Properties

Label 756.4.k.h.109.3
Level $756$
Weight $4$
Character 756.109
Analytic conductor $44.605$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(109,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.109"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,7,0,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 198 x^{14} + 15603 x^{12} + 623882 x^{10} + 13296387 x^{8} + 143321550 x^{6} + 644261986 x^{4} + \cdots + 9753129 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.3
Root \(-7.59982i\) of defining polynomial
Character \(\chi\) \(=\) 756.109
Dual form 756.4.k.h.541.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.37589 - 7.57927i) q^{5} +(18.4405 + 1.71677i) q^{7} +(-15.5735 + 26.9741i) q^{11} -4.09748 q^{13} +(-36.5246 + 63.2624i) q^{17} +(-65.1108 - 112.775i) q^{19} +(26.5021 + 45.9030i) q^{23} +(24.2031 - 41.9210i) q^{25} -165.352 q^{29} +(-33.5406 + 58.0939i) q^{31} +(-67.6819 - 147.278i) q^{35} +(-20.2607 - 35.0926i) q^{37} +247.624 q^{41} -164.059 q^{43} +(-34.9356 - 60.5102i) q^{47} +(337.105 + 63.3161i) q^{49} +(-291.593 + 505.053i) q^{53} +272.592 q^{55} +(-114.993 + 199.173i) q^{59} +(10.4236 + 18.0541i) q^{61} +(17.9301 + 31.0559i) q^{65} +(-452.903 + 784.451i) q^{67} -412.489 q^{71} +(-78.0706 + 135.222i) q^{73} +(-333.492 + 470.681i) q^{77} +(-92.3545 - 159.963i) q^{79} -1355.25 q^{83} +639.311 q^{85} +(82.2747 + 142.504i) q^{89} +(-75.5597 - 7.03441i) q^{91} +(-569.836 + 986.985i) q^{95} +474.685 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 7 q^{5} - 11 q^{7} - 43 q^{11} - 52 q^{13} + 38 q^{17} + 32 q^{19} - 118 q^{23} - 143 q^{25} + 160 q^{29} + 5 q^{31} + 161 q^{35} - 136 q^{37} - 216 q^{41} + 800 q^{43} - 78 q^{47} + 253 q^{49} + 105 q^{53}+ \cdots - 838 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.37589 7.57927i −0.391392 0.677911i 0.601242 0.799067i \(-0.294673\pi\)
−0.992633 + 0.121157i \(0.961340\pi\)
\(6\) 0 0
\(7\) 18.4405 + 1.71677i 0.995694 + 0.0926966i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −15.5735 + 26.9741i −0.426872 + 0.739364i −0.996593 0.0824740i \(-0.973718\pi\)
0.569721 + 0.821838i \(0.307051\pi\)
\(12\) 0 0
\(13\) −4.09748 −0.0874182 −0.0437091 0.999044i \(-0.513917\pi\)
−0.0437091 + 0.999044i \(0.513917\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −36.5246 + 63.2624i −0.521089 + 0.902553i 0.478610 + 0.878027i \(0.341141\pi\)
−0.999699 + 0.0245251i \(0.992193\pi\)
\(18\) 0 0
\(19\) −65.1108 112.775i −0.786181 1.36171i −0.928291 0.371855i \(-0.878722\pi\)
0.142109 0.989851i \(-0.454612\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 26.5021 + 45.9030i 0.240264 + 0.416150i 0.960789 0.277279i \(-0.0894326\pi\)
−0.720525 + 0.693429i \(0.756099\pi\)
\(24\) 0 0
\(25\) 24.2031 41.9210i 0.193625 0.335368i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −165.352 −1.05879 −0.529397 0.848374i \(-0.677582\pi\)
−0.529397 + 0.848374i \(0.677582\pi\)
\(30\) 0 0
\(31\) −33.5406 + 58.0939i −0.194325 + 0.336580i −0.946679 0.322179i \(-0.895585\pi\)
0.752354 + 0.658759i \(0.228918\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −67.6819 147.278i −0.326867 0.711272i
\(36\) 0 0
\(37\) −20.2607 35.0926i −0.0900228 0.155924i 0.817498 0.575932i \(-0.195361\pi\)
−0.907520 + 0.420008i \(0.862027\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 247.624 0.943229 0.471615 0.881805i \(-0.343671\pi\)
0.471615 + 0.881805i \(0.343671\pi\)
\(42\) 0 0
\(43\) −164.059 −0.581830 −0.290915 0.956749i \(-0.593960\pi\)
−0.290915 + 0.956749i \(0.593960\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −34.9356 60.5102i −0.108423 0.187794i 0.806709 0.590949i \(-0.201247\pi\)
−0.915132 + 0.403155i \(0.867913\pi\)
\(48\) 0 0
\(49\) 337.105 + 63.3161i 0.982815 + 0.184595i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −291.593 + 505.053i −0.755723 + 1.30895i 0.189291 + 0.981921i \(0.439381\pi\)
−0.945014 + 0.327030i \(0.893952\pi\)
\(54\) 0 0
\(55\) 272.592 0.668297
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −114.993 + 199.173i −0.253742 + 0.439494i −0.964553 0.263889i \(-0.914995\pi\)
0.710811 + 0.703383i \(0.248328\pi\)
\(60\) 0 0
\(61\) 10.4236 + 18.0541i 0.0218787 + 0.0378950i 0.876757 0.480933i \(-0.159702\pi\)
−0.854879 + 0.518828i \(0.826369\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 17.9301 + 31.0559i 0.0342148 + 0.0592617i
\(66\) 0 0
\(67\) −452.903 + 784.451i −0.825835 + 1.43039i 0.0754446 + 0.997150i \(0.475962\pi\)
−0.901280 + 0.433238i \(0.857371\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −412.489 −0.689485 −0.344742 0.938697i \(-0.612034\pi\)
−0.344742 + 0.938697i \(0.612034\pi\)
\(72\) 0 0
