Properties

Label 756.4.k.h.109.1
Level $756$
Weight $4$
Character 756.109
Analytic conductor $44.605$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(109,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.109"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,7,0,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 198 x^{14} + 15603 x^{12} + 623882 x^{10} + 13296387 x^{8} + 143321550 x^{6} + 644261986 x^{4} + \cdots + 9753129 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(2.87126i\) of defining polynomial
Character \(\chi\) \(=\) 756.109
Dual form 756.4.k.h.541.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.20902 - 15.9505i) q^{5} +(-14.4823 + 11.5440i) q^{7} +(-13.0045 + 22.5245i) q^{11} -38.8473 q^{13} +(7.38515 - 12.7915i) q^{17} +(26.4892 + 45.8806i) q^{19} +(-56.7287 - 98.2569i) q^{23} +(-107.112 + 185.524i) q^{25} +119.708 q^{29} +(-83.5340 + 144.685i) q^{31} +(317.500 + 124.690i) q^{35} +(-39.6722 - 68.7143i) q^{37} -41.8167 q^{41} +190.219 q^{43} +(231.991 + 401.821i) q^{47} +(76.4715 - 334.367i) q^{49} +(-2.74684 + 4.75766i) q^{53} +479.036 q^{55} +(334.488 - 579.351i) q^{59} +(-469.420 - 813.059i) q^{61} +(357.745 + 619.633i) q^{65} +(-138.918 + 240.613i) q^{67} +357.478 q^{71} +(508.704 - 881.101i) q^{73} +(-71.6883 - 476.330i) q^{77} +(382.659 + 662.784i) q^{79} +1421.16 q^{83} -272.040 q^{85} +(385.995 + 668.564i) q^{89} +(562.596 - 448.453i) q^{91} +(487.879 - 845.030i) q^{95} +575.835 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 7 q^{5} - 11 q^{7} - 43 q^{11} - 52 q^{13} + 38 q^{17} + 32 q^{19} - 118 q^{23} - 143 q^{25} + 160 q^{29} + 5 q^{31} + 161 q^{35} - 136 q^{37} - 216 q^{41} + 800 q^{43} - 78 q^{47} + 253 q^{49} + 105 q^{53}+ \cdots - 838 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.20902 15.9505i −0.823680 1.42666i −0.902924 0.429800i \(-0.858584\pi\)
0.0792444 0.996855i \(-0.474749\pi\)
\(6\) 0 0
\(7\) −14.4823 + 11.5440i −0.781968 + 0.623318i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.0045 + 22.5245i −0.356456 + 0.617400i −0.987366 0.158456i \(-0.949348\pi\)
0.630910 + 0.775856i \(0.282682\pi\)
\(12\) 0 0
\(13\) −38.8473 −0.828792 −0.414396 0.910097i \(-0.636007\pi\)
−0.414396 + 0.910097i \(0.636007\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.38515 12.7915i 0.105362 0.182493i −0.808524 0.588464i \(-0.799733\pi\)
0.913886 + 0.405970i \(0.133066\pi\)
\(18\) 0 0
\(19\) 26.4892 + 45.8806i 0.319844 + 0.553986i 0.980455 0.196742i \(-0.0630362\pi\)
−0.660611 + 0.750728i \(0.729703\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −56.7287 98.2569i −0.514293 0.890782i −0.999862 0.0165836i \(-0.994721\pi\)
0.485569 0.874198i \(-0.338612\pi\)
\(24\) 0 0
\(25\) −107.112 + 185.524i −0.856897 + 1.48419i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 119.708 0.766525 0.383262 0.923639i \(-0.374800\pi\)
0.383262 + 0.923639i \(0.374800\pi\)
\(30\) 0 0
\(31\) −83.5340 + 144.685i −0.483973 + 0.838265i −0.999831 0.0184088i \(-0.994140\pi\)
0.515858 + 0.856674i \(0.327473\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 317.500 + 124.690i 1.53335 + 0.602185i
\(36\) 0 0
\(37\) −39.6722 68.7143i −0.176272 0.305312i 0.764329 0.644827i \(-0.223071\pi\)
−0.940601 + 0.339515i \(0.889737\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −41.8167 −0.159285 −0.0796424 0.996824i \(-0.525378\pi\)
−0.0796424 + 0.996824i \(0.525378\pi\)
\(42\) 0 0
\(43\) 190.219 0.674609 0.337304 0.941396i \(-0.390485\pi\)
0.337304 + 0.941396i \(0.390485\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 231.991 + 401.821i 0.719987 + 1.24705i 0.961004 + 0.276533i \(0.0891856\pi\)
−0.241017 + 0.970521i \(0.577481\pi\)
\(48\) 0 0
\(49\) 76.4715 334.367i 0.222949 0.974830i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.74684 + 4.75766i −0.00711901 + 0.0123305i −0.869563 0.493822i \(-0.835599\pi\)
0.862444 + 0.506153i \(0.168933\pi\)
\(54\) 0 0
\(55\) 479.036 1.17442
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 334.488 579.351i 0.738079 1.27839i −0.215280 0.976552i \(-0.569066\pi\)
0.953359 0.301838i \(-0.0976003\pi\)
\(60\) 0 0
\(61\) −469.420 813.059i −0.985296 1.70658i −0.640613 0.767864i \(-0.721320\pi\)
−0.344683 0.938719i \(-0.612014\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 357.745 + 619.633i 0.682659 + 1.18240i
\(66\) 0 0
\(67\) −138.918 + 240.613i −0.253306 + 0.438740i −0.964434 0.264323i \(-0.914851\pi\)
0.711128 + 0.703063i \(0.248185\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 357.478 0.597532 0.298766 0.954326i \(-0.403425\pi\)
0.298766 + 0.954326i \(0.403425\pi\)
\(72\) 0 0
