Properties

Label 756.2.n.b.199.10
Level $756$
Weight $2$
Character 756.199
Analytic conductor $6.037$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(19,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(42\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.10
Character \(\chi\) \(=\) 756.199
Dual form 756.2.n.b.19.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07941 + 0.913714i) q^{2} +(0.330255 - 1.97254i) q^{4} +3.48216i q^{5} +(-0.638585 - 2.56753i) q^{7} +(1.44586 + 2.43094i) q^{8} +(-3.18169 - 3.75868i) q^{10} -1.97557i q^{11} +(5.52258 + 3.18847i) q^{13} +(3.03528 + 2.18793i) q^{14} +(-3.78186 - 1.30288i) q^{16} +(-1.04054 - 0.600755i) q^{17} +(2.25453 + 3.90496i) q^{19} +(6.86871 + 1.15000i) q^{20} +(1.80511 + 2.13246i) q^{22} -0.590265i q^{23} -7.12541 q^{25} +(-8.87448 + 1.60440i) q^{26} +(-5.27546 + 0.411699i) q^{28} +(2.00631 + 3.47503i) q^{29} +(2.63991 + 4.57246i) q^{31} +(5.27265 - 2.04919i) q^{32} +(1.67209 - 0.302292i) q^{34} +(8.94054 - 2.22365i) q^{35} +(0.506783 + 0.877774i) q^{37} +(-6.00157 - 2.15506i) q^{38} +(-8.46493 + 5.03471i) q^{40} +(-4.54294 - 2.62287i) q^{41} +(-2.66552 + 1.53894i) q^{43} +(-3.89691 - 0.652443i) q^{44} +(0.539333 + 0.637139i) q^{46} +(0.174866 - 0.302877i) q^{47} +(-6.18442 + 3.27917i) q^{49} +(7.69124 - 6.51059i) q^{50} +(8.11325 - 9.84054i) q^{52} +(-3.01662 + 5.22494i) q^{53} +6.87926 q^{55} +(5.31822 - 5.26465i) q^{56} +(-5.34081 - 1.91779i) q^{58} +(7.25888 + 12.5727i) q^{59} +(3.42577 + 1.97787i) q^{61} +(-7.02746 - 2.52344i) q^{62} +(-3.81897 + 7.02961i) q^{64} +(-11.1027 + 19.2305i) q^{65} +(-4.23532 + 2.44526i) q^{67} +(-1.52866 + 1.85410i) q^{68} +(-7.61873 + 10.5693i) q^{70} -1.47342i q^{71} +(9.61590 + 5.55174i) q^{73} +(-1.34906 - 0.484424i) q^{74} +(8.44727 - 3.15753i) q^{76} +(-5.07235 + 1.26157i) q^{77} +(0.556744 + 0.321436i) q^{79} +(4.53685 - 13.1690i) q^{80} +(7.30024 - 1.31979i) q^{82} +(-1.00577 - 1.74205i) q^{83} +(2.09192 - 3.62331i) q^{85} +(1.47104 - 4.09667i) q^{86} +(4.80251 - 2.85640i) q^{88} +(3.27016 - 1.88803i) q^{89} +(4.65984 - 16.2155i) q^{91} +(-1.16432 - 0.194938i) q^{92} +(0.0879904 + 0.486706i) q^{94} +(-13.5977 + 7.85062i) q^{95} +(-14.8094 + 8.55023i) q^{97} +(3.67930 - 9.19036i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + q^{2} + q^{4} + 16 q^{8} - 18 q^{10} - 18 q^{13} + 25 q^{14} - 7 q^{16} - 6 q^{17} - 24 q^{20} + 6 q^{22} - 32 q^{25} + 30 q^{26} - 4 q^{28} - 10 q^{29} - 9 q^{32} + 24 q^{34} + 2 q^{37} + 6 q^{41}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07941 + 0.913714i −0.763259 + 0.646093i
\(3\) 0 0
\(4\) 0.330255 1.97254i 0.165127 0.986272i
\(5\) 3.48216i 1.55727i 0.627479 + 0.778634i \(0.284087\pi\)
−0.627479 + 0.778634i \(0.715913\pi\)
\(6\) 0 0
\(7\) −0.638585 2.56753i −0.241362 0.970435i
\(8\) 1.44586 + 2.43094i 0.511189 + 0.859468i
\(9\) 0 0
\(10\) −3.18169 3.75868i −1.00614 1.18860i
\(11\) 1.97557i 0.595658i −0.954619 0.297829i \(-0.903737\pi\)
0.954619 0.297829i \(-0.0962625\pi\)
\(12\) 0 0
\(13\) 5.52258 + 3.18847i 1.53169 + 0.884321i 0.999284 + 0.0378315i \(0.0120450\pi\)
0.532405 + 0.846490i \(0.321288\pi\)
\(14\) 3.03528 + 2.18793i 0.811213 + 0.584750i
\(15\) 0 0
\(16\) −3.78186 1.30288i −0.945466 0.325721i
\(17\) −1.04054 0.600755i −0.252367 0.145704i 0.368480 0.929636i \(-0.379878\pi\)
−0.620848 + 0.783931i \(0.713212\pi\)
\(18\) 0 0
\(19\) 2.25453 + 3.90496i 0.517224 + 0.895858i 0.999800 + 0.0200042i \(0.00636795\pi\)
−0.482576 + 0.875854i \(0.660299\pi\)
\(20\) 6.86871 + 1.15000i 1.53589 + 0.257147i
\(21\) 0 0
\(22\) 1.80511 + 2.13246i 0.384851 + 0.454641i
\(23\) 0.590265i 0.123079i −0.998105 0.0615394i \(-0.980399\pi\)
0.998105 0.0615394i \(-0.0196010\pi\)
\(24\) 0 0
\(25\) −7.12541 −1.42508
\(26\) −8.87448 + 1.60440i −1.74043 + 0.314648i
\(27\) 0 0
\(28\) −5.27546 + 0.411699i −0.996969 + 0.0778038i
\(29\) 2.00631 + 3.47503i 0.372562 + 0.645296i 0.989959 0.141356i \(-0.0451461\pi\)
−0.617397 + 0.786652i \(0.711813\pi\)
\(30\) 0 0
\(31\) 2.63991 + 4.57246i 0.474142 + 0.821237i 0.999562 0.0296057i \(-0.00942517\pi\)
−0.525420 + 0.850843i \(0.676092\pi\)
\(32\) 5.27265 2.04919i 0.932081 0.362250i
\(33\) 0 0
\(34\) 1.67209 0.302292i 0.286760 0.0518427i
\(35\) 8.94054 2.22365i 1.51123 0.375866i
\(36\) 0 0
\(37\) 0.506783 + 0.877774i 0.0833146 + 0.144305i 0.904672 0.426109i \(-0.140116\pi\)
−0.821357 + 0.570414i \(0.806783\pi\)
\(38\) −6.00157 2.15506i −0.973584 0.349597i
\(39\) 0 0
\(40\) −8.46493 + 5.03471i −1.33842 + 0.796058i
\(41\) −4.54294 2.62287i −0.709488 0.409623i 0.101384 0.994847i \(-0.467673\pi\)
−0.810871 + 0.585225i \(0.801006\pi\)
\(42\) 0 0
\(43\) −2.66552 + 1.53894i −0.406488 + 0.234686i −0.689280 0.724495i \(-0.742073\pi\)
0.282792 + 0.959181i \(0.408739\pi\)
\(44\) −3.89691 0.652443i −0.587481 0.0983594i
\(45\) 0 0
\(46\) 0.539333 + 0.637139i 0.0795204 + 0.0939410i
\(47\) 0.174866 0.302877i 0.0255068 0.0441791i −0.852990 0.521927i \(-0.825213\pi\)
0.878497 + 0.477748i \(0.158547\pi\)
\(48\) 0 0
\(49\) −6.18442 + 3.27917i −0.883488 + 0.468453i
\(50\) 7.69124 6.51059i 1.08771 0.920736i
\(51\) 0 0
\(52\) 8.11325 9.84054i 1.12511 1.36464i
\(53\) −3.01662 + 5.22494i −0.414364 + 0.717700i −0.995361 0.0962054i \(-0.969329\pi\)
0.580997 + 0.813906i \(0.302663\pi\)
\(54\) 0 0
\(55\) 6.87926 0.927599
\(56\) 5.31822 5.26465i 0.710676 0.703519i
\(57\) 0 0
\(58\) −5.34081 1.91779i −0.701282 0.251818i
\(59\) 7.25888 + 12.5727i 0.945025 + 1.63683i 0.755701 + 0.654917i \(0.227296\pi\)
0.189324 + 0.981915i \(0.439370\pi\)
\(60\) 0 0
\(61\) 3.42577 + 1.97787i 0.438625 + 0.253240i 0.703014 0.711176i \(-0.251837\pi\)
−0.264389 + 0.964416i \(0.585170\pi\)
\(62\) −7.02746 2.52344i −0.892488 0.320477i
\(63\) 0 0
\(64\) −3.81897 + 7.02961i −0.477372 + 0.878701i
\(65\) −11.1027 + 19.2305i −1.37712 + 2.38525i
\(66\) 0 0
\(67\) −4.23532 + 2.44526i −0.517426 + 0.298736i −0.735881 0.677111i \(-0.763232\pi\)
0.218455 + 0.975847i \(0.429898\pi\)
\(68\) −1.52866 + 1.85410i −0.185377 + 0.224843i
\(69\) 0 0
\(70\) −7.61873 + 10.5693i −0.910613 + 1.26328i
\(71\) 1.47342i 0.174863i −0.996171 0.0874313i \(-0.972134\pi\)
0.996171 0.0874313i \(-0.0278658\pi\)
\(72\) 0 0
\(73\) 9.61590 + 5.55174i 1.12546 + 0.649783i 0.942788 0.333392i \(-0.108193\pi\)