\(73\) −78.0706 + 135.222i −0.125171 + 0.216802i −0.921800 0.387666i \(-0.873281\pi\)
0.796629 + 0.604469i \(0.206615\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −333.492 + 470.681i −0.493571 + 0.696611i
\(78\) 0 0
\(79\) −92.3545 159.963i −0.131528 0.227813i 0.792738 0.609563i \(-0.208655\pi\)
−0.924266 + 0.381750i \(0.875322\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1355.25 −1.79227 −0.896134 0.443784i \(-0.853636\pi\)
−0.896134 + 0.443784i \(0.853636\pi\)
\(84\) 0 0
\(85\) 639.311 0.815800
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 82.2747 + 142.504i 0.0979899 + 0.169724i 0.910853 0.412732i \(-0.135425\pi\)
−0.812863 + 0.582455i \(0.802092\pi\)
\(90\) 0 0
\(91\) −75.5597 7.03441i −0.0870418 0.00810337i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −569.836 + 986.985i −0.615410 + 1.06592i
\(96\) 0 0
\(97\) 474.685 0.496875 0.248438 0.968648i \(-0.420083\pi\)
0.248438 + 0.968648i \(0.420083\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −736.223 + 1275.18i −0.725316 + 1.25628i 0.233528 + 0.972350i \(0.424973\pi\)
−0.958844 + 0.283934i \(0.908360\pi\)
\(102\) 0 0
\(103\) −858.620 1487.17i −0.821382 1.42267i −0.904654 0.426148i \(-0.859870\pi\)
0.0832720 0.996527i \(-0.473463\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 134.180 + 232.406i 0.121230 + 0.209977i 0.920253 0.391324i \(-0.127983\pi\)
−0.799023 + 0.601301i \(0.794649\pi\)
\(108\) 0 0
\(109\) −613.690 + 1062.94i −0.539273 + 0.934049i 0.459670 + 0.888090i \(0.347968\pi\)
−0.998943 + 0.0459592i \(0.985366\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −997.330 −0.830274 −0.415137 0.909759i \(-0.636266\pi\)
−0.415137 + 0.909759i \(0.636266\pi\)
\(114\) 0 0
\(115\) 231.941 401.734i 0.188075 0.325755i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −782.139 + 1103.89i −0.602509 + 0.850363i
\(120\) 0 0
\(121\) 180.431 + 312.516i 0.135561 + 0.234798i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1517.61 −1.08592
\(126\) 0 0
\(127\) −2.43376 −0.00170048 −0.000850241 1.00000i \(-0.500271\pi\)
−0.000850241 1.00000i \(0.500271\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 991.340 + 1717.05i 0.661174 + 1.14519i 0.980307 + 0.197477i \(0.0632749\pi\)
−0.319133 + 0.947710i \(0.603392\pi\)
\(132\) 0 0
\(133\) −1007.07 2191.41i −0.656571 1.42872i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 374.349 648.392i 0.233451 0.404349i −0.725370 0.688359i \(-0.758331\pi\)
0.958821 + 0.284010i \(0.0916648\pi\)
\(138\) 0 0
\(139\) −139.476 −0.0851094 −0.0425547 0.999094i \(-0.513550\pi\)
−0.0425547 + 0.999094i \(0.513550\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 63.8122 110.526i 0.0373164 0.0646339i
\(144\) 0 0
\(145\) 723.561 + 1253.24i 0.414403 + 0.717768i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1480.29 2563.94i −0.813893 1.40970i −0.910120 0.414345i \(-0.864011\pi\)
0.0962263 0.995359i \(-0.469323\pi\)
\(150\) 0 0
\(151\) 1004.33 1739.55i 0.541267 0.937502i −0.457565 0.889176i \(-0.651278\pi\)
0.998832 0.0483253i \(-0.0153884\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 587.080 0.304228
\(156\) 0 0
\(157\) 555.556 962.251i 0.282409 0.489147i −0.689569 0.724220i \(-0.742200\pi\)
0.971978 + 0.235074i \(0.0755332\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 409.908 + 891.974i 0.200654 + 0.436630i
\(162\) 0 0
\(163\) 1894.78 + 3281.86i 0.910495 + 1.57702i 0.813367 + 0.581751i \(0.197632\pi\)
0.0971277 + 0.995272i \(0.469034\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 163.938 0.0759634 0.0379817 0.999278i \(-0.487907\pi\)
0.0379817 + 0.999278i \(0.487907\pi\)
\(168\) 0 0
\(169\) −2180.21 −0.992358
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −858.615 1487.16i −0.377337 0.653567i 0.613337 0.789821i \(-0.289827\pi\)
−0.990674 + 0.136255i \(0.956493\pi\)
\(174\) 0 0
\(175\) 518.286 731.494i 0.223879 0.315976i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1530.26 + 2650.49i −0.638978 + 1.10674i 0.346679 + 0.937984i \(0.387309\pi\)
−0.985657 + 0.168759i \(0.946024\pi\)
\(180\) 0 0
\(181\) 1661.54 0.682327 0.341163 0.940004i \(-0.389179\pi\)
0.341163 + 0.940004i \(0.389179\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −177.318 + 307.123i −0.0704683 + 0.122055i
\(186\) 0 0
\(187\) −1137.63 1970.44i −0.444877 0.770549i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1425.87 + 2469.68i 0.540170 + 0.935602i 0.998894 + 0.0470228i \(0.0149734\pi\)
−0.458724 + 0.888579i \(0.651693\pi\)
\(192\) 0 0
\(193\) −1415.95 + 2452.50i −0.528096 + 0.914690i 0.471367 + 0.881937i \(0.343761\pi\)
−0.999463 + 0.0327528i \(0.989573\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1312.38 −0.474637 −0.237318 0.971432i \(-0.576268\pi\)
