Properties

Label 756.4.a.l.1.2
Level $756$
Weight $4$
Character 756.1
Self dual yes
Analytic conductor $44.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,4,Mod(1,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.6054439643\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.55552.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 18x^{2} - 12x + 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.86258\) of defining polynomial
Character \(\chi\) \(=\) 756.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.27322 q^{5} +7.00000 q^{7} +54.3063 q^{11} +40.9117 q^{13} -25.0929 q^{17} +23.0000 q^{19} -139.979 q^{23} -85.6468 q^{25} -73.1260 q^{29} -57.7351 q^{31} -43.9125 q^{35} +277.382 q^{37} -346.810 q^{41} +364.382 q^{43} +599.707 q^{47} +49.0000 q^{49} +91.7610 q^{53} -340.675 q^{55} +771.052 q^{59} +373.823 q^{61} -256.648 q^{65} +718.029 q^{67} -248.591 q^{71} +376.735 q^{73} +380.144 q^{77} +305.795 q^{79} -210.767 q^{83} +157.413 q^{85} -133.890 q^{89} +286.382 q^{91} -144.284 q^{95} +1045.47 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 28 q^{7} - 40 q^{13} + 92 q^{19} + 472 q^{25} + 380 q^{31} - 316 q^{37} + 32 q^{43} + 196 q^{49} + 1692 q^{55} + 1088 q^{61} + 632 q^{67} + 896 q^{73} + 3056 q^{79} + 3888 q^{85} - 280 q^{91} + 2960 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −6.27322 −0.561094 −0.280547 0.959840i \(-0.590516\pi\)
−0.280547 + 0.959840i \(0.590516\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 54.3063 1.48854 0.744271 0.667877i \(-0.232797\pi\)
0.744271 + 0.667877i \(0.232797\pi\)
\(12\) 0 0
\(13\) 40.9117 0.872835 0.436418 0.899744i \(-0.356247\pi\)
0.436418 + 0.899744i \(0.356247\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −25.0929 −0.357995 −0.178997 0.983850i \(-0.557285\pi\)
−0.178997 + 0.983850i \(0.557285\pi\)
\(18\) 0 0
\(19\) 23.0000 0.277714 0.138857 0.990312i \(-0.455657\pi\)
0.138857 + 0.990312i \(0.455657\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −139.979 −1.26903 −0.634513 0.772912i \(-0.718799\pi\)
−0.634513 + 0.772912i \(0.718799\pi\)
\(24\) 0 0
\(25\) −85.6468 −0.685174
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −73.1260 −0.468247 −0.234123 0.972207i \(-0.575222\pi\)
−0.234123 + 0.972207i \(0.575222\pi\)
\(30\) 0 0
\(31\) −57.7351 −0.334501 −0.167250 0.985914i \(-0.553489\pi\)
−0.167250 + 0.985914i \(0.553489\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −43.9125 −0.212073
\(36\) 0 0
\(37\) 277.382 1.23247 0.616234 0.787563i \(-0.288658\pi\)
0.616234 + 0.787563i \(0.288658\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −346.810 −1.32104 −0.660520 0.750808i \(-0.729664\pi\)
−0.660520 + 0.750808i \(0.729664\pi\)
\(42\) 0 0
\(43\) 364.382 1.29227 0.646136 0.763222i \(-0.276384\pi\)
0.646136 + 0.763222i \(0.276384\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 599.707 1.86120 0.930598 0.366042i \(-0.119287\pi\)
0.930598 + 0.366042i \(0.119287\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 91.7610 0.237818 0.118909 0.992905i \(-0.462060\pi\)
0.118909 + 0.992905i \(0.462060\pi\)
\(54\) 0 0
\(55\) −340.675 −0.835212
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 771.052 1.70140 0.850698 0.525655i \(-0.176180\pi\)
0.850698 + 0.525655i \(0.176180\pi\)
\(60\) 0 0
\(61\) 373.823 0.784642 0.392321 0.919828i \(-0.371672\pi\)
0.392321 + 0.919828i \(0.371672\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −256.648 −0.489742
\(66\) 0 0
\(67\) 718.029 1.30927 0.654635 0.755945i \(-0.272822\pi\)
0.654635 + 0.755945i \(0.272822\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −248.591 −0.415526 −0.207763 0.978179i \(-0.566618\pi\)
−0.207763 + 0.978179i \(0.566618\pi\)
\(72\) 0 0
\(73\) 376.735 0.604021 0.302010 0.953305i \(-0.402342\pi\)
0.302010 + 0.953305i \(0.402342\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 380.144 0.562616
\(78\) 0 0
\(79\) 305.795 0.435501 0.217751 0.976004i \(-0.430128\pi\)
