Properties

Label 756.2.bj.b.523.23
Level $756$
Weight $2$
Character 756.523
Analytic conductor $6.037$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(451,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bj (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(42\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 523.23
Character \(\chi\) \(=\) 756.523
Dual form 756.2.bj.b.451.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.171292 - 1.40380i) q^{2} +(-1.94132 - 0.480920i) q^{4} +(-3.50837 + 2.02556i) q^{5} +(2.35939 - 1.19719i) q^{7} +(-1.00765 + 2.64285i) q^{8} +(2.24253 + 5.27202i) q^{10} +(0.471017 + 0.271942i) q^{11} +(1.01063 + 0.583488i) q^{13} +(-1.27647 - 3.51719i) q^{14} +(3.53743 + 1.86724i) q^{16} +(5.05773 - 2.92008i) q^{17} +(1.16501 - 2.01785i) q^{19} +(7.78500 - 2.24501i) q^{20} +(0.462434 - 0.614633i) q^{22} +(-1.39849 + 0.807417i) q^{23} +(5.70579 - 9.88272i) q^{25} +(0.992214 - 1.31878i) q^{26} +(-5.15609 + 1.18945i) q^{28} +(-2.40001 - 4.15694i) q^{29} +4.49030 q^{31} +(3.22716 - 4.64601i) q^{32} +(-3.23287 - 7.60024i) q^{34} +(-5.85265 + 8.97929i) q^{35} +(-1.48498 + 2.57206i) q^{37} +(-2.63311 - 1.98108i) q^{38} +(-1.81804 - 11.3132i) q^{40} +(3.89836 + 2.25072i) q^{41} +(2.89521 - 1.67155i) q^{43} +(-0.783611 - 0.754447i) q^{44} +(0.893904 + 2.10150i) q^{46} +8.58149 q^{47} +(4.13347 - 5.64928i) q^{49} +(-12.8960 - 9.70263i) q^{50} +(-1.68134 - 1.61877i) q^{52} +(-5.84343 - 10.1211i) q^{53} -2.20334 q^{55} +(0.786554 + 7.44186i) q^{56} +(-6.24662 + 2.65709i) q^{58} +12.8781 q^{59} +2.08317i q^{61} +(0.769151 - 6.30348i) q^{62} +(-5.96929 - 5.32612i) q^{64} -4.72756 q^{65} +7.09620i q^{67} +(-11.2230 + 3.23645i) q^{68} +(11.6026 + 9.75404i) q^{70} +5.17264i q^{71} +(5.58686 - 3.22558i) q^{73} +(3.35629 + 2.52519i) q^{74} +(-3.23207 + 3.35702i) q^{76} +(1.43688 + 0.0777206i) q^{77} +4.02680i q^{79} +(-16.1928 + 0.614320i) q^{80} +(3.82732 - 5.08700i) q^{82} +(2.76985 + 4.79753i) q^{83} +(-11.8296 + 20.4895i) q^{85} +(-1.85060 - 4.35062i) q^{86} +(-1.19332 + 0.970804i) q^{88} +(7.63381 + 4.40738i) q^{89} +(3.08302 + 0.166760i) q^{91} +(3.10321 - 0.894893i) q^{92} +(1.46994 - 12.0467i) q^{94} +9.43917i q^{95} +(-13.8033 + 7.96935i) q^{97} +(-7.22244 - 6.77025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 2 q^{2} - 2 q^{4} - 6 q^{5} + 16 q^{8} - 18 q^{10} + 18 q^{13} - 14 q^{14} + 14 q^{16} - 6 q^{17} + 24 q^{20} + 6 q^{22} + 16 q^{25} + 30 q^{26} - 4 q^{28} - 10 q^{29} + 18 q^{32} - 24 q^{34} + 2 q^{37}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.171292 1.40380i 0.121122 0.992638i
\(3\) 0 0
\(4\) −1.94132 0.480920i −0.970659 0.240460i
\(5\) −3.50837 + 2.02556i −1.56899 + 0.905858i −0.572706 + 0.819761i \(0.694106\pi\)
−0.996287 + 0.0860974i \(0.972560\pi\)
\(6\) 0 0
\(7\) 2.35939 1.19719i 0.891767 0.452495i
\(8\) −1.00765 + 2.64285i −0.356257 + 0.934388i
\(9\) 0 0
\(10\) 2.24253 + 5.27202i 0.709150 + 1.66716i
\(11\) 0.471017 + 0.271942i 0.142017 + 0.0819935i 0.569325 0.822113i \(-0.307205\pi\)
−0.427308 + 0.904106i \(0.640538\pi\)
\(12\) 0 0
\(13\) 1.01063 + 0.583488i 0.280298 + 0.161830i 0.633558 0.773695i \(-0.281594\pi\)
−0.353260 + 0.935525i \(0.614927\pi\)
\(14\) −1.27647 3.51719i −0.341152 0.940008i
\(15\) 0 0
\(16\) 3.53743 + 1.86724i 0.884358 + 0.466809i
\(17\) 5.05773 2.92008i 1.22668 0.708224i 0.260347 0.965515i \(-0.416163\pi\)
0.966334 + 0.257291i \(0.0828298\pi\)
\(18\) 0 0
\(19\) 1.16501 2.01785i 0.267271 0.462927i −0.700885 0.713274i \(-0.747212\pi\)
0.968156 + 0.250347i \(0.0805448\pi\)
\(20\) 7.78500 2.24501i 1.74078 0.502000i
\(21\) 0 0
\(22\) 0.462434 0.614633i 0.0985912 0.131040i
\(23\) −1.39849 + 0.807417i −0.291605 + 0.168358i −0.638665 0.769485i \(-0.720513\pi\)
0.347061 + 0.937843i \(0.387180\pi\)
\(24\) 0 0
\(25\) 5.70579 9.88272i 1.14116 1.97654i
\(26\) 0.992214 1.31878i 0.194589 0.258634i
\(27\) 0 0
\(28\) −5.15609 + 1.18945i −0.974408 + 0.224785i
\(29\) −2.40001 4.15694i −0.445670 0.771924i 0.552428 0.833560i \(-0.313701\pi\)
−0.998099 + 0.0616368i \(0.980368\pi\)
\(30\) 0 0
\(31\) 4.49030 0.806481 0.403240 0.915094i \(-0.367884\pi\)
0.403240 + 0.915094i \(0.367884\pi\)
\(32\) 3.22716 4.64601i 0.570487 0.821306i
\(33\) 0 0
\(34\) −3.23287 7.60024i −0.554433 1.30343i
\(35\) −5.85265 + 8.97929i −0.989279 + 1.51778i
\(36\) 0 0
\(37\) −1.48498 + 2.57206i −0.244129 + 0.422844i −0.961886 0.273450i \(-0.911835\pi\)
0.717757 + 0.696293i \(0.245169\pi\)
\(38\) −2.63311 1.98108i −0.427146 0.321374i
\(39\) 0 0
\(40\) −1.81804 11.3132i −0.287458 1.78877i
\(41\) 3.89836 + 2.25072i 0.608822 + 0.351504i 0.772504 0.635010i \(-0.219004\pi\)
−0.163682 + 0.986513i \(0.552337\pi\)
\(42\) 0 0
\(43\) 2.89521 1.67155i 0.441515 0.254909i −0.262725 0.964871i \(-0.584621\pi\)
0.704240 + 0.709962i \(0.251288\pi\)
\(44\) −0.783611 0.754447i −0.118134 0.113737i
\(45\) 0 0
\(46\) 0.893904 + 2.10150i 0.131799 + 0.309850i
\(47\) 8.58149 1.25174 0.625869 0.779928i \(-0.284744\pi\)
0.625869 + 0.779928i \(0.284744\pi\)
\(48\) 0 0
\(49\) 4.13347 5.64928i 0.590496 0.807041i
\(50\) −12.8960 9.70263i −1.82377 1.37216i
\(51\) 0 0
\(52\) −1.68134 1.61877i −0.233160 0.224483i
\(53\) −5.84343 10.1211i −0.802658 1.39024i −0.917861 0.396902i \(-0.870085\pi\)
0.115204 0.993342i \(-0.463248\pi\)
\(54\) 0 0
\(55\) −2.20334 −0.297098
\(56\) 0.786554 + 7.44186i 0.105108 + 0.994461i
\(57\) 0 0
\(58\) −6.24662 + 2.65709i −0.820221 + 0.348892i
\(59\) 12.8781 1.67658 0.838292 0.545222i \(-0.183555\pi\)
0.838292 + 0.545222i \(0.183555\pi\)
\(60\) 0 0
\(61\) 2.08317i 0.266722i 0.991067 + 0.133361i \(0.0425771\pi\)
−0.991067 + 0.133361i \(0.957423\pi\)
\(62\) 0.769151 6.30348i 0.0976823 0.800543i
\(63\) 0 0
\(64\) −5.96929 5.32612i −0.746161 0.665765i
\(65\) −4.72756 −0.586381
\(66\) 0 0
\(67\) 7.09620i 0.866939i 0.901168 + 0.433470i \(0.142711\pi\)
−0.901168 + 0.433470i \(0.857289\pi\)
\(68\) −11.2230 + 3.23645i −1.36099 + 0.392477i
\(69\) 0 0
\(70\) 11.6026 + 9.75404i 1.38678 + 1.16583i
\(71\) 5.17264i 0.613879i 0.951729 + 0.306940i \(0.0993049\pi\)
−0.951729 + 0.306940i \(0.900695\pi\)
\(72\) 0 0
\(73\) 5.58686 3.22558i 0.653893 0.377525i −0.136053 0.990702i \(-0.543442\pi\)
0.789946 + 0.613176i \(0.210108\pi\)
