Properties

Label 756.2.bj.b.451.9
Level $756$
Weight $2$
Character 756.451
Analytic conductor $6.037$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(451,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bj (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(42\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.9
Character \(\chi\) \(=\) 756.451
Dual form 756.2.bj.b.523.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06666 - 0.928568i) q^{2} +(0.275522 + 1.98093i) q^{4} +(-2.33177 - 1.34625i) q^{5} +(1.11915 - 2.39740i) q^{7} +(1.54554 - 2.36882i) q^{8} +(1.23712 + 3.60119i) q^{10} +(1.22399 - 0.706672i) q^{11} +(2.46297 - 1.42199i) q^{13} +(-3.41989 + 1.51800i) q^{14} +(-3.84817 + 1.09158i) q^{16} +(1.23338 + 0.712090i) q^{17} +(1.48153 + 2.56609i) q^{19} +(2.02437 - 4.98999i) q^{20} +(-1.96178 - 0.382782i) q^{22} +(-1.67612 - 0.967709i) q^{23} +(1.12475 + 1.94813i) q^{25} +(-3.94756 - 0.770249i) q^{26} +(5.05743 + 1.55642i) q^{28} +(-0.423772 + 0.733994i) q^{29} -9.87356 q^{31} +(5.11830 + 2.40895i) q^{32} +(-0.654368 - 1.90483i) q^{34} +(-5.83707 + 4.08352i) q^{35} +(-5.49245 - 9.51321i) q^{37} +(0.802498 - 4.11284i) q^{38} +(-6.79285 + 3.44285i) q^{40} +(5.99620 - 3.46191i) q^{41} +(-5.96812 - 3.44570i) q^{43} +(1.73711 + 2.22994i) q^{44} +(0.889265 + 2.58861i) q^{46} -10.6848 q^{47} +(-4.49502 - 5.36608i) q^{49} +(0.609243 - 3.12240i) q^{50} +(3.49547 + 4.48718i) q^{52} +(6.58617 - 11.4076i) q^{53} -3.80542 q^{55} +(-3.94931 - 6.35633i) q^{56} +(1.13358 - 0.389420i) q^{58} -1.42192 q^{59} +2.03270i q^{61} +(10.5317 + 9.16828i) q^{62} +(-3.22261 - 7.32221i) q^{64} -7.65741 q^{65} -8.74356i q^{67} +(-1.07078 + 2.63943i) q^{68} +(10.0180 + 1.06440i) q^{70} -1.95293i q^{71} +(7.16234 + 4.13518i) q^{73} +(-2.97509 + 15.2475i) q^{74} +(-4.67504 + 3.64182i) q^{76} +(-0.324347 - 3.72526i) q^{77} +11.8351i q^{79} +(10.4426 + 2.63528i) q^{80} +(-9.61051 - 1.87521i) q^{82} +(-2.85384 + 4.94299i) q^{83} +(-1.91730 - 3.32085i) q^{85} +(3.16639 + 9.21720i) q^{86} +(0.217752 - 3.99161i) q^{88} +(-5.75795 + 3.32435i) q^{89} +(-0.652664 - 7.49613i) q^{91} +(1.45516 - 3.58690i) q^{92} +(11.3970 + 9.92156i) q^{94} -7.97801i q^{95} +(13.1164 + 7.57275i) q^{97} +(-0.188114 + 9.89771i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 2 q^{2} - 2 q^{4} - 6 q^{5} + 16 q^{8} - 18 q^{10} + 18 q^{13} - 14 q^{14} + 14 q^{16} - 6 q^{17} + 24 q^{20} + 6 q^{22} + 16 q^{25} + 30 q^{26} - 4 q^{28} - 10 q^{29} + 18 q^{32} - 24 q^{34} + 2 q^{37}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06666 0.928568i −0.754242 0.656597i
\(3\) 0 0
\(4\) 0.275522 + 1.98093i 0.137761 + 0.990465i
\(5\) −2.33177 1.34625i −1.04280 0.602059i −0.122173 0.992509i \(-0.538986\pi\)
−0.920624 + 0.390450i \(0.872320\pi\)
\(6\) 0 0
\(7\) 1.11915 2.39740i 0.422998 0.906131i
\(8\) 1.54554 2.36882i 0.546431 0.837504i
\(9\) 0 0
\(10\) 1.23712 + 3.60119i 0.391211 + 1.13880i
\(11\) 1.22399 0.706672i 0.369048 0.213070i −0.303995 0.952674i \(-0.598321\pi\)
0.673042 + 0.739604i \(0.264987\pi\)
\(12\) 0 0
\(13\) 2.46297 1.42199i 0.683104 0.394390i −0.117920 0.993023i \(-0.537622\pi\)
0.801024 + 0.598633i \(0.204289\pi\)
\(14\) −3.41989 + 1.51800i −0.914005 + 0.405703i
\(15\) 0 0
\(16\) −3.84817 + 1.09158i −0.962044 + 0.272895i
\(17\) 1.23338 + 0.712090i 0.299138 + 0.172707i 0.642055 0.766658i \(-0.278082\pi\)
−0.342918 + 0.939365i \(0.611415\pi\)
\(18\) 0 0
\(19\) 1.48153 + 2.56609i 0.339886 + 0.588700i 0.984411 0.175883i \(-0.0562781\pi\)