0.217751 + 0.976004i \(0.430128\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −210.767 −0.278732 −0.139366 0.990241i \(-0.544506\pi\)
−0.139366 + 0.990241i \(0.544506\pi\)
\(84\) 0 0
\(85\) 157.413 0.200869
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −133.890 −0.159464 −0.0797322 0.996816i \(-0.525407\pi\)
−0.0797322 + 0.996816i \(0.525407\pi\)
\(90\) 0 0
\(91\) 286.382 0.329901
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −144.284 −0.155823
\(96\) 0 0
\(97\) 1045.47 1.09434 0.547172 0.837020i \(-0.315704\pi\)
0.547172 + 0.837020i \(0.315704\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 422.273 0.416018 0.208009 0.978127i \(-0.433302\pi\)
0.208009 + 0.978127i \(0.433302\pi\)
\(102\) 0 0
\(103\) 1315.38 1.25833 0.629167 0.777270i \(-0.283396\pi\)
0.629167 + 0.777270i \(0.283396\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1700.16 −1.53608 −0.768042 0.640400i \(-0.778769\pi\)
−0.768042 + 0.640400i \(0.778769\pi\)
\(108\) 0 0
\(109\) −176.499 −0.155096 −0.0775482 0.996989i \(-0.524709\pi\)
−0.0775482 + 0.996989i \(0.524709\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −710.841 −0.591773 −0.295886 0.955223i \(-0.595615\pi\)
−0.295886 + 0.955223i \(0.595615\pi\)
\(114\) 0 0
\(115\) 878.117 0.712042
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −175.650 −0.135309
\(120\) 0 0
\(121\) 1618.18 1.21576
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1321.43 0.945540
\(126\) 0 0
\(127\) 176.969 0.123649 0.0618246 0.998087i \(-0.480308\pi\)
0.0618246 + 0.998087i \(0.480308\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −227.619 −0.151810 −0.0759052 0.997115i \(-0.524185\pi\)
−0.0759052 + 0.997115i \(0.524185\pi\)
\(132\) 0 0
\(133\) 161.000 0.104966
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1866.16 −1.16377 −0.581886 0.813271i \(-0.697685\pi\)
−0.581886 + 0.813271i \(0.697685\pi\)
\(138\) 0 0
\(139\) 1477.47 0.901564 0.450782 0.892634i \(-0.351145\pi\)
0.450782 + 0.892634i \(0.351145\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2221.76 1.29925
\(144\) 0 0
\(145\) 458.735 0.262730
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3263.05 1.79409 0.897046 0.441937i \(-0.145708\pi\)
0.897046 + 0.441937i \(0.145708\pi\)
\(150\) 0 0
\(151\) −219.117 −0.118089 −0.0590446 0.998255i \(-0.518805\pi\)
−0.0590446 + 0.998255i \(0.518805\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 362.185 0.187686
\(156\) 0 0
\(157\) 1589.62 0.808060 0.404030 0.914746i \(-0.367609\pi\)
0.404030 + 0.914746i \(0.367609\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −979.851 −0.479646
\(162\) 0 0
\(163\) −1769.68 −0.850378 −0.425189 0.905105i \(-0.639792\pi\)
−0.425189 + 0.905105i \(0.639792\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4002.92 −1.85482 −0.927412 0.374042i \(-0.877972\pi\)
−0.927412 + 0.374042i \(0.877972\pi\)
\(168\) 0 0
\(169\) −523.234 −0.238158
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −186.229 −0.0818422 −0.0409211 0.999162i \(-0.513029\pi\)
−0.0409211 + 0.999162i \(0.513029\pi\)
\(174\) 0 0
\(175\) −599.527 −0.258971
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1700.16 0.709923 0.354961 0.934881i \(-0.384494\pi\)
0.354961 + 0.934881i \(0.384494\pi\)
\(180\) 0 0
\(181\) 1539.58 0.632245 0.316123 0.948718i \(-0.397619\pi\)
0.316123 + 0.948718i \(0.397619\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1740.08 −0.691529
\(186\) 0 0
\(187\) −1362.70 −0.532891
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3713.13 1.40666 0.703331 0.710863i \(-0.251695\pi\)
0.703331 + 0.710863i \(0.251695\pi\)
\(192\) 0 0
\(193\) 4442.88 1.65702 0.828511 0.559972i \(-0.189188\pi\)
0.828511 + 0.559972i \(0.189188\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2589.85 −0.936646 −0.468323 0.883557i \(-0.655142\pi\)
−0.468323 + 0.883557i \(0.655142\pi\)
\(198\) 0 0
\(199\) −4488.91 −1.59905 −0.799523 0.600635i \(-0.794915\pi\)