\(73\) 508.704 881.101i 0.815607 1.41267i −0.0932841 0.995640i \(-0.529736\pi\)
0.908891 0.417033i \(-0.136930\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −71.6883 476.330i −0.106099 0.704972i
\(78\) 0 0
\(79\) 382.659 + 662.784i 0.544968 + 0.943912i 0.998609 + 0.0527278i \(0.0167916\pi\)
−0.453641 + 0.891185i \(0.649875\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1421.16 1.87943 0.939715 0.341958i \(-0.111090\pi\)
0.939715 + 0.341958i \(0.111090\pi\)
\(84\) 0 0
\(85\) −272.040 −0.347140
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 385.995 + 668.564i 0.459724 + 0.796265i 0.998946 0.0458982i \(-0.0146150\pi\)
−0.539222 + 0.842164i \(0.681282\pi\)
\(90\) 0 0
\(91\) 562.596 448.453i 0.648089 0.516601i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 487.879 845.030i 0.526898 0.912614i
\(96\) 0 0
\(97\) 575.835 0.602755 0.301377 0.953505i \(-0.402554\pi\)
0.301377 + 0.953505i \(0.402554\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −65.4556 + 113.372i −0.0644858 + 0.111693i −0.896466 0.443113i \(-0.853874\pi\)
0.831980 + 0.554806i \(0.187207\pi\)
\(102\) 0 0
\(103\) −216.365 374.756i −0.206982 0.358503i 0.743781 0.668424i \(-0.233031\pi\)
−0.950762 + 0.309921i \(0.899697\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −324.252 561.622i −0.292959 0.507421i 0.681549 0.731773i \(-0.261307\pi\)
−0.974508 + 0.224352i \(0.927973\pi\)
\(108\) 0 0
\(109\) −799.218 + 1384.29i −0.702304 + 1.21643i 0.265351 + 0.964152i \(0.414512\pi\)
−0.967656 + 0.252275i \(0.918821\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 578.851 0.481891 0.240946 0.970539i \(-0.422542\pi\)
0.240946 + 0.970539i \(0.422542\pi\)
\(114\) 0 0
\(115\) −1044.83 + 1809.70i −0.847226 + 1.46744i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 40.7111 + 270.503i 0.0313612 + 0.208378i
\(120\) 0 0
\(121\) 327.264 + 566.838i 0.245878 + 0.425874i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1643.33 1.17587
\(126\) 0 0
\(127\) −1975.83 −1.38052 −0.690261 0.723560i \(-0.742504\pi\)
−0.690261 + 0.723560i \(0.742504\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 760.267 + 1316.82i 0.507060 + 0.878254i 0.999967 + 0.00817157i \(0.00260112\pi\)
−0.492907 + 0.870082i \(0.664066\pi\)
\(132\) 0 0
\(133\) −913.269 358.663i −0.595417 0.233835i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 26.4749 45.8559i 0.0165102 0.0285966i −0.857652 0.514230i \(-0.828078\pi\)
0.874162 + 0.485634i \(0.161411\pi\)
\(138\) 0 0
\(139\) 2874.08 1.75378 0.876892 0.480687i \(-0.159613\pi\)
0.876892 + 0.480687i \(0.159613\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 505.191 875.016i 0.295428 0.511696i
\(144\) 0 0
\(145\) −1102.39 1909.40i −0.631371 1.09357i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1173.48 + 2032.53i 0.645203 + 1.11752i 0.984255 + 0.176757i \(0.0565607\pi\)
−0.339051 + 0.940768i \(0.610106\pi\)
\(150\) 0 0
\(151\) −1674.37 + 2900.10i −0.902375 + 1.56296i −0.0779717 + 0.996956i \(0.524844\pi\)
−0.824403 + 0.566003i \(0.808489\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3077.07 1.59455
\(156\) 0 0
\(157\) −260.731 + 451.600i −0.132539 + 0.229564i −0.924655 0.380807i \(-0.875646\pi\)
0.792116 + 0.610371i \(0.208980\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1955.84 + 768.105i 0.957401 + 0.375995i
\(162\) 0 0
\(163\) 473.335 + 819.840i 0.227451 + 0.393956i 0.957052 0.289917i \(-0.0936277\pi\)
−0.729601 + 0.683873i \(0.760294\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2668.53 1.23651 0.618255 0.785978i \(-0.287840\pi\)
0.618255 + 0.785978i \(0.287840\pi\)
\(168\) 0 0
\(169\) −687.889 −0.313104
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1488.14 2577.53i −0.653994 1.13275i −0.982145 0.188126i \(-0.939759\pi\)
0.328151 0.944625i \(-0.393575\pi\)
\(174\) 0 0
\(175\) −590.462 3923.30i −0.255056 1.69471i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1156.33 + 2002.82i −0.482839 + 0.836302i −0.999806 0.0197036i \(-0.993728\pi\)
0.516967 + 0.856005i \(0.327061\pi\)
\(180\) 0 0
\(181\) 4597.15 1.88787 0.943933 0.330137i \(-0.107095\pi\)
0.943933 + 0.330137i \(0.107095\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −730.684 + 1265.58i −0.290384 + 0.502959i
\(186\) 0 0
\(187\) 192.081 + 332.694i 0.0751141 + 0.130102i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1248.82 2163.02i −0.473097 0.819428i 0.526429 0.850219i \(-0.323531\pi\)
−0.999526 + 0.0307913i \(0.990197\pi\)
\(192\) 0 0
\(193\) −428.481 + 742.151i −0.159807 + 0.276794i −0.934799 0.355177i \(-0.884421\pi\)
0.774992 + 0.631971i \(0.217754\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1870.96 0.676652 0.338326 0.941029i \(-0.390139\pi\)