−0.644525 + 0.764583i \(0.722945\pi\)
\(20\) 2.02437 4.98999i 0.452662 1.11579i
\(21\) 0 0
\(22\) −1.96178 0.382782i −0.418252 0.0816094i
\(23\) −1.67612 0.967709i −0.349495 0.201781i 0.314968 0.949102i \(-0.398006\pi\)
−0.664463 + 0.747321i \(0.731340\pi\)
\(24\) 0 0
\(25\) 1.12475 + 1.94813i 0.224950 + 0.389626i
\(26\) −3.94756 0.770249i −0.774181 0.151058i
\(27\) 0 0
\(28\) 5.05743 + 1.55642i 0.955764 + 0.294135i
\(29\) −0.423772 + 0.733994i −0.0786924 + 0.136299i −0.902686 0.430300i \(-0.858408\pi\)
0.823994 + 0.566599i \(0.191741\pi\)
\(30\) 0 0
\(31\) −9.87356 −1.77334 −0.886672 0.462398i \(-0.846989\pi\)
−0.886672 + 0.462398i \(0.846989\pi\)
\(32\) 5.11830 + 2.40895i 0.904796 + 0.425846i
\(33\) 0 0
\(34\) −0.654368 1.90483i −0.112223 0.326676i
\(35\) −5.83707 + 4.08352i −0.986645 + 0.690241i
\(36\) 0 0
\(37\) −5.49245 9.51321i −0.902953 1.56396i −0.823641 0.567111i \(-0.808061\pi\)
−0.0793124 0.996850i \(-0.525272\pi\)
\(38\) 0.802498 4.11284i 0.130182 0.667191i
\(39\) 0 0
\(40\) −6.79285 + 3.44285i −1.07404 + 0.544363i
\(41\) 5.99620 3.46191i 0.936449 0.540659i 0.0476034 0.998866i \(-0.484842\pi\)
0.888845 + 0.458207i \(0.151508\pi\)
\(42\) 0 0
\(43\) −5.96812 3.44570i −0.910131 0.525464i −0.0296574 0.999560i \(-0.509442\pi\)
−0.880473 + 0.474096i \(0.842775\pi\)
\(44\) 1.73711 + 2.22994i 0.261879 + 0.336176i
\(45\) 0 0
\(46\) 0.889265 + 2.58861i 0.131115 + 0.381669i
\(47\) −10.6848 −1.55854 −0.779269 0.626690i \(-0.784409\pi\)
−0.779269 + 0.626690i \(0.784409\pi\)
\(48\) 0 0
\(49\) −4.49502 5.36608i −0.642146 0.766582i
\(50\) 0.609243 3.12240i 0.0861599 0.441574i
\(51\) 0 0
\(52\) 3.49547 + 4.48718i 0.484735 + 0.622259i
\(53\) 6.58617 11.4076i 0.904681 1.56695i 0.0833354 0.996522i \(-0.473443\pi\)
0.821345 0.570431i \(-0.193224\pi\)
\(54\) 0 0
\(55\) −3.80542 −0.513122
\(56\) −3.94931 6.35633i −0.527749 0.849400i
\(57\) 0 0
\(58\) 1.13358 0.389420i 0.148847 0.0511334i
\(59\) −1.42192 −0.185118 −0.0925589 0.995707i \(-0.529505\pi\)
−0.0925589 + 0.995707i \(0.529505\pi\)
\(60\) 0 0
\(61\) 2.03270i 0.260260i 0.991497 + 0.130130i \(0.0415395\pi\)
−0.991497 + 0.130130i \(0.958461\pi\)
\(62\) 10.5317 + 9.16828i 1.33753 + 1.16437i
\(63\) 0 0
\(64\) −3.22261 7.32221i −0.402826 0.915277i
\(65\) −7.65741 −0.949785
\(66\) 0 0
\(67\) 8.74356i 1.06820i −0.845423 0.534098i \(-0.820651\pi\)
0.845423 0.534098i \(-0.179349\pi\)
\(68\) −1.07078 + 2.63943i −0.129851 + 0.320078i
\(69\) 0 0
\(70\) 10.0180 + 1.06440i 1.19738 + 0.127220i
\(71\) 1.95293i 0.231770i −0.993263 0.115885i \(-0.963030\pi\)
0.993263 0.115885i \(-0.0369704\pi\)
\(72\) 0 0
\(73\) 7.16234 + 4.13518i 0.838289 + 0.483986i 0.856682 0.515844i \(-0.172522\pi\)
−0.0183933 + 0.999831i \(0.505855\pi\)
\(74\) −2.97509 + 15.2475i −0.345847 + 1.77248i
\(75\) 0 0
\(76\) −4.67504 + 3.64182i −0.536264 + 0.417746i
\(77\) −0.324347 3.72526i −0.0369627 0.424533i
\(78\) 0 0
\(79\) 11.8351i 1.33155i 0.746151 + 0.665776i \(0.231899\pi\)
−0.746151 + 0.665776i \(0.768101\pi\)
\(80\) 10.4426 + 2.63528i 1.16752 + 0.294633i
\(81\) 0 0
\(82\) −9.61051 1.87521i −1.06130 0.207082i
\(83\) −2.85384 + 4.94299i −0.313249 + 0.542563i −0.979064 0.203554i \(-0.934751\pi\)
0.665815 + 0.746117i \(0.268084\pi\)
\(84\) 0 0
\(85\) −1.91730 3.32085i −0.207960 0.360197i
\(86\) 3.16639 + 9.21720i 0.341440 + 0.993916i
\(87\) 0 0
\(88\) 0.217752 3.99161i 0.0232124 0.425507i
\(89\) −5.75795 + 3.32435i −0.610341 + 0.352381i −0.773099 0.634285i \(-0.781294\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(90\) 0 0