−0.799523 + 0.600635i \(0.794915\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −511.882 −0.176981
\(204\) 0 0
\(205\) 2175.62 0.741227
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1249.05 0.413389
\(210\) 0 0
\(211\) −1317.65 −0.429908 −0.214954 0.976624i \(-0.568960\pi\)
−0.214954 + 0.976624i \(0.568960\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2285.85 −0.725086
\(216\) 0 0
\(217\) −404.145 −0.126429
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1026.59 −0.312471
\(222\) 0 0
\(223\) 2546.79 0.764779 0.382389 0.924001i \(-0.375101\pi\)
0.382389 + 0.924001i \(0.375101\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3213.61 −0.939624 −0.469812 0.882767i \(-0.655678\pi\)
−0.469812 + 0.882767i \(0.655678\pi\)
\(228\) 0 0
\(229\) 4056.41 1.17055 0.585273 0.810836i \(-0.300987\pi\)
0.585273 + 0.810836i \(0.300987\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3030.08 0.851963 0.425982 0.904732i \(-0.359929\pi\)
0.425982 + 0.904732i \(0.359929\pi\)
\(234\) 0 0
\(235\) −3762.09 −1.04431
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5276.14 1.42797 0.713985 0.700160i \(-0.246888\pi\)
0.713985 + 0.700160i \(0.246888\pi\)
\(240\) 0 0
\(241\) 1332.85 0.356251 0.178125 0.984008i \(-0.442997\pi\)
0.178125 + 0.984008i \(0.442997\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −307.388 −0.0801562
\(246\) 0 0
\(247\) 940.969 0.242398
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7220.10 1.81565 0.907826 0.419348i \(-0.137741\pi\)
0.907826 + 0.419348i \(0.137741\pi\)
\(252\) 0 0
\(253\) −7601.73 −1.88900
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5500.07 1.33496 0.667480 0.744627i \(-0.267373\pi\)
0.667480 + 0.744627i \(0.267373\pi\)
\(258\) 0 0
\(259\) 1941.67 0.465829
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1094.25 −0.256556 −0.128278 0.991738i \(-0.540945\pi\)
−0.128278 + 0.991738i \(0.540945\pi\)
\(264\) 0 0
\(265\) −575.636 −0.133438
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1038.28 −0.235334 −0.117667 0.993053i \(-0.537542\pi\)
−0.117667 + 0.993053i \(0.537542\pi\)
\(270\) 0 0
\(271\) −4774.18 −1.07015 −0.535075 0.844805i \(-0.679717\pi\)
−0.535075 + 0.844805i \(0.679717\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4651.16 −1.01991
\(276\) 0 0
\(277\) −4393.79 −0.953058 −0.476529 0.879159i \(-0.658105\pi\)
−0.476529 + 0.879159i \(0.658105\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3527.57 −0.748888 −0.374444 0.927250i \(-0.622166\pi\)
−0.374444 + 0.927250i \(0.622166\pi\)
\(282\) 0 0
\(283\) −4939.35 −1.03751 −0.518753 0.854924i \(-0.673603\pi\)
−0.518753 + 0.854924i \(0.673603\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2427.67 −0.499306
\(288\) 0 0
\(289\) −4283.35 −0.871840
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1296.22 −0.258450 −0.129225 0.991615i \(-0.541249\pi\)
−0.129225 + 0.991615i \(0.541249\pi\)
\(294\) 0 0
\(295\) −4836.97 −0.954642
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5726.77 −1.10765
\(300\) 0 0
\(301\) 2550.67 0.488433
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2345.08 −0.440258
\(306\) 0 0
\(307\) −5738.77 −1.06687 −0.533434 0.845841i \(-0.679099\pi\)
−0.533434 + 0.845841i \(0.679099\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4188.97 0.763777 0.381888 0.924208i \(-0.375274\pi\)
0.381888 + 0.924208i \(0.375274\pi\)
\(312\) 0 0
\(313\) 5361.14 0.968146 0.484073 0.875028i \(-0.339157\pi\)
0.484073 + 0.875028i \(0.339157\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2837.28 0.502705 0.251352 0.967896i \(-0.419125\pi\)
0.251352 + 0.967896i \(0.419125\pi\)
\(318\) 0 0
\(319\) −3971.20 −0.697005
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −577.136 −0.0994201
\(324\) 0 0
\(325\) −3503.95 −0.598044
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4197.95 0.703466
\(330\) 0 0
\(331\) −4514.05 −0.749591 −0.374796 0.927107i \(-0.622287\pi\)