0.338326 + 0.941029i \(0.390139\pi\)
\(198\) 0 0
\(199\) 703.294 1218.14i 0.250528 0.433928i −0.713143 0.701019i \(-0.752729\pi\)
0.963671 + 0.267091i \(0.0860623\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1733.64 + 1381.91i −0.599398 + 0.477789i
\(204\) 0 0
\(205\) 385.091 + 666.997i 0.131200 + 0.227244i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1377.92 −0.456041
\(210\) 0 0
\(211\) 1251.20 0.408229 0.204115 0.978947i \(-0.434568\pi\)
0.204115 + 0.978947i \(0.434568\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1751.73 3034.09i −0.555661 0.962434i
\(216\) 0 0
\(217\) −460.486 3059.69i −0.144055 0.957166i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −286.893 + 496.913i −0.0873236 + 0.151249i
\(222\) 0 0
\(223\) −466.516 −0.140091 −0.0700454 0.997544i \(-0.522314\pi\)
−0.0700454 + 0.997544i \(0.522314\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 857.742 1485.65i 0.250794 0.434389i −0.712950 0.701215i \(-0.752642\pi\)
0.963745 + 0.266826i \(0.0859748\pi\)
\(228\) 0 0
\(229\) 257.353 + 445.749i 0.0742637 + 0.128629i 0.900766 0.434305i \(-0.143006\pi\)
−0.826502 + 0.562934i \(0.809673\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1118.55 1937.38i −0.314499 0.544729i 0.664832 0.746993i \(-0.268503\pi\)
−0.979331 + 0.202264i \(0.935170\pi\)
\(234\) 0 0
\(235\) 4272.82 7400.75i 1.18608 2.05435i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1874.12 −0.507226 −0.253613 0.967306i \(-0.581619\pi\)
−0.253613 + 0.967306i \(0.581619\pi\)
\(240\) 0 0
\(241\) −1146.52 + 1985.83i −0.306447 + 0.530782i −0.977582 0.210553i \(-0.932474\pi\)
0.671135 + 0.741335i \(0.265807\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6037.54 + 1859.43i −1.57439 + 0.484876i
\(246\) 0 0
\(247\) −1029.03 1782.34i −0.265084 0.459139i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5461.66 −1.37345 −0.686727 0.726915i \(-0.740953\pi\)
−0.686727 + 0.726915i \(0.740953\pi\)
\(252\) 0 0
\(253\) 2950.92 0.733291
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3545.62 + 6141.19i 0.860582 + 1.49057i 0.871368 + 0.490630i \(0.163233\pi\)
−0.0107861 + 0.999942i \(0.503433\pi\)
\(258\) 0 0
\(259\) 1367.78 + 537.161i 0.328146 + 0.128871i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2664.26 4614.64i 0.624660 1.08194i −0.363946 0.931420i \(-0.618571\pi\)
0.988606 0.150523i \(-0.0480958\pi\)
\(264\) 0 0
\(265\) 101.183 0.0234551
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2218.85 3843.17i 0.502922 0.871086i −0.497073 0.867709i \(-0.665592\pi\)
0.999994 0.00337684i \(-0.00107488\pi\)
\(270\) 0 0
\(271\) −2623.08 4543.31i −0.587974 1.01840i −0.994498 0.104760i \(-0.966593\pi\)
0.406524 0.913640i \(-0.366741\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2785.89 4825.30i −0.610892 1.05810i
\(276\) 0 0
\(277\) −3988.95 + 6909.06i −0.865245 + 1.49865i 0.00155937 + 0.999999i \(0.499504\pi\)
−0.866804 + 0.498649i \(0.833830\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6427.68 −1.36457 −0.682283 0.731088i \(-0.739013\pi\)
−0.682283 + 0.731088i \(0.739013\pi\)
\(282\) 0 0
\(283\) −1288.18 + 2231.19i −0.270581 + 0.468660i −0.969011 0.247019i \(-0.920549\pi\)
0.698430 + 0.715679i \(0.253882\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 605.601 482.733i 0.124556 0.0992851i
\(288\) 0 0
\(289\) 2347.42 + 4065.85i 0.477798 + 0.827570i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3543.33 0.706498 0.353249 0.935529i \(-0.385077\pi\)
0.353249 + 0.935529i \(0.385077\pi\)
\(294\) 0 0
\(295\) −12321.2 −2.43176
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2203.75 + 3817.01i 0.426242 + 0.738273i
\(300\) 0 0
\(301\) −2754.80 + 2195.89i −0.527523 + 0.420496i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8645.80 + 14975.0i −1.62314 + 2.81136i
\(306\) 0 0
\(307\) 1346.45 0.250312 0.125156 0.992137i \(-0.460057\pi\)
0.125156 + 0.992137i \(0.460057\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1992.03 + 3450.30i −0.363208 + 0.629095i −0.988487 0.151306i \(-0.951652\pi\)
0.625279 + 0.780402i \(0.284985\pi\)
\(312\) 0 0
\(313\) 5338.78 + 9247.04i 0.964108 + 1.66988i 0.711992 + 0.702187i \(0.247793\pi\)
0.252116 + 0.967697i \(0.418874\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1626.62 2817.39i −0.288203 0.499182i 0.685178 0.728376i \(-0.259724\pi\)
−0.973381 + 0.229194i \(0.926391\pi\)
\(318\) 0 0
\(319\) −1556.75 + 2696.36i −0.273232 + 0.473252i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 782.506 0.134798
\(324\) 0 0
\(325\) 4161.01 7207.09i 0.710189 1.23008i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7998.38 3141.16i −1.34032 0.526376i