0.182668 + 0.983175i \(0.441527\pi\)
\(74\) −1.34906 0.484424i −0.156825 0.0563131i
\(75\) 0 0
\(76\) 8.44727 3.15753i 0.968968 0.362193i
\(77\) −5.07235 + 1.26157i −0.578047 + 0.143770i
\(78\) 0 0
\(79\) 0.556744 + 0.321436i 0.0626386 + 0.0361644i 0.530992 0.847377i \(-0.321819\pi\)
−0.468354 + 0.883541i \(0.655153\pi\)
\(80\) 4.53685 13.1690i 0.507235 1.47234i
\(81\) 0 0
\(82\) 7.30024 1.31979i 0.806177 0.145747i
\(83\) −1.00577 1.74205i −0.110398 0.191215i 0.805533 0.592551i \(-0.201879\pi\)
−0.915931 + 0.401336i \(0.868546\pi\)
\(84\) 0 0
\(85\) 2.09192 3.62331i 0.226901 0.393004i
\(86\) 1.47104 4.09667i 0.158626 0.441755i
\(87\) 0 0
\(88\) 4.80251 2.85640i 0.511949 0.304494i
\(89\) 3.27016 1.88803i 0.346636 0.200130i −0.316567 0.948570i \(-0.602530\pi\)
0.663203 + 0.748440i \(0.269197\pi\)
\(90\) 0 0
\(91\) 4.65984 16.2155i 0.488484 1.69985i
\(92\) −1.16432 0.194938i −0.121389 0.0203237i
\(93\) 0 0
\(94\) 0.0879904 + 0.486706i 0.00907552 + 0.0501999i
\(95\) −13.5977 + 7.85062i −1.39509 + 0.805456i
\(96\) 0 0
\(97\) −14.8094 + 8.55023i −1.50367 + 0.868145i −0.503679 + 0.863891i \(0.668021\pi\)
−0.999991 + 0.00425389i \(0.998646\pi\)
\(98\) 3.67930 9.19036i 0.371666 0.928367i
\(99\) 0 0
\(100\) −2.35320 + 14.0552i −0.235320 + 1.40552i
\(101\) 4.96913i 0.494447i −0.968958 0.247224i \(-0.920482\pi\)
0.968958 0.247224i \(-0.0795182\pi\)
\(102\) 0 0
\(103\) −15.1779 −1.49552 −0.747761 0.663968i \(-0.768871\pi\)
−0.747761 + 0.663968i \(0.768871\pi\)
\(104\) 0.233906 + 18.0352i 0.0229364 + 1.76849i
\(105\) 0 0
\(106\) −1.51793 8.39618i −0.147434 0.815509i
\(107\) −9.66900 + 5.58240i −0.934737 + 0.539671i −0.888307 0.459251i \(-0.848118\pi\)
−0.0464307 + 0.998922i \(0.514785\pi\)
\(108\) 0 0
\(109\) 2.33905 4.05136i 0.224041 0.388050i −0.731991 0.681315i \(-0.761409\pi\)
0.956031 + 0.293265i \(0.0947419\pi\)
\(110\) −7.42554 + 6.28567i −0.707998 + 0.599315i
\(111\) 0 0
\(112\) −0.930152 + 10.5420i −0.0878911 + 0.996130i
\(113\) 5.62554 9.74373i 0.529207 0.916613i −0.470213 0.882553i \(-0.655823\pi\)
0.999420 0.0340600i \(-0.0108437\pi\)
\(114\) 0 0
\(115\) 2.05540 0.191667
\(116\) 7.51724 2.80989i 0.697958 0.260891i
\(117\) 0 0
\(118\) −19.3232 6.93862i −1.77884 0.638751i
\(119\) −0.877984 + 3.05524i −0.0804846 + 0.280074i
\(120\) 0 0
\(121\) 7.09711 0.645192
\(122\) −5.50501 + 0.995239i −0.498401 + 0.0901047i
\(123\) 0 0
\(124\) 9.89121 3.69726i 0.888257 0.332024i
\(125\) 7.40101i 0.661967i
\(126\) 0 0
\(127\) 10.7073i 0.950115i 0.879955 + 0.475058i \(0.157573\pi\)
−0.879955 + 0.475058i \(0.842427\pi\)
\(128\) −2.30081 11.0773i −0.203365 0.979103i
\(129\) 0 0
\(130\) −5.58676 30.9023i −0.489991 2.71031i
\(131\) 5.67606 0.495920 0.247960 0.968770i \(-0.420240\pi\)
0.247960 + 0.968770i \(0.420240\pi\)
\(132\) 0 0
\(133\) 8.58638 8.28221i 0.744534 0.718159i
\(134\) 2.33738 6.50931i 0.201919 0.562318i
\(135\) 0 0
\(136\) −0.0440714 3.39810i −0.00377909 0.291384i
\(137\) 7.79004 0.665548 0.332774 0.943007i \(-0.392015\pi\)
0.332774 + 0.943007i \(0.392015\pi\)
\(138\) 0 0
\(139\) 6.87438 11.9068i 0.583078 1.00992i −0.412035 0.911168i \(-0.635182\pi\)
0.995112 0.0987517i \(-0.0314850\pi\)
\(140\) −1.43360 18.3700i −0.121161 1.55255i
\(141\) 0 0
\(142\) 1.34628 + 1.59042i 0.112978 + 0.133465i
\(143\) 6.29905 10.9103i 0.526753 0.912363i
\(144\) 0 0
\(145\) −12.1006 + 6.98628i −1.00490 + 0.580179i
\(146\) −15.4522 + 2.79357i −1.27883 + 0.231198i
\(147\) 0 0
\(148\) 1.89882 0.709763i 0.156082 0.0583422i
\(149\) 20.4898 1.67859 0.839293 0.543679i \(-0.182969\pi\)
0.839293 + 0.543679i \(0.182969\pi\)
\(150\) 0 0
\(151\) 22.0199i 1.79195i −0.444100 0.895977i \(-0.646477\pi\)
0.444100 0.895977i \(-0.353523\pi\)
\(152\) −6.23300 + 11.1267i −0.505563 + 0.902491i
\(153\) 0 0
\(154\) 4.32243 5.99643i 0.348311 0.483206i
\(155\) −15.9220 + 9.19257i −1.27889 + 0.738365i
\(156\) 0 0
\(157\) 9.72123 5.61256i 0.775839 0.447931i −0.0591146 0.998251i \(-0.518828\pi\)
0.834954 + 0.550320i \(0.185494\pi\)
\(158\) −0.894656 + 0.161743i −0.0711750 + 0.0128676i
\(159\) 0 0
\(160\) 7.13561 + 18.3602i 0.564120 + 1.45150i
\(161\) −1.51552 + 0.376935i −0.119440 + 0.0297066i
\(162\) 0 0
\(163\) 7.50110 4.33076i 0.587531 0.339211i −0.176589 0.984285i \(-0.556506\pi\)
0.764121 + 0.645073i \(0.223173\pi\)
\(164\) −6.67405 + 8.09493i −0.521155 + 0.632108i
\(165\) 0 0
\(166\) 2.67738 + 0.961399i 0.207805 + 0.0746190i
\(167\) 12.3381 21.3703i 0.954754 1.65368i 0.219824 0.975540i \(-0.429452\pi\)
0.734930 0.678143i \(-0.237215\pi\)
\(168\) 0 0
\(169\) 13.8326 + 23.9588i 1.06405 + 1.84299i
\(170\) 1.05263 + 5.82246i 0.0807330 + 0.446562i
\(171\) 0 0
\(172\) 2.15532 + 5.76610i 0.164342 + 0.439661i
\(173\) 0.626093 + 0.361475i 0.0476010 + 0.0274824i 0.523612 0.851957i \(-0.324584\pi\)
−0.476011 + 0.879440i \(0.657918\pi\)
\(174\) 0 0
\(175\) 4.55018 + 18.2947i 0.343961 + 1.38295i
\(176\) −2.57394 + 7.47135i −0.194018 + 0.563174i
\(177\) 0 0
\(178\) −1.80473 + 5.02594i −0.135270 + 0.376710i
\(179\) −10.2904 5.94116i −0.769139 0.444063i 0.0634282 0.997986i \(-0.479797\pi\)
−0.832568 + 0.553924i \(0.813130\pi\)
\(180\) 0 0
\(181\) 5.23327i 0.388986i −0.980904 0.194493i \(-0.937694\pi\)
0.980904 0.194493i \(-0.0623062\pi\)
\(182\) 9.78645 + 21.7609i 0.725420 + 1.61303i
\(183\) 0 0
\(184\) 1.43490 0.853441i 0.105782 0.0629165i
\(185\) −3.05655 + 1.76470i −0.224722 + 0.129743i
\(186\) 0 0
\(187\) −1.18684 + 2.05566i −0.0867900 + 0.150325i
\(188\) −0.539687 0.444957i −0.0393607 0.0324518i
\(189\) 0 0
\(190\) 7.50425 20.8984i 0.544416 1.51613i
\(191\) 13.7450 + 7.93569i 0.994555 + 0.574207i 0.906633 0.421921i \(-0.138644\pi\)
0.0879222 + 0.996127i \(0.471977\pi\)
\(192\) 0 0
\(193\) 0.442829 + 0.767002i 0.0318755 + 0.0552100i 0.881523 0.472141i \(-0.156519\pi\)
−0.849648 + 0.527351i \(0.823185\pi\)
\(194\) 8.17300 22.7608i 0.586787 1.63413i
\(195\) 0 0
\(196\) 4.42588 + 13.2820i 0.316134 + 0.948714i
\(197\) 2.17147 0.154711 0.0773553 0.997004i \(-0.475352\pi\)
0.0773553 + 0.997004i \(0.475352\pi\)
\(198\) 0 0
\(199\) 6.48062 11.2248i 0.459399 0.795702i −0.539530 0.841966i \(-0.681398\pi\)
0.998929 + 0.0462638i \(0.0147315\pi\)
\(200\) −10.3024 17.3215i −0.728486 1.22481i