\(91\) −0.652664 7.49613i −0.0684177 0.785808i
\(92\) 1.45516 3.58690i 0.151710 0.373961i
\(93\) 0 0
\(94\) 11.3970 + 9.92156i 1.17551 + 1.02333i
\(95\) 7.97801i 0.818527i
\(96\) 0 0
\(97\) 13.1164 + 7.57275i 1.33177 + 0.768896i 0.985570 0.169266i \(-0.0541396\pi\)
0.346197 + 0.938162i \(0.387473\pi\)
\(98\) −0.188114 + 9.89771i −0.0190024 + 0.999819i
\(99\) 0 0
\(100\) −3.54921 + 2.76481i −0.354921 + 0.276481i
\(101\) −14.5192 + 8.38265i −1.44471 + 0.834105i −0.998159 0.0606528i \(-0.980682\pi\)
−0.446553 + 0.894757i \(0.647348\pi\)
\(102\) 0 0
\(103\) 1.31815 2.28310i 0.129881 0.224960i −0.793749 0.608245i \(-0.791874\pi\)
0.923630 + 0.383285i \(0.125207\pi\)
\(104\) 0.438169 8.03207i 0.0429660 0.787609i
\(105\) 0 0
\(106\) −17.6179 + 6.05229i −1.71120 + 0.587851i
\(107\) −0.702055 + 0.405332i −0.0678702 + 0.0391849i −0.533551 0.845768i \(-0.679143\pi\)
0.465681 + 0.884953i \(0.345809\pi\)
\(108\) 0 0
\(109\) 5.19986 9.00642i 0.498056 0.862659i −0.501941 0.864902i \(-0.667381\pi\)
0.999997 + 0.00224278i \(0.000713901\pi\)
\(110\) 4.05908 + 3.53359i 0.387018 + 0.336914i
\(111\) 0 0
\(112\) −1.68972 + 10.4472i −0.159663 + 0.987172i
\(113\) −4.37629 7.57996i −0.411687 0.713063i 0.583387 0.812194i \(-0.301727\pi\)
−0.995074 + 0.0991313i \(0.968394\pi\)
\(114\) 0 0
\(115\) 2.60555 + 4.51294i 0.242968 + 0.420834i
\(116\) −1.57075 0.637231i −0.145840 0.0591654i
\(117\) 0 0
\(118\) 1.51670 + 1.32035i 0.139624 + 0.121548i
\(119\) 3.08749 2.15996i 0.283030 0.198003i
\(120\) 0 0
\(121\) −4.50123 + 7.79636i −0.409203 + 0.708760i
\(122\) 1.88750 2.16819i 0.170886 0.196299i
\(123\) 0 0
\(124\) −2.72039 19.5588i −0.244298 1.75644i
\(125\) 7.40568i 0.662384i
\(126\) 0 0
\(127\) 15.2544i 1.35361i 0.736164 + 0.676803i \(0.236635\pi\)
−0.736164 + 0.676803i \(0.763365\pi\)
\(128\) −3.36175 + 10.8027i −0.297140 + 0.954834i
\(129\) 0 0
\(130\) 8.16785 + 7.11043i 0.716368 + 0.623626i
\(131\) 0.0339597 0.0588199i 0.00296707 0.00513912i −0.864538 0.502567i \(-0.832389\pi\)
0.867505 + 0.497428i \(0.165722\pi\)
\(132\) 0 0
\(133\) 7.80997 0.679989i 0.677211 0.0589625i
\(134\) −8.11899 + 9.32639i −0.701374 + 0.805678i
\(135\) 0 0
\(136\) 3.59305 1.82108i 0.308101 0.156156i
\(137\) 2.59483 + 4.49438i 0.221691 + 0.383981i 0.955322 0.295568i \(-0.0955089\pi\)
−0.733630 + 0.679549i \(0.762176\pi\)
\(138\) 0 0
\(139\) −5.27411 9.13502i −0.447344 0.774823i 0.550868 0.834592i \(-0.314297\pi\)
−0.998212 + 0.0597697i \(0.980963\pi\)
\(140\) −9.69741 10.4377i −0.819581 0.882150i
\(141\) 0 0
\(142\) −1.81343 + 2.08311i −0.152179 + 0.174810i
\(143\) 2.00977 3.48102i 0.168065 0.291097i
\(144\) 0 0
\(145\) 1.97627 1.14100i 0.164120 0.0947550i
\(146\) −3.79998 11.0616i −0.314489 0.915461i
\(147\) 0 0
\(148\) 17.3317 13.5013i 1.42466 1.10980i
\(149\) 9.18336 15.9060i 0.752330 1.30307i −0.194361 0.980930i \(-0.562263\pi\)
0.946691 0.322143i \(-0.104403\pi\)
\(150\) 0 0
\(151\) 4.40011 2.54041i 0.358076 0.206735i −0.310160 0.950684i \(-0.600383\pi\)
0.668236 + 0.743949i \(0.267049\pi\)
\(152\) 8.36836 + 0.456514i 0.678763 + 0.0370282i
\(153\) 0 0
\(154\) −3.11319 + 4.27476i −0.250868 + 0.344470i
\(155\) 23.0228 + 13.2922i 1.84924 + 1.06766i
\(156\) 0 0
\(157\) 2.41701i 0.192898i −0.995338 0.0964492i \(-0.969251\pi\)
0.995338 0.0964492i \(-0.0307485\pi\)
\(158\) 10.9897 12.6240i 0.874293 1.00431i
\(159\) 0 0
\(160\) −8.69163 12.5076i −0.687134 0.988811i
\(161\) −4.19581 + 2.93532i −0.330676 + 0.231335i
\(162\) 0 0