\(330\) 0 0
\(331\) 1834.08 + 3176.71i 0.304562 + 0.527516i 0.977164 0.212488i \(-0.0681567\pi\)
−0.672602 + 0.740004i \(0.734823\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5117.19 0.834574
\(336\) 0 0
\(337\) 1661.63 0.268589 0.134295 0.990941i \(-0.457123\pi\)
0.134295 + 0.990941i \(0.457123\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2172.64 3763.13i −0.345030 0.597609i
\(342\) 0 0
\(343\) 2752.45 + 5725.17i 0.433290 + 0.901254i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5557.24 9625.41i 0.859735 1.48910i −0.0124468 0.999923i \(-0.503962\pi\)
0.872182 0.489182i \(-0.162705\pi\)
\(348\) 0 0
\(349\) −10559.9 −1.61965 −0.809824 0.586672i \(-0.800438\pi\)
−0.809824 + 0.586672i \(0.800438\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5365.94 + 9294.09i −0.809066 + 1.40134i 0.104445 + 0.994531i \(0.466693\pi\)
−0.913511 + 0.406813i \(0.866640\pi\)
\(354\) 0 0
\(355\) −3292.02 5701.95i −0.492175 0.852473i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4103.54 7107.53i −0.603277 1.04491i −0.992321 0.123687i \(-0.960528\pi\)
0.389044 0.921219i \(-0.372805\pi\)
\(360\) 0 0
\(361\) 2026.15 3509.39i 0.295400 0.511648i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −18738.7 −2.68720
\(366\) 0 0
\(367\) −4358.37 + 7548.92i −0.619905 + 1.07371i 0.369598 + 0.929192i \(0.379496\pi\)
−0.989503 + 0.144515i \(0.953838\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.1421 100.611i −0.00211897 0.0140794i
\(372\) 0 0
\(373\) −323.277 559.933i −0.0448758 0.0777272i 0.842715 0.538360i \(-0.180956\pi\)
−0.887591 + 0.460633i \(0.847623\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4650.33 −0.635290
\(378\) 0 0
\(379\) 11061.9 1.49924 0.749620 0.661869i \(-0.230236\pi\)
0.749620 + 0.661869i \(0.230236\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2004.98 3472.73i −0.267493 0.463311i 0.700721 0.713436i \(-0.252862\pi\)
−0.968214 + 0.250124i \(0.919529\pi\)
\(384\) 0 0
\(385\) −6937.52 + 5530.00i −0.918361 + 0.732038i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7016.17 + 12152.4i −0.914484 + 1.58393i −0.106828 + 0.994277i \(0.534070\pi\)
−0.807655 + 0.589655i \(0.799264\pi\)
\(390\) 0 0
\(391\) −1675.80 −0.216749
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7047.82 12207.2i 0.897758 1.55496i
\(396\) 0 0
\(397\) 1309.44 + 2268.02i 0.165539 + 0.286722i 0.936847 0.349741i \(-0.113730\pi\)
−0.771308 + 0.636463i \(0.780397\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7325.29 12687.8i −0.912239 1.58004i −0.810895 0.585192i \(-0.801019\pi\)
−0.101344 0.994851i \(-0.532314\pi\)
\(402\) 0 0
\(403\) 3245.07 5620.63i 0.401113 0.694748i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2063.67 0.251333
\(408\) 0 0
\(409\) 7107.94 12311.3i 0.859328 1.48840i −0.0132425 0.999912i \(-0.504215\pi\)
0.872571 0.488488i \(-0.162451\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1843.89 + 12251.6i 0.219689 + 1.45972i
\(414\) 0 0
\(415\) −13087.5 22668.2i −1.54805 2.68130i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 338.020 0.0394114 0.0197057 0.999806i \(-0.493727\pi\)
0.0197057 + 0.999806i \(0.493727\pi\)
\(420\) 0 0
\(421\) 10292.1 1.19146 0.595729 0.803185i \(-0.296863\pi\)
0.595729 + 0.803185i \(0.296863\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1582.08 + 2740.24i 0.180569 + 0.312756i
\(426\) 0 0
\(427\) 16184.2 + 6355.94i 1.83421 + 0.720341i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8352.98 + 14467.8i −0.933524 + 1.61691i −0.156279 + 0.987713i \(0.549950\pi\)
−0.777245 + 0.629198i \(0.783384\pi\)
\(432\) 0 0
\(433\) −7821.01 −0.868022 −0.434011 0.900908i \(-0.642902\pi\)
−0.434011 + 0.900908i \(0.642902\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3005.39 5205.49i 0.328987 0.569822i
\(438\) 0 0
\(439\) 3410.80 + 5907.67i 0.370817 + 0.642273i 0.989691 0.143216i \(-0.0457445\pi\)
−0.618875 + 0.785490i \(0.712411\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1887.84 3269.84i −0.202470 0.350688i 0.746854 0.664988i \(-0.231563\pi\)
−0.949324 + 0.314300i \(0.898230\pi\)
\(444\) 0 0
\(445\) 7109.28 12313.6i 0.757331 1.31174i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12178.7 1.28006 0.640029 0.768351i \(-0.278922\pi\)
0.640029 + 0.768351i \(0.278922\pi\)
\(450\) 0 0
\(451\) 543.807 941.901i 0.0567780 0.0983424i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12334.0 4843.87i −1.27083 0.499086i
\(456\) 0 0
\(457\) −2714.69 4701.98i −0.277873 0.481289i 0.692983 0.720954i \(-0.256296\pi\)
−0.970856 + 0.239664i \(0.922963\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2455.46 0.248074 0.124037 0.992278i \(-0.460416\pi\)