−0.237318 + 0.971432i \(0.576268\pi\)
\(198\) 0 0
\(199\) −1750.79 + 3032.46i −0.623669 + 1.08023i 0.365127 + 0.930958i \(0.381025\pi\)
−0.988797 + 0.149269i \(0.952308\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3049.17 283.870i −1.05424 0.0981466i
\(204\) 0 0
\(205\) −1083.58 1876.81i −0.369172 0.639425i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4056.02 1.34240
\(210\) 0 0
\(211\) −898.695 −0.293217 −0.146608 0.989195i \(-0.546836\pi\)
−0.146608 + 0.989195i \(0.546836\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 717.903 + 1243.44i 0.227724 + 0.394429i
\(216\) 0 0
\(217\) −718.239 + 1013.70i −0.224688 + 0.317118i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 149.659 259.217i 0.0455527 0.0788995i
\(222\) 0 0
\(223\) 2228.51 0.669203 0.334602 0.942360i \(-0.391398\pi\)
0.334602 + 0.942360i \(0.391398\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −451.677 + 782.327i −0.132065 + 0.228744i −0.924473 0.381249i \(-0.875494\pi\)
0.792407 + 0.609992i \(0.208828\pi\)
\(228\) 0 0
\(229\) 1316.46 + 2280.18i 0.379888 + 0.657985i 0.991046 0.133524i \(-0.0426293\pi\)
−0.611158 + 0.791509i \(0.709296\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1794.70 3108.52i −0.504614 0.874017i −0.999986 0.00533580i \(-0.998302\pi\)
0.495372 0.868681i \(-0.335032\pi\)
\(234\) 0 0
\(235\) −305.749 + 529.572i −0.0848717 + 0.147002i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −51.2598 −0.0138733 −0.00693665 0.999976i \(-0.502208\pi\)
−0.00693665 + 0.999976i \(0.502208\pi\)
\(240\) 0 0
\(241\) 1353.08 2343.60i 0.361658 0.626409i −0.626576 0.779360i \(-0.715544\pi\)
0.988234 + 0.152951i \(0.0488776\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −995.248 2832.08i −0.259527 0.738509i
\(246\) 0 0
\(247\) 266.790 + 462.094i 0.0687266 + 0.119038i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3198.35 0.804295 0.402147 0.915575i \(-0.368264\pi\)
0.402147 + 0.915575i \(0.368264\pi\)
\(252\) 0 0
\(253\) −1650.93 −0.410248
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −976.932 1692.10i −0.237118 0.410701i 0.722768 0.691091i \(-0.242870\pi\)
−0.959886 + 0.280390i \(0.909536\pi\)
\(258\) 0 0
\(259\) −313.372 681.909i −0.0751815 0.163597i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1254.82 + 2173.42i −0.294204 + 0.509576i −0.974799 0.223083i \(-0.928388\pi\)
0.680595 + 0.732659i \(0.261721\pi\)
\(264\) 0 0
\(265\) 5103.91 1.18314
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3598.65 6233.04i 0.815663 1.41277i −0.0931875 0.995649i \(-0.529706\pi\)
0.908851 0.417122i \(-0.136961\pi\)
\(270\) 0 0
\(271\) 1467.99 + 2542.64i 0.329056 + 0.569942i 0.982325 0.187184i \(-0.0599362\pi\)
−0.653269 + 0.757126i \(0.726603\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 753.855 + 1305.72i 0.165306 + 0.286318i
\(276\) 0 0
\(277\) 2390.58 4140.60i 0.518541 0.898140i −0.481227 0.876596i \(-0.659809\pi\)
0.999768 0.0215434i \(-0.00685802\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3904.37 0.828879 0.414439 0.910077i \(-0.363978\pi\)
0.414439 + 0.910077i \(0.363978\pi\)
\(282\) 0 0
\(283\) −3473.96 + 6017.07i −0.729701 + 1.26388i 0.227309 + 0.973823i \(0.427007\pi\)
−0.957010 + 0.290056i \(0.906326\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4566.32 + 425.113i 0.939168 + 0.0874342i
\(288\) 0 0
\(289\) −211.590 366.485i −0.0430675 0.0745950i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6370.38 1.27018 0.635088 0.772440i \(-0.280964\pi\)
0.635088 + 0.772440i \(0.280964\pi\)
\(294\) 0 0
\(295\) 2012.78 0.397250
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −108.592 188.087i −0.0210035 0.0363791i
\(300\) 0 0
\(301\) −3025.33 281.650i −0.579325 0.0539337i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 91.2248 158.006i 0.0171263 0.0296636i
\(306\) 0 0
\(307\) −136.784 −0.0254288 −0.0127144 0.999919i \(-0.504047\pi\)
−0.0127144 + 0.999919i \(0.504047\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2448.71 4241.29i 0.446475 0.773318i −0.551679 0.834057i \(-0.686012\pi\)
0.998154 + 0.0607393i \(0.0193458\pi\)
\(312\) 0 0
\(313\) −4636.12 8030.00i −0.837217 1.45010i −0.892212 0.451616i \(-0.850848\pi\)
0.0549948 0.998487i \(-0.482486\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4401.03 7622.81i −0.779768 1.35060i −0.932075 0.362265i \(-0.882003\pi\)
0.152307 0.988333i \(-0.451330\pi\)
\(318\) 0 0
\(319\) 2575.11 4460.21i 0.451969 0.782834i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9512.58 1.63868
\(324\) 0 0
\(325\) −99.1717 + 171.771i −0.0169263 + 0.0293173i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −540.348 1175.82i −0.0905482 0.197036i