\(74\) 3.35629 + 2.52519i 0.390161 + 0.293547i
\(75\) 0 0
\(76\) −3.23207 + 3.35702i −0.370744 + 0.385076i
\(77\) 1.43688 + 0.0777206i 0.163748 + 0.00885708i
\(78\) 0 0
\(79\) 4.02680i 0.453050i 0.974005 + 0.226525i \(0.0727365\pi\)
−0.974005 + 0.226525i \(0.927264\pi\)
\(80\) −16.1928 + 0.614320i −1.81041 + 0.0686830i
\(81\) 0 0
\(82\) 3.82732 5.08700i 0.422657 0.561765i
\(83\) 2.76985 + 4.79753i 0.304031 + 0.526597i 0.977045 0.213033i \(-0.0683340\pi\)
−0.673014 + 0.739630i \(0.735001\pi\)
\(84\) 0 0
\(85\) −11.8296 + 20.4895i −1.28310 + 2.22240i
\(86\) −1.85060 4.35062i −0.199555 0.469140i
\(87\) 0 0
\(88\) −1.19332 + 0.970804i −0.127208 + 0.103488i
\(89\) 7.63381 + 4.40738i 0.809183 + 0.467182i 0.846672 0.532115i \(-0.178603\pi\)
−0.0374893 + 0.999297i \(0.511936\pi\)
\(90\) 0 0
\(91\) 3.08302 + 0.166760i 0.323188 + 0.0174812i
\(92\) 3.10321 0.894893i 0.323532 0.0932991i
\(93\) 0 0
\(94\) 1.46994 12.0467i 0.151613 1.24252i
\(95\) 9.43917i 0.968438i
\(96\) 0 0
\(97\) −13.8033 + 7.96935i −1.40151 + 0.809165i −0.994548 0.104278i \(-0.966747\pi\)
−0.406966 + 0.913443i \(0.633413\pi\)
\(98\) −7.22244 6.77025i −0.729577 0.683899i
\(99\) 0 0
\(100\) −15.8296 + 16.4415i −1.58296 + 1.64415i
\(101\) 6.41362 + 3.70290i 0.638179 + 0.368453i 0.783913 0.620871i \(-0.213221\pi\)
−0.145734 + 0.989324i \(0.546554\pi\)
\(102\) 0 0
\(103\) 3.23031 + 5.59507i 0.318292 + 0.551298i 0.980132 0.198347i \(-0.0635574\pi\)
−0.661840 + 0.749645i \(0.730224\pi\)
\(104\) −2.56043 + 2.08299i −0.251071 + 0.204254i
\(105\) 0 0
\(106\) −15.2090 + 6.46936i −1.47723 + 0.628359i
\(107\) −9.62572 5.55741i −0.930553 0.537255i −0.0435667 0.999051i \(-0.513872\pi\)
−0.886987 + 0.461795i \(0.847205\pi\)
\(108\) 0 0
\(109\) −1.67348 2.89856i −0.160291 0.277632i 0.774682 0.632351i \(-0.217910\pi\)
−0.934973 + 0.354719i \(0.884576\pi\)
\(110\) −0.377414 + 3.09305i −0.0359850 + 0.294911i
\(111\) 0 0
\(112\) 10.5816 + 0.170566i 0.999870 + 0.0161169i
\(113\) 1.36060 2.35662i 0.127994 0.221692i −0.794905 0.606734i \(-0.792479\pi\)
0.922899 + 0.385041i \(0.125813\pi\)
\(114\) 0 0
\(115\) 3.27095 5.66544i 0.305017 0.528305i
\(116\) 2.66003 + 9.22415i 0.246977 + 0.856441i
\(117\) 0 0
\(118\) 2.20591 18.0783i 0.203071 1.66424i
\(119\) 8.43729 12.9447i 0.773445 1.18664i
\(120\) 0 0
\(121\) −5.35210 9.27010i −0.486554 0.842736i
\(122\) 2.92436 + 0.356830i 0.264759 + 0.0323059i
\(123\) 0 0
\(124\) −8.71709 2.15947i −0.782818 0.193926i
\(125\) 25.9741i 2.32320i
\(126\) 0 0
\(127\) 14.2111i 1.26103i −0.776178 0.630513i \(-0.782844\pi\)
0.776178 0.630513i \(-0.217156\pi\)
\(128\) −8.49931 + 7.46738i −0.751240 + 0.660029i
\(129\) 0 0
\(130\) −0.809792 + 6.63655i −0.0710235 + 0.582064i
\(131\) −7.95497 13.7784i −0.695029 1.20383i −0.970171 0.242422i \(-0.922058\pi\)
0.275142 0.961404i \(-0.411275\pi\)
\(132\) 0 0
\(133\) 0.332957 6.15564i 0.0288711 0.533761i
\(134\) 9.96166 + 1.21552i 0.860556 + 0.105005i
\(135\) 0 0
\(136\) 2.62092 + 16.3092i 0.224742 + 1.39851i
\(137\) 6.27966 10.8767i 0.536507 0.929258i −0.462581 0.886577i \(-0.653077\pi\)
0.999089 0.0426811i \(-0.0135899\pi\)
\(138\) 0 0
\(139\) −7.10577 + 12.3076i −0.602704 + 1.04391i 0.389706 + 0.920939i \(0.372577\pi\)
−0.992410 + 0.122974i \(0.960757\pi\)
\(140\) 15.6802 14.6170i 1.32522 1.23536i
\(141\) 0 0
\(142\) 7.26136 + 0.886031i 0.609359 + 0.0743541i
\(143\) 0.317349 + 0.549665i 0.0265381 + 0.0459653i
\(144\) 0 0
\(145\) 16.8403 + 9.72272i 1.39851 + 0.807428i
\(146\) −3.57109 8.39536i −0.295545 0.694805i
\(147\) 0 0
\(148\) 4.11977 4.27903i 0.338643 0.351734i
\(149\) −2.11648 3.66585i −0.173389 0.300318i 0.766214 0.642586i \(-0.222138\pi\)
−0.939603 + 0.342267i \(0.888805\pi\)
\(150\) 0 0
\(151\) 7.54013 + 4.35330i 0.613607 + 0.354266i 0.774376 0.632726i \(-0.218064\pi\)
−0.160769 + 0.986992i \(0.551397\pi\)
\(152\) 4.15896 + 5.11222i 0.337336 + 0.414656i
\(153\) 0 0
\(154\) 0.355230 2.00378i 0.0286253 0.161469i
\(155\) −15.7536 + 9.09537i −1.26536 + 0.730557i
\(156\) 0 0
\(157\) 7.63781i 0.609563i 0.952422 + 0.304782i \(0.0985835\pi\)
−0.952422 + 0.304782i \(0.901417\pi\)
\(158\) 5.65282 + 0.689758i 0.449714 + 0.0548742i
\(159\) 0 0
\(160\) −1.91132 + 22.8368i −0.151103 + 1.80540i
\(161\) −2.33295 + 3.57927i −0.183862 + 0.282086i
\(162\) 0 0
\(163\) 13.1093 + 7.56865i 1.02680 + 0.592822i 0.916066 0.401028i \(-0.131347\pi\)
0.110732 + 0.993850i \(0.464680\pi\)
\(164\) −6.48555 6.24416i −0.506436 0.487587i
\(165\) 0 0
\(166\) 7.20923 3.06655i 0.559545 0.238010i
\(167\) 1.88524 3.26533i 0.145884 0.252679i −0.783818 0.620990i \(-0.786731\pi\)
0.929702 + 0.368311i \(0.120064\pi\)
\(168\) 0 0
\(169\) −5.81908 10.0790i −0.447622 0.775304i
\(170\) 26.7369 + 20.1161i 2.05062 + 1.54284i
\(171\) 0 0
\(172\) −6.42440 + 1.85265i −0.489856 + 0.141263i
\(173\) 6.26492i 0.476313i 0.971227 + 0.238157i \(0.0765432\pi\)
−0.971227 + 0.238157i \(0.923457\pi\)
\(174\) 0 0
\(175\) 1.63071 30.1481i 0.123270 2.27899i
\(176\) 1.15841 + 1.84147i 0.0873185 + 0.138806i
\(177\) 0 0
\(178\) 7.49470 9.96141i 0.561752 0.746639i
\(179\) 8.63863 4.98752i 0.645682 0.372785i −0.141118 0.989993i \(-0.545070\pi\)
0.786800 + 0.617208i \(0.211736\pi\)
\(180\) 0 0
\(181\) 5.34622i 0.397382i −0.980062 0.198691i \(-0.936331\pi\)
0.980062 0.198691i \(-0.0636690\pi\)
\(182\) 0.762194 4.29938i 0.0564976 0.318691i
\(183\) 0 0
\(184\) −0.724698 4.50958i −0.0534254 0.332451i
\(185\) 12.0317i 0.884585i
\(186\) 0 0
\(187\) 3.17637 0.232279
\(188\) −16.6594 4.12701i −1.21501 0.300993i
\(189\) 0 0
\(190\) 13.2507 + 1.61685i 0.961308 + 0.117299i
\(191\) 22.0104i 1.59261i 0.604893 + 0.796307i \(0.293216\pi\)
−0.604893 + 0.796307i \(0.706784\pi\)
\(192\) 0 0
\(193\) −5.83438 −0.419968 −0.209984 0.977705i \(-0.567341\pi\)
−0.209984 + 0.977705i \(0.567341\pi\)
\(194\) 8.82299 + 20.7422i 0.633454 + 1.48920i
\(195\) 0 0
\(196\) −10.7412 + 8.97919i −0.767231 + 0.641371i
\(197\) −14.2652 −1.01636 −0.508178 0.861252i \(-0.669681\pi\)
−0.508178 + 0.861252i \(0.669681\pi\)
\(198\) 0 0
\(199\) −2.14848 3.72128i −0.152302 0.263794i 0.779771 0.626064i \(-0.215335\pi\)
−0.932073 + 0.362270i \(0.882002\pi\)
\(200\) 20.3691 + 25.0379i 1.44031 + 1.77044i
\(201\) 0 0
\(202\) 6.29674 8.36917i 0.443037 0.588853i