\(163\) 13.8321 7.98598i 1.08342 0.625510i 0.151600 0.988442i \(-0.451558\pi\)
0.931816 + 0.362932i \(0.118224\pi\)
\(164\) 8.50988 + 10.9242i 0.664510 + 0.853038i
\(165\) 0 0
\(166\) 7.63397 2.62250i 0.592511 0.203546i
\(167\) 6.99445 + 12.1147i 0.541247 + 0.937467i 0.998833 + 0.0483016i \(0.0153809\pi\)
−0.457586 + 0.889165i \(0.651286\pi\)
\(168\) 0 0
\(169\) −2.45586 + 4.25368i −0.188913 + 0.327206i
\(170\) −1.03854 + 5.32256i −0.0796523 + 0.408222i
\(171\) 0 0
\(172\) 5.18134 12.7718i 0.395073 0.973841i
\(173\) 24.9568i 1.89743i −0.316131 0.948716i \(-0.602384\pi\)
0.316131 0.948716i \(-0.397616\pi\)
\(174\) 0 0
\(175\) 5.92920 0.516236i 0.448205 0.0390238i
\(176\) −3.93875 + 4.05549i −0.296894 + 0.305694i
\(177\) 0 0
\(178\) 9.22865 + 1.80070i 0.691717 + 0.134968i
\(179\) −0.618502 0.357092i −0.0462290 0.0266903i 0.476707 0.879062i \(-0.341830\pi\)
−0.522936 + 0.852372i \(0.675163\pi\)
\(180\) 0 0
\(181\) 13.5134i 1.00445i −0.864738 0.502223i \(-0.832516\pi\)
0.864738 0.502223i \(-0.167484\pi\)
\(182\) −6.26450 + 8.60185i −0.464355 + 0.637612i
\(183\) 0 0
\(184\) −4.88284 + 2.47479i −0.359968 + 0.182444i
\(185\) 29.5767i 2.17453i
\(186\) 0 0
\(187\) 2.01286 0.147195
\(188\) −2.94390 21.1658i −0.214706 1.54368i
\(189\) 0 0
\(190\) −7.40813 + 8.50982i −0.537442 + 0.617367i
\(191\) 15.2620i 1.10432i −0.833738 0.552161i \(-0.813803\pi\)
0.833738 0.552161i \(-0.186197\pi\)
\(192\) 0 0
\(193\) 8.93048 0.642830 0.321415 0.946938i \(-0.395842\pi\)
0.321415 + 0.946938i \(0.395842\pi\)
\(194\) −6.95890 20.2570i −0.499620 1.45437i
\(195\) 0 0
\(196\) 9.39135 10.3828i 0.670811 0.741629i
\(197\) 3.57570 0.254758 0.127379 0.991854i \(-0.459344\pi\)
0.127379 + 0.991854i \(0.459344\pi\)
\(198\) 0 0
\(199\) 7.27270 12.5967i 0.515548 0.892955i −0.484289 0.874908i \(-0.660922\pi\)
0.999837 0.0180470i \(-0.00574485\pi\)
\(200\) 6.35311 + 0.346578i 0.449233 + 0.0245067i
\(201\) 0 0
\(202\) 23.2709 + 4.54061i 1.63733 + 0.319477i
\(203\) 1.28541 + 1.83740i 0.0902182 + 0.128960i
\(204\) 0 0
\(205\) −18.6423 −1.30203
\(206\) −3.52602 + 1.21130i −0.245670 + 0.0843950i
\(207\) 0 0
\(208\) −7.92570 + 8.16061i −0.549549 + 0.565837i
\(209\) 3.62676 + 2.09391i 0.250868 + 0.144839i
\(210\) 0 0
\(211\) 11.3933 6.57792i 0.784347 0.452843i −0.0536217 0.998561i \(-0.517077\pi\)
0.837969 + 0.545718i \(0.183743\pi\)
\(212\) 24.4123 + 9.90371i 1.67664 + 0.680190i
\(213\) 0 0
\(214\) 1.12523 + 0.219555i 0.0769193 + 0.0150085i
\(215\) 9.27751 + 16.0691i 0.632721 + 1.09590i
\(216\) 0 0
\(217\) −11.0500 + 23.6709i −0.750121 + 1.60688i
\(218\) −13.9096 + 4.77836i −0.942074 + 0.323631i
\(219\) 0 0
\(220\) −1.04848 7.53827i −0.0706883 0.508230i
\(221\) 4.05035 0.272456
\(222\) 0 0
\(223\) −7.88047 + 13.6494i −0.527715 + 0.914030i 0.471763 + 0.881726i \(0.343618\pi\)
−0.999478 + 0.0323043i \(0.989715\pi\)
\(224\) 11.5033 9.57462i 0.768599 0.639731i
\(225\) 0 0
\(226\) −2.37050 + 12.1489i −0.157683 + 0.808134i
\(227\) 0.947912 + 1.64183i 0.0629152 + 0.108972i 0.895767 0.444523i \(-0.146627\pi\)
−0.832852 + 0.553496i \(0.813294\pi\)
\(228\) 0 0
\(229\) 7.39322 + 4.26848i 0.488558 + 0.282069i 0.723976 0.689825i \(-0.242313\pi\)
−0.235418 + 0.971894i \(0.575646\pi\)
\(230\) 1.41134 7.23319i 0.0930611 0.476943i
\(231\) 0 0
\(232\) 1.08374 + 2.13826i 0.0711512 + 0.140383i
\(233\) 8.18028 + 14.1687i 0.535908 + 0.928220i 0.999119 + 0.0419719i \(0.0133640\pi\)
−0.463211 + 0.886248i \(0.653303\pi\)
\(234\) 0 0
\(235\) 24.9144 + 14.3844i 1.62524 + 0.938332i
\(236\) −0.391770 2.81672i −0.0255020 0.183353i