0.124037 + 0.992278i \(0.460416\pi\)
\(462\) 0 0
\(463\) 1868.81 0.187583 0.0937916 0.995592i \(-0.470101\pi\)
0.0937916 + 0.995592i \(0.470101\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4642.12 8040.39i −0.459982 0.796712i 0.538977 0.842320i \(-0.318811\pi\)
−0.998959 + 0.0456078i \(0.985478\pi\)
\(468\) 0 0
\(469\) −765.794 5088.29i −0.0753967 0.500971i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2473.71 + 4284.60i −0.240468 + 0.416503i
\(474\) 0 0
\(475\) −11349.2 −1.09629
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8485.77 14697.8i 0.809446 1.40200i −0.103802 0.994598i \(-0.533101\pi\)
0.913248 0.407404i \(-0.133566\pi\)
\(480\) 0 0
\(481\) 1541.16 + 2669.36i 0.146093 + 0.253041i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5302.88 9184.86i −0.496477 0.859923i
\(486\) 0 0
\(487\) 3549.67 6148.20i 0.330289 0.572077i −0.652279 0.757979i \(-0.726187\pi\)
0.982568 + 0.185901i \(0.0595205\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7030.40 0.646187 0.323093 0.946367i \(-0.395277\pi\)
0.323093 + 0.946367i \(0.395277\pi\)
\(492\) 0 0
\(493\) 884.062 1531.24i 0.0807630 0.139886i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5177.08 + 4126.73i −0.467251 + 0.372453i
\(498\) 0 0
\(499\) 3274.41 + 5671.45i 0.293753 + 0.508796i 0.974694 0.223543i \(-0.0717622\pi\)
−0.680941 + 0.732338i \(0.738429\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9867.01 0.874648 0.437324 0.899304i \(-0.355926\pi\)
0.437324 + 0.899304i \(0.355926\pi\)
\(504\) 0 0
\(505\) 2411.13 0.212463
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10051.7 + 17410.1i 0.875314 + 1.51609i 0.856428 + 0.516266i \(0.172679\pi\)
0.0188856 + 0.999822i \(0.493988\pi\)
\(510\) 0 0
\(511\) 2804.26 + 18632.8i 0.242766 + 1.61305i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3985.03 + 6902.27i −0.340973 + 0.590583i
\(516\) 0 0
\(517\) −12067.7 −1.02657
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7163.21 + 12407.0i −0.602353 + 1.04331i 0.390111 + 0.920768i \(0.372437\pi\)
−0.992464 + 0.122538i \(0.960897\pi\)
\(522\) 0 0
\(523\) 7730.53 + 13389.7i 0.646334 + 1.11948i 0.983992 + 0.178214i \(0.0570320\pi\)
−0.337658 + 0.941269i \(0.609635\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1233.82 + 2137.04i 0.101985 + 0.176643i
\(528\) 0 0
\(529\) −352.780 + 611.032i −0.0289948 + 0.0502204i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1624.47 0.132014
\(534\) 0 0
\(535\) −5972.09 + 10344.0i −0.482610 + 0.835904i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6536.97 + 6070.77i 0.522388 + 0.485133i
\(540\) 0 0
\(541\) 4501.18 + 7796.27i 0.357709 + 0.619571i 0.987578 0.157131i \(-0.0502245\pi\)
−0.629868 + 0.776702i \(0.716891\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 29440.0 2.31390
\(546\) 0 0
\(547\) 6721.75 0.525413 0.262707 0.964876i \(-0.415385\pi\)
0.262707 + 0.964876i \(0.415385\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3170.97 + 5492.27i 0.245168 + 0.424644i
\(552\) 0 0
\(553\) −13193.0 5181.20i −1.01451 0.398421i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1340.99 2322.66i 0.102010 0.176686i −0.810503 0.585735i \(-0.800806\pi\)
0.912513 + 0.409049i \(0.134139\pi\)
\(558\) 0 0
\(559\) −7389.50 −0.559110
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −108.719 + 188.307i −0.00813849 + 0.0140963i −0.870066 0.492935i \(-0.835924\pi\)
0.861927 + 0.507032i \(0.169257\pi\)
\(564\) 0 0
\(565\) −5330.65 9232.96i −0.396924 0.687493i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1269.67 2199.14i −0.0935458 0.162026i 0.815455 0.578821i \(-0.196487\pi\)
−0.909001 + 0.416794i \(0.863153\pi\)
\(570\) 0 0
\(571\) −4859.12 + 8416.25i −0.356126 + 0.616828i −0.987310 0.158805i \(-0.949236\pi\)
0.631184 + 0.775633i \(0.282569\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24305.3 1.76278
\(576\) 0 0
\(577\) 802.457 1389.90i 0.0578973 0.100281i −0.835624 0.549302i \(-0.814894\pi\)
0.893521 + 0.449021i \(0.148227\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −20581.6 + 16405.9i −1.46966 + 1.17148i
\(582\) 0 0
\(583\) −71.4427 123.742i −0.00507522 0.00879054i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21537.1 1.51436 0.757182 0.653204i \(-0.226575\pi\)
0.757182 + 0.653204i \(0.226575\pi\)
\(588\) 0 0
\(589\) −8850.99 −0.619183
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5306.74 9191.54i −0.367490 0.636512i 0.621682 0.783269i \(-0.286449\pi\)
−0.989172 + 0.146758i \(0.953116\pi\)
\(594\) 0 0
\(595\) 3939.75 3140.43i 0.271452 0.216378i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11075.8 19183.8i 0.755500 1.30856i −0.189626 0.981856i \(-0.560727\pi\)