\(203\) −10.6392 6.93458i −0.746726 0.486712i
\(204\) 0 0
\(205\) −18.2359 −1.27365
\(206\) 8.40769 3.57633i 0.585791 0.249175i
\(207\) 0 0
\(208\) 2.48553 + 3.95113i 0.172340 + 0.273962i
\(209\) 1.09748 0.633628i 0.0759139 0.0438289i
\(210\) 0 0
\(211\) 0.0869189 + 0.0501826i 0.00598374 + 0.00345472i 0.502989 0.864293i \(-0.332234\pi\)
−0.497005 + 0.867748i \(0.665567\pi\)
\(212\) 6.47652 + 22.4585i 0.444809 + 1.54246i
\(213\) 0 0
\(214\) −9.45031 + 12.5607i −0.646010 + 0.858629i
\(215\) −6.77165 + 11.7288i −0.461823 + 0.799901i
\(216\) 0 0
\(217\) 10.5944 5.37574i 0.719193 0.364929i
\(218\) −4.35566 + 1.85274i −0.295002 + 0.125483i
\(219\) 0 0
\(220\) 4.27738 + 1.05963i 0.288381 + 0.0714401i
\(221\) 6.81533 0.458449
\(222\) 0 0
\(223\) −6.41092 11.1040i −0.429307 0.743582i 0.567505 0.823370i \(-0.307909\pi\)
−0.996812 + 0.0797885i \(0.974575\pi\)
\(224\) 2.05199 14.8253i 0.137104 0.990557i
\(225\) 0 0
\(226\) −3.07517 2.31368i −0.204557 0.153904i
\(227\) 9.39256 16.2684i 0.623406 1.07977i −0.365440 0.930835i \(-0.619082\pi\)
0.988847 0.148937i \(-0.0475850\pi\)
\(228\) 0 0
\(229\) −15.6660 + 9.04474i −1.03524 + 0.597693i −0.918480 0.395467i \(-0.870583\pi\)
−0.116755 + 0.993161i \(0.537249\pi\)
\(230\) −7.39287 5.56220i −0.487472 0.366761i
\(231\) 0 0
\(232\) 13.4045 2.15413i 0.880049 0.141425i
\(233\) 5.88363 10.1908i 0.385450 0.667618i −0.606382 0.795174i \(-0.707380\pi\)
0.991831 + 0.127555i \(0.0407130\pi\)
\(234\) 0 0
\(235\) −30.1071 + 17.3823i −1.96397 + 1.13390i
\(236\) −25.0005 6.19332i −1.62739 0.403151i
\(237\) 0 0
\(238\) −16.7265 14.0616i −1.08422 0.911478i
\(239\) 1.69786 + 0.980260i 0.109825 + 0.0634077i 0.553907 0.832579i \(-0.313136\pi\)
−0.444081 + 0.895987i \(0.646470\pi\)
\(240\) 0 0
\(241\) −5.93725 3.42787i −0.382452 0.220809i 0.296433 0.955054i \(-0.404203\pi\)
−0.678885 + 0.734245i \(0.737536\pi\)
\(242\) −13.9302 + 5.92539i −0.895464 + 0.380898i
\(243\) 0 0
\(244\) 1.00184 4.04409i 0.0641361 0.258897i
\(245\) −3.05879 + 28.1924i −0.195419 + 1.80115i
\(246\) 0 0
\(247\) 2.35478 1.35953i 0.149831 0.0865051i
\(248\) −4.52464 + 11.8672i −0.287315 + 0.753566i
\(249\) 0 0
\(250\) 36.4625 + 4.44916i 2.30609 + 0.281389i
\(251\) 17.0335 1.07515 0.537574 0.843217i \(-0.319341\pi\)
0.537574 + 0.843217i \(0.319341\pi\)
\(252\) 0 0
\(253\) −0.878282 −0.0552171
\(254\) −19.9495 2.43424i −1.25174 0.152738i
\(255\) 0 0
\(256\) 9.02686 + 13.2104i 0.564178 + 0.825653i
\(257\) −17.9980 + 10.3911i −1.12268 + 0.648182i −0.942085 0.335375i \(-0.891137\pi\)
−0.180599 + 0.983557i \(0.557804\pi\)
\(258\) 0 0
\(259\) −0.424405 + 7.84630i −0.0263712 + 0.487545i
\(260\) 9.17769 + 2.27358i 0.569176 + 0.141001i
\(261\) 0 0
\(262\) −20.7048 + 8.80707i −1.27915 + 0.544102i
\(263\) 8.50377 + 4.90965i 0.524365 + 0.302742i 0.738719 0.674014i \(-0.235431\pi\)
−0.214354 + 0.976756i \(0.568765\pi\)
\(264\) 0 0
\(265\) 41.0019 + 23.6725i 2.51873 + 1.45419i
\(266\) −8.58426 1.52182i −0.526335 0.0933086i
\(267\) 0 0
\(268\) 3.41270 13.7760i 0.208464 0.841502i
\(269\) −4.88843 + 2.82234i −0.298053 + 0.172081i −0.641568 0.767066i \(-0.721716\pi\)
0.343515 + 0.939147i \(0.388382\pi\)
\(270\) 0 0
\(271\) −11.3288 + 19.6221i −0.688177 + 1.19196i 0.284251 + 0.958750i \(0.408255\pi\)
−0.972427 + 0.233207i \(0.925078\pi\)
\(272\) 23.3439 0.885614i 1.41543 0.0536982i
\(273\) 0 0
\(274\) −14.1931 10.6785i −0.857434 0.645111i
\(275\) 5.37505 3.10329i 0.324128 0.187135i
\(276\) 0 0
\(277\) −5.76634 + 9.98759i −0.346466 + 0.600096i −0.985619 0.168983i \(-0.945952\pi\)
0.639153 + 0.769079i \(0.279285\pi\)
\(278\) 16.0602 + 12.0833i 0.963227 + 0.724707i
\(279\) 0 0
\(280\) −17.8335 24.5156i −1.06575 1.46509i
\(281\) −0.625840 1.08399i −0.0373345 0.0646652i 0.846754 0.531984i \(-0.178553\pi\)
−0.884089 + 0.467319i \(0.845220\pi\)
\(282\) 0 0
\(283\) 0.951483 0.0565598 0.0282799 0.999600i \(-0.490997\pi\)
0.0282799 + 0.999600i \(0.490997\pi\)
\(284\) 2.48762 10.0417i 0.147613 0.595867i
\(285\) 0 0
\(286\) 0.825980 0.351342i 0.0488412 0.0207753i
\(287\) 11.8923 + 0.643253i 0.701981 + 0.0379700i
\(288\) 0 0
\(289\) 8.55378 14.8156i 0.503164 0.871505i
\(290\) 16.5334 21.9750i 0.970873 1.29041i
\(291\) 0 0
\(292\) −12.3971 + 3.57504i −0.725487 + 0.209213i
\(293\) −14.3254 8.27078i −0.836900 0.483184i 0.0193095 0.999814i \(-0.493853\pi\)
−0.856209 + 0.516629i \(0.827187\pi\)
\(294\) 0 0
\(295\) −45.1811 + 26.0853i −2.63055 + 1.51875i
\(296\) −5.30122 6.51630i −0.308127 0.378752i
\(297\) 0 0
\(298\) −5.50867 + 2.34319i −0.319109 + 0.135737i
\(299\) −1.88447 −0.108982
\(300\) 0 0
\(301\) 4.82977 7.40996i 0.278384 0.427103i
\(302\) 7.40273 9.83916i 0.425979 0.566180i
\(303\) 0 0
\(304\) 7.88894 4.96267i 0.452462 0.284628i
\(305\) −4.21959 7.30854i −0.241613 0.418486i
\(306\) 0 0
\(307\) 27.1061 1.54702 0.773512 0.633781i \(-0.218498\pi\)
0.773512 + 0.633781i \(0.218498\pi\)
\(308\) −2.75206 0.841904i −0.156813 0.0479719i
\(309\) 0 0
\(310\) 10.0696 + 23.6729i 0.571916 + 1.34453i
\(311\) −12.4603 −0.706561 −0.353281 0.935517i \(-0.614934\pi\)
−0.353281 + 0.935517i \(0.614934\pi\)
\(312\) 0 0
\(313\) 19.0083i 1.07441i −0.843451 0.537206i \(-0.819480\pi\)
0.843451 0.537206i \(-0.180520\pi\)
\(314\) 10.7220 + 1.30829i 0.605075 + 0.0738313i
\(315\) 0 0
\(316\) 1.93657 7.81729i 0.108940 0.439757i
\(317\) 20.5387 1.15357 0.576784 0.816897i \(-0.304308\pi\)
0.576784 + 0.816897i \(0.304308\pi\)
\(318\) 0 0
\(319\) 2.61065i 0.146168i
\(320\) 31.7309 + 6.59487i 1.77381 + 0.368664i
\(321\) 0 0
\(322\) 4.62497 + 3.88810i 0.257740 + 0.216675i
\(323\) 13.6077i 0.757151i
\(324\) 0 0
\(325\) 11.5329 6.65852i 0.639730 0.369348i
\(326\) 12.8704 17.1064i 0.712825 0.947435i
\(327\) 0 0
\(328\) −9.87649 + 8.03485i −0.545338 + 0.443650i
\(329\) 20.2471 10.2737i 1.11626 0.566406i
\(330\) 0 0
\(331\) 11.4735i 0.630638i −0.948986 0.315319i \(-0.897888\pi\)
0.948986 0.315319i \(-0.102112\pi\)
\(332\) −3.06994 10.6456i −0.168485 0.584254i
\(333\) 0 0
\(334\) −4.26095 3.20583i −0.233149 0.175415i
\(335\) −14.3738 24.8961i −0.785324 1.36022i
\(336\) 0 0
\(337\) −4.74216 + 8.21367i −0.258322 + 0.447427i −0.965793 0.259316i \(-0.916503\pi\)
0.707470 + 0.706743i \(0.249836\pi\)
\(338\) −15.1456 + 6.44240i −0.823813 + 0.350420i
