Properties

Label 756.2.bj.b.523.27
Level $756$
Weight $2$
Character 756.523
Analytic conductor $6.037$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(451,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bj (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(42\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 523.27
Character \(\chi\) \(=\) 756.523
Dual form 756.2.bj.b.451.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.412858 - 1.35261i) q^{2} +(-1.65910 - 1.11687i) q^{4} +(-0.514884 + 0.297269i) q^{5} +(-1.74201 + 1.99133i) q^{7} +(-2.19566 + 1.78300i) q^{8} +(0.189514 + 0.819166i) q^{10} +(-2.63566 - 1.52170i) q^{11} +(6.21148 + 3.58620i) q^{13} +(1.97428 + 3.17840i) q^{14} +(1.50521 + 3.70599i) q^{16} +(-2.28182 + 1.31741i) q^{17} +(-1.15636 + 2.00287i) q^{19} +(1.18625 + 0.0818611i) q^{20} +(-3.14642 + 2.93677i) q^{22} +(1.34481 - 0.776425i) q^{23} +(-2.32326 + 4.02401i) q^{25} +(7.41518 - 6.92111i) q^{26} +(5.11422 - 1.35821i) q^{28} +(3.50068 + 6.06335i) q^{29} +5.91792 q^{31} +(5.63419 - 0.505907i) q^{32} +(0.839873 + 3.63032i) q^{34} +(0.304976 - 1.54315i) q^{35} +(-2.74961 + 4.76246i) q^{37} +(2.23169 + 2.39100i) q^{38} +(0.600480 - 1.57074i) q^{40} +(3.27676 + 1.89184i) q^{41} +(-2.52490 + 1.45775i) q^{43} +(2.67328 + 5.46834i) q^{44} +(-0.494984 - 2.13955i) q^{46} -9.67847 q^{47} +(-0.930778 - 6.93784i) q^{49} +(4.48373 + 4.80381i) q^{50} +(-6.30013 - 12.8873i) q^{52} +(-4.10505 - 7.11016i) q^{53} +1.80941 q^{55} +(0.274327 - 7.47828i) q^{56} +(9.64661 - 2.23174i) q^{58} -3.77001 q^{59} +2.67699i q^{61} +(2.44326 - 8.00462i) q^{62} +(1.64182 - 7.82971i) q^{64} -4.26426 q^{65} +8.92572i q^{67} +(5.25714 + 0.362785i) q^{68} +(-1.96136 - 1.04961i) q^{70} +8.75743i q^{71} +(-1.30083 + 0.751036i) q^{73} +(5.30655 + 5.68536i) q^{74} +(4.15546 - 2.03146i) q^{76} +(7.62156 - 2.59765i) q^{77} -6.73276i q^{79} +(-1.87668 - 1.46071i) q^{80} +(3.91175 - 3.65111i) q^{82} +(-4.99378 - 8.64947i) q^{83} +(0.783250 - 1.35663i) q^{85} +(0.929343 + 4.01705i) q^{86} +(8.50020 - 1.35825i) q^{88} +(13.7577 + 7.94299i) q^{89} +(-17.9618 + 6.12189i) q^{91} +(-3.09833 - 0.213810i) q^{92} +(-3.99583 + 13.0912i) q^{94} -1.37500i q^{95} +(1.20110 - 0.693454i) q^{97} +(-9.76846 - 1.60536i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 2 q^{2} - 2 q^{4} - 6 q^{5} + 16 q^{8} - 18 q^{10} + 18 q^{13} - 14 q^{14} + 14 q^{16} - 6 q^{17} + 24 q^{20} + 6 q^{22} + 16 q^{25} + 30 q^{26} - 4 q^{28} - 10 q^{29} + 18 q^{32} - 24 q^{34} + 2 q^{37}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.412858 1.35261i 0.291935 0.956438i
\(3\) 0 0
\(4\) −1.65910 1.11687i −0.829548 0.558435i
\(5\) −0.514884 + 0.297269i −0.230263 + 0.132943i −0.610693 0.791867i \(-0.709109\pi\)
0.380430 + 0.924810i \(0.375776\pi\)
\(6\) 0 0
\(7\) −1.74201 + 1.99133i −0.658419 + 0.752651i
\(8\) −2.19566 + 1.78300i −0.776282 + 0.630386i
\(9\) 0 0
\(10\) 0.189514 + 0.819166i 0.0599296 + 0.259043i
\(11\) −2.63566 1.52170i −0.794682 0.458810i 0.0469262 0.998898i \(-0.485057\pi\)
−0.841608 + 0.540088i \(0.818391\pi\)
\(12\) 0 0
\(13\) 6.21148 + 3.58620i 1.72275 + 0.994633i 0.913110 + 0.407712i \(0.133673\pi\)
0.809644 + 0.586921i \(0.199660\pi\)
\(14\) 1.97428 + 3.17840i 0.527649 + 0.849462i
\(15\) 0 0
\(16\) 1.50521 + 3.70599i 0.376301 + 0.926497i
\(17\) −2.28182 + 1.31741i −0.553423 + 0.319519i −0.750502 0.660869i \(-0.770188\pi\)
0.197078 + 0.980388i \(0.436855\pi\)
\(18\) 0 0
\(19\) −1.15636 + 2.00287i −0.265287 + 0.459490i −0.967639 0.252340i \(-0.918800\pi\)
0.702352 + 0.711830i \(0.252133\pi\)
\(20\) 1.18625 + 0.0818611i 0.265254 + 0.0183047i
\(21\) 0 0
\(22\) −3.14642 + 2.93677i −0.670819 + 0.626122i
\(23\) 1.34481 0.776425i 0.280412 0.161896i −0.353198 0.935549i \(-0.614906\pi\)
0.633610 + 0.773653i \(0.281573\pi\)
\(24\) 0 0
\(25\) −2.32326 + 4.02401i −0.464653 + 0.804802i
\(26\) 7.41518 6.92111i 1.45424 1.35734i
\(27\) 0 0
\(28\) 5.11422 1.35821i 0.966497 0.256677i
\(29\) 3.50068 + 6.06335i 0.650059 + 1.12594i 0.983108 + 0.183026i \(0.0585892\pi\)
−0.333049 + 0.942910i \(0.608077\pi\)
\(30\) 0 0
\(31\) 5.91792 1.06289 0.531445 0.847093i \(-0.321649\pi\)
0.531445 + 0.847093i \(0.321649\pi\)
\(32\) 5.63419 0.505907i 0.995993 0.0894325i
\(33\) 0 0
\(34\) 0.839873 + 3.63032i 0.144037 + 0.622594i
\(35\) 0.304976 1.54315i 0.0515503 0.260840i
\(36\) 0 0
\(37\) −2.74961 + 4.76246i −0.452033 + 0.782944i −0.998512 0.0545287i \(-0.982634\pi\)
0.546479 + 0.837473i \(0.315968\pi\)
\(38\) 2.23169 + 2.39100i 0.362028 + 0.387872i
\(39\) 0 0
\(40\) 0.600480 1.57074i 0.0949442 0.248356i
\(41\) 3.27676 + 1.89184i 0.511744 + 0.295456i 0.733550 0.679635i \(-0.237862\pi\)
−0.221806 + 0.975091i \(0.571195\pi\)
\(42\) 0 0
\(43\) −2.52490 + 1.45775i −0.385044 + 0.222305i −0.680011 0.733202i \(-0.738025\pi\)
0.294967 + 0.955508i \(0.404691\pi\)
\(44\) 2.67328 + 5.46834i 0.403012 + 0.824383i
\(45\) 0 0
\(46\) −0.494984 2.13955i −0.0729815 0.315459i
\(47\) −9.67847 −1.41175 −0.705875 0.708336i \(-0.749446\pi\)
−0.705875 + 0.708336i \(0.749446\pi\)
\(48\) 0 0
\(49\) −0.930778 6.93784i −0.132968 0.991120i
\(50\) 4.48373 + 4.80381i 0.634095 + 0.679361i
\(51\) 0 0
\(52\) −6.30013 12.8873i −0.873671 1.78714i
\(53\) −4.10505 7.11016i −0.563872 0.976655i −0.997154 0.0753965i \(-0.975978\pi\)
0.433282 0.901259i \(-0.357356\pi\)
\(54\) 0 0
\(55\) 1.80941 0.243981
\(56\) 0.274327 7.47828i 0.0366585 0.999328i
\(57\) 0 0
\(58\) 9.64661 2.23174i 1.26666 0.293042i
\(59\) −3.77001 −0.490814 −0.245407 0.969420i \(-0.578922\pi\)
−0.245407 + 0.969420i \(0.578922\pi\)
\(60\) 0 0
\(61\) 2.67699i 0.342754i 0.985206 + 0.171377i \(0.0548216\pi\)
−0.985206 + 0.171377i \(0.945178\pi\)
\(62\) 2.44326 8.00462i 0.310294 1.01659i
\(63\) 0 0
\(64\) 1.64182 7.82971i 0.205228 0.978714i
\(65\) −4.26426 −0.528916
\(66\) 0 0
\(67\) 8.92572i 1.09045i 0.838290 + 0.545225i \(0.183556\pi\)
−0.838290 + 0.545225i \(0.816444\pi\)
\(68\) 5.25714 + 0.362785i 0.637522 + 0.0439942i
\(69\) 0 0
\(70\) −1.96136 1.04961i −0.234428 0.125453i
\(71\) 8.75743i 1.03932i 0.854374 + 0.519658i \(0.173941\pi\)
−0.854374 + 0.519658i \(0.826059\pi\)
\(72\) 0 0
\(73\) −1.30083 + 0.751036i −0.152251 + 0.0879022i −0.574190 0.818722i \(-0.694683\pi\)
0.421939 + 0.906624i \(0.361350\pi\)