\(330\) 0 0
\(331\) −5764.23 9983.94i −0.957193 1.65791i −0.729268 0.684228i \(-0.760139\pi\)
−0.227925 0.973679i \(-0.573194\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7927.43 1.29290
\(336\) 0 0
\(337\) −1301.84 −0.210433 −0.105216 0.994449i \(-0.533554\pi\)
−0.105216 + 0.994449i \(0.533554\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1044.69 1809.45i −0.165903 0.287353i
\(342\) 0 0
\(343\) 6107.70 + 1746.31i 0.961472 + 0.274904i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4096.12 7094.69i 0.633692 1.09759i −0.353098 0.935586i \(-0.614872\pi\)
0.986791 0.162001i \(-0.0517947\pi\)
\(348\) 0 0
\(349\) −11739.7 −1.80061 −0.900305 0.435259i \(-0.856657\pi\)
−0.900305 + 0.435259i \(0.856657\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5167.92 8951.09i 0.779208 1.34963i −0.153191 0.988197i \(-0.548955\pi\)
0.932399 0.361431i \(-0.117712\pi\)
\(354\) 0 0
\(355\) 1805.01 + 3126.36i 0.269859 + 0.467409i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5354.35 9274.01i −0.787164 1.36341i −0.927698 0.373332i \(-0.878215\pi\)
0.140534 0.990076i \(-0.455118\pi\)
\(360\) 0 0
\(361\) −5049.34 + 8745.71i −0.736162 + 1.27507i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1366.51 0.195963
\(366\) 0 0
\(367\) 4373.75 7575.56i 0.622093 1.07750i −0.367003 0.930220i \(-0.619616\pi\)
0.989095 0.147276i \(-0.0470506\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6244.18 + 8812.85i −0.873805 + 1.23326i
\(372\) 0 0
\(373\) 2854.40 + 4943.97i 0.396234 + 0.686298i 0.993258 0.115926i \(-0.0369835\pi\)
−0.597024 + 0.802224i \(0.703650\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 677.525 0.0925579
\(378\) 0 0
\(379\) 4068.56 0.551419 0.275709 0.961241i \(-0.411087\pi\)
0.275709 + 0.961241i \(0.411087\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7356.61 + 12742.0i 0.981475 + 1.69997i 0.656658 + 0.754188i \(0.271969\pi\)
0.324817 + 0.945777i \(0.394697\pi\)
\(384\) 0 0
\(385\) 5026.74 + 467.977i 0.665419 + 0.0619489i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3452.14 5979.28i 0.449950 0.779336i −0.548433 0.836195i \(-0.684775\pi\)
0.998382 + 0.0568591i \(0.0181086\pi\)
\(390\) 0 0
\(391\) −3871.92 −0.500796
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −808.267 + 1399.96i −0.102958 + 0.178328i
\(396\) 0 0
\(397\) 4344.11 + 7524.22i 0.549180 + 0.951208i 0.998331 + 0.0577522i \(0.0183933\pi\)
−0.449151 + 0.893456i \(0.648273\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −946.137 1638.76i −0.117825 0.204079i 0.801081 0.598557i \(-0.204259\pi\)
−0.918905 + 0.394478i \(0.870926\pi\)
\(402\) 0 0
\(403\) 137.432 238.039i 0.0169875 0.0294232i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1262.12 0.153713
\(408\) 0 0
\(409\) 2507.84 4343.71i 0.303190 0.525141i −0.673666 0.739035i \(-0.735282\pi\)
0.976857 + 0.213895i \(0.0686149\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2462.46 + 3475.44i −0.293389 + 0.414081i
\(414\) 0 0
\(415\) 5930.44 + 10271.8i 0.701479 + 1.21500i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4510.00 0.525842 0.262921 0.964817i \(-0.415314\pi\)
0.262921 + 0.964817i \(0.415314\pi\)
\(420\) 0 0
\(421\) 10160.9 1.17628 0.588140 0.808759i \(-0.299860\pi\)
0.588140 + 0.808759i \(0.299860\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1768.02 + 3062.29i 0.201792 + 0.349513i
\(426\) 0 0
\(427\) 161.221 + 350.822i 0.0182717 + 0.0397599i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6987.82 + 12103.3i −0.780955 + 1.35265i 0.150431 + 0.988620i \(0.451934\pi\)
−0.931386 + 0.364033i \(0.881400\pi\)
\(432\) 0 0
\(433\) −6363.55 −0.706265 −0.353132 0.935573i \(-0.614883\pi\)
−0.353132 + 0.935573i \(0.614883\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3451.15 5977.57i 0.377782 0.654338i
\(438\) 0 0
\(439\) −3422.89 5928.62i −0.372131 0.644551i 0.617762 0.786365i \(-0.288040\pi\)
−0.989893 + 0.141815i \(0.954706\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5590.98 9683.86i −0.599628 1.03859i −0.992876 0.119154i \(-0.961982\pi\)
0.393247 0.919433i \(-0.371352\pi\)
\(444\) 0 0
\(445\) 720.051 1247.16i 0.0767049 0.132857i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3351.98 0.352316 0.176158 0.984362i \(-0.443633\pi\)
0.176158 + 0.984362i \(0.443633\pi\)
\(450\) 0 0
\(451\) −3856.38 + 6679.44i −0.402638 + 0.697390i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 277.325 + 603.469i 0.0285741 + 0.0621782i
\(456\) 0 0
\(457\) −744.580 1289.65i −0.0762144 0.132007i 0.825399 0.564549i \(-0.190950\pi\)