0.945125 0.326708i \(-0.105939\pi\)
\(600\) 0 0
\(601\) −19358.2 −1.31387 −0.656935 0.753947i \(-0.728147\pi\)
−0.656935 + 0.753947i \(0.728147\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6027.57 10440.0i 0.405050 0.701568i
\(606\) 0 0
\(607\) 3572.92 + 6188.48i 0.238913 + 0.413810i 0.960403 0.278616i \(-0.0898755\pi\)
−0.721489 + 0.692425i \(0.756542\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9012.23 15609.6i −0.596720 1.03355i
\(612\) 0 0
\(613\) 6.03941 10.4606i 0.000397927 0.000689230i −0.865826 0.500345i \(-0.833207\pi\)
0.866224 + 0.499655i \(0.166540\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12639.1 0.824689 0.412344 0.911028i \(-0.364710\pi\)
0.412344 + 0.911028i \(0.364710\pi\)
\(618\) 0 0
\(619\) −8716.62 + 15097.6i −0.565994 + 0.980331i 0.430962 + 0.902370i \(0.358174\pi\)
−0.996956 + 0.0779607i \(0.975159\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13308.0 5226.38i −0.855816 0.336100i
\(624\) 0 0
\(625\) −1744.49 3021.54i −0.111647 0.193379i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1171.94 −0.0742899
\(630\) 0 0
\(631\) −9418.42 −0.594202 −0.297101 0.954846i \(-0.596020\pi\)
−0.297101 + 0.954846i \(0.596020\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18195.4 + 31515.4i 1.13711 + 1.96953i
\(636\) 0 0
\(637\) −2970.71 + 12989.2i −0.184778 + 0.807931i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12314.8 21329.8i 0.758820 1.31431i −0.184633 0.982808i \(-0.559110\pi\)
0.943453 0.331507i \(-0.107557\pi\)
\(642\) 0 0
\(643\) 27161.2 1.66583 0.832917 0.553398i \(-0.186669\pi\)
0.832917 + 0.553398i \(0.186669\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8024.87 13899.5i 0.487620 0.844583i −0.512278 0.858820i \(-0.671198\pi\)
0.999899 + 0.0142363i \(0.00453169\pi\)
\(648\) 0 0
\(649\) 8699.73 + 15068.4i 0.526185 + 0.911380i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6580.18 + 11397.2i 0.394337 + 0.683012i 0.993016 0.117977i \(-0.0376408\pi\)
−0.598679 + 0.800989i \(0.704308\pi\)
\(654\) 0 0
\(655\) 14002.6 24253.3i 0.835310 1.44680i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4473.74 −0.264449 −0.132225 0.991220i \(-0.542212\pi\)
−0.132225 + 0.991220i \(0.542212\pi\)
\(660\) 0 0
\(661\) 11220.0 19433.5i 0.660220 1.14353i −0.320337 0.947304i \(-0.603796\pi\)
0.980558 0.196231i \(-0.0628704\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2689.46 + 17870.0i 0.156831 + 1.04206i
\(666\) 0 0
\(667\) −6790.87 11762.1i −0.394218 0.682806i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 24418.4 1.40486
\(672\) 0 0
\(673\) −4623.02 −0.264791 −0.132396 0.991197i \(-0.542267\pi\)
−0.132396 + 0.991197i \(0.542267\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8282.30 + 14345.4i 0.470184 + 0.814383i 0.999419 0.0340926i \(-0.0108541\pi\)
−0.529234 + 0.848476i \(0.677521\pi\)
\(678\) 0 0
\(679\) −8339.39 + 6647.45i −0.471335 + 0.375708i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14894.4 + 25797.9i −0.834434 + 1.44528i 0.0600558 + 0.998195i \(0.480872\pi\)
−0.894490 + 0.447088i \(0.852461\pi\)
\(684\) 0 0
\(685\) −975.231 −0.0543966
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 106.707 184.822i 0.00590017 0.0102194i
\(690\) 0 0
\(691\) 969.425 + 1679.09i 0.0533700 + 0.0924395i 0.891476 0.453068i \(-0.149670\pi\)
−0.838106 + 0.545507i \(0.816337\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −26467.4 45842.9i −1.44456 2.50205i
\(696\) 0 0
\(697\) −308.823 + 534.897i −0.0167826 + 0.0290684i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8227.44 0.443290 0.221645 0.975127i \(-0.428857\pi\)
0.221645 + 0.975127i \(0.428857\pi\)
\(702\) 0 0
\(703\) 2101.77 3640.37i 0.112759 0.195305i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −360.828 2397.51i −0.0191942 0.127535i
\(708\) 0 0
\(709\) 6258.32 + 10839.7i 0.331504 + 0.574182i 0.982807 0.184636i \(-0.0591106\pi\)
−0.651303 + 0.758818i \(0.725777\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18955.1 0.995615
\(714\) 0 0
\(715\) −18609.2 −0.973351
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6764.68 11716.8i −0.350876 0.607735i 0.635527 0.772079i \(-0.280783\pi\)
−0.986403 + 0.164343i \(0.947449\pi\)
\(720\) 0 0
\(721\) 7459.65 + 2929.59i 0.385314 + 0.151322i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12822.2 + 22208.7i −0.656833 + 1.13767i
\(726\) 0 0
\(727\) 30114.9 1.53631 0.768157 0.640261i \(-0.221174\pi\)
0.768157 + 0.640261i \(0.221174\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1404.80 2433.18i 0.0710784 0.123111i
\(732\) 0 0