\(74\) 5.30655 + 5.68536i 0.616874 + 0.660910i
\(75\) 0 0
\(76\) 4.15546 2.03146i 0.476664 0.233024i
\(77\) 7.62156 2.59765i 0.868558 0.296029i
\(78\) 0 0
\(79\) 6.73276i 0.757495i −0.925500 0.378747i \(-0.876355\pi\)
0.925500 0.378747i \(-0.123645\pi\)
\(80\) −1.87668 1.46071i −0.209819 0.163312i
\(81\) 0 0
\(82\) 3.91175 3.65111i 0.431981 0.403198i
\(83\) −4.99378 8.64947i −0.548138 0.949403i −0.998402 0.0565077i \(-0.982003\pi\)
0.450264 0.892895i \(-0.351330\pi\)
\(84\) 0 0
\(85\) 0.783250 1.35663i 0.0849554 0.147147i
\(86\) 0.929343 + 4.01705i 0.100214 + 0.433169i
\(87\) 0 0
\(88\) 8.50020 1.35825i 0.906125 0.144790i
\(89\) 13.7577 + 7.94299i 1.45831 + 0.841955i 0.998928 0.0462839i \(-0.0147379\pi\)
0.459381 + 0.888239i \(0.348071\pi\)
\(90\) 0 0
\(91\) −17.9618 + 6.12189i −1.88291 + 0.641748i
\(92\) −3.09833 0.213810i −0.323023 0.0222912i
\(93\) 0 0
\(94\) −3.99583 + 13.0912i −0.412139 + 1.35025i
\(95\) 1.37500i 0.141072i
\(96\) 0 0
\(97\) 1.20110 0.693454i 0.121953 0.0704096i −0.437783 0.899081i \(-0.644236\pi\)
0.559736 + 0.828671i \(0.310903\pi\)
\(98\) −9.76846 1.60536i −0.986763 0.162166i
\(99\) 0 0
\(100\) 8.34881 4.08144i 0.834881 0.408144i
\(101\) −6.87010 3.96646i −0.683601 0.394677i 0.117610 0.993060i \(-0.462477\pi\)
−0.801210 + 0.598383i \(0.795810\pi\)
\(102\) 0 0
\(103\) −4.75698 8.23933i −0.468719 0.811846i 0.530641 0.847596i \(-0.321951\pi\)
−0.999361 + 0.0357508i \(0.988618\pi\)
\(104\) −20.0325 + 3.20100i −1.96435 + 0.313884i
\(105\) 0 0
\(106\) −11.3121 + 2.61704i −1.09872 + 0.254190i
\(107\) 11.8104 + 6.81874i 1.14176 + 0.659193i 0.946865 0.321632i \(-0.104231\pi\)
0.194891 + 0.980825i \(0.437565\pi\)
\(108\) 0 0
\(109\) −4.57329 7.92116i −0.438041 0.758710i 0.559497 0.828832i \(-0.310994\pi\)
−0.997538 + 0.0701225i \(0.977661\pi\)
\(110\) 0.747031 2.44743i 0.0712266 0.233353i
\(111\) 0 0
\(112\) −10.0019 3.45852i −0.945094 0.326800i
\(113\) −3.57459 + 6.19136i −0.336269 + 0.582435i −0.983728 0.179666i \(-0.942498\pi\)
0.647459 + 0.762100i \(0.275832\pi\)
\(114\) 0 0
\(115\) −0.461613 + 0.799538i −0.0430457 + 0.0745573i
\(116\) 0.964007 13.9695i 0.0895058 1.29703i
\(117\) 0 0
\(118\) −1.55648 + 5.09935i −0.143285 + 0.469433i
\(119\) 1.35157 6.83881i 0.123898 0.626912i
\(120\) 0 0
\(121\) −0.868856 1.50490i −0.0789869 0.136809i
\(122\) 3.62092 + 1.10522i 0.327823 + 0.100062i
\(123\) 0 0
\(124\) −9.81840 6.60954i −0.881718 0.593554i
\(125\) 5.73522i 0.512973i
\(126\) 0 0
\(127\) 11.0990i 0.984879i 0.870347 + 0.492439i \(0.163895\pi\)
−0.870347 + 0.492439i \(0.836105\pi\)
\(128\) −9.91269 5.45330i −0.876167 0.482008i
\(129\) 0 0
\(130\) −1.76053 + 5.76787i −0.154409 + 0.505876i
\(131\) 2.49572 + 4.32271i 0.218052 + 0.377677i 0.954212 0.299130i \(-0.0966965\pi\)
−0.736160 + 0.676807i \(0.763363\pi\)
\(132\) 0 0
\(133\) −1.97398 5.79172i −0.171166 0.502206i
\(134\) 12.0730 + 3.68505i 1.04295 + 0.318340i
\(135\) 0 0
\(136\) 2.66116 6.96107i 0.228192 0.596907i
\(137\) −3.15468 + 5.46407i −0.269523 + 0.466827i −0.968739 0.248084i \(-0.920199\pi\)
0.699216 + 0.714911i \(0.253533\pi\)
\(138\) 0 0
\(139\) −3.37429 + 5.84444i −0.286203 + 0.495719i −0.972900 0.231225i \(-0.925727\pi\)
0.686697 + 0.726944i \(0.259060\pi\)
\(140\) −2.22948 + 2.21962i −0.188426 + 0.187592i
\(141\) 0 0
\(142\) 11.8454 + 3.61557i 0.994042 + 0.303412i
\(143\) −10.9142 18.9040i −0.912695 1.58083i
\(144\) 0 0
\(145\) −3.60489 2.08128i −0.299369 0.172841i
\(146\) 0.478799 + 2.06959i 0.0396257 + 0.171280i
\(147\) 0 0
\(148\) 9.88092 4.83043i 0.812206 0.397059i
\(149\) −2.73106 4.73034i −0.223737 0.387525i 0.732202 0.681087i \(-0.238492\pi\)
−0.955940 + 0.293562i \(0.905159\pi\)
\(150\) 0 0
\(151\) 11.9298 + 6.88770i 0.970837 + 0.560513i 0.899491 0.436939i \(-0.143937\pi\)
0.0713457 + 0.997452i \(0.477271\pi\)
\(152\) −1.03215 6.45941i −0.0837186 0.523927i
\(153\) 0 0
\(154\) −0.366976 11.3814i −0.0295718 0.917143i
\(155\) −3.04704 + 1.75921i −0.244744 + 0.141303i
\(156\) 0 0
\(157\) 11.7945i 0.941303i −0.882319 0.470652i \(-0.844019\pi\)
0.882319 0.470652i \(-0.155981\pi\)
\(158\) −9.10678 2.77967i −0.724497 0.221139i
\(159\) 0 0
\(160\) −2.75056 + 1.93535i −0.217451 + 0.153003i
\(161\) −0.796555 + 4.03050i −0.0627774 + 0.317648i
\(162\) 0 0
\(163\) 2.95281 + 1.70481i 0.231282 + 0.133531i 0.611163 0.791505i \(-0.290702\pi\)
−0.379881 + 0.925035i \(0.624035\pi\)
\(164\) −3.32353 6.79846i −0.259524 0.530870i
\(165\) 0 0
\(166\) −13.7611 + 3.18362i −1.06807 + 0.247097i
\(167\) −6.47738 + 11.2191i −0.501235 + 0.868164i 0.498764 + 0.866738i \(0.333787\pi\)
−0.999999 + 0.00142608i \(0.999546\pi\)
\(168\) 0 0
\(169\) 19.2217 + 33.2929i 1.47859 + 2.56099i
\(170\) −1.51162 1.61952i −0.115936 0.124212i
\(171\) 0 0
\(172\) 5.81718 + 0.401432i 0.443556 + 0.0306089i
\(173\) 1.24744i 0.0948408i −0.998875 0.0474204i \(-0.984900\pi\)
0.998875 0.0474204i \(-0.0151000\pi\)
\(174\) 0 0
\(175\) −3.96597 11.6363i −0.299799 0.879618i
\(176\) 1.67219 12.0582i 0.126046 0.908922i
\(177\) 0 0
\(178\) 16.4237 15.3294i 1.23101 1.14899i
\(179\) −0.0914691 + 0.0528097i −0.00683672 + 0.00394718i −0.503414 0.864045i \(-0.667923\pi\)
0.496578 + 0.867992i \(0.334590\pi\)
\(180\) 0 0
\(181\) 22.3860i 1.66394i −0.554821 0.831970i \(-0.687213\pi\)
0.554821 0.831970i \(-0.312787\pi\)
\(182\) 0.864855 + 26.8227i 0.0641073 + 1.98823i
\(183\) 0 0
\(184\) −1.56837 + 4.10255i −0.115622 + 0.302444i
\(185\) 3.26949i 0.240378i
\(186\) 0 0
\(187\) 8.01882 0.586394
\(188\) 16.0575 + 10.8096i 1.17111 + 0.788370i
\(189\) 0 0
\(190\) −1.85983 0.567678i −0.134926 0.0411837i
\(191\) 21.6364i 1.56555i 0.622302 + 0.782777i \(0.286198\pi\)
−0.622302 + 0.782777i \(0.713802\pi\)
\(192\) 0 0
\(193\) 1.91328 0.137721 0.0688605 0.997626i \(-0.478064\pi\)
0.0688605 + 0.997626i \(0.478064\pi\)
\(194\) −0.442089 1.91091i −0.0317402 0.137196i
\(195\) 0 0
\(196\) −6.20441 + 12.5501i −0.443172 + 0.896436i
\(197\) −17.4136 −1.24067 −0.620334 0.784337i \(-0.713003\pi\)
−0.620334 + 0.784337i \(0.713003\pi\)
\(198\) 0 0
\(199\) −1.77704 3.07792i −0.125971 0.218188i 0.796141 0.605111i \(-0.206871\pi\)
−0.922112 + 0.386923i \(0.873538\pi\)
\(200\) −2.07372 12.9777i −0.146634 0.917664i
\(201\) 0 0
\(202\) −8.20143 + 7.65497i −0.577051 + 0.538602i