\(237\) 0 0
\(238\) −5.29897 0.563007i −0.343481 0.0364943i
\(239\) 5.95333 3.43716i 0.385089 0.222331i −0.294941 0.955515i \(-0.595300\pi\)
0.680030 + 0.733184i \(0.261967\pi\)
\(240\) 0 0
\(241\) 8.63910 4.98779i 0.556493 0.321292i −0.195244 0.980755i \(-0.562550\pi\)
0.751737 + 0.659463i \(0.229216\pi\)
\(242\) 12.0407 4.13636i 0.774007 0.265895i
\(243\) 0 0
\(244\) −4.02663 + 0.560053i −0.257779 + 0.0358537i
\(245\) 3.25728 + 18.5638i 0.208100 + 1.18600i
\(246\) 0 0
\(247\) 7.29792 + 4.21345i 0.464355 + 0.268096i
\(248\) −15.2600 + 23.3887i −0.969011 + 1.48518i
\(249\) 0 0
\(250\) 6.87668 7.89934i 0.434920 0.499598i
\(251\) −16.6175 −1.04889 −0.524444 0.851445i \(-0.675727\pi\)
−0.524444 + 0.851445i \(0.675727\pi\)
\(252\) 0 0
\(253\) −2.73541 −0.171974
\(254\) 14.1647 16.2712i 0.888773 1.02095i
\(255\) 0 0
\(256\) 13.6169 8.40119i 0.851056 0.525074i
\(257\) −6.63756 3.83220i −0.414040 0.239046i 0.278484 0.960441i \(-0.410168\pi\)
−0.692524 + 0.721395i \(0.743501\pi\)
\(258\) 0 0
\(259\) −28.9538 + 2.52091i −1.79910 + 0.156642i
\(260\) −2.10979 15.1688i −0.130843 0.940729i
\(261\) 0 0
\(262\) −0.0908417 + 0.0312069i −0.00561222 + 0.00192797i
\(263\) 9.88765 5.70864i 0.609699 0.352010i −0.163149 0.986601i \(-0.552165\pi\)
0.772848 + 0.634592i \(0.218832\pi\)
\(264\) 0 0
\(265\) −30.7148 + 17.7332i −1.88680 + 1.08934i
\(266\) −8.96199 6.52678i −0.549495 0.400182i
\(267\) 0 0
\(268\) 17.3204 2.40905i 1.05801 0.147156i
\(269\) 4.88573 + 2.82078i 0.297888 + 0.171986i 0.641494 0.767128i \(-0.278315\pi\)
−0.343606 + 0.939114i \(0.611648\pi\)
\(270\) 0 0
\(271\) −3.13192 5.42464i −0.190251 0.329524i 0.755083 0.655630i \(-0.227597\pi\)
−0.945333 + 0.326106i \(0.894263\pi\)
\(272\) −5.52355 1.39392i −0.334915 0.0845187i
\(273\) 0 0
\(274\) 1.40554 7.20345i 0.0849117 0.435176i
\(275\) 2.75338 + 1.58966i 0.166035 + 0.0958602i
\(276\) 0 0
\(277\) −10.0179 17.3515i −0.601917 1.04255i −0.992531 0.121996i \(-0.961070\pi\)
0.390614 0.920555i \(-0.372263\pi\)
\(278\) −2.85682 + 14.6413i −0.171341 + 0.878128i
\(279\) 0 0
\(280\) 0.651685 + 20.1382i 0.0389456 + 1.20349i
\(281\) 9.81283 16.9963i 0.585384 1.01392i −0.409443 0.912336i \(-0.634277\pi\)
0.994827 0.101580i \(-0.0323897\pi\)
\(282\) 0 0
\(283\) −1.67820 −0.0997585 −0.0498792 0.998755i \(-0.515884\pi\)
−0.0498792 + 0.998755i \(0.515884\pi\)
\(284\) 3.86861 0.538075i 0.229560 0.0319289i
\(285\) 0 0
\(286\) −5.37610 + 1.84685i −0.317895 + 0.109207i
\(287\) −1.58894 18.2496i −0.0937920 1.07724i
\(288\) 0 0
\(289\) −7.48585 12.9659i −0.440344 0.762699i
\(290\) −3.16751 0.618044i −0.186002 0.0362928i
\(291\) 0 0
\(292\) −6.21812 + 15.3274i −0.363888 + 0.896971i
\(293\) 9.06774 5.23526i 0.529743 0.305847i −0.211169 0.977450i \(-0.567727\pi\)
0.740912 + 0.671602i \(0.234394\pi\)
\(294\) 0 0
\(295\) 3.31558 + 1.91425i 0.193040 + 0.111452i
\(296\) −31.0239 1.69243i −1.80323 0.0983703i
\(297\) 0 0
\(298\) −24.5653 + 8.43895i −1.42303 + 0.488855i
\(299\) −5.50430 −0.318322
\(300\) 0 0
\(301\) −14.9399 + 10.4517i −0.861122 + 0.602427i
\(302\) −7.05236 1.37606i −0.405818 0.0791832i
\(303\) 0 0
\(304\) −8.50228 8.25753i −0.487639 0.473602i
\(305\) 2.73651 4.73977i 0.156692 0.271398i
\(306\) 0 0
\(307\) 0.644576 0.0367879 0.0183939 0.999831i \(-0.494145\pi\)
0.0183939 + 0.999831i \(0.494145\pi\)
\(308\) 7.29013 1.66890i 0.415394 0.0950945i
\(309\) 0 0
\(310\) −12.2148 35.5566i −0.693752 2.01948i
\(311\) −18.0913 −1.02586 −0.512931 0.858430i \(-0.671440\pi\)
