Properties

Label 756.2.f.a
Level 756756
Weight 22
Character orbit 756.f
Analytic conductor 6.0376.037
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(377,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.377"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 756=22337 756 = 2^{2} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 756.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.036690392816.03669039281
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{-3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3q5+(β+2)q7+3βq112βq13+6q17βq193βq23+4q256βq293βq31+(3β6)q35+q37+3q41++4βq97+O(q100) q - 3 q^{5} + ( - \beta + 2) q^{7} + 3 \beta q^{11} - 2 \beta q^{13} + 6 q^{17} - \beta q^{19} - 3 \beta q^{23} + 4 q^{25} - 6 \beta q^{29} - 3 \beta q^{31} + (3 \beta - 6) q^{35} + q^{37} + 3 q^{41} + \cdots + 4 \beta q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q5+4q7+12q17+8q2512q35+2q37+6q41+20q43+12q47+2q4912q59+4q67+18q77+28q7912q8336q8518q8912q91+O(q100) 2 q - 6 q^{5} + 4 q^{7} + 12 q^{17} + 8 q^{25} - 12 q^{35} + 2 q^{37} + 6 q^{41} + 20 q^{43} + 12 q^{47} + 2 q^{49} - 12 q^{59} + 4 q^{67} + 18 q^{77} + 28 q^{79} - 12 q^{83} - 36 q^{85} - 18 q^{89} - 12 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/756Z)×\left(\mathbb{Z}/756\mathbb{Z}\right)^\times.

nn 2929 325325 379379
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
377.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −3.00000 0 2.00000 1.73205i 0 0 0
377.2 0 0 0 −3.00000 0 2.00000 + 1.73205i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 756.2.f.a 2
3.b odd 2 1 756.2.f.c yes 2
4.b odd 2 1 3024.2.k.a 2
7.b odd 2 1 756.2.f.c yes 2
9.c even 3 1 2268.2.x.g 2
9.c even 3 1 2268.2.x.h 2
9.d odd 6 1 2268.2.x.a 2
9.d odd 6 1 2268.2.x.b 2
12.b even 2 1 3024.2.k.d 2
21.c even 2 1 inner 756.2.f.a 2
28.d even 2 1 3024.2.k.d 2
63.l odd 6 1 2268.2.x.a 2
63.l odd 6 1 2268.2.x.b 2
63.o even 6 1 2268.2.x.g 2
63.o even 6 1 2268.2.x.h 2
84.h odd 2 1 3024.2.k.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.f.a 2 1.a even 1 1 trivial
756.2.f.a 2 21.c even 2 1 inner
756.2.f.c yes 2 3.b odd 2 1
756.2.f.c yes 2 7.b odd 2 1
2268.2.x.a 2 9.d odd 6 1
2268.2.x.a 2 63.l odd 6 1
2268.2.x.b 2 9.d odd 6 1
2268.2.x.b 2 63.l odd 6 1
2268.2.x.g 2 9.c even 3 1
2268.2.x.g 2 63.o even 6 1
2268.2.x.h 2 9.c even 3 1
2268.2.x.h 2 63.o even 6 1
3024.2.k.a 2 4.b odd 2 1
3024.2.k.a 2 84.h odd 2 1
3024.2.k.d 2 12.b even 2 1
3024.2.k.d 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+3 T_{5} + 3 acting on S2new(756,[χ])S_{2}^{\mathrm{new}}(756, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
77 T24T+7 T^{2} - 4T + 7 Copy content Toggle raw display
1111 T2+27 T^{2} + 27 Copy content Toggle raw display
1313 T2+12 T^{2} + 12 Copy content Toggle raw display
1717 (T6)2 (T - 6)^{2} Copy content Toggle raw display
1919 T2+3 T^{2} + 3 Copy content Toggle raw display
2323 T2+27 T^{2} + 27 Copy content Toggle raw display
2929 T2+108 T^{2} + 108 Copy content Toggle raw display
3131 T2+27 T^{2} + 27 Copy content Toggle raw display
3737 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4141 (T3)2 (T - 3)^{2} Copy content Toggle raw display
4343 (T10)2 (T - 10)^{2} Copy content Toggle raw display
4747 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
6161 T2+192 T^{2} + 192 Copy content Toggle raw display
6767 (T2)2 (T - 2)^{2} Copy content Toggle raw display
7171 T2+27 T^{2} + 27 Copy content Toggle raw display
7373 T2+12 T^{2} + 12 Copy content Toggle raw display
7979 (T14)2 (T - 14)^{2} Copy content Toggle raw display
8383 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
8989 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
9797 T2+48 T^{2} + 48 Copy content Toggle raw display
show more
show less