\(203\) −18.1723 3.59144i −1.27545 0.252070i
\(204\) 0 0
\(205\) −2.24954 −0.157114
\(206\) −13.1085 + 3.03266i −0.913316 + 0.211295i
\(207\) 0 0
\(208\) −3.94086 + 28.4177i −0.273250 + 1.97041i
\(209\) 6.09554 3.51926i 0.421638 0.243433i
\(210\) 0 0
\(211\) −2.88477 1.66552i −0.198596 0.114659i 0.397405 0.917643i \(-0.369911\pi\)
−0.596000 + 0.802984i \(0.703244\pi\)
\(212\) −1.13044 + 16.3812i −0.0776389 + 1.12507i
\(213\) 0 0
\(214\) 14.0991 13.1597i 0.963795 0.899577i
\(215\) 0.866688 1.50115i 0.0591076 0.102377i
\(216\) 0 0
\(217\) −10.3091 + 11.7845i −0.699827 + 0.799985i
\(218\) −12.6023 + 2.91555i −0.853539 + 0.197466i
\(219\) 0 0
\(220\) −3.00199 2.02088i −0.202394 0.136248i
\(221\) −18.8980 −1.27122
\(222\) 0 0
\(223\) −6.52029 11.2935i −0.436631 0.756267i 0.560796 0.827954i \(-0.310495\pi\)
−0.997427 + 0.0716868i \(0.977162\pi\)
\(224\) −8.80740 + 12.1008i −0.588469 + 0.808520i
\(225\) 0 0
\(226\) 6.89869 + 7.39117i 0.458894 + 0.491653i
\(227\) 4.72639 8.18636i 0.313702 0.543347i −0.665459 0.746435i \(-0.731764\pi\)
0.979161 + 0.203087i \(0.0650974\pi\)
\(228\) 0 0
\(229\) 12.2899 7.09560i 0.812142 0.468890i −0.0355574 0.999368i \(-0.511321\pi\)
0.847699 + 0.530477i \(0.177987\pi\)
\(230\) 0.890880 + 0.954477i 0.0587429 + 0.0629364i
\(231\) 0 0
\(232\) −18.4972 7.07133i −1.21440 0.464256i
\(233\) 12.9100 22.3607i 0.845761 1.46490i −0.0391981 0.999231i \(-0.512480\pi\)
0.884959 0.465669i \(-0.154186\pi\)
\(234\) 0 0
\(235\) 4.98329 2.87710i 0.325074 0.187682i
\(236\) 6.25482 + 4.21061i 0.407154 + 0.274087i
\(237\) 0 0
\(238\) −8.69222 4.65160i −0.563433 0.301518i
\(239\) 18.8003 + 10.8544i 1.21609 + 0.702110i 0.964079 0.265614i \(-0.0855746\pi\)
0.252011 + 0.967724i \(0.418908\pi\)
\(240\) 0 0
\(241\) −3.26469 1.88487i −0.210297 0.121415i 0.391152 0.920326i \(-0.372077\pi\)
−0.601450 + 0.798911i \(0.705410\pi\)
\(242\) −2.39426 + 0.553911i −0.153909 + 0.0356067i
\(243\) 0 0
\(244\) 2.98985 4.44139i 0.191406 0.284331i
\(245\) 2.54165 + 3.29549i 0.162380 + 0.210541i
\(246\) 0 0
\(247\) −14.3654 + 8.29387i −0.914049 + 0.527726i
\(248\) −12.9937 + 10.5516i −0.825102 + 0.670030i
\(249\) 0 0
\(250\) −7.75750 2.36783i −0.490627 0.149755i
\(251\) 13.8993 0.877316 0.438658 0.898654i \(-0.355454\pi\)
0.438658 + 0.898654i \(0.355454\pi\)
\(252\) 0 0
\(253\) −4.72594 −0.297118
\(254\) 15.0126 + 4.58232i 0.941976 + 0.287520i
\(255\) 0 0
\(256\) −11.4687 + 11.1566i −0.716795 + 0.697284i
\(257\) −3.71735 + 2.14621i −0.231882 + 0.133877i −0.611440 0.791291i \(-0.709409\pi\)
0.379558 + 0.925168i \(0.376076\pi\)
\(258\) 0 0
\(259\) −4.69377 13.7716i −0.291657 0.855728i
\(260\) 7.07482 + 4.76262i 0.438762 + 0.295365i
\(261\) 0 0
\(262\) 6.87731 1.59106i 0.424882 0.0982962i
\(263\) 15.1754 + 8.76154i 0.935758 + 0.540260i 0.888628 0.458629i \(-0.151659\pi\)
0.0471298 + 0.998889i \(0.484993\pi\)
\(264\) 0 0
\(265\) 4.22725 + 2.44061i 0.259678 + 0.149925i
\(266\) −8.64890 + 0.278870i −0.530298 + 0.0170986i
\(267\) 0 0
\(268\) 9.96886 14.8086i 0.608945 0.904581i
\(269\) −3.89531 + 2.24896i −0.237501 + 0.137122i −0.614028 0.789284i \(-0.710452\pi\)
0.376526 + 0.926406i \(0.377118\pi\)
\(270\) 0 0
\(271\) 10.3784 17.9759i 0.630442 1.09196i −0.357019 0.934097i \(-0.616207\pi\)
0.987461 0.157861i \(-0.0504598\pi\)
\(272\) −8.31693 6.47344i −0.504288 0.392510i
\(273\) 0 0
\(274\) 6.08831 + 6.52293i 0.367808 + 0.394065i
\(275\) 12.2467 7.07062i 0.738502 0.426374i
\(276\) 0 0
\(277\) 6.85236 11.8686i 0.411718 0.713117i −0.583359 0.812214i \(-0.698262\pi\)
0.995078 + 0.0990971i \(0.0315954\pi\)
\(278\) 6.51213 + 6.97701i 0.390572 + 0.418453i
\(279\) 0 0
\(280\) 2.08181 + 3.93200i 0.124412 + 0.234982i
\(281\) 1.27529 + 2.20886i 0.0760773 + 0.131770i 0.901554 0.432666i \(-0.142427\pi\)
−0.825477 + 0.564436i \(0.809094\pi\)
\(282\) 0 0
\(283\) 8.59795 0.511095 0.255547 0.966797i \(-0.417744\pi\)
0.255547 + 0.966797i \(0.417744\pi\)
\(284\) 9.78091 14.5294i 0.580390 0.862163i
\(285\) 0 0
\(286\) −30.0758 + 6.95802i −1.77842 + 0.411436i
\(287\) −9.47543 + 3.22950i −0.559317 + 0.190631i
\(288\) 0 0
\(289\) −5.02886 + 8.71023i −0.295815 + 0.512367i
\(290\) −4.30346 + 4.01672i −0.252708 + 0.235870i
\(291\) 0 0
\(292\) 2.99702 + 0.206819i 0.175387 + 0.0121031i
\(293\) 17.2244 + 9.94449i 1.00626 + 0.580963i 0.910094 0.414402i \(-0.136009\pi\)
0.0961641 + 0.995365i \(0.469343\pi\)
\(294\) 0 0
\(295\) 1.94112 1.12071i 0.113016 0.0652500i
\(296\) −2.45427 15.3593i −0.142652 0.892740i
\(297\) 0 0
\(298\) −7.52584 + 1.74110i −0.435960 + 0.100859i
\(299\) 11.1377 0.644107
\(300\) 0 0
\(301\) 1.49555 7.56733i 0.0862020 0.436174i
\(302\) 14.2417 13.2928i 0.819517 0.764913i
\(303\) 0 0
\(304\) −9.16318 1.27072i −0.525545 0.0728807i
\(305\) −0.795786 1.37834i −0.0455665 0.0789236i
\(306\) 0 0
\(307\) 26.7987 1.52948 0.764742 0.644337i \(-0.222867\pi\)
0.764742 + 0.644337i \(0.222867\pi\)
\(308\) −15.5461 4.20254i −0.885824 0.239462i
\(309\) 0 0
\(310\) 1.12153 + 4.84776i 0.0636985 + 0.275334i
\(311\) −4.79353 −0.271816 −0.135908 0.990721i \(-0.543395\pi\)
−0.135908 + 0.990721i \(0.543395\pi\)
\(312\) 0 0
\(313\) 8.81253i 0.498113i 0.968489 + 0.249057i \(0.0801206\pi\)
−0.968489 + 0.249057i \(0.919879\pi\)
\(314\) −15.9533 4.86945i −0.900299 0.274799i
\(315\) 0 0
\(316\) −7.51961 + 11.1703i −0.423011 + 0.628378i
\(317\) −18.1124 −1.01729 −0.508646 0.860976i \(-0.669854\pi\)
−0.508646 + 0.860976i \(0.669854\pi\)
\(318\) 0 0
\(319\) 21.3079i 1.19301i
\(320\) 1.48218 + 4.51946i 0.0828563 + 0.252645i
\(321\) 0 0
\(322\) 5.12282 + 2.74145i 0.285483 + 0.152775i
\(323\) 6.09360i 0.339057i
\(324\) 0 0
\(325\) −28.8618 + 16.6634i −1.60096 + 0.924318i
\(326\) 3.52502 3.29015i 0.195233 0.182225i
\(327\) 0 0
\(328\) −10.5678 + 1.68863i −0.583509 + 0.0932392i
\(329\) 16.8600 19.2730i 0.929523 1.06256i
\(330\) 0 0
\(331\) 7.76983i 0.427068i 0.976936 + 0.213534i \(0.0684975\pi\)
−0.976936 + 0.213534i \(0.931503\pi\)
\(332\) −1.37517 + 19.9277i −0.0754725 + 1.09368i
\(333\) 0 0
\(334\) 12.5009 + 13.3933i 0.684017 + 0.732847i
\(335\) −2.65334 4.59571i −0.144967 0.251091i
\(336\) 0 0
\(337\) 3.96613 6.86954i 0.216049 0.374208i −0.737548 0.675295i \(-0.764016\pi\)
0.953597 + 0.301087i \(0.0973496\pi\)
\(338\) 52.9681 12.2541i 2.88108 0.666538i