−0.512931 + 0.858430i \(0.671440\pi\)
\(312\) 0 0
\(313\) 0.0623583i 0.00352470i 0.999998 + 0.00176235i \(0.000560974\pi\)
−0.999998 + 0.00176235i \(0.999439\pi\)
\(314\) −2.24436 + 2.57812i −0.126656 + 0.145492i
\(315\) 0 0
\(316\) −23.4445 + 3.26083i −1.31886 + 0.183436i
\(317\) 8.44530 0.474335 0.237168 0.971469i \(-0.423781\pi\)
0.237168 + 0.971469i \(0.423781\pi\)
\(318\) 0 0
\(319\) 1.19787i 0.0670679i
\(320\) −2.34314 + 21.4121i −0.130985 + 1.19697i
\(321\) 0 0
\(322\) 7.20114 + 0.765109i 0.401304 + 0.0426379i
\(323\) 4.21993i 0.234803i
\(324\) 0 0
\(325\) 5.54045 + 3.19878i 0.307329 + 0.177437i
\(326\) −22.1697 4.32575i −1.22787 0.239581i
\(327\) 0 0
\(328\) 1.06674 19.5544i 0.0589009 1.07971i
\(329\) −11.9579 + 25.6157i −0.659258 + 1.41224i
\(330\) 0 0
\(331\) 15.4700i 0.850306i −0.905122 0.425153i \(-0.860220\pi\)
0.905122 0.425153i \(-0.139780\pi\)
\(332\) −10.5780 4.29135i −0.580544 0.235518i
\(333\) 0 0
\(334\) 3.78867 19.4171i 0.207307 1.06246i
\(335\) −11.7710 + 20.3879i −0.643117 + 1.11391i
\(336\) 0 0
\(337\) 1.49961 + 2.59739i 0.0816887 + 0.141489i 0.903975 0.427584i \(-0.140635\pi\)
−0.822287 + 0.569073i \(0.807302\pi\)
\(338\) 6.56940 2.25679i 0.357328 0.122753i
\(339\) 0 0
\(340\) 6.05013 4.71300i 0.328114 0.255598i
\(341\) −12.0852 + 6.97737i −0.654448 + 0.377846i
\(342\) 0 0
\(343\) −17.8952 + 4.77092i −0.966250 + 0.257605i
\(344\) −17.3862 + 8.81194i −0.937402 + 0.475108i
\(345\) 0 0
\(346\) −23.1741 + 26.6204i −1.24585 + 1.43112i
\(347\) 30.0283i 1.61200i 0.591915 + 0.806001i \(0.298372\pi\)
−0.591915 + 0.806001i \(0.701628\pi\)
\(348\) 0 0
\(349\) 16.0196 + 9.24890i 0.857507 + 0.495082i 0.863177 0.504902i \(-0.168471\pi\)
−0.00566949 + 0.999984i \(0.501805\pi\)
\(350\) −6.80379 4.95502i −0.363678 0.264857i
\(351\) 0 0
\(352\) 7.96709 0.668425i 0.424647 0.0356272i
\(353\) 6.81136 3.93254i 0.362532 0.209308i −0.307659 0.951497i \(-0.599546\pi\)
0.670191 + 0.742189i \(0.266212\pi\)
\(354\) 0 0
\(355\) −2.62912 + 4.55377i −0.139539 + 0.241689i
\(356\) −8.17175 10.4902i −0.433102 0.555977i
\(357\) 0 0
\(358\) 0.328146 + 0.955216i 0.0173430 + 0.0504847i
\(359\) 15.0238 8.67397i 0.792924 0.457795i −0.0480670 0.998844i \(-0.515306\pi\)
0.840991 + 0.541049i \(0.181973\pi\)
\(360\) 0 0
\(361\) 5.11014 8.85102i 0.268955 0.465843i
\(362\) −12.5482 + 14.4142i −0.659516 + 0.757595i
\(363\) 0 0
\(364\) 14.6695 3.35823i 0.768890 0.176019i
\(365\) −11.1339 19.2845i −0.582777 1.00940i
\(366\) 0 0
\(367\) 0.510070 + 0.883467i 0.0266254 + 0.0461166i 0.879031 0.476764i \(-0.158191\pi\)
−0.852406 + 0.522881i \(0.824857\pi\)
\(368\) 7.50634 + 1.89429i 0.391295 + 0.0987467i
\(369\) 0 0
\(370\) 27.4640 31.5483i 1.42779 1.64012i
\(371\) −19.9776 28.5564i −1.03719 1.48258i
\(372\) 0 0
\(373\) 0.0376831 0.0652691i 0.00195116 0.00337951i −0.865048 0.501689i \(-0.832712\pi\)
0.866999 + 0.498309i \(0.166046\pi\)
\(374\) −2.14703 1.86908i −0.111020 0.0966476i
\(375\) 0 0
\(376\) −16.5138 + 25.3104i −0.851634 + 1.30528i
\(377\) 2.41040i 0.124142i
\(378\) 0 0
\(379\) 29.5406i 1.51740i 0.651442 + 0.758699i \(0.274165\pi\)
−0.651442 + 0.758699i \(0.725835\pi\)
\(380\) 15.8039 2.19812i 0.810722 0.112761i
\(381\) 0 0
\(382\) −14.1718 + 16.2794i −0.725094 + 0.832925i
\(383\) 14.2357 24.6569i 0.727410 1.25991i −0.230564 0.973057i \(-0.574057\pi\)
0.957974 0.286854i \(-0.0926095\pi\)
\(384\) 0 0
\(385\) −4.25882 + 9.12309i −0.217050 + 0.464956i
\(386\) −9.52577 8.29256i −0.484849 0.422080i
\(387\) 0 0
\(388\) −11.3872 + 28.0691i −0.578099 + 1.42499i