−0.901614 + 0.432542i \(0.857617\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −957.491 −0.0967349 −0.0483675 0.998830i \(-0.515402\pi\)
−0.0483675 + 0.998830i \(0.515402\pi\)
\(462\) 0 0
\(463\) −5753.05 −0.577466 −0.288733 0.957410i \(-0.593234\pi\)
−0.288733 + 0.957410i \(0.593234\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2128.84 3687.27i −0.210945 0.365367i 0.741066 0.671432i \(-0.234321\pi\)
−0.952010 + 0.306066i \(0.900987\pi\)
\(468\) 0 0
\(469\) −9698.49 + 13688.2i −0.954871 + 1.34768i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2554.97 4425.34i 0.248367 0.430184i
\(474\) 0 0
\(475\) −6303.54 −0.608897
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 149.647 259.196i 0.0142746 0.0247243i −0.858800 0.512311i \(-0.828789\pi\)
0.873074 + 0.487587i \(0.162123\pi\)
\(480\) 0 0
\(481\) 83.0179 + 143.791i 0.00786963 + 0.0136306i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2077.17 3597.76i −0.194473 0.336837i
\(486\) 0 0
\(487\) 343.055 594.188i 0.0319205 0.0552880i −0.849624 0.527389i \(-0.823171\pi\)
0.881544 + 0.472101i \(0.156504\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 118.556 0.0108969 0.00544843 0.999985i \(-0.498266\pi\)
0.00544843 + 0.999985i \(0.498266\pi\)
\(492\) 0 0
\(493\) 6039.40 10460.5i 0.551726 0.955617i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7606.51 708.147i −0.686516 0.0639129i
\(498\) 0 0
\(499\) −2667.81 4620.78i −0.239334 0.414538i 0.721190 0.692738i \(-0.243596\pi\)
−0.960523 + 0.278200i \(0.910262\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13651.8 1.21014 0.605072 0.796171i \(-0.293144\pi\)
0.605072 + 0.796171i \(0.293144\pi\)
\(504\) 0 0
\(505\) 12886.5 1.13553
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1147.20 1987.01i −0.0998994 0.173031i 0.811743 0.584014i \(-0.198519\pi\)
−0.911643 + 0.410983i \(0.865185\pi\)
\(510\) 0 0
\(511\) −1671.81 + 2359.54i −0.144729 + 0.204266i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7514.46 + 13015.4i −0.642964 + 1.11365i
\(516\) 0 0
\(517\) 2176.28 0.185131
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9663.83 16738.2i 0.812630 1.40752i −0.0983873 0.995148i \(-0.531368\pi\)
0.911017 0.412368i \(-0.135298\pi\)
\(522\) 0 0
\(523\) 2782.31 + 4819.10i 0.232623 + 0.402915i 0.958579 0.284826i \(-0.0919358\pi\)
−0.725956 + 0.687741i \(0.758602\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2450.11 4243.71i −0.202521 0.350776i
\(528\) 0 0
\(529\) 4678.77 8103.88i 0.384546 0.666054i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1014.64 −0.0824554
\(534\) 0 0
\(535\) 1174.31 2033.97i 0.0948972 0.164367i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6957.81 + 8107.07i −0.556019 + 0.647859i
\(540\) 0 0
\(541\) −3609.69 6252.17i −0.286863 0.496861i 0.686196 0.727416i \(-0.259279\pi\)
−0.973059 + 0.230555i \(0.925946\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10741.8 0.844269
\(546\) 0 0
\(547\) −13852.1 −1.08277 −0.541383 0.840776i \(-0.682099\pi\)
−0.541383 + 0.840776i \(0.682099\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10766.2 + 18647.6i 0.832404 + 1.44177i
\(552\) 0 0
\(553\) −1428.45 3108.35i −0.109844 0.239024i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9539.00 + 16522.0i −0.725638 + 1.25684i 0.233072 + 0.972459i \(0.425122\pi\)
−0.958711 + 0.284383i \(0.908211\pi\)
\(558\) 0 0
\(559\) 672.227 0.0508625
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12253.5 + 21223.6i −0.917268 + 1.58876i −0.113722 + 0.993513i \(0.536277\pi\)
−0.803546 + 0.595243i \(0.797056\pi\)
\(564\) 0 0
\(565\) 4364.21 + 7559.04i 0.324962 + 0.562851i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8769.77 15189.7i −0.646130 1.11913i −0.984039 0.177951i \(-0.943053\pi\)
0.337910 0.941179i \(-0.390280\pi\)
\(570\) 0 0
\(571\) −2553.59 + 4422.95i −0.187153 + 0.324159i −0.944300 0.329086i \(-0.893259\pi\)
0.757147 + 0.653245i \(0.226593\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2565.74 0.186084
\(576\) 0 0
\(577\) 1915.48 3317.71i 0.138202 0.239373i −0.788614 0.614888i \(-0.789201\pi\)
0.926816 + 0.375516i \(0.122534\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24991.5 2326.65i −1.78455 0.166137i
\(582\) 0 0
\(583\) −9082.24 15730.9i −0.645194 1.11751i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16845.1 1.18445 0.592225 0.805773i \(-0.298250\pi\)
0.592225 + 0.805773i \(0.298250\pi\)
\(588\) 0 0
\(589\) 8735.41 0.611097
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9821.01 17010.5i −0.680102 1.17797i −0.974949 0.222427i \(-0.928602\pi\)
0.294847 0.955544i \(-0.404731\pi\)
\(594\) 0 0