\(339\) 0 0
\(340\) −2.81466 + 1.37599i −0.152647 + 0.0746236i
\(341\) −15.5976 9.00530i −0.844659 0.487664i
\(342\) 0 0
\(343\) 15.4370 + 10.2323i 0.833517 + 0.552494i
\(344\) 2.94465 7.70262i 0.158765 0.415298i
\(345\) 0 0
\(346\) −1.68729 0.515014i −0.0907094 0.0276873i
\(347\) 0.835385i 0.0448458i −0.999749 0.0224229i \(-0.992862\pi\)
0.999749 0.0224229i \(-0.00713803\pi\)
\(348\) 0 0
\(349\) 13.8892 8.01895i 0.743473 0.429244i −0.0798577 0.996806i \(-0.525447\pi\)
0.823331 + 0.567562i \(0.192113\pi\)
\(350\) −17.3767 + 0.560283i −0.928822 + 0.0299484i
\(351\) 0 0
\(352\) −15.6197 7.24014i −0.832530 0.385901i
\(353\) 11.2880 + 6.51711i 0.600798 + 0.346871i 0.769355 0.638821i \(-0.220578\pi\)
−0.168558 + 0.985692i \(0.553911\pi\)
\(354\) 0 0
\(355\) −2.60331 4.50906i −0.138169 0.239316i
\(356\) −13.9540 28.5437i −0.739561 1.51281i
\(357\) 0 0
\(358\) 0.0336671 + 0.145525i 0.00177936 + 0.00769122i
\(359\) −6.68926 3.86205i −0.353046 0.203831i 0.312980 0.949760i \(-0.398673\pi\)
−0.666026 + 0.745929i \(0.732006\pi\)
\(360\) 0 0
\(361\) 6.82567 + 11.8224i 0.359246 + 0.622232i
\(362\) −30.2795 9.24224i −1.59146 0.485761i
\(363\) 0 0
\(364\) 36.6377 + 9.90416i 1.92034 + 0.519119i
\(365\) 0.446519 0.773394i 0.0233719 0.0404813i
\(366\) 0 0
\(367\) 0.426271 0.738323i 0.0222512 0.0385402i −0.854685 0.519146i \(-0.826250\pi\)
0.876937 + 0.480606i \(0.159583\pi\)
\(368\) 4.90163 + 3.81516i 0.255515 + 0.198879i
\(369\) 0 0
\(370\) −4.42234 1.34983i −0.229906 0.0701745i
\(371\) 21.3097 + 4.21148i 1.10635 + 0.218649i
\(372\) 0 0
\(373\) 1.16495 + 2.01776i 0.0603190 + 0.104476i 0.894608 0.446852i \(-0.147455\pi\)
−0.834289 + 0.551327i \(0.814122\pi\)
\(374\) 3.31063 10.8463i 0.171189 0.560850i
\(375\) 0 0
\(376\) 21.2506 17.2567i 1.09592 0.889947i
\(377\) 50.2165i 2.58628i
\(378\) 0 0
\(379\) 28.9056i 1.48478i −0.669968 0.742390i \(-0.733692\pi\)
0.669968 0.742390i \(-0.266308\pi\)
\(380\) −1.53569 + 2.28125i −0.0787793 + 0.117026i
\(381\) 0 0
\(382\) 29.2656 + 8.93275i 1.49736 + 0.457039i
\(383\) 8.89994 + 15.4151i 0.454766 + 0.787677i 0.998675 0.0514671i \(-0.0163897\pi\)
−0.543909 + 0.839144i \(0.683056\pi\)
\(384\) 0 0
\(385\) −3.15202 + 3.60314i −0.160642 + 0.183633i
\(386\) 0.789913 2.58792i 0.0402055 0.131722i
\(387\) 0 0
\(388\) −2.76724 0.190962i −0.140485 0.00969462i
\(389\) 12.8152 22.1966i 0.649757 1.12541i −0.333424 0.942777i \(-0.608204\pi\)
0.983181 0.182635i \(-0.0584627\pi\)
\(390\) 0 0
\(391\) −2.04574 + 3.54333i −0.103458 + 0.179194i
\(392\) 14.4138 + 13.5735i 0.728009 + 0.685568i
\(393\) 0 0
\(394\) −7.18935 + 23.5538i −0.362194 + 1.18662i
\(395\) 2.00144 + 3.46659i 0.100703 + 0.174423i
\(396\) 0 0
\(397\) 5.33703 + 3.08134i 0.267858 + 0.154648i 0.627914 0.778283i \(-0.283909\pi\)
−0.360056 + 0.932931i \(0.617242\pi\)
\(398\) −4.89689 + 1.13289i −0.245459 + 0.0567868i
\(399\) 0 0
\(400\) −18.4099 2.55303i −0.920496 0.127651i
\(401\) 0.135983 + 0.235529i 0.00679066 + 0.0117618i 0.869401 0.494108i \(-0.164505\pi\)
−0.862610 + 0.505869i \(0.831172\pi\)
\(402\) 0 0
\(403\) 36.7590 + 21.2228i 1.83110 + 1.05718i
\(404\) 6.96815 + 14.2537i 0.346679 + 0.709150i
\(405\) 0 0
\(406\) −12.3604 + 23.0973i −0.613436 + 1.14630i
\(407\) 14.4941 8.36816i 0.718445 0.414794i
\(408\) 0 0
\(409\) 6.53526i 0.323148i −0.986861 0.161574i \(-0.948343\pi\)
0.986861 0.161574i \(-0.0516570\pi\)
\(410\) −0.928738 + 3.04274i −0.0458671 + 0.150270i
\(411\) 0 0
\(412\) −1.30997 + 18.9828i −0.0645374 + 0.935214i
\(413\) 6.56741 7.50733i 0.323161 0.369412i
\(414\) 0 0
\(415\) 5.14243 + 2.96899i 0.252432 + 0.145742i
\(416\) 36.8109 + 17.0629i 1.80480 + 0.836577i
\(417\) 0 0
\(418\) −2.24359 9.69784i −0.109738 0.474337i
\(419\) 18.6788 32.3526i 0.912519 1.58053i 0.102026 0.994782i \(-0.467468\pi\)
0.810493 0.585748i \(-0.199199\pi\)
\(420\) 0 0
\(421\) 8.81289 + 15.2644i 0.429514 + 0.743940i 0.996830 0.0795601i \(-0.0253516\pi\)
−0.567316 + 0.823500i \(0.692018\pi\)
\(422\) −3.44379 + 3.21434i −0.167641 + 0.156471i
\(423\) 0 0
\(424\) 21.6907 + 8.29216i 1.05339 + 0.402703i
\(425\) 12.2428i 0.593862i
\(426\) 0 0
\(427\) −5.33077 4.66336i −0.257974 0.225676i
\(428\) −11.9790 24.5036i −0.579025 1.18443i
\(429\) 0 0
\(430\) −1.67265 1.79205i −0.0806621 0.0864203i
\(431\) 26.8406 15.4964i 1.29286 0.746436i 0.313703 0.949521i \(-0.398430\pi\)
0.979161 + 0.203085i \(0.0650969\pi\)
\(432\) 0 0
\(433\) 20.1669i 0.969161i −0.874747 0.484581i \(-0.838972\pi\)
0.874747 0.484581i \(-0.161028\pi\)
\(434\) 11.6836 + 18.8095i 0.560833 + 0.902884i
\(435\) 0 0
\(436\) −1.25938 + 18.2497i −0.0603134 + 0.874004i
\(437\) 3.59130i 0.171795i
\(438\) 0 0
\(439\) −1.31016 −0.0625304 −0.0312652 0.999511i \(-0.509954\pi\)
−0.0312652 + 0.999511i \(0.509954\pi\)
\(440\) −3.97285 + 3.22619i −0.189398 + 0.153802i
\(441\) 0 0
\(442\) −7.80219 + 25.5616i −0.371112 + 1.21584i
\(443\) 2.54555i 0.120943i −0.998170 0.0604713i \(-0.980740\pi\)
0.998170 0.0604713i \(-0.0192604\pi\)
\(444\) 0 0
\(445\) −9.44481 −0.447727
\(446\) −17.9676 + 4.15680i −0.850790 + 0.196830i
\(447\) 0 0
\(448\) 12.7315 + 16.9089i 0.601505 + 0.798869i
\(449\) 30.0500 1.41815 0.709073 0.705135i \(-0.249114\pi\)
0.709073 + 0.705135i \(0.249114\pi\)
\(450\) 0 0
\(451\) −5.75762 9.97249i −0.271116 0.469586i
\(452\) 12.8455 6.27973i 0.604203 0.295374i
\(453\) 0 0
\(454\) −9.12160 9.77276i −0.428098 0.458658i
\(455\) 7.42839 8.49154i 0.348249 0.398089i
\(456\) 0 0
\(457\) −38.3846 −1.79556 −0.897779 0.440447i \(-0.854820\pi\)
−0.897779 + 0.440447i \(0.854820\pi\)
\(458\) −4.52357 19.5529i −0.211372 0.913649i
\(459\) 0 0
\(460\) 1.65884 0.810949i 0.0773438 0.0378107i
\(461\) 29.8694 17.2451i 1.39116 0.803186i 0.397715 0.917509i \(-0.369803\pi\)
0.993444 + 0.114323i \(0.0364699\pi\)
\(462\) 0 0
\(463\) 23.3117 + 13.4590i 1.08339 + 0.625493i 0.931808 0.362952i \(-0.118231\pi\)
0.151578 + 0.988445i \(0.451565\pi\)
\(464\) −17.2015 + 22.1000i −0.798558 + 1.02597i
\(465\) 0 0
\(466\) −24.9153 26.6939i −1.15418 1.23657i
\(467\) −10.1757 + 17.6248i −0.470874 + 0.815577i −0.999445 0.0333119i \(-0.989395\pi\)
0.528571 + 0.848889i \(0.322728\pi\)
\(468\) 0 0
\(469\) −17.7740 15.5487i −0.820729 0.717973i
\(470\) −1.83420 7.92827i −0.0846055 0.365704i