\(201\) 0 0
\(202\) 4.54037 + 5.36374i 0.319459 + 0.377391i
\(203\) 7.64104 7.37035i 0.536296 0.517297i
\(204\) 0 0
\(205\) 9.13323 15.8192i 0.637892 1.10486i
\(206\) 16.3832 13.8682i 1.14147 0.966246i
\(207\) 0 0
\(208\) −16.7315 19.2536i −1.16012 1.33500i
\(209\) 7.71453 4.45399i 0.533625 0.308089i
\(210\) 0 0
\(211\) −8.89012 5.13271i −0.612021 0.353350i 0.161735 0.986834i \(-0.448291\pi\)
−0.773756 + 0.633484i \(0.781624\pi\)
\(212\) 9.31017 + 7.67597i 0.639425 + 0.527188i
\(213\) 0 0
\(214\) 5.33611 14.8604i 0.364769 1.01584i
\(215\) −5.35882 9.28176i −0.365469 0.633010i
\(216\) 0 0
\(217\) 10.0541 9.69795i 0.682517 0.658339i
\(218\) 1.17698 + 6.51030i 0.0797153 + 0.440933i
\(219\) 0 0
\(220\) 2.27191 13.5696i 0.153172 0.914865i
\(221\) −3.83097 6.63544i −0.257699 0.446348i
\(222\) 0 0
\(223\) −9.27475 16.0643i −0.621083 1.07575i −0.989284 0.146001i \(-0.953360\pi\)
0.368201 0.929746i \(-0.379974\pi\)
\(224\) −8.62840 12.2291i −0.576509 0.817091i
\(225\) 0 0
\(226\) 2.83071 + 15.6576i 0.188296 + 1.04153i
\(227\) −6.02921 −0.400172 −0.200086 0.979778i \(-0.564122\pi\)
−0.200086 + 0.979778i \(0.564122\pi\)
\(228\) 0 0
\(229\) 2.91153i 0.192399i −0.995362 0.0961995i \(-0.969331\pi\)
0.995362 0.0961995i \(-0.0306687\pi\)
\(230\) −2.21862 + 1.87804i −0.146291 + 0.123834i
\(231\) 0 0
\(232\) −5.54675 + 9.90162i −0.364162 + 0.650073i
\(233\) 4.64505 + 8.04547i 0.304308 + 0.527076i 0.977107 0.212749i \(-0.0682416\pi\)
−0.672799 + 0.739825i \(0.734908\pi\)
\(234\) 0 0
\(235\) 1.05466 + 0.608910i 0.0687987 + 0.0397209i
\(236\) 27.1976 10.1662i 1.77041 0.661766i
\(237\) 0 0
\(238\) −1.84391 4.10009i −0.119523 0.265769i
\(239\) −4.84551 2.79756i −0.313430 0.180959i 0.335030 0.942207i \(-0.391253\pi\)
−0.648460 + 0.761248i \(0.724587\pi\)
\(240\) 0 0
\(241\) 2.16706i 0.139593i 0.997561 + 0.0697963i \(0.0222349\pi\)
−0.997561 + 0.0697963i \(0.977765\pi\)
\(242\) −7.66069 + 6.48472i −0.492448 + 0.416854i
\(243\) 0 0
\(244\) 5.03281 6.10428i 0.322192 0.390786i
\(245\) −11.4186 21.5351i −0.729507 1.37583i
\(246\) 0 0
\(247\) 28.7539i 1.82957i
\(248\) −7.29844 + 13.0286i −0.463452 + 0.827317i
\(249\) 0 0
\(250\) 6.76241 + 7.98873i 0.427692 + 0.505252i
\(251\) 14.3444 0.905410 0.452705 0.891660i \(-0.350459\pi\)
0.452705 + 0.891660i \(0.350459\pi\)
\(252\) 0 0
\(253\) −1.16611 −0.0733129
\(254\) −9.78336 11.5575i −0.613863 0.725184i
\(255\) 0 0
\(256\) 12.6050 + 9.85466i 0.787812 + 0.615916i
\(257\) 1.08665i 0.0677832i −0.999426 0.0338916i \(-0.989210\pi\)
0.999426 0.0338916i \(-0.0107901\pi\)
\(258\) 0 0
\(259\) 1.93009 1.86171i 0.119930 0.115681i
\(260\) 34.2663 + 28.2516i 2.12510 + 1.75209i
\(261\) 0 0
\(262\) −6.12680 + 5.18630i −0.378515 + 0.320411i
\(263\) 3.61167i 0.222705i −0.993781 0.111352i \(-0.964482\pi\)
0.993781 0.111352i \(-0.0355182\pi\)
\(264\) 0 0
\(265\) −18.1940 10.5043i −1.11765 0.645276i
\(266\) −1.70066 + 16.7854i −0.104274 + 1.02918i
\(267\) 0 0
\(268\) 3.42465 + 9.16191i 0.209194 + 0.559652i
\(269\) −18.9812 10.9588i −1.15731 0.668171i −0.206649 0.978415i \(-0.566256\pi\)
−0.950657 + 0.310244i \(0.899589\pi\)
\(270\) 0 0
\(271\) 7.49415 + 12.9802i 0.455237 + 0.788494i 0.998702 0.0509383i \(-0.0162212\pi\)
−0.543465 + 0.839432i \(0.682888\pi\)
\(272\) 3.15246 + 3.62767i 0.191146 + 0.219960i
\(273\) 0 0
\(274\) −8.40866 + 7.11787i −0.507986 + 0.430006i
\(275\) 14.0768i 0.848862i
\(276\) 0 0
\(277\) −17.6898 −1.06288 −0.531439 0.847097i \(-0.678348\pi\)
−0.531439 + 0.847097i \(0.678348\pi\)
\(278\) 3.45911 + 19.1335i 0.207463 + 1.14755i
\(279\) 0 0
\(280\) 18.3323 + 18.5189i 1.09557 + 1.10671i
\(281\) 5.96654 + 10.3343i 0.355934 + 0.616495i 0.987277 0.159008i \(-0.0508296\pi\)
−0.631344 + 0.775503i \(0.717496\pi\)
\(282\) 0 0
\(283\) 9.08689 + 15.7390i 0.540160 + 0.935584i 0.998894 + 0.0470106i \(0.0149694\pi\)
−0.458735 + 0.888573i \(0.651697\pi\)
\(284\) −2.90638 0.486603i −0.172462 0.0288746i
\(285\) 0 0
\(286\) 3.16961 + 17.5322i 0.187423 + 1.03670i
\(287\) −3.83323 + 13.3391i −0.226269 + 0.787379i
\(288\) 0 0
\(289\) −7.77819 13.4722i −0.457540 0.792483i
\(290\) 6.67804 18.5975i 0.392148 1.09208i
\(291\) 0 0
\(292\) 14.1268 17.1343i 0.826706 1.00271i
\(293\) −11.7151 6.76373i −0.684405 0.395141i 0.117108 0.993119i \(-0.462638\pi\)
−0.801513 + 0.597978i \(0.795971\pi\)
\(294\) 0 0
\(295\) −43.7802 + 25.2765i −2.54898 + 1.47166i
\(296\) −1.40108 + 2.50110i −0.0814362 + 0.145373i
\(297\) 0 0
\(298\) −22.1169 + 18.7218i −1.28120 + 1.08452i
\(299\) 1.88204 3.25979i 0.108841 0.188518i
\(300\) 0 0
\(301\) 5.65343 + 5.86106i 0.325858 + 0.337826i
\(302\) 20.1199 + 23.7685i 1.15777 + 1.36772i
\(303\) 0 0
\(304\) −3.43861 17.7054i −0.197218 1.01547i
\(305\) −6.88724 + 11.9291i −0.394362 + 0.683056i
\(306\) 0 0
\(307\) −30.1730 −1.72206 −0.861031 0.508553i \(-0.830181\pi\)
−0.861031 + 0.508553i \(0.830181\pi\)
\(308\) 0.813342 + 10.4221i 0.0463445 + 0.593852i
\(309\) 0 0
\(310\) 8.78700 24.4707i 0.499068 1.38984i
\(311\) −10.6227 18.3990i −0.602357 1.04331i −0.992463 0.122543i \(-0.960895\pi\)
0.390106 0.920770i \(-0.372438\pi\)
\(312\) 0 0
\(313\) −5.89379 3.40278i −0.333137 0.192336i 0.324096 0.946024i \(-0.394940\pi\)
−0.657233 + 0.753688i \(0.728273\pi\)
\(314\) −5.36493 + 14.9407i −0.302761 + 0.843151i
\(315\) 0 0
\(316\) 0.817915 0.992046i 0.0460113 0.0558070i
\(317\) 5.88259 10.1889i 0.330399 0.572268i −0.652191 0.758055i \(-0.726150\pi\)
0.982590 + 0.185786i \(0.0594833\pi\)
\(318\) 0 0
\(319\) 6.86517 3.96361i 0.384376 0.221919i
\(320\) −24.4782 13.2983i −1.36837 0.743396i
\(321\) 0 0
\(322\) 1.29146 1.79162i 0.0719704 0.0998432i
\(323\) 5.41767i 0.301447i
\(324\) 0 0
\(325\) −39.3507 22.7191i −2.18278 1.26023i
\(326\) −4.13969 + 11.5285i −0.229276 + 0.638506i
\(327\) 0 0
\(328\) −0.192414 14.8359i −0.0106243 0.819177i
\(329\) −0.889312 0.255561i −0.0490293 0.0140895i
\(330\) 0 0
\(331\) −7.21741 4.16697i −0.396705 0.229038i 0.288356 0.957523i \(-0.406891\pi\)
−0.685061 + 0.728486i \(0.740225\pi\)
\(332\) −3.76843 + 1.40861i −0.206820 + 0.0773076i
\(333\) 0 0
\(334\) 6.20840 + 34.3408i 0.339709 + 1.87905i
\(335\) −8.51478 14.7480i −0.465212 0.805771i
\(336\) 0 0
\(337\) −8.90728 + 15.4279i −0.485210 + 0.840409i −0.999856 0.0169941i \(-0.994590\pi\)