\(389\) 10.8878 + 18.8582i 0.552032 + 0.956148i 0.998128 + 0.0611628i \(0.0194809\pi\)
−0.446095 + 0.894985i \(0.647186\pi\)
\(390\) 0 0
\(391\) −1.37819 2.38710i −0.0696982 0.120721i
\(392\) −19.6585 + 2.35440i −0.992904 + 0.118915i
\(393\) 0 0
\(394\) −3.81405 3.32028i −0.192149 0.167273i
\(395\) 15.9329 27.5967i 0.801673 1.38854i
\(396\) 0 0
\(397\) −1.28100 + 0.739586i −0.0642915 + 0.0371187i −0.531801 0.846869i \(-0.678485\pi\)
0.467510 + 0.883988i \(0.345151\pi\)
\(398\) −19.4544 + 6.68317i −0.975159 + 0.334997i
\(399\) 0 0
\(400\) −6.45478 6.26898i −0.322739 0.313449i
\(401\) −12.4003 + 21.4780i −0.619242 + 1.07256i 0.370382 + 0.928879i \(0.379227\pi\)
−0.989624 + 0.143679i \(0.954107\pi\)
\(402\) 0 0
\(403\) −24.3183 + 14.0402i −1.21138 + 0.699390i
\(404\) −20.6058 26.4519i −1.02518 1.31603i
\(405\) 0 0
\(406\) 0.335051 3.15347i 0.0166283 0.156504i
\(407\) −13.4454 7.76273i −0.666465 0.384784i
\(408\) 0 0
\(409\) 9.36239i 0.462941i 0.972842 + 0.231470i \(0.0743536\pi\)
−0.972842 + 0.231470i \(0.925646\pi\)
\(410\) 19.8850 + 17.3106i 0.982049 + 0.854912i
\(411\) 0 0
\(412\) 4.88584 + 1.98211i 0.240708 + 0.0976517i
\(413\) −1.59133 + 3.40890i −0.0783044 + 0.167741i
\(414\) 0 0
\(415\) 13.3089 7.68392i 0.653311 0.377189i
\(416\) 16.0317 1.34503i 0.786019 0.0659456i
\(417\) 0 0
\(418\) −1.92418 5.60119i −0.0941146 0.273963i
\(419\) −5.21230 9.02797i −0.254637 0.441045i 0.710160 0.704041i \(-0.248623\pi\)
−0.964797 + 0.262996i \(0.915289\pi\)
\(420\) 0 0
\(421\) −3.45213 + 5.97927i −0.168247 + 0.291412i −0.937803 0.347167i \(-0.887144\pi\)
0.769557 + 0.638578i \(0.220477\pi\)
\(422\) −18.2608 3.56305i −0.888922 0.173447i
\(423\) 0 0
\(424\) −16.8433 33.2324i −0.817983 1.61391i
\(425\) 3.20370i 0.155402i
\(426\) 0 0
\(427\) 4.87318 + 2.27488i 0.235830 + 0.110089i
\(428\) −0.996366 1.27905i −0.0481612 0.0618250i
\(429\) 0 0
\(430\) 5.02533 25.7551i 0.242343 1.24202i
\(431\) 12.4348 + 7.17921i 0.598961 + 0.345810i 0.768633 0.639690i \(-0.220937\pi\)
−0.169672 + 0.985501i \(0.554271\pi\)
\(432\) 0 0
\(433\) 25.8458i 1.24207i 0.783783 + 0.621035i \(0.213288\pi\)
−0.783783 + 0.621035i \(0.786712\pi\)
\(434\) 33.7665 14.9881i 1.62085 0.719451i
\(435\) 0 0
\(436\) 19.2738 + 7.81910i 0.923047 + 0.374467i
\(437\) 5.73476i 0.274331i
\(438\) 0 0
\(439\) 14.5869 0.696195 0.348097 0.937458i \(-0.386828\pi\)
0.348097 + 0.937458i \(0.386828\pi\)
\(440\) −5.88143 + 9.01434i −0.280386 + 0.429742i
\(441\) 0 0
\(442\) −4.32035 3.76103i −0.205498 0.178894i
\(443\) 35.3820i 1.68105i −0.541775 0.840524i \(-0.682247\pi\)
0.541775 0.840524i \(-0.317753\pi\)
\(444\) 0 0
\(445\) 17.9016 0.848616
\(446\) 21.0801 7.24167i 0.998174 0.342903i
\(447\) 0 0
\(448\) −21.1608 0.468769i −0.999755 0.0221473i
\(449\) 0.329740 0.0155614 0.00778070 0.999970i \(-0.497523\pi\)
0.00778070 + 0.999970i \(0.497523\pi\)
\(450\) 0 0
\(451\) 4.89287 8.47469i 0.230396 0.399058i
\(452\) 13.8096 10.7576i 0.649550 0.505994i
\(453\) 0 0
\(454\) 0.513454 2.63148i 0.0240976 0.123501i
\(455\) −8.56977 + 18.3579i −0.401757 + 0.860629i
\(456\) 0 0
\(457\) 25.8843 1.21081 0.605407 0.795916i \(-0.293010\pi\)
0.605407 + 0.795916i \(0.293010\pi\)
\(458\) −3.92247 11.4181i −0.183285 0.533533i
\(459\) 0 0
\(460\) −8.22193 + 6.40482i −0.383350 + 0.298626i
\(461\) 24.3535 + 14.0605i 1.13426 + 0.654863i 0.945002 0.327065i \(-0.106060\pi\)
0.189254 + 0.981928i \(0.439393\pi\)
\(462\) 0 0
\(463\) −17.0012 + 9.81564i −0.790112 + 0.456171i −0.840002 0.542583i \(-0.817446\pi\)