\(471\) 0 0
\(472\) 8.27766 6.72193i 0.381010 0.309402i
\(473\) 8.87305 0.407983
\(474\) 0 0
\(475\) −5.37305 9.30640i −0.246533 0.427007i
\(476\) −9.88044 + 9.83672i −0.452869 + 0.450865i
\(477\) 0 0
\(478\) 22.4436 20.9481i 1.02654 0.958146i
\(479\) 1.09961 1.90458i 0.0502424 0.0870225i −0.839810 0.542880i \(-0.817334\pi\)
0.890053 + 0.455857i \(0.150667\pi\)
\(480\) 0 0
\(481\) −34.1583 + 19.7213i −1.55748 + 0.899214i
\(482\) −3.89734 + 3.63766i −0.177519 + 0.165691i
\(483\) 0 0
\(484\) −0.239263 + 3.46718i −0.0108756 + 0.157599i
\(485\) −0.412284 + 0.714098i −0.0187209 + 0.0324255i
\(486\) 0 0
\(487\) −16.7601 + 9.67646i −0.759473 + 0.438482i −0.829107 0.559090i \(-0.811150\pi\)
0.0696332 + 0.997573i \(0.477817\pi\)
\(488\) −4.77308 5.87776i −0.216067 0.266074i
\(489\) 0 0
\(490\) 5.50685 2.07728i 0.248774 0.0938419i
\(491\) −20.0539 11.5781i −0.905020 0.522514i −0.0261947 0.999657i \(-0.508339\pi\)
−0.878826 + 0.477143i \(0.841672\pi\)
\(492\) 0 0
\(493\) −15.9758 9.22366i −0.719516 0.415413i
\(494\) 5.28749 + 22.8549i 0.237895 + 1.02829i
\(495\) 0 0
\(496\) 8.90768 + 21.9317i 0.399967 + 0.984764i
\(497\) −17.4389 15.2556i −0.782243 0.684306i
\(498\) 0 0
\(499\) 4.60461 2.65847i 0.206131 0.119010i −0.393381 0.919375i \(-0.628695\pi\)
0.599512 + 0.800366i \(0.295361\pi\)
\(500\) −6.40549 + 9.51528i −0.286462 + 0.425536i
\(501\) 0 0
\(502\) 5.73844 18.8003i 0.256119 0.839099i
\(503\) −1.45521 −0.0648844 −0.0324422 0.999474i \(-0.510328\pi\)
−0.0324422 + 0.999474i \(0.510328\pi\)
\(504\) 0 0
\(505\) 4.71641 0.209877
\(506\) −1.95114 + 6.39235i −0.0867389 + 0.284175i
\(507\) 0 0
\(508\) 12.3962 18.4144i 0.549990 0.817005i
\(509\) −37.5080 + 21.6553i −1.66251 + 0.959853i −0.691006 + 0.722849i \(0.742832\pi\)
−0.971508 + 0.237005i \(0.923834\pi\)
\(510\) 0 0
\(511\) 0.770509 3.89870i 0.0340853 0.172468i
\(512\) 10.3555 + 20.1187i 0.457652 + 0.889131i
\(513\) 0 0
\(514\) 1.36825 + 5.91420i 0.0603509 + 0.260864i
\(515\) 4.89859 + 2.82820i 0.215858 + 0.124625i
\(516\) 0 0
\(517\) 25.5092 + 14.7277i 1.12189 + 0.647725i
\(518\) −20.5655 + 0.663101i −0.903596 + 0.0291350i
\(519\) 0 0
\(520\) 9.36285 7.60317i 0.410588 0.333421i
\(521\) −28.2426 + 16.3059i −1.23733 + 0.714373i −0.968548 0.248827i \(-0.919955\pi\)
−0.268783 + 0.963201i \(0.586622\pi\)
\(522\) 0 0
\(523\) −13.1872 + 22.8409i −0.576637 + 0.998765i 0.419224 + 0.907883i \(0.362302\pi\)
−0.995862 + 0.0908822i \(0.971031\pi\)
\(524\) 0.687265 9.95919i 0.0300233 0.435069i
\(525\) 0 0
\(526\) 18.1162 16.9092i 0.789905 0.737274i
\(527\) −13.5036 + 7.79633i −0.588228 + 0.339613i
\(528\) 0 0
\(529\) −10.2943 + 17.8303i −0.447580 + 0.775230i
\(530\) 5.04644 4.71019i 0.219203 0.204598i
\(531\) 0 0
\(532\) −3.19357 + 11.8137i −0.138459 + 0.512189i
\(533\) 13.5690 + 23.5022i 0.587740 + 1.01799i
\(534\) 0 0
\(535\) −8.10799 −0.350539
\(536\) −15.9146 19.5978i −0.687404 0.846497i
\(537\) 0 0
\(538\) 1.43375 + 6.19733i 0.0618134 + 0.267186i
\(539\) −8.10410 + 19.7022i −0.349068 + 0.848633i
\(540\) 0 0
\(541\) 12.4508 21.5653i 0.535300 0.927166i −0.463849 0.885914i \(-0.653532\pi\)
0.999149 0.0412520i \(-0.0131346\pi\)
\(542\) −20.0295 21.4594i −0.860343 0.921759i
\(543\) 0 0
\(544\) −12.1897 + 8.57693i −0.522630 + 0.367733i
\(545\) 4.70943 + 2.71899i 0.201730 + 0.116469i
\(546\) 0 0
\(547\) −31.0502 + 17.9268i −1.32761 + 0.766496i −0.984929 0.172957i \(-0.944668\pi\)
−0.342680 + 0.939452i \(0.611335\pi\)
\(548\) 11.3366 5.54205i 0.484275 0.236745i
\(549\) 0 0
\(550\) −4.50764 19.4841i −0.192207 0.830805i
\(551\) −16.1921 −0.689809
\(552\) 0 0
\(553\) 13.4071 + 11.7286i 0.570129 + 0.498749i
\(554\) −13.2246 14.1686i −0.561858 0.601967i
\(555\) 0 0
\(556\) 12.1257 5.92785i 0.514246 0.251397i
\(557\) −3.14023 5.43904i −0.133056 0.230459i 0.791797 0.610784i \(-0.209146\pi\)
−0.924853 + 0.380325i \(0.875812\pi\)
\(558\) 0 0
\(559\) −20.9112 −0.884448
\(560\) 6.17795 1.19252i 0.261066 0.0503931i
\(561\) 0 0
\(562\) 3.51424 0.813018i 0.148239 0.0342951i
\(563\) −15.5747 −0.656397 −0.328198 0.944609i \(-0.606441\pi\)
−0.328198 + 0.944609i \(0.606441\pi\)
\(564\) 0 0
\(565\) 4.25045i 0.178818i
\(566\) 3.54973 11.6297i 0.149206 0.488831i
\(567\) 0 0
\(568\) −15.6145 19.2283i −0.655170 0.806802i
\(569\) 3.13499 0.131426 0.0657128 0.997839i \(-0.479068\pi\)
0.0657128 + 0.997839i \(0.479068\pi\)
\(570\) 0 0
\(571\) 44.4748i 1.86121i −0.366022 0.930606i \(-0.619280\pi\)
0.366022 0.930606i \(-0.380720\pi\)
\(572\) −3.00554 + 43.5534i −0.125668 + 1.82106i
\(573\) 0 0
\(574\) 0.456239 + 14.1499i 0.0190431 + 0.590604i
\(575\) 7.21536i 0.300901i
\(576\) 0 0
\(577\) 30.5353 17.6296i 1.27120 0.733929i 0.295988 0.955192i \(-0.404351\pi\)
0.975214 + 0.221263i \(0.0710179\pi\)
\(578\) 9.70533 + 10.3982i 0.403688 + 0.432506i
\(579\) 0 0
\(580\) 3.65633 + 7.47923i 0.151821 + 0.310558i
\(581\) 25.9232 + 5.12325i 1.07547 + 0.212548i
\(582\) 0 0
\(583\) 24.9866i 1.03484i
\(584\) 1.51709 3.96840i 0.0627775 0.164214i
\(585\) 0 0
\(586\) 20.5622 19.1922i 0.849417 0.792820i
\(587\) 19.6358 + 34.0102i 0.810455 + 1.40375i 0.912546 + 0.408974i \(0.134113\pi\)
−0.102091 + 0.994775i \(0.532553\pi\)
\(588\) 0 0
\(589\) −6.84324 + 11.8528i −0.281971 + 0.488387i
\(590\) −0.714470 3.08827i −0.0294143 0.127142i
\(591\) 0 0
\(592\) −21.7884 3.02154i −0.895496 0.124184i
\(593\) 28.1689 + 16.2633i 1.15676 + 0.667855i 0.950525 0.310648i \(-0.100546\pi\)
0.206234 + 0.978503i \(0.433879\pi\)
\(594\) 0 0
\(595\) 1.33706 + 3.92297i 0.0548142 + 0.160826i
\(596\) −0.752074 + 10.8983i −0.0308061 + 0.446413i
\(597\) 0 0
\(598\) 4.59827 15.0649i 0.188037 0.616049i
\(599\) 4.39397i 0.179533i −0.995963 0.0897663i \(-0.971388\pi\)
0.995963 0.0897663i \(-0.0286120\pi\)
\(600\) 0 0
\(601\) 14.6174 8.43937i 0.596257 0.344249i −0.171311 0.985217i \(-0.554800\pi\)
0.767568 + 0.640968i \(0.221467\pi\)
\(602\) −9.61819 5.14712i −0.392008 0.209781i
\(603\) 0 0
\(604\) −12.1001 24.7514i −0.492346 1.00712i
\(605\) 0.894720 + 0.516567i 0.0363755 + 0.0210014i
\(606\) 0 0
\(607\) 16.7306 + 28.9782i 0.679072 + 1.17619i 0.975261 + 0.221058i \(0.0709511\pi\)
−0.296188 + 0.955130i \(0.595716\pi\)
\(608\) −5.50188 + 11.8696i −0.223131 + 0.481374i
\(609\) 0 0
\(610\) −2.19290 + 0.507327i −0.0887880 + 0.0205411i