0.514645 + 0.857403i \(0.327924\pi\)
\(338\) −36.8226 13.2223i −2.00288 0.719200i
\(339\) 0 0
\(340\) −6.45628 5.32303i −0.350141 0.288682i
\(341\) 9.03322 5.21533i 0.489177 0.282426i
\(342\) 0 0
\(343\) 12.3687 + 13.7846i 0.667844 + 0.744301i
\(344\) −7.59504 4.25464i −0.409497 0.229395i
\(345\) 0 0
\(346\) −1.00610 + 0.181890i −0.0540881 + 0.00977846i
\(347\) −10.4898 + 6.05632i −0.563125 + 0.325120i −0.754399 0.656417i \(-0.772071\pi\)
0.191274 + 0.981537i \(0.438738\pi\)
\(348\) 0 0
\(349\) 9.68839 5.59359i 0.518607 0.299418i −0.217757 0.976003i \(-0.569874\pi\)
0.736365 + 0.676585i \(0.236541\pi\)
\(350\) −21.6276 15.5899i −1.15605 0.833317i
\(351\) 0 0
\(352\) −4.04833 10.4165i −0.215777 0.555202i
\(353\) 30.1679i 1.60568i −0.596197 0.802838i \(-0.703322\pi\)
0.596197 0.802838i \(-0.296678\pi\)
\(354\) 0 0
\(355\) 5.13067 0.272308
\(356\) −2.64423 7.07406i −0.140144 0.374925i
\(357\) 0 0
\(358\) 16.5361 2.98952i 0.873958 0.158001i
\(359\) −24.5853 + 14.1944i −1.29757 + 0.749150i −0.979983 0.199081i \(-0.936204\pi\)
−0.317582 + 0.948231i \(0.602871\pi\)
\(360\) 0 0
\(361\) −0.665788 + 1.15318i −0.0350415 + 0.0606936i
\(362\) 4.78171 + 5.64885i 0.251321 + 0.296897i
\(363\) 0 0
\(364\) −30.4469 14.5470i −1.59585 0.762469i
\(365\) −19.3320 + 33.4841i −1.01189 + 1.75264i
\(366\) 0 0
\(367\) 35.2632 1.84072 0.920362 0.391066i \(-0.127894\pi\)
0.920362 + 0.391066i \(0.127894\pi\)
\(368\) −0.769047 + 2.23230i −0.0400894 + 0.116367i
\(369\) 0 0
\(370\) 1.68684 4.69764i 0.0876946 0.244219i
\(371\) 15.3415 + 4.40869i 0.796493 + 0.228888i
\(372\) 0 0
\(373\) −11.4118 −0.590880 −0.295440 0.955361i \(-0.595466\pi\)
−0.295440 + 0.955361i \(0.595466\pi\)
\(374\) −0.597201 3.30333i −0.0308805 0.170811i
\(375\) 0 0
\(376\) 0.989108 0.0128282i 0.0510093 0.000661563i
\(377\) 25.5882i 1.31786i
\(378\) 0 0
\(379\) 14.3418i 0.736686i −0.929690 0.368343i \(-0.879925\pi\)
0.929690 0.368343i \(-0.120075\pi\)
\(380\) 10.9950 + 29.4147i 0.564031 + 1.50894i
\(381\) 0 0
\(382\) −22.0875 + 3.99314i −1.13009 + 0.204307i
\(383\) −18.6443 −0.952678 −0.476339 0.879262i \(-0.658037\pi\)
−0.476339 + 0.879262i \(0.658037\pi\)
\(384\) 0 0
\(385\) −4.39299 17.6627i −0.223888 0.900174i
\(386\) −1.17881 0.423291i −0.0600001 0.0215450i
\(387\) 0 0
\(388\) 11.9748 + 32.0360i 0.607930 + 1.62638i
\(389\) 15.9211 0.807231 0.403615 0.914929i \(-0.367753\pi\)
0.403615 + 0.914929i \(0.367753\pi\)
\(390\) 0 0
\(391\) −0.354605 + 0.614193i −0.0179331 + 0.0310611i
\(392\) −16.9133 10.2927i −0.854250 0.519862i
\(393\) 0 0
\(394\) −2.34390 + 1.98410i −0.118084 + 0.0999574i
\(395\) −1.11929 + 1.93867i −0.0563177 + 0.0975450i
\(396\) 0 0
\(397\) −4.13873 + 2.38950i −0.207717 + 0.119925i −0.600250 0.799813i \(-0.704932\pi\)
0.392533 + 0.919738i \(0.371599\pi\)
\(398\) 3.26097 + 18.0376i 0.163458 + 0.904141i
\(399\) 0 0
\(400\) 26.9473 + 9.28358i 1.34737 + 0.464179i
\(401\) 33.2918 1.66251 0.831256 0.555890i \(-0.187622\pi\)
0.831256 + 0.555890i \(0.187622\pi\)
\(402\) 0 0
\(403\) 33.6690i 1.67717i
\(404\) −9.80184 1.64108i −0.487660 0.0816468i
\(405\) 0 0
\(406\) −1.51342 + 14.9374i −0.0751099 + 0.741329i
\(407\) 1.73411 1.00119i 0.0859565 0.0496270i
\(408\) 0 0
\(409\) 8.34763 4.81951i 0.412764 0.238309i −0.279213 0.960229i \(-0.590073\pi\)
0.691977 + 0.721920i \(0.256740\pi\)
\(410\) 4.59573 + 25.4206i 0.226967 + 1.25543i
\(411\) 0 0
\(412\) −5.01257 + 29.9391i −0.246952 + 1.47499i
\(413\) 27.6455 26.6661i 1.36034 1.31216i
\(414\) 0 0
\(415\) 6.06609 3.50226i 0.297773 0.171919i
\(416\) 35.6524 + 5.49481i 1.74800 + 0.269405i
\(417\) 0 0
\(418\) −4.25748 + 11.8566i −0.208240 + 0.579923i
\(419\) −5.29413 + 9.16971i −0.258635 + 0.447970i −0.965877 0.259003i \(-0.916606\pi\)
0.707241 + 0.706972i \(0.249939\pi\)
\(420\) 0 0
\(421\) −12.4805 21.6168i −0.608261 1.05354i −0.991527 0.129901i \(-0.958534\pi\)
0.383266 0.923638i \(-0.374799\pi\)
\(422\) 14.2859 2.58272i 0.695428 0.125725i
\(423\) 0 0
\(424\) −17.0631 + 0.221299i −0.828659 + 0.0107472i
\(425\) 7.41426 + 4.28062i 0.359644 + 0.207641i
\(426\) 0 0
\(427\) 2.89059 10.0588i 0.139885 0.486779i
\(428\) 7.81830 + 20.9161i 0.377912 + 1.01102i
\(429\) 0 0
\(430\) 14.2652 + 5.12239i 0.687931 + 0.247024i
\(431\) 25.0572 + 14.4668i 1.20696 + 0.696841i 0.962095 0.272715i \(-0.0879215\pi\)
0.244870 + 0.969556i \(0.421255\pi\)
\(432\) 0 0
\(433\) 11.0967i 0.533275i 0.963797 + 0.266637i \(0.0859126\pi\)
−0.963797 + 0.266637i \(0.914087\pi\)
\(434\) −1.99137 + 19.6546i −0.0955887 + 0.943453i
\(435\) 0 0
\(436\) −7.21900 5.95186i −0.345727 0.285043i
\(437\) 2.30496 1.33077i 0.110261 0.0636593i
\(438\) 0 0
\(439\) 6.98423 12.0970i 0.333339 0.577361i −0.649825 0.760084i \(-0.725158\pi\)
0.983164 + 0.182723i \(0.0584912\pi\)
\(440\) 9.94645 + 16.7231i 0.474178 + 0.797242i
\(441\) 0 0
\(442\) 10.1981 + 3.66195i 0.485073 + 0.174181i
\(443\) 1.79243 + 1.03486i 0.0851609 + 0.0491676i 0.541976 0.840394i \(-0.317676\pi\)
−0.456815 + 0.889562i \(0.651010\pi\)
\(444\) 0 0
\(445\) 6.57440 + 11.3872i 0.311657 + 0.539805i
\(446\) 24.6895 + 8.86555i 1.16908 + 0.419796i
\(447\) 0 0
\(448\) 20.4875 + 5.31633i 0.967942 + 0.251173i
\(449\) −15.9634 −0.753361 −0.376680 0.926343i \(-0.622934\pi\)
−0.376680 + 0.926343i \(0.622934\pi\)
\(450\) 0 0
\(451\) −5.18167 + 8.97491i −0.243995 + 0.422612i
\(452\) −17.3621 14.3145i −0.816643 0.673300i
\(453\) 0 0
\(454\) 6.50799 5.50897i 0.305435 0.258549i
\(455\) 56.4649 + 16.2263i 2.64712 + 0.760700i
\(456\) 0 0
\(457\) −6.54273 + 11.3323i −0.306056 + 0.530104i −0.977496 0.210955i \(-0.932343\pi\)
0.671440 + 0.741059i \(0.265676\pi\)
\(458\) 2.66030 + 3.14273i 0.124308 + 0.146850i
\(459\) 0 0
\(460\) 0.678804 4.05436i 0.0316494 0.189035i
\(461\) −4.13795 + 2.38905i −0.192724 + 0.111269i −0.593257 0.805013i \(-0.702158\pi\)
0.400533 + 0.916282i \(0.368825\pi\)
\(462\) 0 0
\(463\) −14.5389 8.39406i −0.675681 0.390105i 0.122545 0.992463i \(-0.460895\pi\)
−0.798226 + 0.602358i \(0.794228\pi\)
\(464\) −3.06002 15.7561i −0.142058 0.731457i
\(465\) 0 0
\(466\) −12.3652 4.44012i −0.572806 0.205684i
\(467\) 17.1928 + 29.7788i 0.795587 + 1.37800i 0.922466 + 0.386079i \(0.126171\pi\)
−0.126879 + 0.991918i \(0.540496\pi\)