\(733\) −6608.62 11446.5i −0.333008 0.576787i 0.650092 0.759856i \(-0.274730\pi\)
−0.983100 + 0.183068i \(0.941397\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3613.13 6258.12i −0.180585 0.312783i
\(738\) 0 0
\(739\) 4637.30 8032.05i 0.230834 0.399815i −0.727220 0.686404i \(-0.759188\pi\)
0.958054 + 0.286589i \(0.0925214\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8881.33 0.438526 0.219263 0.975666i \(-0.429635\pi\)
0.219263 + 0.975666i \(0.429635\pi\)
\(744\) 0 0
\(745\) 21613.2 37435.2i 1.06288 1.84097i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11179.3 + 4390.37i 0.545370 + 0.214180i
\(750\) 0 0
\(751\) 726.002 + 1257.47i 0.0352759 + 0.0610996i 0.883124 0.469139i \(-0.155436\pi\)
−0.847848 + 0.530239i \(0.822102\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 61677.4 2.97307
\(756\) 0 0
\(757\) 25800.7 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 638.768 + 1106.38i 0.0304275 + 0.0527019i 0.880838 0.473418i \(-0.156980\pi\)
−0.850411 + 0.526119i \(0.823646\pi\)
\(762\) 0 0
\(763\) −4405.74 29273.8i −0.209041 1.38897i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12994.0 + 22506.2i −0.611714 + 1.05952i
\(768\) 0 0
\(769\) 14389.0 0.674746 0.337373 0.941371i \(-0.390462\pi\)
0.337373 + 0.941371i \(0.390462\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 16465.4 28518.8i 0.766129 1.32698i −0.173518 0.984831i \(-0.555513\pi\)
0.939647 0.342144i \(-0.111153\pi\)
\(774\) 0 0
\(775\) −17895.0 30995.1i −0.829429 1.43661i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1107.69 1918.58i −0.0509462 0.0882415i
\(780\) 0 0
\(781\) −4648.83 + 8052.01i −0.212994 + 0.368916i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9604.32 0.436679
\(786\) 0 0
\(787\) −14446.7 + 25022.5i −0.654346 + 1.13336i 0.327711 + 0.944778i \(0.393723\pi\)
−0.982057 + 0.188583i \(0.939611\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8383.07 + 6682.26i −0.376824 + 0.300372i
\(792\) 0 0
\(793\) 18235.7 + 31585.1i 0.816606 + 1.41440i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7033.32 0.312588 0.156294 0.987711i \(-0.450045\pi\)
0.156294 + 0.987711i \(0.450045\pi\)
\(798\) 0 0
\(799\) 6853.16 0.303438
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13230.9 + 22916.6i 0.581456 + 1.00711i
\(804\) 0 0
\(805\) −5759.69 38270.1i −0.252177 1.67558i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16579.7 + 28716.8i −0.720531 + 1.24800i 0.240256 + 0.970710i \(0.422769\pi\)
−0.960787 + 0.277287i \(0.910565\pi\)
\(810\) 0 0
\(811\) 3646.25 0.157876 0.0789379 0.996880i \(-0.474847\pi\)
0.0789379 + 0.996880i \(0.474847\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8717.90 15099.8i 0.374693 0.648987i
\(816\) 0 0
\(817\) 5038.75 + 8727.37i 0.215769 + 0.373723i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9933.28 + 17204.9i 0.422258 + 0.731372i 0.996160 0.0875518i \(-0.0279043\pi\)
−0.573902 + 0.818924i \(0.694571\pi\)
\(822\) 0 0
\(823\) −12888.2 + 22323.0i −0.545873 + 0.945480i 0.452678 + 0.891674i \(0.350469\pi\)
−0.998551 + 0.0538060i \(0.982865\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33812.2 1.42172 0.710862 0.703331i \(-0.248305\pi\)
0.710862 + 0.703331i \(0.248305\pi\)
\(828\) 0 0
\(829\) −21072.4 + 36498.5i −0.882841 + 1.52913i −0.0346729 + 0.999399i \(0.511039\pi\)
−0.848168 + 0.529727i \(0.822294\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3712.28 3447.53i −0.154409 0.143397i
\(834\) 0 0
\(835\) −24574.6 42564.4i −1.01849 1.76407i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3779.26 −0.155512 −0.0777559 0.996972i \(-0.524775\pi\)
−0.0777559 + 0.996972i \(0.524775\pi\)
\(840\) 0 0
\(841\) −10059.0 −0.412440
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6334.78 + 10972.2i 0.257897 + 0.446691i
\(846\) 0 0
\(847\) −11283.1 4431.15i −0.457724 0.179759i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4501.10 + 7796.14i −0.181311 + 0.314040i
\(852\) 0 0
\(853\) 8513.08 0.341714 0.170857 0.985296i \(-0.445346\pi\)
0.170857 + 0.985296i \(0.445346\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15026.2 26026.2i 0.598933 1.03738i −0.394046 0.919091i \(-0.628925\pi\)
0.992979 0.118291i \(-0.0377417\pi\)
\(858\) 0 0
\(859\) −9093.32 15750.1i −0.361188 0.625595i 0.626969 0.779044i \(-0.284295\pi\)
−0.988157 + 0.153449i \(0.950962\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7276.88 12603.9i −0.287031 0.497152i 0.686069 0.727537i \(-0.259335\pi\)
−0.973100 + 0.230384i \(0.926002\pi\)
\(864\) 0 0
\(865\) −27408.6 + 47473.0i −1.07736 + 1.86605i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19905.2 −0.777028
\(870\) 0 0