−0.374796 + 0.927107i \(0.622287\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4504.35 −0.734623
\(336\) 0 0
\(337\) 2632.46 0.425517 0.212758 0.977105i \(-0.431755\pi\)
0.212758 + 0.977105i \(0.431755\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3135.38 −0.497919
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7132.46 −1.10343 −0.551715 0.834033i \(-0.686026\pi\)
−0.551715 + 0.834033i \(0.686026\pi\)
\(348\) 0 0
\(349\) −2406.64 −0.369124 −0.184562 0.982821i \(-0.559087\pi\)
−0.184562 + 0.982821i \(0.559087\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4385.16 0.661185 0.330593 0.943774i \(-0.392751\pi\)
0.330593 + 0.943774i \(0.392751\pi\)
\(354\) 0 0
\(355\) 1559.47 0.233149
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5618.09 −0.825937 −0.412969 0.910745i \(-0.635508\pi\)
−0.412969 + 0.910745i \(0.635508\pi\)
\(360\) 0 0
\(361\) −6330.00 −0.922875
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2363.34 −0.338912
\(366\) 0 0
\(367\) −6934.25 −0.986281 −0.493141 0.869950i \(-0.664151\pi\)
−0.493141 + 0.869950i \(0.664151\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 642.327 0.0898866
\(372\) 0 0
\(373\) 9272.79 1.28720 0.643602 0.765361i \(-0.277439\pi\)
0.643602 + 0.765361i \(0.277439\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2991.71 −0.408702
\(378\) 0 0
\(379\) −13842.6 −1.87611 −0.938053 0.346491i \(-0.887373\pi\)
−0.938053 + 0.346491i \(0.887373\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7076.43 0.944096 0.472048 0.881573i \(-0.343515\pi\)
0.472048 + 0.881573i \(0.343515\pi\)
\(384\) 0 0
\(385\) −2384.73 −0.315680
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10637.8 1.38652 0.693260 0.720687i \(-0.256174\pi\)
0.693260 + 0.720687i \(0.256174\pi\)
\(390\) 0 0
\(391\) 3512.47 0.454305
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1918.32 −0.244357
\(396\) 0 0
\(397\) −2436.82 −0.308061 −0.154031 0.988066i \(-0.549225\pi\)
−0.154031 + 0.988066i \(0.549225\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11945.4 −1.48759 −0.743794 0.668409i \(-0.766976\pi\)
−0.743794 + 0.668409i \(0.766976\pi\)
\(402\) 0 0
\(403\) −2362.04 −0.291964
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15063.6 1.83458
\(408\) 0 0
\(409\) 577.213 0.0697832 0.0348916 0.999391i \(-0.488891\pi\)
0.0348916 + 0.999391i \(0.488891\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5397.36 0.643067
\(414\) 0 0
\(415\) 1322.19 0.156395
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −659.178 −0.0768567 −0.0384284 0.999261i \(-0.512235\pi\)
−0.0384284 + 0.999261i \(0.512235\pi\)
\(420\) 0 0
\(421\) −8707.27 −1.00800 −0.503998 0.863705i \(-0.668138\pi\)
−0.503998 + 0.863705i \(0.668138\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2149.12 0.245289
\(426\) 0 0
\(427\) 2616.76 0.296567
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9391.86 1.04963 0.524814 0.851217i \(-0.324135\pi\)
0.524814 + 0.851217i \(0.324135\pi\)
\(432\) 0 0
\(433\) −322.964 −0.0358444 −0.0179222 0.999839i \(-0.505705\pi\)
−0.0179222 + 0.999839i \(0.505705\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3219.51 −0.352426
\(438\) 0 0
\(439\) 9837.40 1.06951 0.534754 0.845008i \(-0.320404\pi\)
0.534754 + 0.845008i \(0.320404\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3000.01 −0.321749 −0.160874 0.986975i \(-0.551431\pi\)
−0.160874 + 0.986975i \(0.551431\pi\)
\(444\) 0 0
\(445\) 839.922 0.0894744
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1257.84 −0.132207 −0.0661037 0.997813i \(-0.521057\pi\)
−0.0661037 + 0.997813i \(0.521057\pi\)
\(450\) 0 0
\(451\) −18834.0 −1.96643
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1796.54 −0.185105
\(456\) 0 0
\(457\) 13042.3 1.33499 0.667497 0.744613i \(-0.267366\pi\)
0.667497 + 0.744613i \(0.267366\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6558.71 0.662624 0.331312 0.943521i \(-0.392509\pi\)