\(611\) −60.1176 34.7089i −2.43210 1.40417i
\(612\) 0 0
\(613\) 18.0048 + 31.1852i 0.727207 + 1.25956i 0.958059 + 0.286570i \(0.0925152\pi\)
−0.230852 + 0.972989i \(0.574151\pi\)
\(614\) 11.0641 36.2482i 0.446509 1.46286i
\(615\) 0 0
\(616\) −12.1027 + 19.2928i −0.487633 + 0.777329i
\(617\) −17.8922 + 30.9902i −0.720314 + 1.24762i 0.240560 + 0.970634i \(0.422669\pi\)
−0.960874 + 0.276986i \(0.910665\pi\)
\(618\) 0 0
\(619\) 8.72404 15.1105i 0.350649 0.607341i −0.635715 0.771924i \(-0.719294\pi\)
0.986363 + 0.164583i \(0.0526278\pi\)
\(620\) 7.02015 + 0.484447i 0.281936 + 0.0194559i
\(621\) 0 0
\(622\) −1.97905 + 6.48377i −0.0793526 + 0.259976i
\(623\) −39.7831 + 13.5592i −1.59388 + 0.543239i
\(624\) 0 0
\(625\) −9.91141 17.1671i −0.396457 0.686683i
\(626\) 11.9199 + 3.63832i 0.476415 + 0.145417i
\(627\) 0 0
\(628\) −13.1729 + 19.5682i −0.525656 + 0.780857i
\(629\) 14.4895i 0.577733i
\(630\) 0 0
\(631\) 17.8634i 0.711133i −0.934651 0.355566i \(-0.884288\pi\)
0.934651 0.355566i \(-0.115712\pi\)
\(632\) 12.0045 + 14.7828i 0.477514 + 0.588030i
\(633\) 0 0
\(634\) −7.47783 + 24.4989i −0.296983 + 0.972977i
\(635\) −3.29939 5.71471i −0.130932 0.226781i
\(636\) 0 0
\(637\) 19.0990 46.4322i 0.756729 1.83971i
\(638\) −28.8213 8.79714i −1.14104 0.348282i
\(639\) 0 0
\(640\) 6.72498 0.138913i 0.265828 0.00549101i
\(641\) −23.5403 + 40.7730i −0.929786 + 1.61044i −0.146108 + 0.989269i \(0.546675\pi\)
−0.783678 + 0.621168i \(0.786659\pi\)
\(642\) 0 0
\(643\) −11.4838 + 19.8904i −0.452875 + 0.784403i −0.998563 0.0535856i \(-0.982935\pi\)
0.545688 + 0.837988i \(0.316268\pi\)
\(644\) 5.82310 5.79733i 0.229462 0.228447i
\(645\) 0 0
\(646\) −8.24225 2.51579i −0.324287 0.0989825i
\(647\) 17.5968 + 30.4785i 0.691800 + 1.19823i 0.971248 + 0.238072i \(0.0765153\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(648\) 0 0
\(649\) 9.93648 + 5.73683i 0.390041 + 0.225190i
\(650\) 10.6232 + 45.9183i 0.416676 + 1.80106i
\(651\) 0 0
\(652\) −2.99495 6.12634i −0.117291 0.239926i
\(653\) −18.4253 31.9135i −0.721036 1.24887i −0.960585 0.277987i \(-0.910333\pi\)
0.239549 0.970884i \(-0.423001\pi\)
\(654\) 0 0
\(655\) −2.57001 1.48380i −0.100419 0.0579767i
\(656\) −2.07894 + 14.9912i −0.0811688 + 0.585310i
\(657\) 0 0
\(658\) −19.1080 30.7620i −0.744909 1.19923i
\(659\) −6.21863 + 3.59033i −0.242244 + 0.139859i −0.616207 0.787584i \(-0.711332\pi\)
0.373964 + 0.927443i \(0.377998\pi\)
\(660\) 0 0
\(661\) 2.24017i 0.0871324i 0.999051 + 0.0435662i \(0.0138719\pi\)
−0.999051 + 0.0435662i \(0.986128\pi\)
\(662\) 10.5095 + 3.20783i 0.408464 + 0.124676i
\(663\) 0 0
\(664\) 26.3866 + 10.0874i 1.02400 + 0.391466i
\(665\) 2.73807 + 2.39526i 0.106178 + 0.0928843i
\(666\) 0 0
\(667\) 9.41547 + 5.43602i 0.364568 + 0.210484i
\(668\) 23.2769 11.3793i 0.900611 0.440277i
\(669\) 0 0
\(670\) −7.31165 + 1.69155i −0.282474 + 0.0653502i
\(671\) 4.07358 7.05565i 0.157259 0.272380i
\(672\) 0 0
\(673\) 7.99088 + 13.8406i 0.308026 + 0.533516i 0.977930 0.208931i \(-0.0669984\pi\)
−0.669905 + 0.742447i \(0.733665\pi\)
\(674\) −7.65435 8.20077i −0.294835 0.315882i
\(675\) 0 0
\(676\) 5.29321 76.7042i 0.203585 2.95016i
\(677\) 16.6132i 0.638498i −0.947671 0.319249i \(-0.896569\pi\)
0.947671 0.319249i \(-0.103431\pi\)
\(678\) 0 0
\(679\) −0.711434 + 3.59979i −0.0273023 + 0.138147i
\(680\) 0.699120 + 4.37523i 0.0268100 + 0.167782i
\(681\) 0 0
\(682\) −18.6202 + 17.3796i −0.713006 + 0.665498i
\(683\) −24.9863 + 14.4258i −0.956073 + 0.551989i −0.894962 0.446142i \(-0.852798\pi\)
−0.0611106 + 0.998131i \(0.519464\pi\)
\(684\) 0 0
\(685\) 3.75115i 0.143324i
\(686\) 20.2136 16.6556i 0.771759 0.635916i
\(687\) 0 0
\(688\) −9.20291 7.16304i −0.350858 0.273088i
\(689\) 58.8861i 2.24338i
\(690\) 0 0
\(691\) −31.5172 −1.19897 −0.599485 0.800386i \(-0.704628\pi\)
−0.599485 + 0.800386i \(0.704628\pi\)
\(692\) −1.39322 + 2.06962i −0.0529624 + 0.0786750i
\(693\) 0 0
\(694\) −1.12995 0.344895i −0.0428922 0.0130920i
\(695\) 4.01228i 0.152194i
\(696\) 0 0
\(697\) −9.96932 −0.377615
\(698\) −5.11222 22.0974i −0.193500 0.836397i
\(699\) 0 0
\(700\) −6.41625 + 23.7351i −0.242512 + 0.897104i
\(701\) −38.3817 −1.44966 −0.724829 0.688929i \(-0.758081\pi\)
−0.724829 + 0.688929i \(0.758081\pi\)
\(702\) 0 0
\(703\) −6.35907 11.0142i −0.239837 0.415410i
\(704\) −16.2418 + 18.1381i −0.612135 + 0.683606i
\(705\) 0 0
\(706\) 13.4754 12.5776i 0.507154 0.473362i
\(707\) 19.8663 6.77101i 0.747150 0.254650i
\(708\) 0 0
\(709\) −10.5603 −0.396602 −0.198301 0.980141i \(-0.563542\pi\)
−0.198301 + 0.980141i \(0.563542\pi\)
\(710\) −7.17379 + 1.65965i −0.269228 + 0.0622857i
\(711\) 0 0
\(712\) −44.3695 + 7.08982i −1.66282 + 0.265702i
\(713\) 7.95846 4.59482i 0.298047 0.172077i
\(714\) 0 0
\(715\) 11.2391 + 6.48892i 0.420320 + 0.242672i
\(716\) 0.210738 + 0.0145426i 0.00787564 + 0.000543483i
\(717\) 0 0
\(718\) −7.98555 + 7.45348i −0.298018 + 0.278161i
\(719\) 17.7183 30.6890i 0.660782 1.14451i −0.319629 0.947543i \(-0.603558\pi\)
0.980411 0.196965i \(-0.0631084\pi\)
\(720\) 0 0
\(721\) 24.6939 + 4.88032i 0.919651 + 0.181752i
\(722\) 18.8091 4.35148i 0.700003 0.161945i
\(723\) 0 0
\(724\) −25.0023 + 37.1406i −0.929201 + 1.38032i
\(725\) −32.5320 −1.20821
\(726\) 0 0
\(727\) −16.3858 28.3811i −0.607717 1.05260i −0.991616 0.129222i \(-0.958752\pi\)
0.383898 0.923375i \(-0.374581\pi\)
\(728\) 28.5226 45.4674i 1.05712 1.68514i
\(729\) 0 0
\(730\) −0.861750 0.923267i −0.0318948 0.0341716i
\(731\) 3.84092 6.65267i 0.142062 0.246058i
\(732\) 0 0
\(733\) 4.86739 2.81019i 0.179781 0.103797i −0.407409 0.913246i \(-0.633568\pi\)
0.587190 + 0.809449i \(0.300234\pi\)
\(734\) −0.822673 0.881400i −0.0303654 0.0325331i
\(735\) 0 0
\(736\) 7.18410 5.05487i 0.264809 0.186325i
\(737\) 13.5823 23.5252i 0.500309 0.866561i
\(738\) 0 0
\(739\) −37.9429 + 21.9063i −1.39575 + 0.805838i −0.993944 0.109886i \(-0.964951\pi\)
−0.401808 + 0.915724i \(0.631618\pi\)
\(740\) −3.65159 + 5.42440i −0.134235 + 0.199405i
\(741\) 0 0
\(742\) 14.4944 27.0849i 0.532105 0.994320i
\(743\) 9.43980 + 5.45007i 0.346313 + 0.199944i 0.663060 0.748566i \(-0.269257\pi\)
−0.316747 + 0.948510i \(0.602591\pi\)
\(744\) 0 0
\(745\) 2.81236 + 1.62372i 0.103037 + 0.0594885i
\(746\) 3.21019 0.742678i 0.117534 0.0271914i