\(595\) 11789.2 + 1097.55i 0.812287 + 0.0756219i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12029.8 + 20836.2i −0.820573 + 1.42127i 0.0846826 + 0.996408i \(0.473012\pi\)
−0.905256 + 0.424867i \(0.860321\pi\)
\(600\) 0 0
\(601\) −1349.87 −0.0916179 −0.0458089 0.998950i \(-0.514587\pi\)
−0.0458089 + 0.998950i \(0.514587\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1579.10 2735.07i 0.106115 0.183796i
\(606\) 0 0
\(607\) −2969.97 5144.15i −0.198596 0.343978i 0.749478 0.662030i \(-0.230305\pi\)
−0.948073 + 0.318052i \(0.896971\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 143.148 + 247.939i 0.00947814 + 0.0164166i
\(612\) 0 0
\(613\) 6026.40 10438.0i 0.397070 0.687746i −0.596293 0.802767i \(-0.703360\pi\)
0.993363 + 0.115021i \(0.0366936\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17556.9 −1.14557 −0.572784 0.819706i \(-0.694137\pi\)
−0.572784 + 0.819706i \(0.694137\pi\)
\(618\) 0 0
\(619\) −4933.36 + 8544.82i −0.320337 + 0.554839i −0.980557 0.196232i \(-0.937129\pi\)
0.660221 + 0.751071i \(0.270463\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1272.54 + 2769.09i 0.0818352 + 0.178076i
\(624\) 0 0
\(625\) 3615.53 + 6262.28i 0.231394 + 0.400786i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2960.06 0.187639
\(630\) 0 0
\(631\) −12457.3 −0.785924 −0.392962 0.919555i \(-0.628550\pi\)
−0.392962 + 0.919555i \(0.628550\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.6499 + 18.4461i 0.000665555 + 0.00115277i
\(636\) 0 0
\(637\) −1381.28 259.436i −0.0859159 0.0161370i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14152.4 + 24512.7i −0.872055 + 1.51044i −0.0121888 + 0.999926i \(0.503880\pi\)
−0.859867 + 0.510519i \(0.829453\pi\)
\(642\) 0 0
\(643\) 6375.26 0.391004 0.195502 0.980703i \(-0.437366\pi\)
0.195502 + 0.980703i \(0.437366\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9488.62 + 16434.8i −0.576563 + 0.998637i 0.419307 + 0.907845i \(0.362273\pi\)
−0.995870 + 0.0907920i \(0.971060\pi\)
\(648\) 0 0
\(649\) −3581.68 6203.65i −0.216631 0.375215i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11559.9 20022.3i −0.692762 1.19990i −0.970929 0.239367i \(-0.923060\pi\)
0.278167 0.960533i \(-0.410273\pi\)
\(654\) 0 0
\(655\) 8676.00 15027.3i 0.517556 0.896434i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18814.3 −1.11214 −0.556072 0.831134i \(-0.687692\pi\)
−0.556072 + 0.831134i \(0.687692\pi\)
\(660\) 0 0
\(661\) −8646.73 + 14976.6i −0.508803 + 0.881273i 0.491145 + 0.871078i \(0.336579\pi\)
−0.999948 + 0.0101948i \(0.996755\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12202.5 + 17222.2i −0.711568 + 1.00429i
\(666\) 0 0
\(667\) −4382.17 7590.14i −0.254390 0.440617i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −649.326 −0.0373576
\(672\) 0 0
\(673\) 471.164 0.0269867 0.0134933 0.999909i \(-0.495705\pi\)
0.0134933 + 0.999909i \(0.495705\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6540.30 + 11328.1i 0.371291 + 0.643095i 0.989764 0.142711i \(-0.0455818\pi\)
−0.618473 + 0.785806i \(0.712248\pi\)
\(678\) 0 0
\(679\) 8753.43 + 814.922i 0.494736 + 0.0460587i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12021.6 + 20822.1i −0.673492 + 1.16652i 0.303416 + 0.952858i \(0.401873\pi\)
−0.976907 + 0.213663i \(0.931460\pi\)
\(684\) 0 0
\(685\) −6552.45 −0.365483
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1194.80 2069.45i 0.0660640 0.114426i
\(690\) 0 0
\(691\) 14489.0 + 25095.7i 0.797667 + 1.38160i 0.921132 + 0.389250i \(0.127266\pi\)
−0.123465 + 0.992349i \(0.539401\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 610.333 + 1057.13i 0.0333111 + 0.0576966i
\(696\) 0 0
\(697\) −9044.37 + 15665.3i −0.491506 + 0.851314i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11710.4 0.630948 0.315474 0.948934i \(-0.397836\pi\)
0.315474 + 0.948934i \(0.397836\pi\)
\(702\) 0 0
\(703\) −2638.38 + 4569.82i −0.141548 + 0.245169i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15765.5 + 22251.0i −0.838646 + 1.18364i
\(708\) 0 0
\(709\) 15118.2 + 26185.4i 0.800810 + 1.38704i 0.919084 + 0.394063i \(0.128931\pi\)
−0.118274 + 0.992981i \(0.537736\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3555.58 −0.186757
\(714\) 0 0
\(715\) −1116.94 −0.0584213
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10202.7 + 17671.6i 0.529202 + 0.916604i 0.999420 + 0.0340540i \(0.0108418\pi\)
−0.470218 + 0.882550i \(0.655825\pi\)
\(720\) 0 0
\(721\) −13280.3 28898.3i −0.685968 1.49269i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4002.02 + 6931.71i −0.205009 + 0.355086i
\(726\) 0 0
\(727\) 9255.41 0.472165 0.236083 0.971733i \(-0.424136\pi\)
0.236083 + 0.971733i \(0.424136\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5992.17 10378.7i 0.303185 0.525132i