0.331312 + 0.943521i \(0.392509\pi\)
\(462\) 0 0
\(463\) −16745.9 −1.68088 −0.840442 0.541902i \(-0.817704\pi\)
−0.840442 + 0.541902i \(0.817704\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9711.12 0.962263 0.481132 0.876648i \(-0.340226\pi\)
0.481132 + 0.876648i \(0.340226\pi\)
\(468\) 0 0
\(469\) 5026.20 0.494858
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19788.2 1.92360
\(474\) 0 0
\(475\) −1969.88 −0.190282
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7967.97 −0.760054 −0.380027 0.924975i \(-0.624085\pi\)
−0.380027 + 0.924975i \(0.624085\pi\)
\(480\) 0 0
\(481\) 11348.2 1.07574
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6558.46 −0.614030
\(486\) 0 0
\(487\) −7386.38 −0.687287 −0.343643 0.939100i \(-0.611661\pi\)
−0.343643 + 0.939100i \(0.611661\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11918.5 −1.09547 −0.547736 0.836651i \(-0.684510\pi\)
−0.547736 + 0.836651i \(0.684510\pi\)
\(492\) 0 0
\(493\) 1834.94 0.167630
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1740.14 −0.157054
\(498\) 0 0
\(499\) −1973.67 −0.177061 −0.0885307 0.996073i \(-0.528217\pi\)
−0.0885307 + 0.996073i \(0.528217\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10451.8 −0.926490 −0.463245 0.886230i \(-0.653315\pi\)
−0.463245 + 0.886230i \(0.653315\pi\)
\(504\) 0 0
\(505\) −2649.01 −0.233425
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12655.2 −1.10202 −0.551012 0.834497i \(-0.685758\pi\)
−0.551012 + 0.834497i \(0.685758\pi\)
\(510\) 0 0
\(511\) 2637.15 0.228298
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8251.68 −0.706043
\(516\) 0 0
\(517\) 32567.9 2.77047
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1754.84 −0.147564 −0.0737820 0.997274i \(-0.523507\pi\)
−0.0737820 + 0.997274i \(0.523507\pi\)
\(522\) 0 0
\(523\) 955.291 0.0798699 0.0399349 0.999202i \(-0.487285\pi\)
0.0399349 + 0.999202i \(0.487285\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1448.74 0.119750
\(528\) 0 0
\(529\) 7427.04 0.610425
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14188.6 −1.15305
\(534\) 0 0
\(535\) 10665.5 0.861887
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2661.01 0.212649
\(540\) 0 0
\(541\) −2203.95 −0.175149 −0.0875743 0.996158i \(-0.527912\pi\)
−0.0875743 + 0.996158i \(0.527912\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1107.21 0.0870236
\(546\) 0 0
\(547\) −18506.4 −1.44658 −0.723288 0.690547i \(-0.757370\pi\)
−0.723288 + 0.690547i \(0.757370\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1681.90 −0.130039
\(552\) 0 0
\(553\) 2140.56 0.164604
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9152.49 −0.696236 −0.348118 0.937451i \(-0.613179\pi\)
−0.348118 + 0.937451i \(0.613179\pi\)
\(558\) 0 0
\(559\) 14907.5 1.12794
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10809.7 0.809188 0.404594 0.914496i \(-0.367413\pi\)
0.404594 + 0.914496i \(0.367413\pi\)
\(564\) 0 0
\(565\) 4459.26 0.332040
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5125.71 0.377647 0.188823 0.982011i \(-0.439533\pi\)
0.188823 + 0.982011i \(0.439533\pi\)
\(570\) 0 0
\(571\) −11485.9 −0.841802 −0.420901 0.907107i \(-0.638286\pi\)
−0.420901 + 0.907107i \(0.638286\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11988.7 0.869503
\(576\) 0 0
\(577\) −15827.6 −1.14196 −0.570980 0.820964i \(-0.693436\pi\)
−0.570980 + 0.820964i \(0.693436\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1475.37 −0.105351
\(582\) 0 0
\(583\) 4983.20 0.354002
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11595.0 0.815292 0.407646 0.913140i \(-0.366350\pi\)
0.407646 + 0.913140i \(0.366350\pi\)
\(588\) 0 0
\(589\) −1327.91 −0.0928955
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1904.90 0.131914 0.0659569 0.997822i \(-0.478990\pi\)
0.0659569 + 0.997822i \(0.478990\pi\)
\(594\) 0 0
\(595\) 1101.89 0.0759212
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11629.3 0.793256 0.396628 0.917979i \(-0.370180\pi\)
