i
\(528\) 0 0
\(529\) 11971.7 20735.5i 0.983945 1.70424i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2485.84i 0.202015i
\(534\) 0 0
\(535\) 4038.29 + 2331.51i 0.326337 + 0.188411i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10975.4 + 5047.64i −0.877077 + 0.403371i
\(540\) 0 0
\(541\) −1602.70 2775.97i −0.127367 0.220606i 0.795289 0.606231i \(-0.207319\pi\)
−0.922656 + 0.385625i \(0.873986\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9785.50 0.769110
\(546\) 0 0
\(547\) 10785.4 0.843057 0.421529 0.906815i \(-0.361494\pi\)
0.421529 + 0.906815i \(0.361494\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5204.50 + 9014.46i 0.402394 + 0.696967i
\(552\) 0 0
\(553\) 3314.26 + 2123.72i 0.254858 + 0.163309i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16783.5 9689.97i −1.27673 0.737122i −0.300487 0.953786i \(-0.597149\pi\)
−0.976246 + 0.216663i \(0.930483\pi\)
\(558\) 0 0
\(559\) 1833.24i 0.138708i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1734.71 + 3004.61i −0.129857 + 0.224918i −0.923621 0.383307i \(-0.874785\pi\)
0.793764 + 0.608226i \(0.208118\pi\)
\(564\) 0 0
\(565\) −3516.55 + 2030.28i −0.261845 + 0.151176i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19602.9 + 11317.7i −1.44428 + 0.833857i −0.998132 0.0611013i \(-0.980539\pi\)
−0.446151 + 0.894958i \(0.647205\pi\)
\(570\) 0 0
\(571\) 5989.94 10374.9i 0.439004 0.760378i −0.558609 0.829431i \(-0.688665\pi\)
0.997613 + 0.0690537i \(0.0219980\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17329.8i 1.25688i
\(576\) 0 0
\(577\) 3498.26 + 2019.72i 0.252399 + 0.145723i 0.620862 0.783920i \(-0.286783\pi\)
−0.368463 + 0.929642i \(0.620116\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6200.74 3207.15i 0.442771 0.229011i
\(582\) 0 0
\(583\) −5667.02 9815.56i −0.402579 0.697288i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19907.7 −1.39979 −0.699897 0.714244i \(-0.746771\pi\)
−0.699897 + 0.714244i \(0.746771\pi\)
\(588\) 0 0
\(589\) −4543.42 −0.317841
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7421.96 12855.2i −0.513968 0.890220i −0.999869 0.0162052i \(-0.994841\pi\)
0.485900 0.874014i \(-0.338492\pi\)
\(594\) 0 0
\(595\) 7464.33 3860.71i 0.514299 0.266006i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15891.1 + 9174.74i 1.08396 + 0.625826i 0.931962 0.362555i \(-0.118095\pi\)
0.151999 + 0.988381i \(0.451429\pi\)
\(600\) 0 0
\(601\) 13467.0i 0.914027i −0.889460 0.457014i \(-0.848919\pi\)
0.889460 0.457014i \(-0.151081\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 263.218 455.906i 0.0176881 0.0306367i
\(606\) 0 0
\(607\) −236.043 + 136.279i −0.0157836 + 0.00911269i −0.507871 0.861433i \(-0.669567\pi\)
0.492087 + 0.870546i \(0.336234\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2309.55 1333.42i 0.152920 0.0882887i
\(612\) 0 0
\(613\) 5275.00 9136.57i 0.347562 0.601994i −0.638254 0.769826i \(-0.720343\pi\)
0.985816 + 0.167831i \(0.0536764\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2035.13i 0.132790i 0.997793 + 0.0663949i \(0.0211497\pi\)
−0.997793 + 0.0663949i \(0.978850\pi\)
\(618\) 0 0
\(619\) 24269.7 + 14012.1i 1.57590 + 0.909846i 0.995423 + 0.0955690i \(0.0304671\pi\)
0.580477 + 0.814277i \(0.302866\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24028.3 + 15396.9i 1.54522 + 0.990153i