\(747\) 0 0
\(748\) −13.3040 8.95598i −0.486442 0.327463i
\(749\) −34.1522 + 11.6401i −1.24790 + 0.425319i
\(750\) 0 0
\(751\) −8.29441 + 4.78878i −0.302667 + 0.174745i −0.643641 0.765328i \(-0.722577\pi\)
0.340973 + 0.940073i \(0.389243\pi\)
\(752\) −14.5681 35.8683i −0.531243 1.30798i
\(753\) 0 0
\(754\) 67.9232 + 20.7323i 2.47362 + 0.755025i
\(755\) −8.18999 −0.298064
\(756\) 0 0
\(757\) −1.91601 −0.0696384 −0.0348192 0.999394i \(-0.511086\pi\)
−0.0348192 + 0.999394i \(0.511086\pi\)
\(758\) −39.0979 11.9339i −1.42010 0.433459i
\(759\) 0 0
\(760\) 2.45162 + 3.01902i 0.0889295 + 0.109511i
\(761\) 0.552623 0.319057i 0.0200326 0.0115658i −0.489950 0.871750i \(-0.662985\pi\)
0.509983 + 0.860185i \(0.329652\pi\)
\(762\) 0 0
\(763\) 23.7404 + 4.69186i 0.859459 + 0.169857i
\(764\) 24.1650 35.8969i 0.874260 1.29870i
\(765\) 0 0
\(766\) 24.5251 5.67387i 0.886126 0.205005i
\(767\) −23.4174 13.5200i −0.845552 0.488180i
\(768\) 0 0
\(769\) 4.56501 + 2.63561i 0.164618 + 0.0950425i 0.580046 0.814584i \(-0.303035\pi\)
−0.415427 + 0.909626i \(0.636368\pi\)
\(770\) 3.57230 + 5.75104i 0.128737 + 0.207253i
\(771\) 0 0
\(772\) −3.17432 2.13689i −0.114246 0.0769082i
\(773\) 34.2460 19.7719i 1.23174 0.711147i 0.264350 0.964427i \(-0.414843\pi\)
0.967393 + 0.253280i \(0.0815094\pi\)
\(774\) 0 0
\(775\) −13.7489 + 23.8138i −0.493874 + 0.855415i
\(776\) −1.40077 + 3.66415i −0.0502848 + 0.131535i
\(777\) 0 0
\(778\) −24.7324 26.4980i −0.886701 0.949999i
\(779\) −7.57822 + 4.37529i −0.271518 + 0.156761i
\(780\) 0 0
\(781\) 13.3262 23.0816i 0.476848 0.825926i
\(782\) 3.94813 + 4.22998i 0.141185 + 0.151264i
\(783\) 0 0
\(784\) 24.3106 13.8923i 0.868234 0.496155i
\(785\) 3.50613 + 6.07280i 0.125139 + 0.216748i
\(786\) 0 0
\(787\) −2.01708 −0.0719013 −0.0359506 0.999354i \(-0.511446\pi\)
−0.0359506 + 0.999354i \(0.511446\pi\)
\(788\) 28.8909 + 19.4487i 1.02919 + 0.692832i
\(789\) 0 0
\(790\) 5.51525 1.27595i 0.196224 0.0453963i
\(791\) −6.10206 17.9036i −0.216964 0.636579i
\(792\) 0 0
\(793\) −9.60023 + 16.6281i −0.340914 + 0.590481i
\(794\) 6.37127 5.94676i 0.226108 0.211042i
\(795\) 0 0
\(796\) −0.489357 + 7.09129i −0.0173448 + 0.251344i
\(797\) −16.7785 9.68708i −0.594326 0.343134i 0.172480 0.985013i \(-0.444822\pi\)
−0.766806 + 0.641879i \(0.778155\pi\)
\(798\) 0 0
\(799\) 22.0846 12.7505i 0.781295 0.451081i
\(800\) −11.0539 + 23.8474i −0.390815 + 0.843132i
\(801\) 0 0
\(802\) 0.374720 0.0866915i 0.0132318 0.00306118i
\(803\) 4.57141 0.161322
\(804\) 0 0
\(805\) −0.788006 2.31203i −0.0277735 0.0814883i
\(806\) 43.8824 40.9585i 1.54569 1.44270i
\(807\) 0 0
\(808\) 22.1566 3.54041i 0.779466 0.124551i
\(809\) 9.30812 + 16.1221i 0.327256 + 0.566824i 0.981966 0.189056i \(-0.0605427\pi\)
−0.654710 + 0.755880i \(0.727209\pi\)
\(810\) 0 0
\(811\) 1.07212 0.0376471 0.0188236 0.999823i \(-0.494008\pi\)
0.0188236 + 0.999823i \(0.494008\pi\)
\(812\) 26.1385 + 26.2547i 0.917282 + 0.921358i
\(813\) 0 0
\(814\) −5.33485 23.0597i −0.186986 0.808241i
\(815\) −2.02714 −0.0710076
\(816\) 0 0
\(817\) 6.74274i 0.235899i
\(818\) −8.83965 2.69813i −0.309071 0.0943380i
\(819\) 0 0
\(820\) 3.73220 + 2.51244i 0.130334 + 0.0877381i
\(821\) −39.6372 −1.38335 −0.691674 0.722209i \(-0.743127\pi\)
−0.691674 + 0.722209i \(0.743127\pi\)
\(822\) 0 0
\(823\) 21.9087i 0.763690i 0.924226 + 0.381845i \(0.124711\pi\)
−0.924226 + 0.381845i \(0.875289\pi\)
\(824\) 25.1354 + 9.60906i 0.875634 + 0.334747i
\(825\) 0 0
\(826\) −7.44307 11.9826i −0.258978 0.416928i
\(827\) 40.4761i 1.40749i 0.710451 + 0.703746i \(0.248491\pi\)
−0.710451 + 0.703746i \(0.751509\pi\)
\(828\) 0 0
\(829\) 4.10818 2.37186i 0.142683 0.0823780i −0.426959 0.904271i \(-0.640415\pi\)
0.569642 + 0.821893i \(0.307082\pi\)
\(830\) 6.13897 5.72993i 0.213087 0.198889i
\(831\) 0 0
\(832\) 38.2771 42.7462i 1.32702 1.48196i
\(833\) 11.2639 + 14.6047i 0.390270 + 0.506023i
\(834\) 0 0
\(835\) 7.70208i 0.266542i
\(836\) −14.0437 0.969126i −0.485710 0.0335179i
\(837\) 0 0
\(838\) −36.0487 38.6221i −1.24528 1.33418i
\(839\) −28.2350 48.9045i −0.974782 1.68837i −0.680653 0.732606i \(-0.738304\pi\)
−0.294128 0.955766i \(-0.595029\pi\)
\(840\) 0 0
\(841\) −10.0095 + 17.3369i −0.345154 + 0.597824i
\(842\) 24.2852 5.61837i 0.836923 0.193622i
\(843\) 0 0
\(844\) 2.92594 + 5.98517i 0.100715 + 0.206018i
\(845\) −19.7939 11.4280i −0.680930 0.393135i
\(846\) 0 0
\(847\) 4.51031 + 0.891383i 0.154976 + 0.0306283i
\(848\) 20.1712 25.9155i 0.692683 0.889943i
\(849\) 0 0
\(850\) −16.5597 5.05452i −0.567992 0.173369i
\(851\) 8.53946i 0.292729i
\(852\) 0 0
\(853\) −8.07503 + 4.66212i −0.276484 + 0.159628i −0.631830 0.775107i \(-0.717696\pi\)
0.355347 + 0.934735i \(0.384363\pi\)
\(854\) −8.50854 + 5.28514i −0.291156 + 0.180854i
\(855\) 0 0
\(856\) −38.0894 + 6.08633i −1.30187 + 0.208027i
\(857\) 14.2780 + 8.24340i 0.487727 + 0.281589i 0.723631 0.690187i \(-0.242472\pi\)
−0.235904 + 0.971776i \(0.575805\pi\)
\(858\) 0 0
\(859\) 14.2428 + 24.6693i 0.485959 + 0.841706i 0.999870 0.0161374i \(-0.00513693\pi\)
−0.513910 + 0.857844i \(0.671804\pi\)
\(860\) −3.11451 + 1.52257i −0.106204 + 0.0519193i
\(861\) 0 0
\(862\) −9.87923 42.7026i −0.336488 1.45446i
\(863\) 4.17974 + 2.41317i 0.142280 + 0.0821454i 0.569450 0.822026i \(-0.307156\pi\)
−0.427170 + 0.904171i \(0.640489\pi\)
\(864\) 0 0
\(865\) 0.370823 + 0.642285i 0.0126084 + 0.0218383i
\(866\) −27.2780 8.32608i −0.926943 0.282932i
\(867\) 0 0
\(868\) 30.2655 8.03775i 1.02728 0.272819i
\(869\) −10.2452 + 17.7453i −0.347546 + 0.601967i
\(870\) 0 0
\(871\) −32.0094 + 55.4419i −1.08460 + 1.87858i
\(872\) 24.1648 + 9.23800i 0.818323 + 0.312838i
\(873\) 0 0
\(874\) 4.85762 + 1.48270i 0.164312 + 0.0501530i
\(875\) 11.4207 + 9.99083i 0.386090 + 0.337752i
\(876\) 0 0
\(877\) −11.8885 20.5915i −0.401447 0.695327i 0.592454 0.805604i \(-0.298159\pi\)
−0.993901 + 0.110278i \(0.964826\pi\)
\(878\) −0.540908 + 1.77213i −0.0182548 + 0.0598064i
\(879\) 0 0
\(880\) 2.72354 + 6.70567i 0.0918105 + 0.226048i
\(881\) 15.9241i 0.536495i −0.963350 0.268248i \(-0.913555\pi\)
0.963350 0.268248i \(-0.0864445\pi\)
\(882\) 0 0
\(883\) 0.631703i 0.0212585i −0.999944 0.0106292i \(-0.996617\pi\)
0.999944 0.0106292i \(-0.00338346\pi\)
\(884\) 31.3536 + 21.1066i 1.05454 + 0.709892i
