gp: [N,k,chi] = [756,2,Mod(377,756)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(756, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("756.377");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 4 x 2 + 1 x^{4} + 4x^{2} + 1 x 4 + 4 x 2 + 1
x^4 + 4*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
ν 3 + 5 ν \nu^{3} + 5\nu ν 3 + 5 ν
v^3 + 5*v
β 2 \beta_{2} β 2 = = =
ν 2 + 2 \nu^{2} + 2 ν 2 + 2
v^2 + 2
β 3 \beta_{3} β 3 = = =
− 3 ν 3 − 9 ν -3\nu^{3} - 9\nu − 3 ν 3 − 9 ν
-3*v^3 - 9*v
ν \nu ν = = =
( β 3 + 3 β 1 ) / 6 ( \beta_{3} + 3\beta_1 ) / 6 ( β 3 + 3 β 1 ) / 6
(b3 + 3*b1) / 6
ν 2 \nu^{2} ν 2 = = =
β 2 − 2 \beta_{2} - 2 β 2 − 2
b2 - 2
ν 3 \nu^{3} ν 3 = = =
( − 5 β 3 − 9 β 1 ) / 6 ( -5\beta_{3} - 9\beta_1 ) / 6 ( − 5 β 3 − 9 β 1 ) / 6
(-5*b3 - 9*b1) / 6
Character values
We give the values of χ \chi χ on generators for ( Z / 756 Z ) × \left(\mathbb{Z}/756\mathbb{Z}\right)^\times ( Z / 7 5 6 Z ) × .
n n n
29 29 2 9
325 325 3 2 5
379 379 3 7 9
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 2 − 3 T_{5}^{2} - 3 T 5 2 − 3
T5^2 - 3
acting on S 2 n e w ( 756 , [ χ ] ) S_{2}^{\mathrm{new}}(756, [\chi]) S 2 n e w ( 7 5 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
7 7 7
( T 2 + 2 T + 7 ) 2 (T^{2} + 2 T + 7)^{2} ( T 2 + 2 T + 7 ) 2
(T^2 + 2*T + 7)^2
11 11 1 1
( T 2 + 18 ) 2 (T^{2} + 18)^{2} ( T 2 + 1 8 ) 2
(T^2 + 18)^2
13 13 1 3
( T 2 + 6 ) 2 (T^{2} + 6)^{2} ( T 2 + 6 ) 2
(T^2 + 6)^2
17 17 1 7
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
19 19 1 9
( T 2 + 6 ) 2 (T^{2} + 6)^{2} ( T 2 + 6 ) 2
(T^2 + 6)^2
23 23 2 3
( T 2 + 72 ) 2 (T^{2} + 72)^{2} ( T 2 + 7 2 ) 2
(T^2 + 72)^2
29 29 2 9
( T 2 + 18 ) 2 (T^{2} + 18)^{2} ( T 2 + 1 8 ) 2
(T^2 + 18)^2
31 31 3 1
( T 2 + 54 ) 2 (T^{2} + 54)^{2} ( T 2 + 5 4 ) 2
(T^2 + 54)^2
37 37 3 7
( T − 1 ) 4 (T - 1)^{4} ( T − 1 ) 4
(T - 1)^4
41 41 4 1
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
43 43 4 3
( T − 7 ) 4 (T - 7)^{4} ( T − 7 ) 4
(T - 7)^4
47 47 4 7
( T 2 − 147 ) 2 (T^{2} - 147)^{2} ( T 2 − 1 4 7 ) 2
(T^2 - 147)^2
53 53 5 3
T 4 T^{4} T 4
T^4
59 59 5 9
( T 2 − 75 ) 2 (T^{2} - 75)^{2} ( T 2 − 7 5 ) 2
(T^2 - 75)^2
61 61 6 1
( T 2 + 6 ) 2 (T^{2} + 6)^{2} ( T 2 + 6 ) 2
(T^2 + 6)^2
67 67 6 7
( T + 10 ) 4 (T + 10)^{4} ( T + 1 0 ) 4
(T + 10)^4
71 71 7 1
( T 2 + 72 ) 2 (T^{2} + 72)^{2} ( T 2 + 7 2 ) 2
(T^2 + 72)^2
73 73 7 3
( T 2 + 96 ) 2 (T^{2} + 96)^{2} ( T 2 + 9 6 ) 2
(T^2 + 96)^2
79 79 7 9
( T − 5 ) 4 (T - 5)^{4} ( T − 5 ) 4
(T - 5)^4
83 83 8 3
( T 2 − 147 ) 2 (T^{2} - 147)^{2} ( T 2 − 1 4 7 ) 2
(T^2 - 147)^2
89 89 8 9
( T 2 − 108 ) 2 (T^{2} - 108)^{2} ( T 2 − 1 0 8 ) 2
(T^2 - 108)^2
97 97 9 7
( T 2 + 6 ) 2 (T^{2} + 6)^{2} ( T 2 + 6 ) 2
(T^2 + 6)^2
show more
show less