\(871\) 5396.59 9347.16i 0.209938 0.363624i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −23799.2 + 18970.7i −0.919496 + 0.732944i
\(876\) 0 0
\(877\) 23862.6 + 41331.3i 0.918795 + 1.59140i 0.801247 + 0.598333i \(0.204170\pi\)
0.117548 + 0.993067i \(0.462497\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −27523.8 −1.05255 −0.526277 0.850313i \(-0.676413\pi\)
−0.526277 + 0.850313i \(0.676413\pi\)
\(882\) 0 0
\(883\) −47523.2 −1.81119 −0.905596 0.424141i \(-0.860576\pi\)
−0.905596 + 0.424141i \(0.860576\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14080.6 24388.3i −0.533010 0.923201i −0.999257 0.0385459i \(-0.987727\pi\)
0.466247 0.884655i \(-0.345606\pi\)
\(888\) 0 0
\(889\) 28614.4 22809.0i 1.07952 0.860504i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12290.5 + 21287.8i −0.460567 + 0.797725i
\(894\) 0 0
\(895\) 42594.7 1.59082
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9999.69 + 17320.0i −0.370977 + 0.642551i
\(900\) 0 0
\(901\) 40.5716 + 70.2721i 0.00150015 + 0.00259834i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −42335.3 73326.9i −1.55500 2.69333i
\(906\) 0 0
\(907\) −1652.12 + 2861.56i −0.0604827 + 0.104759i −0.894681 0.446705i \(-0.852597\pi\)
0.834199 + 0.551464i \(0.185931\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3368.71 0.122514 0.0612570 0.998122i \(-0.480489\pi\)
0.0612570 + 0.998122i \(0.480489\pi\)
\(912\) 0 0
\(913\) −18481.5 + 32011.0i −0.669934 + 1.16036i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −26211.8 10294.0i −0.943936 0.370707i
\(918\) 0 0
\(919\) 3823.38 + 6622.29i 0.137238 + 0.237703i 0.926450 0.376417i \(-0.122844\pi\)
−0.789212 + 0.614121i \(0.789511\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13887.0 −0.495230
\(924\) 0 0
\(925\) 16997.5 0.604188
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4476.85 + 7754.13i 0.158106 + 0.273848i 0.934186 0.356787i \(-0.116128\pi\)
−0.776080 + 0.630635i \(0.782794\pi\)
\(930\) 0 0
\(931\) 17366.6 5348.54i 0.611351 0.188283i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3537.75 6127.57i 0.123740 0.214324i
\(936\) 0 0
\(937\) −15549.6 −0.542138 −0.271069 0.962560i \(-0.587377\pi\)
−0.271069 + 0.962560i \(0.587377\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3109.91 5386.51i 0.107736 0.186605i −0.807116 0.590392i \(-0.798973\pi\)
0.914853 + 0.403787i \(0.132306\pi\)
\(942\) 0 0
\(943\) 2372.21 + 4108.78i 0.0819191 + 0.141888i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13131.1 22743.8i −0.450586 0.780438i 0.547837 0.836585i \(-0.315452\pi\)
−0.998422 + 0.0561478i \(0.982118\pi\)
\(948\) 0 0
\(949\) −19761.8 + 34228.4i −0.675969 + 1.17081i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −55927.4 −1.90101 −0.950507 0.310703i \(-0.899436\pi\)
−0.950507 + 0.310703i \(0.899436\pi\)
\(954\) 0 0
\(955\) −23000.8 + 39838.6i −0.779361 + 1.34989i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 145.944 + 969.723i 0.00491428 + 0.0326527i
\(960\) 0 0
\(961\) 939.631 + 1627.49i 0.0315408 + 0.0546302i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15783.6 0.526519
\(966\) 0 0
\(967\) 10414.7 0.346345 0.173172 0.984892i \(-0.444598\pi\)
0.173172 + 0.984892i \(0.444598\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21062.0 + 36480.4i 0.696098 + 1.20568i 0.969809 + 0.243865i \(0.0784152\pi\)
−0.273712 + 0.961812i \(0.588251\pi\)
\(972\) 0 0
\(973\) −41623.1 + 33178.4i −1.37140 + 1.09317i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3692.63 6395.82i 0.120919 0.209437i −0.799211 0.601050i \(-0.794749\pi\)
0.920130 + 0.391613i \(0.128083\pi\)
\(978\) 0 0
\(979\) −20078.8 −0.655485
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8882.20 + 15384.4i −0.288197 + 0.499173i −0.973380 0.229199i \(-0.926389\pi\)
0.685182 + 0.728372i \(0.259723\pi\)
\(984\) 0 0
\(985\) −17229.7 29842.7i −0.557344 0.965349i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10790.9 18690.4i −0.346947 0.600929i
\(990\) 0 0
\(991\) −12966.0 + 22457.8i −0.415620 + 0.719874i −0.995493 0.0948321i \(-0.969769\pi\)
0.579874 + 0.814706i \(0.303102\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −25906.6 −0.825421
\(996\) 0 0
\(997\) 14169.0 24541.4i 0.450086 0.779572i −0.548305 0.836279i \(-0.684727\pi\)
0.998391 + 0.0567067i \(0.0180600\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.k.h.109.1 yes 16
3.2 odd 2 756.4.k.f.109.8 16
7.2 even 3 inner 756.4.k.h.541.1 yes 16
21.2 odd 6 756.4.k.f.541.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.k.f.109.8 16 3.2 odd 2
756.4.k.f.541.8 yes 16 21.2 odd 6
756.4.k.h.109.1 yes 16 1.1 even 1 trivial
756.4.k.h.541.1 yes 16 7.2 even 3 inner