\(885\) 0 0
\(886\) −3.44313 1.05095i −0.115674 0.0353073i
\(887\) −7.53340 13.0482i −0.252947 0.438117i 0.711389 0.702799i \(-0.248066\pi\)
−0.964336 + 0.264682i \(0.914733\pi\)
\(888\) 0 0
\(889\) −22.1018 19.3346i −0.741270 0.648463i
\(890\) −3.89936 + 12.7751i −0.130707 + 0.428223i
\(891\) 0 0
\(892\) −1.79554 + 26.0193i −0.0601192 + 0.871190i
\(893\) 11.1918 19.3847i 0.374519 0.648686i
\(894\) 0 0
\(895\) 0.0313973 0.0543818i 0.00104950 0.00181778i
\(896\) 28.1274 10.2397i 0.939669 0.342084i
\(897\) 0 0
\(898\) 12.4064 40.6459i 0.414006 1.35637i
\(899\) 20.7167 + 35.8824i 0.690941 + 1.19674i
\(900\) 0 0
\(901\) 18.7340 + 10.8161i 0.624120 + 0.360336i
\(902\) −15.8660 + 3.67058i −0.528279 + 0.122217i
\(903\) 0 0
\(904\) −3.19063 19.9676i −0.106119 0.664113i
\(905\) 6.65466 + 11.5262i 0.221208 + 0.383144i
\(906\) 0 0
\(907\) −25.5312 14.7404i −0.847748 0.489448i 0.0121421 0.999926i \(-0.496135\pi\)
−0.859890 + 0.510479i \(0.829468\pi\)
\(908\) −16.9846 + 8.30319i −0.563655 + 0.275551i
\(909\) 0 0
\(910\) −8.41885 13.5535i −0.279082 0.449294i
\(911\) −14.4832 + 8.36189i −0.479850 + 0.277042i −0.720354 0.693606i \(-0.756021\pi\)
0.240504 + 0.970648i \(0.422687\pi\)
\(912\) 0 0
\(913\) 30.3961i 1.00596i
\(914\) −15.8474 + 51.9194i −0.524185 + 1.71734i
\(915\) 0 0
\(916\) −28.3150 1.95397i −0.935555 0.0645609i
\(917\) −12.9555 2.56043i −0.427829 0.0845527i
\(918\) 0 0
\(919\) −0.945149 0.545682i −0.0311776 0.0180004i 0.484330 0.874885i \(-0.339063\pi\)
−0.515508 + 0.856885i \(0.672397\pi\)
\(920\) −0.412031 2.57857i −0.0135843 0.0850128i
\(921\) 0 0
\(922\) −10.9941 47.5214i −0.362071 1.56504i
\(923\) −31.4059 + 54.3966i −1.03374 + 1.79049i
\(924\) 0 0
\(925\) −12.7761 22.1289i −0.420076 0.727594i
\(926\) 27.8292 25.9749i 0.914523 0.853588i
\(927\) 0 0
\(928\) 22.7909 + 32.3910i 0.748149 + 1.06329i
\(929\) 17.1306i 0.562036i 0.959703 + 0.281018i \(0.0906720\pi\)
−0.959703 + 0.281018i \(0.909328\pi\)
\(930\) 0 0
\(931\) 14.9719 + 6.15841i 0.490685 + 0.201834i
\(932\) −46.3929 + 22.6799i −1.51965 + 0.742904i
\(933\) 0 0
\(934\) 19.6383 + 21.0402i 0.642585 + 0.688457i
\(935\) −4.12876 + 2.38374i −0.135025 + 0.0779567i
\(936\) 0 0
\(937\) 17.6461i 0.576474i 0.957559 + 0.288237i \(0.0930692\pi\)
−0.957559 + 0.288237i \(0.906931\pi\)
\(938\) −28.3695 + 17.6219i −0.926296 + 0.575375i
\(939\) 0 0
\(940\) −11.4811 0.792290i −0.374473 0.0258417i
\(941\) 14.3693i 0.468425i −0.972185 0.234212i \(-0.924749\pi\)
0.972185 0.234212i \(-0.0752511\pi\)
\(942\) 0 0
\(943\) 5.87548 0.191332
\(944\) −5.67464 13.9716i −0.184694 0.454738i
\(945\) 0 0
\(946\) 3.66331 12.0018i 0.119104 0.390211i
\(947\) 9.85597i 0.320276i −0.987095 0.160138i \(-0.948806\pi\)
0.987095 0.160138i \(-0.0511939\pi\)
\(948\) 0 0
\(949\) −10.7735 −0.349722
\(950\) −14.8062 + 3.42541i −0.480377 + 0.111135i
\(951\) 0 0
\(952\) 9.22601 + 17.4255i 0.299017 + 0.564765i
\(953\) −9.71521 −0.314707 −0.157353 0.987542i \(-0.550296\pi\)
−0.157353 + 0.987542i \(0.550296\pi\)
\(954\) 0 0
\(955\) −6.43182 11.1402i −0.208129 0.360490i
\(956\) −19.0686 39.0059i −0.616724 1.26154i
\(957\) 0 0
\(958\) −2.12217 2.27366i −0.0685641 0.0734587i
\(959\) −5.38526 15.8005i −0.173899 0.510224i
\(960\) 0 0
\(961\) 4.02174 0.129734
\(962\) 12.5727 + 54.3449i 0.405359 + 1.75215i
\(963\) 0 0
\(964\) 3.31128 + 6.77342i 0.106649 + 0.218157i
\(965\) −0.985119 + 0.568759i −0.0317121 + 0.0183090i
\(966\) 0 0
\(967\) −19.5928 11.3119i −0.630061 0.363766i 0.150715 0.988577i \(-0.451842\pi\)
−0.780776 + 0.624812i \(0.785176\pi\)
\(968\) 4.59095 + 1.75508i 0.147559 + 0.0564104i
\(969\) 0 0
\(970\) 0.795679 + 0.852480i 0.0255477 + 0.0273715i
\(971\) 8.13371 14.0880i 0.261023 0.452105i −0.705491 0.708719i \(-0.749273\pi\)
0.966514 + 0.256614i \(0.0826068\pi\)
\(972\) 0 0
\(973\) −5.76014 16.9004i −0.184662 0.541802i
\(974\) 6.16891 + 26.6649i 0.197665 + 0.854398i
\(975\) 0 0
\(976\) −9.92090 + 4.02942i −0.317560 + 0.128979i
\(977\) 35.5330 1.13680 0.568400 0.822752i \(-0.307563\pi\)
0.568400 + 0.822752i \(0.307563\pi\)
\(978\) 0 0
\(979\) −24.1737 41.8701i −0.772595 1.33817i
\(980\) −0.536199 8.30623i −0.0171283 0.265333i
\(981\) 0 0
\(982\) −23.9401 + 22.3450i −0.763959 + 0.713056i
\(983\) −12.8397 + 22.2390i −0.409523 + 0.709315i −0.994836 0.101493i \(-0.967638\pi\)
0.585313 + 0.810807i \(0.300972\pi\)
\(984\) 0 0
\(985\) 8.96600 5.17652i 0.285680 0.164938i
\(986\) −19.0717 + 17.8010i −0.607368 + 0.566899i
\(987\) 0 0
\(988\) 33.0968 + 2.28395i 1.05295 + 0.0726620i
\(989\) −2.26367 + 3.92079i −0.0719805 + 0.124674i
\(990\) 0 0
\(991\) −20.2815 + 11.7096i −0.644264 + 0.371966i −0.786255 0.617902i \(-0.787983\pi\)
0.141991 + 0.989868i \(0.454650\pi\)
\(992\) 33.3426 2.99391i 1.05863 0.0950569i
\(993\) 0 0
\(994\) −27.8346 + 17.2897i −0.882860 + 0.548394i
\(995\) 1.82994 + 1.05652i 0.0580130 + 0.0334938i
\(996\) 0 0
\(997\) −1.36608 0.788707i −0.0432642 0.0249786i 0.478212 0.878244i \(-0.341285\pi\)
−0.521476 + 0.853266i \(0.674618\pi\)
\(998\) −1.69482 7.32580i −0.0536487 0.231894i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bj.b.523.27 84
3.2 odd 2 252.2.bj.b.103.16 yes 84
4.3 odd 2 inner 756.2.bj.b.523.28 84
7.3 odd 6 756.2.n.b.199.30 84
9.2 odd 6 252.2.n.b.187.41 yes 84
9.7 even 3 756.2.n.b.19.2 84
12.11 even 2 252.2.bj.b.103.15 yes 84
21.17 even 6 252.2.n.b.31.13 84
28.3 even 6 756.2.n.b.199.2 84
36.7 odd 6 756.2.n.b.19.30 84
36.11 even 6 252.2.n.b.187.13 yes 84
63.38 even 6 252.2.bj.b.115.16 yes 84
63.52 odd 6 inner 756.2.bj.b.451.27 84
84.59 odd 6 252.2.n.b.31.41 yes 84
252.115 even 6 inner 756.2.bj.b.451.28 84
252.227 odd 6 252.2.bj.b.115.15 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.n.b.31.13 84 21.17 even 6
252.2.n.b.31.41 yes 84 84.59 odd 6
252.2.n.b.187.13 yes 84 36.11 even 6
252.2.n.b.187.41 yes 84 9.2 odd 6
252.2.bj.b.103.15 yes 84 12.11 even 2
252.2.bj.b.103.16 yes 84 3.2 odd 2
252.2.bj.b.115.15 yes 84 252.227 odd 6
252.2.bj.b.115.16 yes 84 63.38 even 6
756.2.n.b.19.2 84 9.7 even 3
756.2.n.b.19.30 84 36.7 odd 6
756.2.n.b.199.2 84 28.3 even 6
756.2.n.b.199.30 84 7.3 odd 6
756.2.bj.b.451.27 84 63.52 odd 6 inner
756.2.bj.b.451.28 84 252.115 even 6 inner
756.2.bj.b.523.27 84 1.1 even 1 trivial
756.2.bj.b.523.28 84 4.3 odd 2 inner