\(339\) 0 0
\(340\) 32.8189 34.0875i 1.77985 1.84866i
\(341\) 2.11500 + 1.22110i 0.114534 + 0.0661262i
\(342\) 0 0
\(343\) 2.98921 18.2774i 0.161402 0.986889i
\(344\) 1.50030 + 9.33593i 0.0808908 + 0.503360i
\(345\) 0 0
\(346\) 8.79471 + 1.07313i 0.472807 + 0.0576919i
\(347\) 2.29103i 0.122989i 0.998107 + 0.0614943i \(0.0195866\pi\)
−0.998107 + 0.0614943i \(0.980413\pi\)
\(348\) 0 0
\(349\) 28.3807 16.3856i 1.51918 0.877100i 0.519437 0.854509i \(-0.326142\pi\)
0.999745 0.0225916i \(-0.00719173\pi\)
\(350\) −42.0427 7.45333i −2.24728 0.398397i
\(351\) 0 0
\(352\) 2.78349 1.31075i 0.148361 0.0698631i
\(353\) −18.2716 10.5491i −0.972501 0.561474i −0.0725034 0.997368i \(-0.523099\pi\)
−0.899998 + 0.435894i \(0.856432\pi\)
\(354\) 0 0
\(355\) −10.4775 18.1475i −0.556087 0.963172i
\(356\) −12.7001 12.2274i −0.673102 0.648050i
\(357\) 0 0
\(358\) −5.52176 12.9812i −0.291834 0.686080i
\(359\) −25.9102 14.9593i −1.36749 0.789519i −0.376881 0.926262i \(-0.623003\pi\)
−0.990607 + 0.136742i \(0.956337\pi\)
\(360\) 0 0
\(361\) 6.78552 + 11.7529i 0.357133 + 0.618572i
\(362\) −7.50504 0.915765i −0.394456 0.0481315i
\(363\) 0 0
\(364\) −5.90492 1.80642i −0.309502 0.0946821i
\(365\) −13.0672 + 22.6331i −0.683969 + 1.18467i
\(366\) 0 0
\(367\) −10.0638 + 17.4310i −0.525325 + 0.909890i 0.474239 + 0.880396i \(0.342723\pi\)
−0.999565 + 0.0294945i \(0.990610\pi\)
\(368\) −6.45470 + 0.244877i −0.336474 + 0.0127651i
\(369\) 0 0
\(370\) −16.8901 2.06093i −0.878072 0.107142i
\(371\) −25.9039 16.8840i −1.34486 0.876574i
\(372\) 0 0
\(373\) 5.47058 + 9.47532i 0.283256 + 0.490613i 0.972185 0.234216i \(-0.0752522\pi\)
−0.688929 + 0.724829i \(0.741919\pi\)
\(374\) 0.544087 4.45899i 0.0281340 0.230569i
\(375\) 0 0
\(376\) −8.64712 + 22.6796i −0.445941 + 1.16961i
\(377\) 5.60150i 0.288492i
\(378\) 0 0
\(379\) 15.9358i 0.818566i −0.912407 0.409283i \(-0.865779\pi\)
0.912407 0.409283i \(-0.134221\pi\)
\(380\) 4.53948 18.3244i 0.232870 0.940023i
\(381\) 0 0
\(382\) 30.8982 + 3.77020i 1.58089 + 0.192900i
\(383\) −11.7448 20.3425i −0.600130 1.03946i −0.992801 0.119777i \(-0.961782\pi\)
0.392671 0.919679i \(-0.371551\pi\)
\(384\) 0 0
\(385\) −5.19854 + 2.63781i −0.264942 + 0.134435i
\(386\) −0.999382 + 8.19031i −0.0508672 + 0.416876i
\(387\) 0 0
\(388\) 30.6292 8.83275i 1.55496 0.448415i
\(389\) −4.06677 + 7.04385i −0.206193 + 0.357138i −0.950512 0.310687i \(-0.899441\pi\)
0.744319 + 0.667824i \(0.232774\pi\)
\(390\) 0 0
\(391\) −4.71545 + 8.16740i −0.238471 + 0.413043i
\(392\) 10.7651 + 16.6166i 0.543720 + 0.839266i
\(393\) 0 0
\(394\) −2.44352 + 20.0256i −0.123103 + 1.00887i
\(395\) −8.15652 14.1275i −0.410399 0.710832i
\(396\) 0 0
\(397\) −23.7199 13.6947i −1.19047 0.687318i −0.232057 0.972702i \(-0.574545\pi\)
−0.958413 + 0.285384i \(0.907879\pi\)
\(398\) −5.59195 + 2.37862i −0.280299 + 0.119229i
\(399\) 0 0
\(400\) 38.6372 24.3054i 1.93186 1.21527i
\(401\) 9.42465 + 16.3240i 0.470644 + 0.815180i 0.999436 0.0335714i \(-0.0106881\pi\)
−0.528792 + 0.848752i \(0.677355\pi\)
\(402\) 0 0
\(403\) 4.53803 + 2.62003i 0.226055 + 0.130513i
\(404\) −10.6701 10.2730i −0.530856 0.511098i
\(405\) 0 0
\(406\) −11.5572 + 13.7475i −0.573573 + 0.682277i
\(407\) −1.39890 + 0.807655i −0.0693409 + 0.0400340i
\(408\) 0 0
\(409\) 19.0825i 0.943567i −0.881714 0.471784i \(-0.843610\pi\)
0.881714 0.471784i \(-0.156390\pi\)
\(410\) −3.12366 + 25.5996i −0.154267 + 1.26427i
\(411\) 0 0
\(412\) −3.58029 12.4153i −0.176388 0.611659i
\(413\) 30.3845 15.4175i 1.49512 0.758646i
\(414\) 0 0
\(415\) −19.4354 11.2210i −0.954045 0.550818i
\(416\) 5.97236 2.81239i 0.292819 0.137889i
\(417\) 0 0
\(418\) −0.701499 1.64917i −0.0343114 0.0806637i
\(419\) −12.7212 + 22.0338i −0.621473 + 1.07642i 0.367739 + 0.929929i \(0.380132\pi\)
−0.989212 + 0.146493i \(0.953201\pi\)
\(420\) 0 0
\(421\) 10.2492 + 17.7521i 0.499514 + 0.865183i 1.00000 0.000561434i \(-0.000178710\pi\)
−0.500486 + 0.865745i \(0.666845\pi\)
\(422\) 0.0853350 0.113421i 0.00415404 0.00552125i
\(423\) 0 0
\(424\) 32.6367 5.24478i 1.58498 0.254709i
\(425\) 66.6456i 3.23279i
\(426\) 0 0
\(427\) 2.49395 + 4.91501i 0.120691 + 0.237854i
\(428\) 16.0139 + 15.4179i 0.774062 + 0.745252i
\(429\) 0 0
\(430\) 15.3050 + 11.5151i 0.738075 + 0.555308i
\(431\) 15.2031 8.77752i 0.732308 0.422798i −0.0869578 0.996212i \(-0.527715\pi\)
0.819266 + 0.573414i \(0.194381\pi\)
\(432\) 0 0
\(433\) 15.2009i 0.730507i 0.930908 + 0.365254i \(0.119018\pi\)
−0.930908 + 0.365254i \(0.880982\pi\)
\(434\) −5.73174 15.7932i −0.275132 0.758099i
\(435\) 0 0
\(436\) 1.85479 + 6.43184i 0.0888283 + 0.308029i
\(437\) 3.76259i 0.179989i
\(438\) 0 0
\(439\) −14.5691 −0.695345 −0.347673 0.937616i \(-0.613028\pi\)
−0.347673 + 0.937616i \(0.613028\pi\)
\(440\) 2.22019 5.82309i 0.105843 0.277605i
\(441\) 0 0
\(442\) 1.16741 9.56737i 0.0555281 0.455074i
\(443\) 24.0275i 1.14158i 0.821095 + 0.570791i \(0.193363\pi\)
−0.821095 + 0.570791i \(0.806637\pi\)
\(444\) 0 0
\(445\) −35.7097 −1.69280
\(446\) −16.6860 + 7.09763i −0.790105 + 0.336082i
\(447\) 0 0
\(448\) −20.4603 5.42004i −0.966658 0.256073i
\(449\) −36.1930 −1.70806 −0.854028 0.520228i \(-0.825847\pi\)
−0.854028 + 0.520228i \(0.825847\pi\)
\(450\) 0 0
\(451\) 1.22413 + 2.12025i 0.0576420 + 0.0998389i
\(452\) −3.77470 + 3.92061i −0.177547 + 0.184410i
\(453\) 0 0
\(454\) −21.2287 15.9719i −0.996314 0.749600i
\(455\) −11.1542 + 5.65979i −0.522915 + 0.265335i
\(456\) 0 0
\(457\) 20.5719 0.962312 0.481156 0.876635i \(-0.340217\pi\)
0.481156 + 0.876635i \(0.340217\pi\)
\(458\) 10.0136 + 23.5412i 0.467903 + 1.10001i
\(459\) 0 0
\(460\) −9.07457 + 9.42537i −0.423104 + 0.439460i
\(461\) −20.0785 + 11.5923i −0.935149 + 0.539908i −0.888436 0.459000i \(-0.848208\pi\)
−0.0467125 + 0.998908i \(0.514874\pi\)
\(462\) 0 0
\(463\) 11.0442 + 6.37637i 0.513268 + 0.296335i 0.734176 0.678959i \(-0.237569\pi\)
−0.220908 + 0.975295i \(0.570902\pi\)
\(464\) −0.727883 19.1863i −0.0337911 0.890700i
\(465\) 0 0
\(466\) −13.2980 10.0050i −0.616017 0.463475i
\(467\) 10.3847 17.9868i 0.480545 0.832329i −0.519206 0.854649i \(-0.673772\pi\)
0.999751 + 0.0223206i \(0.00710547\pi\)
\(468\) 0 0
\(469\) 8.49550 + 16.7427i 0.392286 + 0.773108i
\(470\) 19.2442 + 45.2418i 0.887671 + 2.08685i