\(468\) 0 0
\(469\) 8.98289 + 9.31279i 0.414791 + 0.430025i
\(470\) −1.69478 + 0.306396i −0.0781746 + 0.0141330i
\(471\) 0 0
\(472\) −20.0683 + 35.8243i −0.923719 + 1.64895i
\(473\) 3.04029 + 5.26593i 0.139793 + 0.242128i
\(474\) 0 0
\(475\) −16.0644 27.8244i −0.737087 1.27667i
\(476\) 5.73665 + 2.74087i 0.262939 + 0.125628i
\(477\) 0 0
\(478\) 7.78647 1.40770i 0.356145 0.0643866i
\(479\) 10.2893 0.470130 0.235065 0.971980i \(-0.424470\pi\)
0.235065 + 0.971980i \(0.424470\pi\)
\(480\) 0 0
\(481\) 6.46344i 0.294707i
\(482\) −1.98007 2.33915i −0.0901899 0.106545i
\(483\) 0 0
\(484\) 2.34385 13.9994i 0.106539 0.636334i
\(485\) −29.7732 51.5688i −1.35193 2.34162i
\(486\) 0 0
\(487\) 23.9091 + 13.8039i 1.08343 + 0.625516i 0.931818 0.362925i \(-0.118222\pi\)
0.151607 + 0.988441i \(0.451555\pi\)
\(488\) 0.145097 + 11.1876i 0.00656821 + 0.506437i
\(489\) 0 0
\(490\) 32.0023 + 12.8119i 1.44572 + 0.578783i
\(491\) −28.0754 16.2093i −1.26702 0.731516i −0.292599 0.956235i \(-0.594520\pi\)
−0.974424 + 0.224719i \(0.927854\pi\)
\(492\) 0 0
\(493\) 4.82119i 0.217136i
\(494\) −26.2729 31.0373i −1.18207 1.39643i
\(495\) 0 0
\(496\) −4.02639 20.7319i −0.180790 0.930890i
\(497\) −3.78305 + 0.940903i −0.169693 + 0.0422053i
\(498\) 0 0
\(499\) 7.13521i 0.319416i −0.987164 0.159708i \(-0.948945\pi\)
0.987164 0.159708i \(-0.0510552\pi\)
\(500\) −14.5988 2.44422i −0.652879 0.109309i
\(501\) 0 0
\(502\) −15.4835 + 13.1067i −0.691062 + 0.584979i
\(503\) −13.4502 −0.599716 −0.299858 0.953984i \(-0.596939\pi\)
−0.299858 + 0.953984i \(0.596939\pi\)
\(504\) 0 0
\(505\) 17.3033 0.769987
\(506\) 1.25871 1.06549i 0.0559567 0.0473669i
\(507\) 0 0
\(508\) 21.1205 + 3.53612i 0.937072 + 0.156890i
\(509\) 5.90623i 0.261789i 0.991396 + 0.130895i \(0.0417849\pi\)
−0.991396 + 0.130895i \(0.958215\pi\)
\(510\) 0 0
\(511\) 8.11370 28.2344i 0.358929 1.24902i
\(512\) −22.6103 + 0.880124i −0.999243 + 0.0388963i
\(513\) 0 0
\(514\) 0.992884 + 1.17294i 0.0437942 + 0.0517361i
\(515\) 52.8518i 2.32893i
\(516\) 0 0
\(517\) −0.598355 0.345461i −0.0263156 0.0151933i
\(518\) −0.382282 + 3.77310i −0.0167965 + 0.165780i
\(519\) 0 0
\(520\) −62.8013 + 0.814497i −2.75402 + 0.0357181i
\(521\) 37.1446 + 21.4454i 1.62733 + 0.939542i 0.984884 + 0.173215i \(0.0554155\pi\)
0.642451 + 0.766327i \(0.277918\pi\)
\(522\) 0 0
\(523\) 4.11355 + 7.12488i 0.179873 + 0.311549i 0.941837 0.336070i \(-0.109098\pi\)
−0.761964 + 0.647619i \(0.775765\pi\)
\(524\) 1.87455 11.1963i 0.0818900 0.489112i
\(525\) 0 0
\(526\) 3.30003 + 3.89847i 0.143888 + 0.169981i
\(527\) 6.34375i 0.276338i
\(528\) 0 0
\(529\) 22.6516 0.984852
\(530\) 29.2368 5.28565i 1.26997 0.229594i
\(531\) 0 0
\(532\) −13.5013 19.6723i −0.585357 0.852901i
\(533\) −16.7258 28.9700i −0.724476 1.25483i
\(534\) 0 0
\(535\) −19.4388 33.6690i −0.840412 1.45564i
\(536\) −12.0680 6.76031i −0.521257 0.292001i
\(537\) 0 0
\(538\) 30.5018 5.51434i 1.31502 0.237740i
\(539\) 6.47825 + 12.2178i 0.279038 + 0.526257i
\(540\) 0 0
\(541\) 5.48118 + 9.49369i 0.235654 + 0.408165i 0.959463 0.281836i \(-0.0909433\pi\)
−0.723808 + 0.690001i \(0.757610\pi\)
\(542\) −19.9495 7.16351i −0.856904 0.307699i
\(543\) 0 0
\(544\) −6.71745 1.03530i −0.288008 0.0443883i
\(545\) 14.1075 + 8.14494i 0.604297 + 0.348891i
\(546\) 0 0
\(547\) −4.82709 + 2.78692i −0.206391 + 0.119160i −0.599633 0.800275i \(-0.704687\pi\)
0.393242 + 0.919435i \(0.371354\pi\)
\(548\) 2.57270 15.3662i 0.109900 0.656412i
\(549\) 0 0
\(550\) −12.8621 15.1946i −0.548444 0.647901i
\(551\) −9.04655 + 15.6691i −0.385396 + 0.667525i
\(552\) 0 0
\(553\) 0.469769 1.63472i 0.0199766 0.0695154i
\(554\) 19.0946 16.1634i 0.811251 0.686718i
\(555\) 0 0
\(556\) −21.2164 17.4923i −0.899774 0.741839i
\(557\) −14.6473 + 25.3699i −0.620626 + 1.07496i 0.368743 + 0.929531i \(0.379788\pi\)
−0.989369 + 0.145425i \(0.953545\pi\)
\(558\) 0 0
\(559\) −19.6274 −0.830151
\(560\) −36.7091 3.23893i −1.55124 0.136870i
\(561\) 0 0
\(562\) −15.8830 5.70329i −0.669983 0.240579i
\(563\) 4.68201 + 8.10948i 0.197323 + 0.341774i 0.947660 0.319282i \(-0.103442\pi\)
−0.750336 + 0.661056i \(0.770108\pi\)
\(564\) 0 0
\(565\) 33.9292 + 19.5890i 1.42741 + 0.824116i
\(566\) −24.1894 8.68598i −1.01676 0.365099i
\(567\) 0 0
\(568\) 3.58180 2.13036i 0.150289 0.0893878i
\(569\) −13.9962 + 24.2421i −0.586750 + 1.01628i 0.407905 + 0.913025i \(0.366260\pi\)
−0.994655 + 0.103257i \(0.967074\pi\)
\(570\) 0 0
\(571\) −10.7880 + 6.22848i −0.451466 + 0.260654i −0.708449 0.705762i \(-0.750605\pi\)
0.256983 + 0.966416i \(0.417271\pi\)
\(572\) −19.4407 16.0283i −0.812857 0.670178i
\(573\) 0 0
\(574\) −8.05044 17.9008i −0.336019 0.747165i
\(575\) 4.20588i 0.175397i
\(576\) 0 0
\(577\) −23.8836 13.7892i −0.994289 0.574053i −0.0877357 0.996144i \(-0.527963\pi\)
−0.906554 + 0.422091i \(0.861296\pi\)
\(578\) 20.7056 + 7.43502i 0.861240 + 0.309256i
\(579\) 0 0
\(580\) 9.78446 + 26.1762i 0.406278 + 1.08691i
\(581\) −3.83049 + 3.69480i −0.158916 + 0.153286i
\(582\) 0 0
\(583\) 10.3222 + 5.95955i 0.427504 + 0.246819i
\(584\) 0.407276 + 31.4028i 0.0168532 + 1.29946i
\(585\) 0 0
\(586\) 18.8255 3.40343i 0.777676 0.140594i
\(587\) 0.790747 + 1.36961i 0.0326376 + 0.0565300i 0.881883 0.471469i \(-0.156276\pi\)
−0.849245 + 0.527999i \(0.822943\pi\)
\(588\) 0 0
\(589\) −11.9035 + 20.6175i −0.490475 + 0.849527i
\(590\) 24.1613 67.2864i 0.994707 2.77014i
\(591\) 0 0
\(592\) −0.772946 3.97990i −0.0317679 0.163573i
\(593\) 15.1545 8.74947i 0.622322 0.359298i −0.155450 0.987844i \(-0.549683\pi\)
0.777773 + 0.628546i \(0.216350\pi\)
\(594\) 0 0
\(595\) −10.6388 3.05728i −0.436150 0.125336i
\(596\) 6.76684 40.4169i 0.277180 1.65554i
\(597\) 0 0
\(598\) 0.947020 + 5.23830i 0.0387265 + 0.214210i
\(599\) 8.75858 5.05677i 0.357866 0.206614i −0.310278 0.950646i \(-0.600422\pi\)
0.668144 + 0.744032i \(0.267089\pi\)
\(600\) 0 0
\(601\) −3.06836 + 1.77152i −0.125161 + 0.0722618i −0.561273 0.827630i \(-0.689688\pi\)
0.436112 + 0.899892i \(0.356355\pi\)
\(602\) −11.4577 1.16087i −0.466981 0.0473135i
\(603\) 0 0
\(604\) −43.4352 7.27218i −1.76735 0.295901i
\(605\) 24.7132i 1.00474i
\(606\) 0 0
\(607\) −18.5731 −0.753857 −0.376929 0.926242i \(-0.623020\pi\)
−0.376929 + 0.926242i \(0.623020\pi\)