\(624\) 0 0
\(625\) −2045.71 3543.27i −0.130925 0.226770i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18148.3 1.15043
\(630\) 0 0
\(631\) −13605.8 −0.858383 −0.429191 0.903214i \(-0.641201\pi\)
−0.429191 + 0.903214i \(0.641201\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2571.80 + 4454.48i 0.160722 + 0.278379i
\(636\) 0 0
\(637\) −1420.78 1006.04i −0.0883723 0.0625760i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18842.0 + 10878.4i 1.16102 + 0.670315i 0.951548 0.307500i \(-0.0994925\pi\)
0.209471 + 0.977815i \(0.432826\pi\)
\(642\) 0 0
\(643\) 17522.8i 1.07470i −0.843360 0.537349i \(-0.819426\pi\)
0.843360 0.537349i \(-0.180574\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5943.00 + 10293.6i −0.361118 + 0.625475i −0.988145 0.153522i \(-0.950938\pi\)
0.627027 + 0.778998i \(0.284272\pi\)
\(648\) 0 0
\(649\) −10517.6 + 6072.34i −0.636135 + 0.367273i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18199.6 + 10507.5i −1.09067 + 0.629696i −0.933754 0.357917i \(-0.883487\pi\)
−0.156912 + 0.987613i \(0.550154\pi\)
\(654\) 0 0
\(655\) 2144.83 3714.95i 0.127947 0.221611i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28701.9i 1.69661i −0.529507 0.848305i \(-0.677623\pi\)
0.529507 0.848305i \(-0.322377\pi\)
\(660\) 0 0
\(661\) 9447.51 + 5454.52i 0.555923 + 0.320963i 0.751508 0.659724i \(-0.229327\pi\)
−0.195584 + 0.980687i \(0.562660\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5913.51 + 273.811i 0.344836 + 0.0159668i
\(666\) 0 0
\(667\) −17989.2 31158.2i −1.04429 1.80877i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −27386.0 −1.57559
\(672\) 0 0
\(673\) −14602.3 −0.836371 −0.418186 0.908362i \(-0.637334\pi\)
−0.418186 + 0.908362i \(0.637334\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13120.5 22725.4i −0.744848 1.29011i −0.950266 0.311440i \(-0.899189\pi\)
0.205418 0.978674i \(-0.434145\pi\)
\(678\) 0 0
\(679\) 12259.4 + 23702.3i 0.692888 + 1.33964i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9578.05 + 5529.89i 0.536594 + 0.309803i 0.743698 0.668516i \(-0.233070\pi\)
−0.207103 + 0.978319i \(0.566404\pi\)
\(684\) 0 0
\(685\) 1710.94i 0.0954331i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 816.664 1414.50i 0.0451559 0.0782123i
\(690\) 0 0
\(691\) 8017.12 4628.69i 0.441368 0.254824i −0.262810 0.964848i \(-0.584649\pi\)
0.704178 + 0.710024i \(0.251316\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6992.19 4036.94i 0.381624 0.220331i
\(696\) 0 0
\(697\) 19112.0 33102.9i 1.03862 1.79894i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3110.78i 0.167607i 0.996482 + 0.0838035i \(0.0267068\pi\)
−0.996482 + 0.0838035i \(0.973293\pi\)
\(702\) 0 0
\(703\) 11071.5 + 6392.16i 0.593985 + 0.342937i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 846.558 18283.2i 0.0450327 0.972573i
\(708\) 0 0
\(709\) −1921.67 3328.43i −0.101791 0.176307i 0.810632 0.585556i \(-0.199124\pi\)
−0.912423 + 0.409249i \(0.865791\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 15704.2 0.824861
\(714\) 0 0
\(715\) −1039.32 −0.0543614
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5811.36 10065.6i −0.301429 0.522090i 0.675031 0.737789i \(-0.264130\pi\)
−0.976460 + 0.215699i \(0.930797\pi\)