\(732\) 0 0
\(733\) −6332.55 10968.3i −0.319097 0.552692i 0.661203 0.750207i \(-0.270046\pi\)
−0.980300 + 0.197515i \(0.936713\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14106.6 24433.3i −0.705052 1.22119i
\(738\) 0 0
\(739\) 10189.9 17649.5i 0.507229 0.878547i −0.492736 0.870179i \(-0.664003\pi\)
0.999965 0.00836784i \(-0.00266360\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6237.53 0.307985 0.153993 0.988072i \(-0.450787\pi\)
0.153993 + 0.988072i \(0.450787\pi\)
\(744\) 0 0
\(745\) −12955.2 + 22439.0i −0.637103 + 1.10349i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2075.36 + 4516.05i 0.101244 + 0.220311i
\(750\) 0 0
\(751\) 915.324 + 1585.39i 0.0444749 + 0.0770327i 0.887406 0.460989i \(-0.152505\pi\)
−0.842931 + 0.538022i \(0.819172\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17579.4 −0.847390
\(756\) 0 0
\(757\) −25055.9 −1.20300 −0.601500 0.798873i \(-0.705430\pi\)
−0.601500 + 0.798873i \(0.705430\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7998.04 + 13853.0i 0.380984 + 0.659883i 0.991203 0.132349i \(-0.0422520\pi\)
−0.610219 + 0.792232i \(0.708919\pi\)
\(762\) 0 0
\(763\) −13141.6 + 18547.6i −0.623535 + 0.880039i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 471.180 816.108i 0.0221817 0.0384198i
\(768\) 0 0
\(769\) 13978.5 0.655499 0.327749 0.944765i \(-0.393710\pi\)
0.327749 + 0.944765i \(0.393710\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2081.41 3605.10i 0.0968473 0.167744i −0.813531 0.581522i \(-0.802457\pi\)
0.910378 + 0.413777i \(0.135791\pi\)
\(774\) 0 0
\(775\) 1623.57 + 2812.11i 0.0752521 + 0.130341i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16123.0 27925.9i −0.741549 1.28440i
\(780\) 0 0
\(781\) 6423.90 11126.5i 0.294322 0.509780i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9724.22 −0.442130
\(786\) 0 0
\(787\) 5108.19 8847.65i 0.231369 0.400743i −0.726842 0.686804i \(-0.759013\pi\)
0.958211 + 0.286062i \(0.0923462\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −18391.3 1712.18i −0.826699 0.0769636i
\(792\) 0 0
\(793\) −42.7103 73.9764i −0.00191260 0.00331271i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 36066.8 1.60295 0.801474 0.598029i \(-0.204049\pi\)
0.801474 + 0.598029i \(0.204049\pi\)
\(798\) 0 0
\(799\) 5104.03 0.225992
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2431.67 4211.77i −0.106864 0.185094i
\(804\) 0 0
\(805\) 4966.79 7009.99i 0.217462 0.306919i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9438.62 16348.2i 0.410191 0.710471i −0.584720 0.811235i \(-0.698796\pi\)
0.994910 + 0.100764i \(0.0321288\pi\)
\(810\) 0 0
\(811\) 22508.5 0.974575 0.487288 0.873242i \(-0.337986\pi\)
0.487288 + 0.873242i \(0.337986\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16582.7 28722.1i 0.712720 1.23447i
\(816\) 0 0
\(817\) 10682.0 + 18501.7i 0.457424 + 0.792282i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 91.8340 + 159.061i 0.00390381 + 0.00676160i 0.867971 0.496615i \(-0.165424\pi\)
−0.864067 + 0.503377i \(0.832091\pi\)
\(822\) 0 0
\(823\) −19548.1 + 33858.3i −0.827951 + 1.43405i 0.0716918 + 0.997427i \(0.477160\pi\)
−0.899643 + 0.436626i \(0.856173\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19050.5 0.801031 0.400515 0.916290i \(-0.368831\pi\)
0.400515 + 0.916290i \(0.368831\pi\)
\(828\) 0 0
\(829\) 9501.36 16456.8i 0.398065 0.689469i −0.595422 0.803413i \(-0.703015\pi\)
0.993487 + 0.113944i \(0.0363485\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −16318.2 + 19013.5i −0.678741 + 0.790851i
\(834\) 0 0
\(835\) −717.374 1242.53i −0.0297315 0.0514964i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10157.2 0.417958 0.208979 0.977920i \(-0.432986\pi\)
0.208979 + 0.977920i \(0.432986\pi\)
\(840\) 0 0
\(841\) 2952.15 0.121044
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9540.37 + 16524.4i 0.388401 + 0.672730i
\(846\) 0 0
\(847\) 2790.73 + 6072.71i 0.113212 + 0.246353i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1073.90 1860.06i 0.0432585 0.0749259i
\(852\) 0 0
\(853\) −17282.0 −0.693700 −0.346850 0.937921i \(-0.612749\pi\)
−0.346850 + 0.937921i \(0.612749\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9478.85 + 16417.9i −0.377820 + 0.654403i −0.990745 0.135738i \(-0.956659\pi\)
0.612925 + 0.790141i \(0.289993\pi\)
\(858\) 0 0
\(859\) −24501.4 42437.6i −0.973197 1.68563i −0.685760 0.727827i \(-0.740530\pi\)
−0.287437 0.957800i \(-0.592803\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11544.5 19995.7i −0.455364 0.788714i 0.543345 0.839510i \(-0.317158\pi\)
−0.998709 + 0.0507956i \(0.983824\pi\)
\(864\) 0 0