\(608\) 19.8893 + 15.9695i 0.806619 + 0.647648i
\(609\) 0 0
\(610\) −3.46558 19.1693i −0.140317 0.776143i
\(611\) 1.93142 1.11511i 0.0781370 0.0451124i
\(612\) 0 0
\(613\) 13.5566 23.4808i 0.547548 0.948381i −0.450894 0.892578i \(-0.648895\pi\)
0.998442 0.0558032i \(-0.0177719\pi\)
\(614\) 32.5690 27.5694i 1.31438 1.11261i
\(615\) 0 0
\(616\) −10.4007 10.5065i −0.419057 0.423320i
\(617\) 10.1963 17.6606i 0.410489 0.710987i −0.584454 0.811427i \(-0.698691\pi\)
0.994943 + 0.100439i \(0.0320248\pi\)
\(618\) 0 0
\(619\) 24.0272 0.965734 0.482867 0.875694i \(-0.339595\pi\)
0.482867 + 0.875694i \(0.339595\pi\)
\(620\) 12.8744 + 34.4428i 0.517050 + 1.38325i
\(621\) 0 0
\(622\) 28.2777 + 10.1540i 1.13383 + 0.407139i
\(623\) −6.93584 7.19056i −0.277879 0.288084i
\(624\) 0 0
\(625\) −9.85557 −0.394223
\(626\) 9.47098 1.71224i 0.378537 0.0684348i
\(627\) 0 0
\(628\) −7.86054 21.0291i −0.313670 0.839154i
\(629\) 1.21781i 0.0485572i
\(630\) 0 0
\(631\) 17.1069i 0.681016i −0.940242 0.340508i \(-0.889401\pi\)
0.940242 0.340508i \(-0.110599\pi\)
\(632\) 0.0235806 + 1.81817i 0.000937985 + 0.0723227i
\(633\) 0 0
\(634\) 2.96005 + 16.3731i 0.117559 + 0.650257i
\(635\) −37.2843 −1.47958
\(636\) 0 0
\(637\) −44.6095 1.60930i −1.76749 0.0637626i
\(638\) −3.78874 + 10.5512i −0.149997 + 0.417725i
\(639\) 0 0
\(640\) 38.5728 8.01178i 1.52473 0.316693i
\(641\) −30.3467 −1.19862 −0.599311 0.800516i \(-0.704559\pi\)
−0.599311 + 0.800516i \(0.704559\pi\)
\(642\) 0 0
\(643\) −2.71240 + 4.69801i −0.106967 + 0.185272i −0.914540 0.404496i \(-0.867447\pi\)
0.807573 + 0.589767i \(0.200780\pi\)
\(644\) 0.243012 + 3.11392i 0.00957600 + 0.122706i
\(645\) 0 0
\(646\) 4.95020 + 5.84789i 0.194763 + 0.230082i
\(647\) 9.98684 17.2977i 0.392623 0.680043i −0.600171 0.799871i \(-0.704901\pi\)
0.992795 + 0.119828i \(0.0382343\pi\)
\(648\) 0 0
\(649\) 24.8384 14.3404i 0.974992 0.562912i
\(650\) 63.2343 11.4320i 2.48025 0.448399i
\(651\) 0 0
\(652\) −6.06535 16.2265i −0.237537 0.635479i
\(653\) −32.1932 −1.25982 −0.629909 0.776669i \(-0.716908\pi\)
−0.629909 + 0.776669i \(0.716908\pi\)
\(654\) 0 0
\(655\) 19.7649i 0.772280i
\(656\) 13.7635 + 15.8382i 0.537374 + 0.618379i
\(657\) 0 0
\(658\) 1.19344 0.536721i 0.0465252 0.0209236i
\(659\) 3.30688 1.90923i 0.128818 0.0743729i −0.434206 0.900813i \(-0.642971\pi\)
0.563024 + 0.826440i \(0.309638\pi\)
\(660\) 0 0
\(661\) 35.9322 20.7455i 1.39760 0.806906i 0.403460 0.914997i \(-0.367807\pi\)
0.994141 + 0.108092i \(0.0344740\pi\)
\(662\) 11.5980 2.09677i 0.450768 0.0814933i
\(663\) 0 0
\(664\) 2.78062 4.96374i 0.107909 0.192630i
\(665\) 28.8400 + 29.8991i 1.11837 + 1.15944i
\(666\) 0 0
\(667\) 2.05119 1.18425i 0.0794223 0.0458545i
\(668\) −38.0791 31.3952i −1.47333 1.21472i
\(669\) 0 0
\(670\) 22.6664 + 8.13911i 0.875680 + 0.314441i
\(671\) 3.90742 6.76786i 0.150844 0.261270i
\(672\) 0 0
\(673\) −3.35200 5.80584i −0.129210 0.223799i 0.794161 0.607708i \(-0.207911\pi\)
−0.923371 + 0.383909i \(0.874578\pi\)
\(674\) −4.48203 24.7917i −0.172642 0.954941i
\(675\) 0 0
\(676\) 51.8281 19.3730i 1.99339 0.745114i
\(677\) −15.7745 9.10739i −0.606262 0.350025i 0.165239 0.986253i \(-0.447160\pi\)
−0.771501 + 0.636228i \(0.780494\pi\)
\(678\) 0 0
\(679\) 31.4101 + 32.5636i 1.20541 + 1.24968i
\(680\) 11.8327 0.153464i 0.453763 0.00588506i
\(681\) 0 0
\(682\) −4.98524 + 13.8833i −0.190895 + 0.531618i
\(683\) −41.8382 24.1553i −1.60090 0.924278i −0.991308 0.131559i \(-0.958002\pi\)
−0.609588 0.792719i \(-0.708665\pi\)
\(684\) 0 0
\(685\) 27.1262i 1.03644i
\(686\) −25.9461 3.57789i −0.990626 0.136604i
\(687\) 0 0
\(688\) 12.0857 2.34719i 0.460763 0.0894859i
\(689\) −33.3191 + 19.2368i −1.26935 + 0.732862i
\(690\) 0 0
\(691\) −2.71691 + 4.70582i −0.103356 + 0.179018i −0.913065 0.407813i \(-0.866291\pi\)
0.809709 + 0.586831i \(0.199625\pi\)
\(692\) 0.919796 1.11562i 0.0349654 0.0424094i
\(693\) 0 0
\(694\) 5.78911 16.1220i 0.219752 0.611982i
\(695\) 41.4613 + 23.9377i 1.57272 + 0.908008i
\(696\) 0 0
\(697\) 3.15140 + 5.45838i 0.119368 + 0.206751i
\(698\) −5.34681 + 14.8902i −0.202380 + 0.563602i
\(699\) 0 0
\(700\) 37.5898 2.93352i 1.42076 0.110877i
\(701\) 17.6328 0.665980 0.332990 0.942930i \(-0.391942\pi\)
0.332990 + 0.942930i \(0.391942\pi\)
\(702\) 0 0
\(703\) −2.28511 + 3.95793i −0.0861846 + 0.149276i
\(704\) 13.8875 + 7.54467i 0.523406 + 0.284350i
\(705\) 0 0
\(706\) 27.5648 + 32.5636i 1.03742 + 1.22555i
\(707\) −12.7584 + 3.17322i −0.479829 + 0.119341i
\(708\) 0 0
\(709\) −8.40413 + 14.5564i −0.315624 + 0.546677i −0.979570 0.201104i \(-0.935547\pi\)
0.663946 + 0.747780i \(0.268880\pi\)
\(710\) −5.53810 + 4.68797i −0.207841 + 0.175936i
\(711\) 0 0
\(712\) 9.31788 + 5.21975i 0.349202 + 0.195618i
\(713\) 2.69896 1.55825i 0.101077 0.0583568i
\(714\) 0 0
\(715\) 37.9913 + 21.9343i 1.42079 + 0.820295i
\(716\) −15.1176 + 18.3361i −0.564973 + 0.685254i
\(717\) 0 0
\(718\) 13.5681 37.7855i 0.506357 1.41014i
\(719\) −15.1910 26.3116i −0.566530 0.981258i −0.996906 0.0786083i \(-0.974952\pi\)
0.430376 0.902650i \(-0.358381\pi\)
\(720\) 0 0
\(721\) 9.69238 + 38.9697i 0.360963 + 1.45131i
\(722\) −0.335016 1.85309i −0.0124680 0.0689650i
\(723\) 0 0
\(724\) −10.3229 1.72831i −0.383646 0.0642322i
\(725\) −14.2958 24.7610i −0.530931 0.919600i
\(726\) 0 0
\(727\) 2.64995 + 4.58985i 0.0982812 + 0.170228i 0.910973 0.412465i \(-0.135332\pi\)
−0.812692 + 0.582693i \(0.801999\pi\)
\(728\) 46.1565 12.1176i 1.71067 0.449106i
\(729\) 0 0
\(730\) −9.72765 53.8070i −0.360036 1.99149i
\(731\) 3.69810 0.136779
\(732\) 0 0
\(733\) 49.1128i 1.81402i −0.421105 0.907012i \(-0.638358\pi\)
0.421105 0.907012i \(-0.361642\pi\)
\(734\) −38.0635 + 32.2205i −1.40495 + 1.18928i
\(735\) 0 0
\(736\) −1.20957 3.11226i −0.0445853 0.114719i
\(737\) 4.83079 + 8.36718i 0.177945 + 0.308209i
\(738\) 0 0
\(739\) −24.0001 13.8565i −0.882859 0.509719i −0.0112591 0.999937i \(-0.503584\pi\)
−0.871600 + 0.490218i \(0.836917\pi\)
\(740\) 2.47151 + 6.61197i 0.0908543 + 0.243061i
\(741\) 0 0
\(742\) −20.5881 + 9.25899i −0.755813 + 0.339908i
\(743\) −32.0177 18.4854i −1.17461 0.678164i −0.219852 0.975533i \(-0.570557\pi\)
−0.954763 + 0.297369i \(0.903891\pi\)
\(744\) 0 0
\(745\) 71.3485i 2.61401i
\(746\) 12.3180 10.4271i 0.450994 0.381764i