\(720\) 0 0
\(721\) −4441.87 + 6931.94i −0.229437 + 0.358057i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −14953.2 8633.26i −0.765999 0.442250i
\(726\) 0 0
\(727\) 7551.88i 0.385259i −0.981272 0.192630i \(-0.938298\pi\)
0.981272 0.192630i \(-0.0617016\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −14094.6 + 24412.5i −0.713141 + 1.23520i
\(732\) 0 0
\(733\) 25948.2 14981.2i 1.30753 0.754901i 0.325844 0.945423i \(-0.394351\pi\)
0.981683 + 0.190522i \(0.0610181\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12101.8 + 6986.96i −0.604850 + 0.349210i
\(738\) 0 0
\(739\) 15610.1 27037.5i 0.777034 1.34586i −0.156611 0.987660i \(-0.550057\pi\)
0.933644 0.358201i \(-0.116610\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9961.10i 0.491840i 0.969290 + 0.245920i \(0.0790901\pi\)
−0.969290 + 0.245920i \(0.920910\pi\)
\(744\) 0 0
\(745\) −2504.72 1446.10i −0.123176 0.0711155i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8013.87 + 12506.4i −0.390949 + 0.610111i
\(750\) 0 0
\(751\) 1321.30 + 2288.55i 0.0642008 + 0.111199i 0.896339 0.443369i \(-0.146217\pi\)
−0.832138 + 0.554568i \(0.812884\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15997.2 0.771124
\(756\) 0 0
\(757\) 13097.5 0.628847 0.314424 0.949283i \(-0.398189\pi\)
0.314424 + 0.949283i \(0.398189\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14526.3 + 25160.2i 0.691954 + 1.19850i 0.971197 + 0.238279i \(0.0765833\pi\)
−0.279243 + 0.960221i \(0.590083\pi\)
\(762\) 0 0
\(763\) −1441.75 + 31137.6i −0.0684076 + 1.47740i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1515.67 875.073i −0.0713530 0.0411957i
\(768\) 0 0
\(769\) 15912.2i 0.746175i −0.927796 0.373087i \(-0.878299\pi\)
0.927796 0.373087i \(-0.121701\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8521.68 + 14760.0i −0.396511 + 0.686778i −0.993293 0.115626i \(-0.963113\pi\)
0.596781 + 0.802404i \(0.296446\pi\)
\(774\) 0 0
\(775\) 6526.93 3768.33i 0.302522 0.174661i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23318.9 13463.2i 1.07251 0.619216i
\(780\) 0 0
\(781\) 15345.8 26579.6i 0.703092 1.21779i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7852.38i 0.357024i
\(786\) 0 0
\(787\) 20787.2 + 12001.5i 0.941531 + 0.543593i 0.890440 0.455101i \(-0.150397\pi\)
0.0510911 + 0.998694i \(0.483730\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5942.27 11488.8i −0.267108 0.516430i
\(792\) 0 0
\(793\) −1973.27 3417.81i −0.0883644 0.153052i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34369.2 1.52750 0.763752 0.645510i \(-0.223355\pi\)
0.763752 + 0.645510i \(0.223355\pi\)
\(798\) 0 0
\(799\) −41007.1 −1.81568
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 654.385 + 1133.43i 0.0287581 + 0.0498104i
\(804\) 0 0
\(805\) −20439.8 946.417i −0.894918 0.0414371i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5944.55 + 3432.09i 0.258343 + 0.149154i 0.623578 0.781761i \(-0.285678\pi\)
−0.365236 + 0.930915i \(0.619012\pi\)
\(810\) 0 0
\(811\) 9243.29i 0.400217i −0.979774 0.200108i \(-0.935871\pi\)
0.979774 0.200108i \(-0.0641295\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1017.26 1761.94i 0.0437214 0.0757277i
\(816\) 0 0