\(471\) 0 0
\(472\) −12.9766 + 34.0348i −0.597295 + 1.56658i
\(473\) 1.81826 0.0836035
\(474\) 0 0
\(475\) −13.2946 23.0269i −0.609997 1.05655i
\(476\) −22.6048 + 21.0721i −1.03609 + 0.965839i
\(477\) 0 0
\(478\) 1.66692 2.21555i 0.0762431 0.101337i
\(479\) −9.11736 + 15.7917i −0.416583 + 0.721543i −0.995593 0.0937776i \(-0.970106\pi\)
0.579010 + 0.815320i \(0.303439\pi\)
\(480\) 0 0
\(481\) −3.00153 + 1.73293i −0.136858 + 0.0790149i
\(482\) −5.82906 + 7.74756i −0.265506 + 0.352892i
\(483\) 0 0
\(484\) 5.93195 + 20.5701i 0.269634 + 0.935007i
\(485\) 32.2848 55.9189i 1.46598 2.53915i
\(486\) 0 0
\(487\) 8.32199 4.80470i 0.377105 0.217722i −0.299453 0.954111i \(-0.596804\pi\)
0.676558 + 0.736389i \(0.263471\pi\)
\(488\) −5.50550 2.09910i −0.249222 0.0950219i
\(489\) 0 0
\(490\) 39.0526 + 9.12307i 1.76422 + 0.412138i
\(491\) −1.55447 0.897475i −0.0701524 0.0405025i 0.464514 0.885566i \(-0.346229\pi\)
−0.534666 + 0.845064i \(0.679563\pi\)
\(492\) 0 0
\(493\) −24.2772 14.0165i −1.09339 0.631269i
\(494\) −1.50516 3.53852i −0.0677204 0.159206i
\(495\) 0 0
\(496\) 15.8841 + 8.38444i 0.713218 + 0.376473i
\(497\) 6.19263 + 12.2043i 0.277777 + 0.547437i
\(498\) 0 0
\(499\) −38.0844 + 21.9881i −1.70489 + 0.984321i −0.764254 + 0.644915i \(0.776893\pi\)
−0.940640 + 0.339406i \(0.889774\pi\)
\(500\) 12.4915 50.4240i 0.558635 2.25503i
\(501\) 0 0
\(502\) 2.91771 23.9117i 0.130224 1.06723i
\(503\) 18.3538 0.818355 0.409178 0.912455i \(-0.365816\pi\)
0.409178 + 0.912455i \(0.365816\pi\)
\(504\) 0 0
\(505\) −30.0018 −1.33506
\(506\) −0.150443 + 1.23293i −0.00668799 + 0.0548106i
\(507\) 0 0
\(508\) −6.83438 + 27.5882i −0.303226 + 1.22403i
\(509\) 13.1711 7.60431i 0.583797 0.337055i −0.178844 0.983877i \(-0.557236\pi\)
0.762641 + 0.646822i \(0.223902\pi\)
\(510\) 0 0
\(511\) 9.31998 14.2989i 0.412291 0.632548i
\(512\) 20.0911 10.4091i 0.887908 0.460020i
\(513\) 0 0
\(514\) 11.5042 + 27.0455i 0.507428 + 1.19293i
\(515\) −22.6663 13.0864i −0.998796 0.576655i
\(516\) 0 0
\(517\) 4.04203 + 2.33366i 0.177768 + 0.102634i
\(518\) 10.9419 + 1.93979i 0.480762 + 0.0852294i
\(519\) 0 0
\(520\) 4.76371 12.4942i 0.208903 0.547908i
\(521\) −14.2730 + 8.24049i −0.625309 + 0.361023i −0.778933 0.627107i \(-0.784239\pi\)
0.153624 + 0.988129i \(0.450906\pi\)
\(522\) 0 0
\(523\) 7.92785 13.7314i 0.346661 0.600434i −0.638993 0.769212i \(-0.720649\pi\)
0.985654 + 0.168778i \(0.0539822\pi\)
\(524\) 8.81681 + 30.5740i 0.385164 + 1.33563i
\(525\) 0 0
\(526\) 8.34880 11.0966i 0.364025 0.483836i
\(527\) 22.7107 13.1120i 0.989295 0.571169i
\(528\) 0 0
\(529\) −10.1962 + 17.6603i −0.443311 + 0.767837i
\(530\) 40.2547 53.5036i 1.74855 2.32405i
\(531\) 0 0
\(532\) −3.60674 + 11.7899i −0.156372 + 0.511158i
\(533\) 2.62653 + 4.54929i 0.113768 + 0.197052i
\(534\) 0 0
\(535\) 45.0275 1.94671
\(536\) −18.7542 7.15048i −0.810057 0.308853i
\(537\) 0 0
\(538\) 3.12465 + 7.34584i 0.134713 + 0.316701i
\(539\) 3.48321 1.53684i 0.150032 0.0661966i
\(540\) 0 0
\(541\) 16.3113 28.2520i 0.701278 1.21465i −0.266740 0.963768i \(-0.585947\pi\)
0.968018 0.250880i \(-0.0807201\pi\)
\(542\) 25.6050 + 19.2645i 1.09983 + 0.827482i
\(543\) 0 0
\(544\) 2.75539 32.9219i 0.118136 1.41151i
\(545\) 11.7424 + 6.77949i 0.502990 + 0.290401i
\(546\) 0 0
\(547\) 30.4408 17.5750i 1.30155 0.751453i 0.320884 0.947119i \(-0.396020\pi\)
0.980671 + 0.195666i \(0.0626867\pi\)
\(548\) −17.4216 + 18.0951i −0.744215 + 0.772984i
\(549\) 0 0
\(550\) −3.43570 8.07707i −0.146499 0.344407i
\(551\) −11.1841 −0.476459
\(552\) 0 0
\(553\) 4.82084 + 9.50079i 0.205003 + 0.404015i
\(554\) 13.0329 + 9.80559i 0.553713 + 0.416599i
\(555\) 0 0
\(556\) 19.7135 20.4756i 0.836039 0.868358i
\(557\) 21.0919 + 36.5322i 0.893692 + 1.54792i 0.835415 + 0.549620i \(0.185227\pi\)
0.0582771 + 0.998300i \(0.481439\pi\)
\(558\) 0 0
\(559\) 3.90131 0.165008
\(560\) −37.4698 + 20.8353i −1.58339 + 0.880453i
\(561\) 0 0
\(562\) −1.62890 + 0.692877i −0.0687111 + 0.0292272i
\(563\) 32.4344 1.36695 0.683473 0.729976i \(-0.260469\pi\)
0.683473 + 0.729976i \(0.260469\pi\)
\(564\) 0 0
\(565\) 11.0239i 0.463778i
\(566\) 0.162981 1.33569i 0.00685062 0.0561434i
\(567\) 0 0
\(568\) −13.6705 5.21220i −0.573601 0.218699i
\(569\) −19.4904 −0.817080 −0.408540 0.912740i \(-0.633962\pi\)
−0.408540 + 0.912740i \(0.633962\pi\)
\(570\) 0 0
\(571\) 30.1571i 1.26203i −0.775769 0.631017i \(-0.782638\pi\)
0.775769 0.631017i \(-0.217362\pi\)
\(572\) −0.351731 1.21969i −0.0147066 0.0509980i
\(573\) 0 0
\(574\) 2.94006 16.5843i 0.122716 0.692214i
\(575\) 18.4278i 0.768493i
\(576\) 0 0
\(577\) −14.9496 + 8.63117i −0.622361 + 0.359320i −0.777788 0.628527i \(-0.783658\pi\)
0.155426 + 0.987847i \(0.450325\pi\)
\(578\) −19.3330 14.5456i −0.804145 0.605017i
\(579\) 0 0
\(580\) −28.0164 26.9737i −1.16332 1.12002i
\(581\) 12.2787 + 8.00321i 0.509407 + 0.332029i
\(582\) 0 0
\(583\) 6.35629i 0.263251i
\(584\) 2.89512 + 18.0155i 0.119801 + 0.745486i
\(585\) 0 0
\(586\) −14.0644 + 18.6933i −0.580994 + 0.772214i
\(587\) 17.3621 + 30.0720i 0.716611 + 1.24121i 0.962335 + 0.271866i \(0.0876409\pi\)
−0.245724 + 0.969340i \(0.579026\pi\)
\(588\) 0 0
\(589\) 5.23122 9.06074i 0.215549 0.373341i
\(590\) 28.8795 + 67.8935i 1.18895 + 2.79513i
\(591\) 0 0
\(592\) −10.0557 + 6.32568i −0.413285 + 0.259984i
\(593\) −15.7360 9.08520i −0.646201 0.373085i 0.140798 0.990038i \(-0.455033\pi\)
−0.786999 + 0.616954i \(0.788367\pi\)
\(594\) 0 0
\(595\) −3.38089 + 62.5051i −0.138603 + 2.56246i
\(596\) 2.34578 + 8.13445i 0.0960870 + 0.333200i
\(597\) 0 0
\(598\) −0.322795 + 2.64542i −0.0132001 + 0.108179i
\(599\) 28.3339i 1.15769i 0.815438 + 0.578845i \(0.196496\pi\)
−0.815438 + 0.578845i \(0.803504\pi\)
\(600\) 0 0
\(601\) 16.3852 9.46002i 0.668368 0.385882i −0.127090 0.991891i \(-0.540564\pi\)
0.795458 + 0.606009i \(0.207230\pi\)
\(602\) −9.57481 8.04931i −0.390240 0.328065i
\(603\) 0 0
\(604\) −12.5442 12.0773i −0.510416 0.491420i
\(605\) 37.5543 + 21.6820i 1.52680 + 0.881498i
\(606\) 0 0
\(607\) −3.02327 5.23646i −0.122711 0.212542i 0.798125 0.602492i \(-0.205825\pi\)
−0.920836 + 0.389950i \(0.872492\pi\)
\(608\) −5.61529 11.9246i −0.227730 0.483605i
\(609\) 0 0
\(610\) −10.9825 + 4.67157i −0.444669 + 0.189146i