0.396628 + 0.917979i \(0.370180\pi\)
\(600\) 0 0
\(601\) 18945.8 1.28588 0.642942 0.765915i \(-0.277713\pi\)
0.642942 + 0.765915i \(0.277713\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10151.2 −0.682155
\(606\) 0 0
\(607\) 562.301 0.0375998 0.0187999 0.999823i \(-0.494015\pi\)
0.0187999 + 0.999823i \(0.494015\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24535.0 1.62452
\(612\) 0 0
\(613\) 22628.2 1.49094 0.745470 0.666539i \(-0.232225\pi\)
0.745470 + 0.666539i \(0.232225\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11749.9 0.766667 0.383333 0.923610i \(-0.374776\pi\)
0.383333 + 0.923610i \(0.374776\pi\)
\(618\) 0 0
\(619\) 15391.3 0.999398 0.499699 0.866199i \(-0.333444\pi\)
0.499699 + 0.866199i \(0.333444\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −937.231 −0.0602719
\(624\) 0 0
\(625\) 2416.21 0.154637
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6960.30 −0.441217
\(630\) 0 0
\(631\) −1288.97 −0.0813205 −0.0406603 0.999173i \(-0.512946\pi\)
−0.0406603 + 0.999173i \(0.512946\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1110.16 −0.0693788
\(636\) 0 0
\(637\) 2004.67 0.124691
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28695.1 −1.76816 −0.884080 0.467336i \(-0.845214\pi\)
−0.884080 + 0.467336i \(0.845214\pi\)
\(642\) 0 0
\(643\) 3141.24 0.192657 0.0963286 0.995350i \(-0.469290\pi\)
0.0963286 + 0.995350i \(0.469290\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −26078.3 −1.58461 −0.792306 0.610124i \(-0.791119\pi\)
−0.792306 + 0.610124i \(0.791119\pi\)
\(648\) 0 0
\(649\) 41873.0 2.53260
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11132.9 −0.667175 −0.333587 0.942719i \(-0.608259\pi\)
−0.333587 + 0.942719i \(0.608259\pi\)
\(654\) 0 0
\(655\) 1427.90 0.0851799
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17907.1 1.05852 0.529259 0.848461i \(-0.322470\pi\)
0.529259 + 0.848461i \(0.322470\pi\)
\(660\) 0 0
\(661\) −7229.66 −0.425418 −0.212709 0.977116i \(-0.568229\pi\)
−0.212709 + 0.977116i \(0.568229\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1009.99 −0.0588957
\(666\) 0 0
\(667\) 10236.1 0.594217
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 20301.0 1.16797
\(672\) 0 0
\(673\) −29668.5 −1.69931 −0.849656 0.527338i \(-0.823190\pi\)
−0.849656 + 0.527338i \(0.823190\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9401.82 −0.533739 −0.266870 0.963733i \(-0.585989\pi\)
−0.266870 + 0.963733i \(0.585989\pi\)
\(678\) 0 0
\(679\) 7318.29 0.413623
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28270.7 −1.58382 −0.791910 0.610638i \(-0.790913\pi\)
−0.791910 + 0.610638i \(0.790913\pi\)
\(684\) 0 0
\(685\) 11706.8 0.652984
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3754.10 0.207576
\(690\) 0 0
\(691\) 22644.2 1.24664 0.623319 0.781968i \(-0.285784\pi\)
0.623319 + 0.781968i \(0.285784\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9268.49 −0.505862
\(696\) 0 0
\(697\) 8702.46 0.472926
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33108.1 1.78385 0.891923 0.452188i \(-0.149356\pi\)
0.891923 + 0.452188i \(0.149356\pi\)
\(702\) 0 0
\(703\) 6379.78 0.342273
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2955.91 0.157240
\(708\) 0 0
\(709\) 28543.9 1.51197 0.755986 0.654588i \(-0.227158\pi\)
0.755986 + 0.654588i \(0.227158\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8081.68 0.424490
\(714\) 0 0
\(715\) −13937.6 −0.729002
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6684.10 −0.346697 −0.173348 0.984861i \(-0.555459\pi\)
−0.173348 + 0.984861i \(0.555459\pi\)
\(720\) 0 0
\(721\) 9207.67 0.475606
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6263.00 0.320830
\(726\) 0 0
\(727\) 12114.4 0.618018 0.309009 0.951059i \(-0.400003\pi\)
0.309009 + 0.951059i \(0.400003\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9143.38 −0.462627
\(732\) 0 0