\(817\) −17197.1 + 9928.74i −0.736413 + 0.425168i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22160.0 12794.1i 0.942009 0.543869i 0.0514195 0.998677i \(-0.483625\pi\)
0.890590 + 0.454808i \(0.150292\pi\)
\(822\) 0 0
\(823\) 9771.65 16925.0i 0.413874 0.716851i −0.581436 0.813592i \(-0.697509\pi\)
0.995310 + 0.0967418i \(0.0308421\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11905.9i 0.500617i 0.968166 + 0.250308i \(0.0805320\pi\)
−0.968166 + 0.250308i \(0.919468\pi\)
\(828\) 0 0
\(829\) 35422.5 + 20451.2i 1.48405 + 0.856815i 0.999836 0.0181356i \(-0.00577306\pi\)
0.484212 + 0.874951i \(0.339106\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11185.1 + 24320.4i 0.465234 + 1.01159i
\(834\) 0 0
\(835\) −1974.71 3420.30i −0.0818415 0.141754i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19206.9 −0.790340 −0.395170 0.918608i \(-0.629314\pi\)
−0.395170 + 0.918608i \(0.629314\pi\)
\(840\) 0 0
\(841\) −11457.9 −0.469797
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6311.86 + 10932.5i 0.256964 + 0.445075i
\(846\) 0 0
\(847\) 1411.92 + 904.734i 0.0572776 + 0.0367025i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38268.4 22094.3i −1.54151 0.889990i
\(852\) 0 0
\(853\) 13311.1i 0.534308i 0.963654 + 0.267154i \(0.0860832\pi\)
−0.963654 + 0.267154i \(0.913917\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16128.9 27936.1i 0.642887 1.11351i −0.341899 0.939737i \(-0.611070\pi\)
0.984785 0.173775i \(-0.0555967\pi\)
\(858\) 0 0
\(859\) 16105.5 9298.54i 0.639714 0.369339i −0.144791 0.989462i \(-0.546251\pi\)
0.784504 + 0.620123i \(0.212918\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17760.4 + 10254.0i −0.700547 + 0.404461i −0.807551 0.589798i \(-0.799207\pi\)
0.107004 + 0.994259i \(0.465874\pi\)
\(864\) 0 0
\(865\) 3321.42 5752.88i 0.130557 0.226131i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7485.69i 0.292215i
\(870\) 0 0
\(871\) −1743.96 1006.88i −0.0678438 0.0391697i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −20677.5 + 10694.9i −0.798889 + 0.413202i
\(876\) 0 0
\(877\) 4892.74 + 8474.48i 0.188388 + 0.326297i 0.944713 0.327899i \(-0.106340\pi\)
−0.756325 + 0.654196i \(0.773007\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40977.8 −1.56706 −0.783528 0.621357i \(-0.786582\pi\)
−0.783528 + 0.621357i \(0.786582\pi\)
\(882\) 0 0
\(883\) 18185.4 0.693076 0.346538 0.938036i \(-0.387357\pi\)
0.346538 + 0.938036i \(0.387357\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13768.6 23847.9i −0.521199 0.902743i −0.999696 0.0246542i \(-0.992152\pi\)
0.478497 0.878089i \(-0.341182\pi\)
\(888\) 0 0
\(889\) −14553.2 + 7527.20i −0.549041 + 0.283975i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −25016.8 14443.5i −0.937464 0.541245i
\(894\) 0 0
\(895\) 5297.81i 0.197862i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7823.39 13550.5i 0.290239 0.502709i
\(900\) 0 0
\(901\) −21750.3 + 12557.6i −0.804227 + 0.464320i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2367.57 + 1366.92i −0.0869621 + 0.0502076i
\(906\) 0 0
\(907\) −13880.8 + 24042.2i −0.508163 + 0.880164i 0.491792 + 0.870713i \(0.336342\pi\)
−0.999955 + 0.00945166i \(0.996991\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42947.4i 1.56192i 0.624579 + 0.780961i \(0.285270\pi\)
−0.624579 + 0.780961i \(0.714730\pi\)
\(912\) 0 0
