gp: [N,k,chi] = [756,2,Mod(377,756)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(756, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("756.377");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = − 3 \beta = \sqrt{-3} β = − 3 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 756 Z ) × \left(\mathbb{Z}/756\mathbb{Z}\right)^\times ( Z / 7 5 6 Z ) × .
n n n
29 29 2 9
325 325 3 2 5
379 379 3 7 9
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 + 3 T_{5} + 3 T 5 + 3
T5 + 3
acting on S 2 n e w ( 756 , [ χ ] ) S_{2}^{\mathrm{new}}(756, [\chi]) S 2 n e w ( 7 5 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
7 7 7
T 2 − 4 T + 7 T^{2} - 4T + 7 T 2 − 4 T + 7
T^2 - 4*T + 7
11 11 1 1
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
13 13 1 3
T 2 + 12 T^{2} + 12 T 2 + 1 2
T^2 + 12
17 17 1 7
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
19 19 1 9
T 2 + 3 T^{2} + 3 T 2 + 3
T^2 + 3
23 23 2 3
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
29 29 2 9
T 2 + 108 T^{2} + 108 T 2 + 1 0 8
T^2 + 108
31 31 3 1
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
37 37 3 7
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
41 41 4 1
( T − 3 ) 2 (T - 3)^{2} ( T − 3 ) 2
(T - 3)^2
43 43 4 3
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
47 47 4 7
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
( T + 6 ) 2 (T + 6)^{2} ( T + 6 ) 2
(T + 6)^2
61 61 6 1
T 2 + 192 T^{2} + 192 T 2 + 1 9 2
T^2 + 192
67 67 6 7
( T − 2 ) 2 (T - 2)^{2} ( T − 2 ) 2
(T - 2)^2
71 71 7 1
T 2 + 27 T^{2} + 27 T 2 + 2 7
T^2 + 27
73 73 7 3
T 2 + 12 T^{2} + 12 T 2 + 1 2
T^2 + 12
79 79 7 9
( T − 14 ) 2 (T - 14)^{2} ( T − 1 4 ) 2
(T - 14)^2
83 83 8 3
( T + 6 ) 2 (T + 6)^{2} ( T + 6 ) 2
(T + 6)^2
89 89 8 9
( T + 9 ) 2 (T + 9)^{2} ( T + 9 ) 2
(T + 9)^2
97 97 9 7
T 2 + 48 T^{2} + 48 T 2 + 4 8
T^2 + 48
show more
show less