\(611\) 8.67271 + 5.00719i 0.350860 + 0.202569i
\(612\) 0 0
\(613\) −0.0235058 0.0407133i −0.000949392 0.00164439i 0.865550 0.500822i \(-0.166969\pi\)
−0.866500 + 0.499178i \(0.833636\pi\)
\(614\) 4.64305 38.0515i 0.187378 1.53564i
\(615\) 0 0
\(616\) −1.65327 + 3.71914i −0.0666123 + 0.149848i
\(617\) 10.4917 18.1721i 0.422379 0.731582i −0.573793 0.819001i \(-0.694528\pi\)
0.996172 + 0.0874187i \(0.0278618\pi\)
\(618\) 0 0
\(619\) −2.67167 + 4.62746i −0.107383 + 0.185993i −0.914709 0.404112i \(-0.867581\pi\)
0.807326 + 0.590106i \(0.200914\pi\)
\(620\) 34.9570 10.0808i 1.40391 0.404853i
\(621\) 0 0
\(622\) −2.13436 + 17.4919i −0.0855799 + 0.701359i
\(623\) 23.2876 + 1.25963i 0.933000 + 0.0504658i
\(624\) 0 0
\(625\) −24.0832 41.7133i −0.963327 1.66853i
\(626\) −26.6838 3.25596i −1.06650 0.130135i
\(627\) 0 0
\(628\) 3.67317 14.8274i 0.146576 0.591678i
\(629\) 17.3450i 0.691592i
\(630\) 0 0
\(631\) 23.1548i 0.921776i 0.887458 + 0.460888i \(0.152469\pi\)
−0.887458 + 0.460888i \(0.847531\pi\)
\(632\) −10.6422 4.05759i −0.423324 0.161402i
\(633\) 0 0
\(634\) 3.51811 28.8322i 0.139722 1.14507i
\(635\) 28.7853 + 49.8577i 1.14231 + 1.97854i
\(636\) 0 0
\(637\) 7.47370 3.29751i 0.296119 0.130652i
\(638\) −3.66483 0.447183i −0.145092 0.0177041i
\(639\) 0 0
\(640\) 14.6931 43.4142i 0.580797 1.71610i
\(641\) −8.19831 + 14.1999i −0.323814 + 0.560862i −0.981272 0.192629i \(-0.938299\pi\)
0.657458 + 0.753491i \(0.271632\pi\)
\(642\) 0 0
\(643\) 4.77787 8.27551i 0.188421 0.326354i −0.756303 0.654221i \(-0.772996\pi\)
0.944724 + 0.327867i \(0.106330\pi\)
\(644\) 6.25034 5.82654i 0.246298 0.229598i
\(645\) 0 0
\(646\) −19.1025 2.33088i −0.751577 0.0917074i
\(647\) 10.7329 + 18.5900i 0.421956 + 0.730849i 0.996131 0.0878838i \(-0.0280104\pi\)
−0.574175 + 0.818733i \(0.694677\pi\)
\(648\) 0 0
\(649\) 6.06579 + 3.50209i 0.238103 + 0.137469i
\(650\) −7.37175 17.3304i −0.289144 0.679756i
\(651\) 0 0
\(652\) −21.8094 20.9977i −0.854121 0.822332i
\(653\) −1.57618 2.73003i −0.0616808 0.106834i 0.833536 0.552465i \(-0.186313\pi\)
−0.895217 + 0.445631i \(0.852979\pi\)
\(654\) 0 0
\(655\) 55.8180 + 32.2265i 2.18099 + 1.25920i
\(656\) 9.58757 + 15.2409i 0.374332 + 0.595059i
\(657\) 0 0
\(658\) −10.9540 30.1827i −0.427033 1.17664i
\(659\) −9.56754 + 5.52382i −0.372698 + 0.215178i −0.674637 0.738150i \(-0.735700\pi\)
0.301938 + 0.953327i \(0.402366\pi\)
\(660\) 0 0
\(661\) 28.3829i 1.10397i −0.833855 0.551983i \(-0.813871\pi\)
0.833855 0.551983i \(-0.186129\pi\)
\(662\) −16.1065 1.96531i −0.625995 0.0763840i
\(663\) 0 0
\(664\) −15.4702 + 2.48608i −0.600359 + 0.0964787i
\(665\) 11.3005 + 22.2707i 0.438214 + 0.863621i
\(666\) 0 0
\(667\) 6.71276 + 3.87562i 0.259919 + 0.150064i
\(668\) −5.23021 + 5.43240i −0.202363 + 0.210186i
\(669\) 0 0
\(670\) −37.4113 + 15.9134i −1.44533 + 0.614790i
\(671\) −0.566500 + 0.981208i −0.0218695 + 0.0378791i
\(672\) 0 0
\(673\) 14.8049 + 25.6429i 0.570688 + 0.988461i 0.996495 + 0.0836470i \(0.0266568\pi\)
−0.425807 + 0.904814i \(0.640010\pi\)
\(674\) 10.7181 + 8.06399i 0.412845 + 0.310613i
\(675\) 0 0
\(676\) 6.44953 + 22.3650i 0.248059 + 0.860191i
\(677\) 19.6587i 0.755545i 0.925898 + 0.377772i \(0.123310\pi\)
−0.925898 + 0.377772i \(0.876690\pi\)
\(678\) 0 0
\(679\) −23.0266 + 35.3280i −0.883681 + 1.35576i
\(680\) −42.2305 51.9101i −1.61947 1.99066i
\(681\) 0 0
\(682\) 2.07646 2.75988i 0.0795119 0.105681i
\(683\) −4.93427 + 2.84880i −0.188804 + 0.109006i −0.591423 0.806362i \(-0.701434\pi\)
0.402618 + 0.915368i \(0.368100\pi\)
\(684\) 0 0
\(685\) 50.8793i 1.94400i
\(686\) −25.1459 7.32704i −0.960074 0.279748i
\(687\) 0 0
\(688\) 13.3628 0.506954i 0.509451 0.0193274i
\(689\) 13.6383i 0.519577i
\(690\) 0 0
\(691\) 17.8054 0.677347 0.338674 0.940904i \(-0.390022\pi\)
0.338674 + 0.940904i \(0.390022\pi\)
\(692\) 3.01293 12.1622i 0.114534 0.462338i
\(693\) 0 0
\(694\) 3.21614 + 0.392434i 0.122083 + 0.0148966i
\(695\) 57.5727i 2.18386i
\(696\) 0 0
\(697\) 26.2892 0.995774
\(698\) −18.1407 42.6475i −0.686637 1.61423i
\(699\) 0 0
\(700\) −17.6646 + 57.7429i −0.667658 + 2.18248i
\(701\) −9.77794 −0.369308 −0.184654 0.982804i \(-0.559116\pi\)
−0.184654 + 0.982804i \(0.559116\pi\)
\(702\) 0 0
\(703\) 3.46002 + 5.99293i 0.130497 + 0.226028i
\(704\) −1.36324 4.13199i −0.0513791 0.155730i
\(705\) 0 0
\(706\) −17.9387 + 23.8428i −0.675131 + 0.897335i
\(707\) 19.5653 + 1.05829i 0.735830 + 0.0398009i
\(708\) 0 0
\(709\) −13.0588 −0.490432 −0.245216 0.969468i \(-0.578859\pi\)
−0.245216 + 0.969468i \(0.578859\pi\)
\(710\) −27.2703 + 11.5998i −1.02343 + 0.435332i
\(711\) 0 0
\(712\) −19.3402 + 15.7339i −0.724806 + 0.589653i
\(713\) −6.27962 + 3.62554i −0.235174 + 0.135778i
\(714\) 0 0
\(715\) −2.22676 1.28562i −0.0832761 0.0480795i
\(716\) −19.1689 + 5.52787i −0.716377 + 0.206586i
\(717\) 0 0
\(718\) −25.4380 + 33.8104i −0.949339 + 1.26179i
\(719\) −15.4289 + 26.7237i −0.575401 + 0.996624i 0.420597 + 0.907248i \(0.361821\pi\)
−0.995998 + 0.0893766i \(0.971513\pi\)
\(720\) 0 0
\(721\) 14.3199 + 9.33366i 0.533302 + 0.347604i
\(722\) 17.6610 7.51235i 0.657274 0.279581i
\(723\) 0 0
\(724\) −2.57111 + 10.3787i −0.0955544 + 0.385722i
\(725\) −54.7758 −2.03432
\(726\) 0 0
\(727\) −1.75480 3.03940i −0.0650819 0.112725i 0.831648 0.555303i \(-0.187398\pi\)
−0.896730 + 0.442577i \(0.854064\pi\)
\(728\) −3.54732 + 7.97992i −0.131472 + 0.295755i
\(729\) 0 0
\(730\) 29.5340 + 22.2206i 1.09310 + 0.822422i
\(731\) 9.76213 16.9085i 0.361066 0.625384i
\(732\) 0 0
\(733\) −2.19882 + 1.26949i −0.0812153 + 0.0468897i −0.540058 0.841628i \(-0.681598\pi\)
0.458842 + 0.888518i \(0.348264\pi\)
\(734\) 22.7458 + 17.1134i 0.839563 + 0.631665i
\(735\) 0 0
\(736\) −0.761879 + 9.10306i −0.0280832 + 0.335543i
\(737\) −1.92975 + 3.34243i −0.0710834 + 0.123120i
\(738\) 0 0
\(739\) −7.43557 + 4.29293i −0.273522 + 0.157918i −0.630487 0.776200i \(-0.717145\pi\)
0.356965 + 0.934118i \(0.383812\pi\)
\(740\) −5.78626 + 23.3573i −0.212707 + 0.858630i
\(741\) 0 0
\(742\) −28.1389 + 33.4718i −1.03301 + 1.22879i
\(743\) 0.852403 + 0.492135i 0.0312716 + 0.0180547i 0.515554 0.856857i \(-0.327586\pi\)
−0.484283 + 0.874912i \(0.660919\pi\)
\(744\) 0 0
\(745\) 14.8508 + 8.57412i 0.544092 + 0.314132i
\(746\) 14.2385 6.05656i 0.521310 0.221746i