\(733\) 22864.6 1.15214 0.576072 0.817399i \(-0.304585\pi\)
0.576072 + 0.817399i \(0.304585\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 38993.5 1.94891
\(738\) 0 0
\(739\) −5748.45 −0.286144 −0.143072 0.989712i \(-0.545698\pi\)
−0.143072 + 0.989712i \(0.545698\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −38887.5 −1.92011 −0.960057 0.279805i \(-0.909730\pi\)
−0.960057 + 0.279805i \(0.909730\pi\)
\(744\) 0 0
\(745\) −20469.8 −1.00665
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11901.1 −0.580585
\(750\) 0 0
\(751\) 11613.5 0.564290 0.282145 0.959372i \(-0.408954\pi\)
0.282145 + 0.959372i \(0.408954\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1374.57 0.0662591
\(756\) 0 0
\(757\) −19081.3 −0.916146 −0.458073 0.888915i \(-0.651460\pi\)
−0.458073 + 0.888915i \(0.651460\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24926.4 −1.18736 −0.593681 0.804701i \(-0.702326\pi\)
−0.593681 + 0.804701i \(0.702326\pi\)
\(762\) 0 0
\(763\) −1235.49 −0.0586209
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 31545.0 1.48504
\(768\) 0 0
\(769\) 3138.69 0.147183 0.0735917 0.997288i \(-0.476554\pi\)
0.0735917 + 0.997288i \(0.476554\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24628.5 1.14596 0.572979 0.819570i \(-0.305787\pi\)
0.572979 + 0.819570i \(0.305787\pi\)
\(774\) 0 0
\(775\) 4944.82 0.229191
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7976.63 −0.366871
\(780\) 0 0
\(781\) −13500.1 −0.618529
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9972.02 −0.453397
\(786\) 0 0
\(787\) −41304.8 −1.87085 −0.935424 0.353529i \(-0.884982\pi\)
−0.935424 + 0.353529i \(0.884982\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4975.89 −0.223669
\(792\) 0 0
\(793\) 15293.7 0.684864
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10843.8 0.481941 0.240970 0.970532i \(-0.422534\pi\)
0.240970 + 0.970532i \(0.422534\pi\)
\(798\) 0 0
\(799\) −15048.4 −0.666299
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 20459.1 0.899111
\(804\) 0 0
\(805\) 6146.82 0.269127
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11240.7 0.488506 0.244253 0.969712i \(-0.421457\pi\)
0.244253 + 0.969712i \(0.421457\pi\)
\(810\) 0 0
\(811\) 38327.8 1.65952 0.829761 0.558119i \(-0.188477\pi\)
0.829761 + 0.558119i \(0.188477\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11101.6 0.477142
\(816\) 0 0
\(817\) 8380.78 0.358882
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38112.9 1.62016 0.810079 0.586321i \(-0.199424\pi\)
0.810079 + 0.586321i \(0.199424\pi\)
\(822\) 0 0
\(823\) −28622.6 −1.21230 −0.606148 0.795352i \(-0.707286\pi\)
−0.606148 + 0.795352i \(0.707286\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28694.4 −1.20653 −0.603265 0.797541i \(-0.706134\pi\)
−0.603265 + 0.797541i \(0.706134\pi\)
\(828\) 0 0
\(829\) 414.299 0.0173573 0.00867864 0.999962i \(-0.497237\pi\)
0.00867864 + 0.999962i \(0.497237\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1229.55 −0.0511421
\(834\) 0 0
\(835\) 25111.2 1.04073
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12623.5 −0.519441 −0.259721 0.965684i \(-0.583630\pi\)
−0.259721 + 0.965684i \(0.583630\pi\)
\(840\) 0 0
\(841\) −19041.6 −0.780745
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3282.36 0.133629
\(846\) 0 0
\(847\) 11327.2 0.459514
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38827.6 −1.56403
\(852\) 0 0
\(853\) −18263.6 −0.733099 −0.366549 0.930399i \(-0.619461\pi\)
−0.366549 + 0.930399i \(0.619461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28587.5 1.13947 0.569737 0.821827i \(-0.307045\pi\)
0.569737 + 0.821827i \(0.307045\pi\)
\(858\) 0 0
\(859\) −18946.9 −0.752571 −0.376286 0.926504i \(-0.622799\pi\)
−0.376286 + 0.926504i \(0.622799\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22689.6 −0.894974 −0.447487 0.894290i \(-0.647681\pi\)
−0.447487 + 0.894290i \(0.647681\pi\)
\(864\) 0 0
\(865\) 1168.25 0.0459211