\(913\) 11497.3 + 6637.95i 0.416762 + 0.240618i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11505.0 + 7372.21i 0.414317 + 0.265487i
\(918\) 0 0
\(919\) −6988.16 12103.8i −0.250836 0.434460i 0.712920 0.701245i \(-0.247372\pi\)
−0.963756 + 0.266785i \(0.914039\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4422.90 0.157727
\(924\) 0 0
\(925\) −21206.7 −0.753807
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1325.99 2296.69i −0.0468293 0.0811107i 0.841661 0.540007i \(-0.181578\pi\)
−0.888490 + 0.458896i \(0.848245\pi\)
\(930\) 0 0
\(931\) −1742.54 + 18776.5i −0.0613421 + 0.660984i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 13840.2 + 7990.63i 0.484088 + 0.279488i
\(936\) 0 0
\(937\) 8574.24i 0.298942i 0.988766 + 0.149471i \(0.0477570\pi\)
−0.988766 + 0.149471i \(0.952243\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21095.7 36538.8i 0.730817 1.26581i −0.225717 0.974193i \(-0.572473\pi\)
0.956534 0.291619i \(-0.0941941\pi\)
\(942\) 0 0
\(943\) −80601.1 + 46535.1i −2.78339 + 1.60699i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31045.4 17924.1i 1.06530 0.615052i 0.138408 0.990375i \(-0.455801\pi\)
0.926894 + 0.375323i \(0.122468\pi\)
\(948\) 0 0
\(949\) −94.3022 + 163.336i −0.00322569 + 0.00558706i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36867.2i 1.25314i −0.779364 0.626572i \(-0.784458\pi\)
0.779364 0.626572i \(-0.215542\pi\)
\(954\) 0 0
\(955\) 14454.4 + 8345.26i 0.489774 + 0.282771i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5444.24 252.082i −0.183320 0.00848818i
\(960\) 0 0
\(961\) −11480.7 19885.1i −0.385374 0.667487i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3423.16 −0.114192
\(966\) 0 0
\(967\) −42645.2 −1.41818 −0.709088 0.705120i \(-0.750893\pi\)
−0.709088 + 0.705120i \(0.750893\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 402.301 + 696.806i 0.0132961 + 0.0230294i 0.872597 0.488441i \(-0.162434\pi\)
−0.859301 + 0.511471i \(0.829101\pi\)
\(972\) 0 0
\(973\) 11815.4 + 22844.1i 0.389296 + 0.752669i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1806.36 + 1042.90i 0.0591511 + 0.0341509i 0.529284 0.848445i \(-0.322461\pi\)
−0.470133 + 0.882596i \(0.655794\pi\)
\(978\) 0 0
\(979\) 54271.2i 1.77172i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2803.20 + 4855.29i −0.0909546 + 0.157538i −0.907913 0.419159i \(-0.862325\pi\)
0.816958 + 0.576696i \(0.195658\pi\)
\(984\) 0 0
\(985\) 22700.5 13106.2i 0.734314 0.423956i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 59441.1 34318.3i 1.91114 1.10340i
\(990\) 0 0
\(991\) 4030.87 6981.68i 0.129208 0.223794i −0.794162 0.607706i \(-0.792090\pi\)
0.923370 + 0.383912i \(0.125423\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5419.66i 0.172678i
\(996\) 0 0
\(997\) −14812.9 8552.24i −0.470541 0.271667i 0.245925 0.969289i \(-0.420908\pi\)
−0.716466 + 0.697622i \(0.754242\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.t.d.269.5 yes 16
3.2 odd 2 inner 756.4.t.d.269.4 16
7.5 odd 6 inner 756.4.t.d.593.4 yes 16
21.5 even 6 inner 756.4.t.d.593.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.t.d.269.4 16 3.2 odd 2 inner
756.4.t.d.269.5 yes 16 1.1 even 1 trivial
756.4.t.d.593.4 yes 16 7.5 odd 6 inner
756.4.t.d.593.5 yes 16 21.5 even 6 inner