\(747\) 0 0
\(748\) −6.16635 1.52758i −0.225464 0.0558538i
\(749\) −29.3641 1.58830i −1.07294 0.0580353i
\(750\) 0 0
\(751\) −4.18189 + 2.41442i −0.152599 + 0.0881033i −0.574355 0.818606i \(-0.694747\pi\)
0.421756 + 0.906709i \(0.361414\pi\)
\(752\) 30.3564 + 16.0237i 1.10699 + 0.584323i
\(753\) 0 0
\(754\) −7.86339 0.959492i −0.286368 0.0349426i
\(755\) −35.2715 −1.28366
\(756\) 0 0
\(757\) −39.8457 −1.44822 −0.724109 0.689686i \(-0.757749\pi\)
−0.724109 + 0.689686i \(0.757749\pi\)
\(758\) −22.3707 2.72967i −0.812540 0.0991461i
\(759\) 0 0
\(760\) −24.9463 9.51136i −0.904897 0.345013i
\(761\) −20.4850 + 11.8270i −0.742582 + 0.428730i −0.823007 0.568031i \(-0.807706\pi\)
0.0804252 + 0.996761i \(0.474372\pi\)
\(762\) 0 0
\(763\) −7.41853 4.83536i −0.268569 0.175052i
\(764\) 10.5852 42.7291i 0.382960 1.54588i
\(765\) 0 0
\(766\) −30.5687 + 13.0028i −1.10449 + 0.469811i
\(767\) 13.0150 + 7.51420i 0.469944 + 0.271322i
\(768\) 0 0
\(769\) −1.86343 1.07585i −0.0671971 0.0387963i 0.466025 0.884772i \(-0.345686\pi\)
−0.533222 + 0.845975i \(0.679019\pi\)
\(770\) 2.81250 + 7.74955i 0.101355 + 0.279275i
\(771\) 0 0
\(772\) 11.3264 + 2.80587i 0.407646 + 0.100985i
\(773\) −24.9256 + 14.3908i −0.896513 + 0.517602i −0.876067 0.482189i \(-0.839842\pi\)
−0.0204456 + 0.999791i \(0.506509\pi\)
\(774\) 0 0
\(775\) 25.6207 44.3763i 0.920323 1.59405i
\(776\) −7.15289 44.5104i −0.256774 1.59783i
\(777\) 0 0
\(778\) 9.19157 + 6.91549i 0.329534 + 0.247933i
\(779\) 9.08324 5.24421i 0.325441 0.187893i
\(780\) 0 0
\(781\) −1.40666 + 2.43640i −0.0503341 + 0.0871812i
\(782\) 10.6577 + 8.01857i 0.381118 + 0.286744i
\(783\) 0 0
\(784\) 25.1704 12.2658i 0.898944 0.438064i
\(785\) −15.4708 26.7963i −0.552178 0.956400i
\(786\) 0 0
\(787\) −11.1297 −0.396731 −0.198365 0.980128i \(-0.563563\pi\)
−0.198365 + 0.980128i \(0.563563\pi\)
\(788\) 27.6934 + 6.86043i 0.986535 + 0.244393i
\(789\) 0 0
\(790\) −21.2294 + 9.03021i −0.755307 + 0.321280i
\(791\) 0.388857 7.18909i 0.0138262 0.255615i
\(792\) 0 0
\(793\) −1.21550 + 2.10531i −0.0431638 + 0.0747619i
\(794\) −23.2877 + 30.9523i −0.826450 + 1.09846i
\(795\) 0 0
\(796\) 2.38125 + 8.25743i 0.0844011 + 0.292677i
\(797\) 25.2083 + 14.5540i 0.892923 + 0.515529i 0.874897 0.484308i \(-0.160929\pi\)
0.0180253 + 0.999838i \(0.494262\pi\)
\(798\) 0 0
\(799\) 43.4029 25.0587i 1.53548 0.886512i
\(800\) −27.5017 58.4023i −0.972332 2.06483i
\(801\) 0 0
\(802\) 24.5300 10.4342i 0.866184 0.368443i
\(803\) 3.50867 0.123818
\(804\) 0 0
\(805\) 0.934832 17.2830i 0.0329485 0.609144i
\(806\) 4.45533 5.92170i 0.156932 0.208583i
\(807\) 0 0
\(808\) −16.2489 + 13.2190i −0.571634 + 0.465043i
\(809\) −11.9462 20.6915i −0.420007 0.727474i 0.575932 0.817497i \(-0.304639\pi\)
−0.995940 + 0.0900232i \(0.971306\pi\)
\(810\) 0 0
\(811\) 20.7873 0.729940 0.364970 0.931019i \(-0.381079\pi\)
0.364970 + 0.931019i \(0.381079\pi\)
\(812\) 17.3191 + 18.5788i 0.607781 + 0.651989i
\(813\) 0 0
\(814\) 0.894167 + 2.10212i 0.0313405 + 0.0736793i
\(815\) −61.3230 −2.14805
\(816\) 0 0
\(817\) 7.78947i 0.272519i
\(818\) −26.7880 3.26867i −0.936621 0.114286i
\(819\) 0 0
\(820\) 35.4017 + 8.77000i 1.23628 + 0.306262i
\(821\) 5.78113 0.201763 0.100881 0.994898i \(-0.467834\pi\)
0.100881 + 0.994898i \(0.467834\pi\)
\(822\) 0 0
\(823\) 19.0746i 0.664899i −0.943121 0.332449i \(-0.892125\pi\)
0.943121 0.332449i \(-0.107875\pi\)
\(824\) −18.0419 + 2.89937i −0.628520 + 0.101004i
\(825\) 0 0
\(826\) −16.4385 45.2946i −0.571969 1.57600i
\(827\) 14.6270i 0.508631i −0.967121 0.254315i \(-0.918150\pi\)
0.967121 0.254315i \(-0.0818501\pi\)
\(828\) 0 0
\(829\) 3.92858 2.26817i 0.136445 0.0787767i −0.430223 0.902722i \(-0.641565\pi\)
0.566669 + 0.823946i \(0.308232\pi\)
\(830\) −19.0812 + 25.3613i −0.662318 + 0.880305i
\(831\) 0 0
\(832\) −2.92502 8.86575i −0.101407 0.307364i
\(833\) 4.40961 40.6427i 0.152784 1.40818i
\(834\) 0 0
\(835\) 15.2747i 0.528602i
\(836\) −2.43527 + 0.702275i −0.0842257 + 0.0242887i
\(837\) 0 0
\(838\) 28.7521 + 21.6323i 0.993223 + 0.747275i
\(839\) −12.4814 21.6184i −0.430906 0.746351i 0.566046 0.824374i \(-0.308473\pi\)
−0.996952 + 0.0780231i \(0.975139\pi\)
\(840\) 0 0
\(841\) 2.97992 5.16138i 0.102756 0.177978i
\(842\) 26.6760 11.3470i 0.919315 0.391044i
\(843\) 0 0
\(844\) −0.144603 0.139221i −0.00497745 0.00479220i
\(845\) 40.8311 + 23.5738i 1.40463 + 0.810964i
\(846\) 0 0
\(847\) −23.7258 15.4643i −0.815227 0.531361i
\(848\) −1.77222 46.7139i −0.0608582 1.60416i
\(849\) 0 0
\(850\) −93.5572 11.4159i −3.20898 0.391560i
\(851\) 4.79599i 0.164404i
\(852\) 0 0
\(853\) −13.2403 + 7.64427i −0.453338 + 0.261735i −0.709239 0.704968i \(-0.750961\pi\)
0.255901 + 0.966703i \(0.417628\pi\)
\(854\) 7.32690 2.65911i 0.250721 0.0909928i
\(855\) 0 0
\(856\) 24.3867 19.8394i 0.833521 0.678097i
\(857\) 42.0171 + 24.2586i 1.43528 + 0.828658i 0.997516 0.0704337i \(-0.0224383\pi\)
0.437761 + 0.899091i \(0.355772\pi\)
\(858\) 0 0
\(859\) 25.8723 + 44.8121i 0.882751 + 1.52897i 0.848270 + 0.529563i \(0.177644\pi\)
0.0344802 + 0.999405i \(0.489022\pi\)
\(860\) 18.7866 19.5128i 0.640616 0.665381i
\(861\) 0 0
\(862\) −9.71773 22.8457i −0.330987 0.778127i
\(863\) 38.8024 + 22.4026i 1.32085 + 0.762592i 0.983864 0.178919i \(-0.0572599\pi\)
0.336984 + 0.941510i \(0.390593\pi\)
\(864\) 0 0
\(865\) −12.6900 21.9797i −0.431472 0.747332i
\(866\) 21.3390 + 2.60379i 0.725129 + 0.0884803i
\(867\) 0 0
\(868\) −23.1523 + 5.34097i −0.785842 + 0.181284i
\(869\) −1.09505 + 1.89669i −0.0371471 + 0.0643407i
\(870\) 0 0
\(871\) −4.14055 + 7.17164i −0.140297 + 0.243002i
\(872\) 9.34673 1.50204i 0.316520 0.0508653i
\(873\) 0 0
\(874\) 5.28192 + 0.644501i 0.178664 + 0.0218006i
\(875\) 31.0960 + 61.2831i 1.05124 + 2.07175i
\(876\) 0 0
\(877\) 18.4097 + 31.8865i 0.621651 + 1.07673i 0.989178 + 0.146718i \(0.0468710\pi\)
−0.367527 + 0.930013i \(0.619796\pi\)
\(878\) −2.49557 + 20.4521i −0.0842214 + 0.690226i
\(879\) 0 0
\(880\) −7.79416 4.11415i −0.262741 0.138688i
\(881\) 50.8325i 1.71259i 0.516486 + 0.856295i \(0.327240\pi\)
−0.516486 + 0.856295i \(0.672760\pi\)
\(882\) 0 0
\(883\) 28.5456i 0.960635i −0.877095 0.480317i \(-0.840521\pi\)
0.877095 0.480317i \(-0.159479\pi\)
\(884\) −13.2307 3.27763i −0.444997 0.110239i