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16606.6 0.648262
\(870\) 0 0
\(871\) 29375.8 1.14278
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9250.03 0.357381
\(876\) 0 0
\(877\) 556.805 0.0214390 0.0107195 0.999943i \(-0.496588\pi\)
0.0107195 + 0.999943i \(0.496588\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42746.8 −1.63471 −0.817354 0.576136i \(-0.804560\pi\)
−0.817354 + 0.576136i \(0.804560\pi\)
\(882\) 0 0
\(883\) 3022.30 0.115185 0.0575926 0.998340i \(-0.481658\pi\)
0.0575926 + 0.998340i \(0.481658\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41135.8 1.55717 0.778583 0.627542i \(-0.215939\pi\)
0.778583 + 0.627542i \(0.215939\pi\)
\(888\) 0 0
\(889\) 1238.78 0.0467350
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13793.3 0.516880
\(894\) 0 0
\(895\) −10665.5 −0.398333
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4221.93 0.156629
\(900\) 0 0
\(901\) −2302.55 −0.0851375
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9658.15 −0.354749
\(906\) 0 0
\(907\) −52198.9 −1.91095 −0.955477 0.295067i \(-0.904658\pi\)
−0.955477 + 0.295067i \(0.904658\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −27366.7 −0.995279 −0.497640 0.867384i \(-0.665800\pi\)
−0.497640 + 0.867384i \(0.665800\pi\)
\(912\) 0 0
\(913\) −11446.0 −0.414904
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1593.33 −0.0573790
\(918\) 0 0
\(919\) 12079.8 0.433599 0.216799 0.976216i \(-0.430438\pi\)
0.216799 + 0.976216i \(0.430438\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10170.3 −0.362686
\(924\) 0 0
\(925\) −23756.9 −0.844455
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22201.4 −0.784073 −0.392036 0.919950i \(-0.628229\pi\)
−0.392036 + 0.919950i \(0.628229\pi\)
\(930\) 0 0
\(931\) 1127.00 0.0396734
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8548.52 0.299002
\(936\) 0 0
\(937\) 5170.30 0.180263 0.0901315 0.995930i \(-0.471271\pi\)
0.0901315 + 0.995930i \(0.471271\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −30559.9 −1.05869 −0.529343 0.848408i \(-0.677562\pi\)
−0.529343 + 0.848408i \(0.677562\pi\)
\(942\) 0 0
\(943\) 48546.1 1.67643
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17034.0 −0.584511 −0.292256 0.956340i \(-0.594406\pi\)
−0.292256 + 0.956340i \(0.594406\pi\)
\(948\) 0 0
\(949\) 15412.9 0.527211
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19824.1 −0.673837 −0.336919 0.941534i \(-0.609385\pi\)
−0.336919 + 0.941534i \(0.609385\pi\)
\(954\) 0 0
\(955\) −23293.2 −0.789269
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13063.1 −0.439864
\(960\) 0 0
\(961\) −26457.7 −0.888109
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −27871.1 −0.929745
\(966\) 0 0
\(967\) −49000.7 −1.62953 −0.814765 0.579791i \(-0.803134\pi\)
−0.814765 + 0.579791i \(0.803134\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25383.3 0.838918 0.419459 0.907774i \(-0.362220\pi\)
0.419459 + 0.907774i \(0.362220\pi\)
\(972\) 0 0
\(973\) 10342.3 0.340759
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17385.8 0.569314 0.284657 0.958629i \(-0.408120\pi\)
0.284657 + 0.958629i \(0.408120\pi\)
\(978\) 0 0
\(979\) −7271.08 −0.237370
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10951.6 −0.355343 −0.177671 0.984090i \(-0.556856\pi\)
−0.177671 + 0.984090i \(0.556856\pi\)
\(984\) 0 0
\(985\) 16246.7 0.525546
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −51005.7 −1.63993
\(990\) 0 0
\(991\) 48190.0 1.54471 0.772354 0.635193i \(-0.219079\pi\)
0.772354 + 0.635193i \(0.219079\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 28159.9 0.897215
\(996\) 0 0
\(997\) −21310.0 −0.676925 −0.338463 0.940980i \(-0.609907\pi\)
−0.338463 + 0.940980i \(0.609907\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.4.a.l.1.2 4
3.2 odd 2 inner 756.4.a.l.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.4.a.l.1.2 4 1.1 even 1 trivial
756.4.a.l.1.3 yes 4 3.2 odd 2 inner