\(865\) −7514.42 + 13015.4i −0.295373 + 0.511601i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5753.14 0.224582
\(870\) 0 0
\(871\) 1855.76 3214.27i 0.0721930 0.125042i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −27985.6 2605.39i −1.08124 0.100661i
\(876\) 0 0
\(877\) 3822.56 + 6620.88i 0.147182 + 0.254927i 0.930185 0.367091i \(-0.119646\pi\)
−0.783003 + 0.622018i \(0.786313\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 9616.44 0.367748 0.183874 0.982950i \(-0.441136\pi\)
0.183874 + 0.982950i \(0.441136\pi\)
\(882\) 0 0
\(883\) 43669.8 1.66433 0.832166 0.554527i \(-0.187101\pi\)
0.832166 + 0.554527i \(0.187101\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18807.3 + 32575.3i 0.711938 + 1.23311i 0.964129 + 0.265435i \(0.0855156\pi\)
−0.252191 + 0.967678i \(0.581151\pi\)
\(888\) 0 0
\(889\) −44.8798 4.17819i −0.00169316 0.000157629i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4549.37 + 7879.74i −0.170480 + 0.295280i
\(894\) 0 0
\(895\) 26785.1 1.00036
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5545.98 9605.93i 0.205750 0.356369i
\(900\) 0 0
\(901\) −21300.6 36893.7i −0.787598 1.36416i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7270.71 12593.2i −0.267057 0.462556i
\(906\) 0 0
\(907\) −18868.9 + 32681.8i −0.690772 + 1.19645i 0.280813 + 0.959763i \(0.409396\pi\)
−0.971585 + 0.236690i \(0.923937\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 30477.4 1.10841 0.554205 0.832380i \(-0.313022\pi\)
0.554205 + 0.832380i \(0.313022\pi\)
\(912\) 0 0
\(913\) 21106.0 36556.7i 0.765069 1.32514i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15333.1 + 33365.2i 0.552172 + 1.20154i
\(918\) 0 0
\(919\) −2079.26 3601.38i −0.0746336 0.129269i 0.826293 0.563240i \(-0.190445\pi\)
−0.900927 + 0.433971i \(0.857112\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1690.17 0.0602735
\(924\) 0 0
\(925\) −1961.49 −0.0697226
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5967.51 10336.0i −0.210751 0.365032i 0.741199 0.671286i \(-0.234258\pi\)
−0.951950 + 0.306254i \(0.900924\pi\)
\(930\) 0 0
\(931\) −14808.7 42139.7i −0.521306 1.48343i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9956.32 + 17244.8i −0.348242 + 0.603173i
\(936\) 0 0
\(937\) −30162.5 −1.05162 −0.525809 0.850603i \(-0.676237\pi\)
−0.525809 + 0.850603i \(0.676237\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18275.7 31654.4i 0.633124 1.09660i −0.353786 0.935327i \(-0.615106\pi\)
0.986909 0.161276i \(-0.0515609\pi\)
\(942\) 0 0
\(943\) 6562.57 + 11366.7i 0.226624 + 0.392525i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24322.1 42127.1i −0.834595 1.44556i −0.894359 0.447349i \(-0.852368\pi\)
0.0597639 0.998213i \(-0.480965\pi\)
\(948\) 0 0
\(949\) 319.893 554.070i 0.0109422 0.0189525i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20167.7 −0.685514 −0.342757 0.939424i \(-0.611361\pi\)
−0.342757 + 0.939424i \(0.611361\pi\)
\(954\) 0 0
\(955\) 12478.9 21614.1i 0.422836 0.732374i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8016.33 11314.0i 0.269928 0.380968i
\(960\) 0 0
\(961\) 12645.6 + 21902.8i 0.424476 + 0.735214i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 24784.3 0.826771
\(966\) 0 0
\(967\) −51088.0 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16321.7 28270.0i −0.539431 0.934321i −0.998935 0.0461457i \(-0.985306\pi\)
0.459504 0.888176i \(-0.348027\pi\)
\(972\) 0 0
\(973\) −2572.01 239.448i −0.0847430 0.00788936i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26792.3 + 46405.6i −0.877339 + 1.51960i −0.0230899 + 0.999733i \(0.507350\pi\)
−0.854250 + 0.519863i \(0.825983\pi\)
\(978\) 0 0
\(979\) −5125.23 −0.167317
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19673.4 34075.2i 0.638334 1.10563i −0.347464 0.937693i \(-0.612957\pi\)
0.985798 0.167934i \(-0.0537095\pi\)
\(984\) 0 0
\(985\) 5742.85 + 9946.91i 0.185769 + 0.321761i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4347.90 7530.79i −0.139793 0.242128i
\(990\) 0 0
\(991\) 1336.27 2314.48i 0.0428334 0.0741896i −0.843814 0.536636i \(-0.819695\pi\)
0.886647 + 0.462446i \(0.153028\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 30645.1 0.976396
\(996\) 0 0
\(997\) 585.644 1014.37i 0.0186034 0.0322220i −0.856574 0.516024i \(-0.827411\pi\)
0.875177 + 0.483802i \(0.160745\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.k.h.109.3 yes 16
3.2 odd 2 756.4.k.f.109.6 16
7.2 even 3 inner 756.4.k.h.541.3 yes 16
21.2 odd 6 756.4.k.f.541.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.k.f.109.6 16 3.2 odd 2
756.4.k.f.541.6 yes 16 21.2 odd 6
756.4.k.h.109.3 yes 16 1.1 even 1 trivial
756.4.k.h.541.3 yes 16 7.2 even 3 inner