\(885\) 0 0
\(886\) 33.7299 + 4.11572i 1.13318 + 0.138270i
\(887\) 0.916708 + 1.58779i 0.0307800 + 0.0533126i 0.881005 0.473107i \(-0.156868\pi\)
−0.850225 + 0.526419i \(0.823534\pi\)
\(888\) 0 0
\(889\) −17.0133 33.5295i −0.570609 1.12454i
\(890\) −6.11678 + 50.1293i −0.205035 + 1.68034i
\(891\) 0 0
\(892\) 7.10548 + 24.6396i 0.237909 + 0.824995i
\(893\) 9.99749 17.3162i 0.334553 0.579463i
\(894\) 0 0
\(895\) −20.2050 + 34.9962i −0.675380 + 1.16979i
\(896\) −11.1133 + 27.7938i −0.371271 + 0.928525i
\(897\) 0 0
\(898\) −6.19958 + 50.8078i −0.206883 + 1.69548i
\(899\) −10.7767 18.6659i −0.359425 0.622542i
\(900\) 0 0
\(901\) −59.1091 34.1266i −1.96921 1.13692i
\(902\) 3.18610 1.35525i 0.106086 0.0451250i
\(903\) 0 0
\(904\) 4.85719 + 5.97049i 0.161548 + 0.198576i
\(905\) 10.8291 + 18.7566i 0.359972 + 0.623489i
\(906\) 0 0
\(907\) −29.5577 17.0652i −0.981448 0.566640i −0.0787413 0.996895i \(-0.525090\pi\)
−0.902707 + 0.430256i \(0.858423\pi\)
\(908\) −26.0577 + 27.0651i −0.864757 + 0.898186i
\(909\) 0 0
\(910\) 6.03460 + 16.6277i 0.200045 + 0.551203i
\(911\) 46.1098 26.6215i 1.52769 0.882010i 0.528228 0.849103i \(-0.322857\pi\)
0.999458 0.0329076i \(-0.0104767\pi\)
\(912\) 0 0
\(913\) 3.01295i 0.0997143i
\(914\) 3.52380 28.8788i 0.116557 0.955227i
\(915\) 0 0
\(916\) 34.7624 10.0247i 1.14858 0.331224i
\(917\) −35.2643 22.9851i −1.16453 0.759034i
\(918\) 0 0
\(919\) −13.4852 7.78568i −0.444836 0.256826i 0.260811 0.965390i \(-0.416010\pi\)
−0.705647 + 0.708564i \(0.749343\pi\)
\(920\) 11.6769 + 14.3534i 0.384977 + 0.473217i
\(921\) 0 0
\(922\) 12.8340 + 30.1719i 0.422667 + 0.993659i
\(923\) −3.01817 + 5.22762i −0.0993442 + 0.172069i
\(924\) 0 0
\(925\) 16.9460 + 29.3513i 0.557180 + 0.965063i
\(926\) 10.8429 14.4116i 0.356321 0.473596i
\(927\) 0 0
\(928\) −27.0584 2.26465i −0.888235 0.0743407i
\(929\) 6.16139i 0.202149i 0.994879 + 0.101074i \(0.0322280\pi\)
−0.994879 + 0.101074i \(0.967772\pi\)
\(930\) 0 0
\(931\) −6.58389 14.9222i −0.215778 0.489055i
\(932\) −16.3229 + 16.9539i −0.534676 + 0.555345i
\(933\) 0 0
\(934\) −23.4711 17.6590i −0.767996 0.577820i
\(935\) −11.1439 + 6.43393i −0.364444 + 0.210412i
\(936\) 0 0
\(937\) 20.3159i 0.663692i −0.943334 0.331846i \(-0.892329\pi\)
0.943334 0.331846i \(-0.107671\pi\)
\(938\) 24.9587 9.05811i 0.814930 0.295758i
\(939\) 0 0
\(940\) 66.8069 19.2655i 2.17900 0.628373i
\(941\) 38.3234i 1.24931i −0.780902 0.624654i \(-0.785240\pi\)
0.780902 0.624654i \(-0.214760\pi\)
\(942\) 0 0
\(943\) −7.26908 −0.236714
\(944\) 45.5553 + 24.0464i 1.48270 + 0.782644i
\(945\) 0 0
\(946\) 0.311453 2.55247i 0.0101262 0.0829880i
\(947\) 13.2141i 0.429401i 0.976680 + 0.214700i \(0.0688775\pi\)
−0.976680 + 0.214700i \(0.931123\pi\)
\(948\) 0 0
\(949\) 7.52834 0.244380
\(950\) −34.6024 + 14.7186i −1.12265 + 0.477535i
\(951\) 0 0
\(952\) 25.7090 + 35.3422i 0.833235 + 1.14545i
\(953\) −11.6066 −0.375976 −0.187988 0.982171i \(-0.560197\pi\)
−0.187988 + 0.982171i \(0.560197\pi\)
\(954\) 0 0
\(955\) −44.5833 77.2206i −1.44268 2.49880i
\(956\) −2.82466 2.71953i −0.0913560 0.0879559i
\(957\) 0 0
\(958\) 20.6067 + 15.5040i 0.665773 + 0.500910i
\(959\) 1.79472 33.1803i 0.0579545 1.07145i
\(960\) 0 0
\(961\) −10.8372 −0.349589
\(962\) 1.91856 + 4.51039i 0.0618567 + 0.145421i
\(963\) 0 0
\(964\) 9.87756 + 9.50994i 0.318135 + 0.306294i
\(965\) 20.4692 11.8179i 0.658926 0.380431i
\(966\) 0 0
\(967\) 40.7431 + 23.5230i 1.31021 + 0.756449i 0.982130 0.188201i \(-0.0602657\pi\)
0.328078 + 0.944651i \(0.393599\pi\)
\(968\) 29.8925 4.80377i 0.960781 0.154399i
\(969\) 0 0
\(970\) −72.9689 54.8999i −2.34289 1.76273i
\(971\) −17.2692 + 29.9112i −0.554195 + 0.959895i 0.443770 + 0.896141i \(0.353641\pi\)
−0.997966 + 0.0637540i \(0.979693\pi\)
\(972\) 0 0
\(973\) −2.03082 + 37.5453i −0.0651051 + 1.20365i
\(974\) −5.31936 12.5054i −0.170443 0.400700i
\(975\) 0 0
\(976\) −3.88977 + 7.36907i −0.124508 + 0.235878i
\(977\) 27.3080 0.873659 0.436830 0.899544i \(-0.356101\pi\)
0.436830 + 0.899544i \(0.356101\pi\)
\(978\) 0 0
\(979\) 2.39710 + 4.15190i 0.0766117 + 0.132695i
\(980\) 19.4964 53.2594i 0.622789 1.70131i
\(981\) 0 0
\(982\) −1.52615 + 2.02844i −0.0487013 + 0.0647302i
\(983\) −9.56607 + 16.5689i −0.305110 + 0.528467i −0.977286 0.211925i \(-0.932027\pi\)
0.672176 + 0.740392i \(0.265360\pi\)
\(984\) 0 0
\(985\) 50.0478 28.8951i 1.59465 0.920674i
\(986\) −23.8348 + 31.6795i −0.759055 + 1.00888i
\(987\) 0 0
\(988\) −5.22521 + 1.50683i −0.166236 + 0.0479385i
\(989\) −2.69928 + 4.67528i −0.0858320 + 0.148665i
\(990\) 0 0
\(991\) −19.9326 + 11.5081i −0.633179 + 0.365566i −0.781982 0.623301i \(-0.785791\pi\)
0.148803 + 0.988867i \(0.452458\pi\)
\(992\) 14.4909 20.8620i 0.460087 0.662368i
\(993\) 0 0
\(994\) 18.1931 6.60273i 0.577051 0.209426i
\(995\) 15.0754 + 8.70376i 0.477921 + 0.275928i
\(996\) 0 0
\(997\) 52.8055 + 30.4872i 1.67237 + 0.965541i 0.966309 + 0.257385i \(0.0828609\pi\)
0.706056 + 0.708156i \(0.250472\pi\)
\(998\) 24.3433 + 57.2294i 0.770575 + 1.81156i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bj.b.523.23 84
3.2 odd 2 252.2.bj.b.103.20 yes 84
4.3 odd 2 inner 756.2.bj.b.523.24 84
7.3 odd 6 756.2.n.b.199.33 84
9.2 odd 6 252.2.n.b.187.38 yes 84
9.7 even 3 756.2.n.b.19.5 84
12.11 even 2 252.2.bj.b.103.19 yes 84
21.17 even 6 252.2.n.b.31.10 84
28.3 even 6 756.2.n.b.199.5 84
36.7 odd 6 756.2.n.b.19.33 84
36.11 even 6 252.2.n.b.187.10 yes 84
63.38 even 6 252.2.bj.b.115.20 yes 84
63.52 odd 6 inner 756.2.bj.b.451.23 84
84.59 odd 6 252.2.n.b.31.38 yes 84
252.115 even 6 inner 756.2.bj.b.451.24 84
252.227 odd 6 252.2.bj.b.115.19 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.n.b.31.10 84 21.17 even 6
252.2.n.b.31.38 yes 84 84.59 odd 6
252.2.n.b.187.10 yes 84 36.11 even 6
252.2.n.b.187.38 yes 84 9.2 odd 6
252.2.bj.b.103.19 yes 84 12.11 even 2
252.2.bj.b.103.20 yes 84 3.2 odd 2
252.2.bj.b.115.19 yes 84 252.227 odd 6
252.2.bj.b.115.20 yes 84 63.38 even 6
756.2.n.b.19.5 84 9.7 even 3
756.2.n.b.19.33 84 36.7 odd 6
756.2.n.b.199.5 84 28.3 even 6
756.2.n.b.199.33 84 7.3 odd 6
756.2.bj.b.451.23 84 63.52 odd 6 inner
756.2.bj.b.451.24 84 252.115 even 6 inner
756.2.bj.b.523.23 84 1.1 even 1 trivial
756.2.bj.b.523.24 84 4.3 odd 2 inner