\(747\) 0 0
\(748\) 3.66292 + 3.01998i 0.133930 + 0.110421i
\(749\) 20.5075 + 21.2606i 0.749326 + 0.776846i
\(750\) 0 0
\(751\) 25.6840i 0.937222i −0.883405 0.468611i \(-0.844755\pi\)
0.883405 0.468611i \(-0.155245\pi\)
\(752\) −1.05593 + 0.917608i −0.0385059 + 0.0334617i
\(753\) 0 0
\(754\) −23.3803 27.6201i −0.851459 1.00587i
\(755\) 76.6767 2.79055
\(756\) 0 0
\(757\) 32.8332 1.19334 0.596671 0.802486i \(-0.296490\pi\)
0.596671 + 0.802486i \(0.296490\pi\)
\(758\) 13.1043 + 15.4806i 0.475968 + 0.562282i
\(759\) 0 0
\(760\) −38.7447 21.7043i −1.40542 0.787296i
\(761\) 13.3912i 0.485432i −0.970097 0.242716i \(-0.921962\pi\)
0.970097 0.242716i \(-0.0780382\pi\)
\(762\) 0 0
\(763\) −11.8957 3.41845i −0.430652 0.123756i
\(764\) 20.1929 24.4919i 0.730552 0.886085i
\(765\) 0 0
\(766\) 20.1248 17.0355i 0.727140 0.615519i
\(767\) 92.5787i 3.34282i
\(768\) 0 0
\(769\) −1.88139 1.08622i −0.0678447 0.0391702i 0.465694 0.884946i \(-0.345805\pi\)
−0.533539 + 0.845776i \(0.679138\pi\)
\(770\) 20.8805 + 15.0514i 0.752481 + 0.542414i
\(771\) 0 0
\(772\) 1.65919 0.620193i 0.0597156 0.0223212i
\(773\) 9.28632 + 5.36146i 0.334006 + 0.192838i 0.657618 0.753351i \(-0.271564\pi\)
−0.323612 + 0.946190i \(0.604897\pi\)
\(774\) 0 0
\(775\) −18.8104 32.5806i −0.675691 1.17033i
\(776\) −42.1975 23.6385i −1.51480 0.848571i
\(777\) 0 0
\(778\) −17.1854 + 14.5473i −0.616126 + 0.521546i
\(779\) 23.6533i 0.847467i
\(780\) 0 0
\(781\) −2.91085 −0.104158
\(782\) −0.178433 0.986974i −0.00638074 0.0352941i
\(783\) 0 0
\(784\) 27.6610 4.34380i 0.987893 0.155136i
\(785\) 19.5438 + 33.8509i 0.697548 + 1.20819i
\(786\) 0 0
\(787\) −12.2911 21.2888i −0.438130 0.758863i 0.559416 0.828887i \(-0.311026\pi\)
−0.997545 + 0.0700244i \(0.977692\pi\)
\(788\) 0.717137 4.28331i 0.0255469 0.152587i
\(789\) 0 0
\(790\) −0.563214 3.11533i −0.0200382 0.110839i
\(791\) −28.6097 8.22155i −1.01724 0.292325i
\(792\) 0 0
\(793\) 12.6127 + 21.8459i 0.447891 + 0.775770i
\(794\) 2.28407 6.36086i 0.0810587 0.225739i
\(795\) 0 0
\(796\) −20.0011 16.4903i −0.708920 0.584485i
\(797\) −29.3180 16.9267i −1.03850 0.599576i −0.119089 0.992884i \(-0.537997\pi\)
−0.919407 + 0.393308i \(0.871331\pi\)
\(798\) 0 0
\(799\) −0.363909 + 0.210103i −0.0128742 + 0.00743291i
\(800\) −37.5698 + 14.6013i −1.32829 + 0.516236i
\(801\) 0 0
\(802\) −35.9355 + 30.4191i −1.26893 + 1.07414i
\(803\) 10.9679 18.9969i 0.387048 0.670387i
\(804\) 0 0
\(805\) −1.31255 5.27729i −0.0462611 0.186000i
\(806\) −30.7638 36.3427i −1.08361 1.28012i
\(807\) 0 0
\(808\) 12.0797 7.18468i 0.424962 0.252756i
\(809\) 11.2283 19.4481i 0.394768 0.683758i −0.598304 0.801269i \(-0.704158\pi\)
0.993072 + 0.117512i \(0.0374917\pi\)
\(810\) 0 0
\(811\) 47.6072 1.67172 0.835858 0.548946i \(-0.184971\pi\)
0.835858 + 0.548946i \(0.184971\pi\)
\(812\) −12.0149 17.5064i −0.421639 0.614353i
\(813\) 0 0
\(814\) −0.957015 + 2.66517i −0.0335434 + 0.0934141i
\(815\) 15.0804 + 26.1200i 0.528243 + 0.914944i
\(816\) 0 0
\(817\) −12.0190 6.93916i −0.420491 0.242770i
\(818\) −4.60687 + 12.8296i −0.161076 + 0.448576i
\(819\) 0 0
\(820\) −28.1878 23.2401i −0.984361 0.811578i
\(821\) 12.5572 21.7496i 0.438248 0.759068i −0.559307 0.828961i \(-0.688933\pi\)
0.997554 + 0.0698933i \(0.0222659\pi\)
\(822\) 0 0
\(823\) 2.43553 1.40615i 0.0848972 0.0490154i −0.456950 0.889492i \(-0.651058\pi\)
0.541848 + 0.840477i \(0.317725\pi\)
\(824\) −21.9451 36.8966i −0.764494 1.28535i
\(825\) 0 0
\(826\) −5.47560 + 54.0438i −0.190521 + 1.88042i
\(827\) 36.6231i 1.27351i −0.771066 0.636756i \(-0.780276\pi\)
0.771066 0.636756i \(-0.219724\pi\)
\(828\) 0 0
\(829\) 15.8020 + 9.12326i 0.548825 + 0.316864i 0.748648 0.662968i \(-0.230703\pi\)
−0.199823 + 0.979832i \(0.564037\pi\)
\(830\) −3.34774 + 9.32305i −0.116202 + 0.323608i
\(831\) 0 0
\(832\) −43.5043 + 26.6449i −1.50824 + 0.923747i
\(833\) 8.40510 + 0.303215i 0.291219 + 0.0105058i
\(834\) 0 0
\(835\) 74.4147 + 42.9633i 2.57523 + 1.48681i
\(836\) −6.23793 16.6882i −0.215743 0.577174i
\(837\) 0 0
\(838\) −2.66394 14.7352i −0.0920244 0.509019i
\(839\) −12.4481 21.5607i −0.429755 0.744358i 0.567096 0.823652i \(-0.308067\pi\)
−0.996851 + 0.0792938i \(0.974733\pi\)
\(840\) 0 0
\(841\) 6.44946 11.1708i 0.222395 0.385200i
\(842\) 33.2231 + 11.9298i 1.14494 + 0.411129i
\(843\) 0 0
\(844\) −13.0605 + 15.8411i −0.449561 + 0.545271i
\(845\) −83.4283 + 48.1674i −2.87002 + 1.65701i
\(846\) 0 0
\(847\) −4.53211 18.2220i −0.155725 0.626116i
\(848\) 18.2159 15.8297i 0.625537 0.543594i
\(849\) 0 0
\(850\) −11.9143 + 2.15396i −0.408657 + 0.0738802i
\(851\) 0.518119 0.299136i 0.0177609 0.0102543i
\(852\) 0 0
\(853\) 38.8466 22.4281i 1.33008 0.767924i 0.344771 0.938687i \(-0.387956\pi\)
0.985312 + 0.170763i \(0.0546232\pi\)
\(854\) 6.07073 + 13.4987i 0.207736 + 0.461917i
\(855\) 0 0
\(856\) −27.5505 15.4334i −0.941657 0.527504i
\(857\) 7.51550i 0.256725i 0.991727 + 0.128362i \(0.0409721\pi\)
−0.991727 + 0.128362i \(0.959028\pi\)
\(858\) 0 0
\(859\) 30.9241 1.05512 0.527559 0.849519i \(-0.323107\pi\)
0.527559 + 0.849519i \(0.323107\pi\)
\(860\) −20.0785 + 7.50518i −0.684670 + 0.255924i
\(861\) 0 0
\(862\) −40.2656 + 7.27952i −1.37145 + 0.247941i
\(863\) −37.2047 + 21.4801i −1.26646 + 0.731192i −0.974317 0.225181i \(-0.927703\pi\)
−0.292146 + 0.956374i \(0.594369\pi\)
\(864\) 0 0
\(865\) −1.25871 + 2.18015i −0.0427975 + 0.0741274i
\(866\) −10.1392 11.9779i −0.344545 0.407027i
\(867\) 0 0
\(868\) −15.8092 23.0350i −0.536600 0.781858i
\(869\) 0.635021 1.09989i 0.0215416 0.0373112i
\(870\) 0 0
\(871\) −31.1865 −1.05671
\(872\) 13.2306 0.171593i 0.448043 0.00581087i
\(873\) 0 0
\(874\) −1.27206 + 3.54252i −0.0430279 + 0.119828i
\(875\) −19.0023 + 4.72618i −0.642396 + 0.159774i
\(876\) 0 0
\(877\) 8.25082 0.278610 0.139305 0.990249i \(-0.455513\pi\)
0.139305 + 0.990249i \(0.455513\pi\)
\(878\) 3.51438 + 19.4393i 0.118605 + 0.656044i
\(879\) 0 0
\(880\) −26.0164 8.96288i −0.877013 0.302138i
\(881\) 22.1964i 0.747816i −0.927466 0.373908i \(-0.878018\pi\)
0.927466 0.373908i \(-0.121982\pi\)
\(882\) 0 0
\(883\) 48.0915i 1.61841i 0.587529 + 0.809203i \(0.300101\pi\)
−0.587529 + 0.809203i \(0.699899\pi\)
\(884\) −14.3539 + 5.36538i −0.482774 + 0.180457i
\(885\) 0 0
