Properties

Label 756.2.f.d
Level 756756
Weight 22
Character orbit 756.f
Analytic conductor 6.0376.037
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(377,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.377"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 756=22337 756 = 2^{2} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 756.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.036690392816.03669039281
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+4x2+1 x^{4} + 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2\cdot 3
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q5+(β11)q7+β3q11β1q13β2q17+β1q19+2β3q232q25+β3q293β1q31+(β3+β2)q35+β1q97+O(q100) q - \beta_{2} q^{5} + (\beta_1 - 1) q^{7} + \beta_{3} q^{11} - \beta_1 q^{13} - \beta_{2} q^{17} + \beta_1 q^{19} + 2 \beta_{3} q^{23} - 2 q^{25} + \beta_{3} q^{29} - 3 \beta_1 q^{31} + (\beta_{3} + \beta_{2}) q^{35}+ \cdots - \beta_1 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q78q25+4q37+28q4320q4940q67+20q79+12q85+24q91+O(q100) 4 q - 4 q^{7} - 8 q^{25} + 4 q^{37} + 28 q^{43} - 20 q^{49} - 40 q^{67} + 20 q^{79} + 12 q^{85} + 24 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+4x2+1 x^{4} + 4x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν3+5ν \nu^{3} + 5\nu Copy content Toggle raw display
β2\beta_{2}== ν2+2 \nu^{2} + 2 Copy content Toggle raw display
β3\beta_{3}== 3ν39ν -3\nu^{3} - 9\nu Copy content Toggle raw display
ν\nu== (β3+3β1)/6 ( \beta_{3} + 3\beta_1 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== β22 \beta_{2} - 2 Copy content Toggle raw display
ν3\nu^{3}== (5β39β1)/6 ( -5\beta_{3} - 9\beta_1 ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/756Z)×\left(\mathbb{Z}/756\mathbb{Z}\right)^\times.

nn 2929 325325 379379
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
377.1
0.517638i
0.517638i
1.93185i
1.93185i
0 0 0 −1.73205 0 −1.00000 2.44949i 0 0 0
377.2 0 0 0 −1.73205 0 −1.00000 + 2.44949i 0 0 0
377.3 0 0 0 1.73205 0 −1.00000 2.44949i 0 0 0
377.4 0 0 0 1.73205 0 −1.00000 + 2.44949i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 756.2.f.d 4
3.b odd 2 1 inner 756.2.f.d 4
4.b odd 2 1 3024.2.k.h 4
7.b odd 2 1 inner 756.2.f.d 4
9.c even 3 2 2268.2.x.j 8
9.d odd 6 2 2268.2.x.j 8
12.b even 2 1 3024.2.k.h 4
21.c even 2 1 inner 756.2.f.d 4
28.d even 2 1 3024.2.k.h 4
63.l odd 6 2 2268.2.x.j 8
63.o even 6 2 2268.2.x.j 8
84.h odd 2 1 3024.2.k.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.f.d 4 1.a even 1 1 trivial
756.2.f.d 4 3.b odd 2 1 inner
756.2.f.d 4 7.b odd 2 1 inner
756.2.f.d 4 21.c even 2 1 inner
2268.2.x.j 8 9.c even 3 2
2268.2.x.j 8 9.d odd 6 2
2268.2.x.j 8 63.l odd 6 2
2268.2.x.j 8 63.o even 6 2
3024.2.k.h 4 4.b odd 2 1
3024.2.k.h 4 12.b even 2 1
3024.2.k.h 4 28.d even 2 1
3024.2.k.h 4 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T523 T_{5}^{2} - 3 acting on S2new(756,[χ])S_{2}^{\mathrm{new}}(756, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
77 (T2+2T+7)2 (T^{2} + 2 T + 7)^{2} Copy content Toggle raw display
1111 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
1313 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
1717 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
1919 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
2323 (T2+72)2 (T^{2} + 72)^{2} Copy content Toggle raw display
2929 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
3131 (T2+54)2 (T^{2} + 54)^{2} Copy content Toggle raw display
3737 (T1)4 (T - 1)^{4} Copy content Toggle raw display
4141 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
4343 (T7)4 (T - 7)^{4} Copy content Toggle raw display
4747 (T2147)2 (T^{2} - 147)^{2} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 (T275)2 (T^{2} - 75)^{2} Copy content Toggle raw display
6161 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
6767 (T+10)4 (T + 10)^{4} Copy content Toggle raw display
7171 (T2+72)2 (T^{2} + 72)^{2} Copy content Toggle raw display
7373 (T2+96)2 (T^{2} + 96)^{2} Copy content Toggle raw display
7979 (T5)4 (T - 5)^{4} Copy content Toggle raw display
8383 (T2147)2 (T^{2} - 147)^{2} Copy content Toggle raw display
8989 (T2108)2 (T^{2} - 108)^{2} Copy content Toggle raw display
9797 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
show more
show less