Properties

Label 756.2.f.b
Level 756756
Weight 22
Character orbit 756.f
Analytic conductor 6.0376.037
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(377,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.377"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 756=22337 756 = 2^{2} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 756.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.036690392816.03669039281
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ62)q7+(2ζ6+1)q13+(10ζ6+5)q195q25+(12ζ6+6)q31+q378q43+(5ζ6+3)q49+(10ζ6+5)q61++(22ζ611)q97+O(q100) q + ( - \zeta_{6} - 2) q^{7} + ( - 2 \zeta_{6} + 1) q^{13} + ( - 10 \zeta_{6} + 5) q^{19} - 5 q^{25} + ( - 12 \zeta_{6} + 6) q^{31} + q^{37} - 8 q^{43} + (5 \zeta_{6} + 3) q^{49} + ( - 10 \zeta_{6} + 5) q^{61}+ \cdots + (22 \zeta_{6} - 11) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q5q710q25+2q3716q43+11q49+22q6726q793q91+O(q100) 2 q - 5 q^{7} - 10 q^{25} + 2 q^{37} - 16 q^{43} + 11 q^{49} + 22 q^{67} - 26 q^{79} - 3 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/756Z)×\left(\mathbb{Z}/756\mathbb{Z}\right)^\times.

nn 2929 325325 379379
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
377.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 0 0 −2.50000 0.866025i 0 0 0
377.2 0 0 0 0 0 −2.50000 + 0.866025i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 756.2.f.b 2
3.b odd 2 1 CM 756.2.f.b 2
4.b odd 2 1 3024.2.k.c 2
7.b odd 2 1 inner 756.2.f.b 2
9.c even 3 1 2268.2.x.d 2
9.c even 3 1 2268.2.x.f 2
9.d odd 6 1 2268.2.x.d 2
9.d odd 6 1 2268.2.x.f 2
12.b even 2 1 3024.2.k.c 2
21.c even 2 1 inner 756.2.f.b 2
28.d even 2 1 3024.2.k.c 2
63.l odd 6 1 2268.2.x.d 2
63.l odd 6 1 2268.2.x.f 2
63.o even 6 1 2268.2.x.d 2
63.o even 6 1 2268.2.x.f 2
84.h odd 2 1 3024.2.k.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.f.b 2 1.a even 1 1 trivial
756.2.f.b 2 3.b odd 2 1 CM
756.2.f.b 2 7.b odd 2 1 inner
756.2.f.b 2 21.c even 2 1 inner
2268.2.x.d 2 9.c even 3 1
2268.2.x.d 2 9.d odd 6 1
2268.2.x.d 2 63.l odd 6 1
2268.2.x.d 2 63.o even 6 1
2268.2.x.f 2 9.c even 3 1
2268.2.x.f 2 9.d odd 6 1
2268.2.x.f 2 63.l odd 6 1
2268.2.x.f 2 63.o even 6 1
3024.2.k.c 2 4.b odd 2 1
3024.2.k.c 2 12.b even 2 1
3024.2.k.c 2 28.d even 2 1
3024.2.k.c 2 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5 T_{5} acting on S2new(756,[χ])S_{2}^{\mathrm{new}}(756, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+5T+7 T^{2} + 5T + 7 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+3 T^{2} + 3 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+75 T^{2} + 75 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+108 T^{2} + 108 Copy content Toggle raw display
3737 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+75 T^{2} + 75 Copy content Toggle raw display
6767 (T11)2 (T - 11)^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+3 T^{2} + 3 Copy content Toggle raw display
7979 (T+13)2 (T + 13)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+363 T^{2} + 363 Copy content Toggle raw display
show more
show less