\(886\) −2.88033 + 0.520729i −0.0967666 + 0.0174942i
\(887\) 42.7483 1.43535 0.717674 0.696379i \(-0.245207\pi\)
0.717674 + 0.696379i \(0.245207\pi\)
\(888\) 0 0
\(889\) 27.4912 6.83749i 0.922025 0.229322i
\(890\) −17.5011 6.28434i −0.586639 0.210652i
\(891\) 0 0
\(892\) −34.7506 + 12.9895i −1.16354 + 0.434922i
\(893\) 1.57696 0.0527710
\(894\) 0 0
\(895\) 20.6880 35.8327i 0.691525 1.19776i
\(896\) −26.9720 + 12.9812i −0.901071 + 0.433671i
\(897\) 0 0
\(898\) 17.2311 14.5860i 0.575009 0.486741i
\(899\) −10.5929 + 18.3475i −0.353294 + 0.611923i
\(900\) 0 0
\(901\) 6.27781 3.62450i 0.209144 0.120749i
\(902\) −2.60735 14.4222i −0.0868153 0.480206i
\(903\) 0 0
\(904\) 31.8202 0.412690i 1.05832 0.0137259i
\(905\) 18.2231 0.605755
\(906\) 0 0
\(907\) 16.3986i 0.544508i 0.962225 + 0.272254i \(0.0877690\pi\)
−0.962225 + 0.272254i \(0.912231\pi\)
\(908\) −1.99117 + 11.8929i −0.0660794 + 0.394679i
\(909\) 0 0
\(910\) −75.7750 + 34.0779i −2.51192 + 1.12967i
\(911\) −6.37439 + 3.68026i −0.211193 + 0.121932i −0.601866 0.798597i \(-0.705576\pi\)
0.390673 + 0.920530i \(0.372242\pi\)
\(912\) 0 0
\(913\) −3.44155 + 1.98698i −0.113899 + 0.0657594i
\(914\) −3.29222 18.2104i −0.108897 0.602347i
\(915\) 0 0
\(916\) −5.74312 0.961545i −0.189758 0.0317703i
\(917\) −3.62465 14.5735i −0.119696 0.481258i
\(918\) 0 0
\(919\) −10.1235 + 5.84481i −0.333944 + 0.192802i −0.657591 0.753375i \(-0.728424\pi\)
0.323647 + 0.946178i \(0.395091\pi\)
\(920\) 2.97182 + 4.99655i 0.0979778 + 0.164731i
\(921\) 0 0
\(922\) 2.28364 6.35966i 0.0752078 0.209444i
\(923\) 4.69794 8.13708i 0.154635 0.267835i
\(924\) 0 0
\(925\) −3.61104 6.25450i −0.118730 0.205647i
\(926\) 23.3632 4.22379i 0.767764 0.138802i
\(927\) 0 0
\(928\) 17.6996 + 14.2113i 0.581016 + 0.466508i
\(929\) 24.5685 + 14.1846i 0.806065 + 0.465382i 0.845588 0.533837i \(-0.179250\pi\)
−0.0395223 + 0.999219i \(0.512584\pi\)
\(930\) 0 0
\(931\) −26.7480 16.7569i −0.876629 0.549185i
\(932\) 17.4041 6.50552i 0.570090 0.213095i
\(933\) 0 0
\(934\) −45.7673 16.4342i −1.49755 0.537745i
\(935\) −7.15813 4.13275i −0.234096 0.135155i
\(936\) 0 0
\(937\) 49.8946i 1.62999i 0.579470 + 0.814993i \(0.303259\pi\)
−0.579470 + 0.814993i \(0.696741\pi\)
\(938\) −18.2054 1.84454i −0.594429 0.0602263i
\(939\) 0 0
\(940\) 1.54941 1.87928i 0.0505362 0.0612952i
\(941\) 10.8025 6.23683i 0.352151 0.203315i −0.313481 0.949594i \(-0.601495\pi\)
0.665632 + 0.746280i \(0.268162\pi\)
\(942\) 0 0
\(943\) −1.54819 + 2.68154i −0.0504159 + 0.0873229i
\(944\) −11.0713 57.0059i −0.360339 1.85538i
\(945\) 0 0
\(946\) −8.09327 2.90615i −0.263135 0.0944871i
\(947\) −24.4507 14.1166i −0.794541 0.458728i 0.0470178 0.998894i \(-0.485028\pi\)
−0.841559 + 0.540166i \(0.818362\pi\)
\(948\) 0 0
\(949\) 35.4031 + 61.3200i 1.14923 + 1.99053i
\(950\) 42.7637 + 15.3557i 1.38744 + 0.498204i
\(951\) 0 0
\(952\) −8.69657 + 2.28313i −0.281857 + 0.0739966i
\(953\) 2.77543 0.0899050 0.0449525 0.998989i \(-0.485686\pi\)
0.0449525 + 0.998989i \(0.485686\pi\)
\(954\) 0 0
\(955\) −27.6333 + 47.8623i −0.894193 + 1.54879i
\(956\) −7.11856 + 8.63409i −0.230231 + 0.279246i
\(957\) 0 0
\(958\) −11.1064 + 9.40147i −0.358831 + 0.303748i
\(959\) −4.97461 20.0012i −0.160638 0.645871i
\(960\) 0 0
\(961\) 1.56177 2.70506i 0.0503796 0.0872601i
\(962\) −5.90573 6.97671i −0.190408 0.224938i
\(963\) 0 0
\(964\) 4.27462 + 0.715682i 0.137676 + 0.0230506i
\(965\) −2.67082 + 1.54200i −0.0859767 + 0.0496387i
\(966\) 0 0
\(967\) −33.2406 19.1915i −1.06894 0.617156i −0.141052 0.990002i \(-0.545048\pi\)
−0.927893 + 0.372847i \(0.878382\pi\)
\(968\) 10.2614 + 17.2527i 0.329815 + 0.554522i
\(969\) 0 0
\(970\) 79.2566 + 28.4597i 2.54478 + 0.913785i
\(971\) 22.7039 + 39.3244i 0.728604 + 1.26198i 0.957473 + 0.288522i \(0.0931637\pi\)
−0.228870 + 0.973457i \(0.573503\pi\)
\(972\) 0 0
\(973\) −34.9609 10.0467i −1.12079 0.322082i
\(974\) −38.4206 + 6.94597i −1.23107 + 0.222563i
\(975\) 0 0
\(976\) −10.3789 11.9434i −0.332219 0.382299i
\(977\) 19.2557 + 33.3519i 0.616046 + 1.06702i 0.990200 + 0.139656i \(0.0445997\pi\)
−0.374154 + 0.927366i \(0.622067\pi\)
\(978\) 0 0
\(979\) −3.72994 6.46044i −0.119209 0.206477i
\(980\) −46.2500 + 15.4116i −1.47740 + 0.492306i
\(981\) 0 0
\(982\) 45.1155 8.15633i 1.43969 0.260279i
\(983\) 6.34126 0.202255 0.101127 0.994873i \(-0.467755\pi\)
0.101127 + 0.994873i \(0.467755\pi\)
\(984\) 0 0
\(985\) 7.56138i 0.240926i
\(986\) 4.40519 + 5.20405i 0.140290 + 0.165731i
\(987\) 0 0
\(988\) 56.7184 + 9.49612i 1.80445 + 0.302112i
\(989\) 0.908382 + 1.57336i 0.0288849 + 0.0500300i
\(990\) 0 0
\(991\) −39.7136 22.9287i −1.26154 0.728353i −0.288171 0.957579i \(-0.593047\pi\)
−0.973373 + 0.229226i \(0.926380\pi\)
\(992\) 23.2892 + 18.6993i 0.739431 + 0.593702i
\(993\) 0 0
\(994\) 3.22374 4.47224i 0.102251 0.141851i
\(995\) 39.0864 + 22.5665i 1.23912 + 0.715407i
\(996\) 0 0
\(997\) 41.3718i 1.31026i −0.755518 0.655128i \(-0.772615\pi\)
0.755518 0.655128i \(-0.227385\pi\)
\(998\) 6.51954 + 7.70182i 0.206372 + 0.243797i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.n.b.199.10 84
3.2 odd 2 252.2.n.b.31.33 yes 84
4.3 odd 2 inner 756.2.n.b.199.20 84
7.5 odd 6 756.2.bj.b.523.38 84
9.2 odd 6 252.2.bj.b.115.5 yes 84
9.7 even 3 756.2.bj.b.451.38 84
12.11 even 2 252.2.n.b.31.23 84
21.5 even 6 252.2.bj.b.103.5 yes 84
28.19 even 6 756.2.bj.b.523.37 84
36.7 odd 6 756.2.bj.b.451.37 84
36.11 even 6 252.2.bj.b.115.6 yes 84
63.47 even 6 252.2.n.b.187.23 yes 84
63.61 odd 6 inner 756.2.n.b.19.20 84
84.47 odd 6 252.2.bj.b.103.6 yes 84
252.47 odd 6 252.2.n.b.187.33 yes 84
252.187 even 6 inner 756.2.n.b.19.10 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.n.b.31.23 84 12.11 even 2
252.2.n.b.31.33 yes 84 3.2 odd 2
252.2.n.b.187.23 yes 84 63.47 even 6
252.2.n.b.187.33 yes 84 252.47 odd 6
252.2.bj.b.103.5 yes 84 21.5 even 6
252.2.bj.b.103.6 yes 84 84.47 odd 6
252.2.bj.b.115.5 yes 84 9.2 odd 6
252.2.bj.b.115.6 yes 84 36.11 even 6
756.2.n.b.19.10 84 252.187 even 6 inner
756.2.n.b.19.20 84 63.61 odd 6 inner
756.2.n.b.199.10 84 1.1 even 1 trivial
756.2.n.b.199.20 84 4.3 odd 2 inner
756.2.bj.b.451.37 84 36.7 odd 6
756.2.bj.b.451.38 84 9.7 even 3
756.2.bj.b.523.37 84 28.19 even 6
756.2.bj.b.523.38 84 7.5 odd 6