0.0498901 + 0.998755i \(0.484113\pi\)
\(464\) 0.829533 3.28712i 0.0385101 0.152601i
\(465\) 0 0
\(466\) 4.43100 22.7091i 0.205262 1.05198i
\(467\) 10.9101 + 18.8969i 0.504861 + 0.874446i 0.999984 + 0.00562261i \(0.00178974\pi\)
−0.495123 + 0.868823i \(0.664877\pi\)
\(468\) 0 0
\(469\) −20.9618 9.78532i −0.967925 0.451844i
\(470\) −13.2184 38.4780i −0.609717 1.77486i
\(471\) 0 0
\(472\) −2.19763 + 3.36826i −0.101154 + 0.155037i
\(473\) −9.73992 −0.447842
\(474\) 0 0
\(475\) −3.33271 + 5.77242i −0.152915 + 0.264857i
\(476\) 5.12940 + 5.52099i 0.235106 + 0.253054i
\(477\) 0 0
\(478\) −9.54181 1.86180i −0.436432 0.0851568i
\(479\) 14.7030 + 25.4664i 0.671799 + 1.16359i 0.977393 + 0.211429i \(0.0678116\pi\)
−0.305594 + 0.952162i \(0.598855\pi\)
\(480\) 0 0
\(481\) −27.0554 15.6205i −1.23362 0.712232i
\(482\) −13.8465 2.70173i −0.630689 0.123060i
\(483\) 0 0
\(484\) −16.6842 6.76855i −0.758374 0.307662i
\(485\) −20.3896 35.3157i −0.925842 1.60361i
\(486\) 0 0
\(487\) 3.83992 + 2.21698i 0.174003 + 0.100461i 0.584472 0.811414i \(-0.301302\pi\)
−0.410469 + 0.911875i \(0.634635\pi\)
\(488\) 4.81509 + 3.14161i 0.217969 + 0.142214i
\(489\) 0 0
\(490\) 13.7634 22.8259i 0.621766 1.03117i
\(491\) 0.492024 0.284070i 0.0222047 0.0128199i −0.488857 0.872364i \(-0.662586\pi\)
0.511061 + 0.859544i \(0.329253\pi\)
\(492\) 0 0
\(493\) −1.04534 + 0.603527i −0.0470798 + 0.0271815i
\(494\) −3.87191 11.2709i −0.174205 0.507103i
\(495\) 0 0
\(496\) 37.9952 10.7778i 1.70604 0.483937i
\(497\) −4.68194 2.18561i −0.210014 0.0980381i
\(498\) 0 0
\(499\) −7.10975 4.10482i −0.318276 0.183757i 0.332348 0.943157i \(-0.392159\pi\)
−0.650624 + 0.759400i \(0.725493\pi\)
\(500\) −14.6701 + 2.04043i −0.656069 + 0.0912508i
\(501\) 0 0
\(502\) 17.7252 + 15.4305i 0.791116 + 0.688697i
\(503\) 23.6082 1.05264 0.526319 0.850287i \(-0.323572\pi\)
0.526319 + 0.850287i \(0.323572\pi\)
\(504\) 0 0
\(505\) 45.1404 2.00872
\(506\) 2.91775 + 2.54002i 0.129710 + 0.112917i
\(507\) 0 0
\(508\) −30.2178 + 4.20292i −1.34070 + 0.186474i
\(509\) 27.4898 + 15.8713i 1.21847 + 0.703482i 0.964590 0.263755i \(-0.0849611\pi\)
0.253876 + 0.967237i \(0.418294\pi\)
\(510\) 0 0
\(511\) 17.9294 12.5431i 0.793149 0.554874i
\(512\) −22.3257 3.68301i −0.986664 0.162768i
\(513\) 0 0
\(514\) 3.52156 + 10.2511i 0.155329 + 0.452156i
\(515\) −6.14722 + 3.54910i −0.270879 + 0.156392i
\(516\) 0 0
\(517\) −13.0781 + 7.55065i −0.575175 + 0.332077i
\(518\) 33.2247 + 24.1966i 1.45981 + 1.06314i
\(519\) 0 0
\(520\) −11.8348 + 18.1390i −0.518992 + 0.795449i
\(521\) 2.09032 + 1.20685i 0.0915786 + 0.0528730i 0.545090 0.838378i \(-0.316495\pi\)
−0.453511 + 0.891251i \(0.649829\pi\)
\(522\) 0 0
\(523\) −4.85017 8.40075i −0.212083 0.367339i 0.740283 0.672295i \(-0.234691\pi\)
−0.952366 + 0.304956i \(0.901358\pi\)
\(524\) 0.125875 + 0.0510656i 0.00549887 + 0.00223081i
\(525\) 0 0
\(526\) −15.8476 3.09219i −0.690989 0.134826i
\(527\) −12.1778 7.03087i −0.530474 0.306270i
\(528\) 0 0
\(529\) −9.62708 16.6746i −0.418569 0.724982i
\(530\) 49.2287 + 9.60552i 2.13836 + 0.417237i
\(531\) 0 0
\(532\) 3.49883 + 15.2837i 0.151694 + 0.662631i
\(533\) 9.84562 17.0531i 0.426461 0.738653i
\(534\) 0 0
\(535\) 2.18270 0.0943665
\(536\) −20.7119 13.5135i −0.894618 0.583696i
\(537\) 0 0
\(538\) −2.59212 7.54555i −0.111754 0.325312i
\(539\) −9.29393 3.39153i −0.400318 0.146084i
\(540\) 0 0
\(541\) −2.43786 4.22250i −0.104812 0.181539i 0.808850 0.588016i \(-0.200091\pi\)
−0.913661 + 0.406476i \(0.866757\pi\)
\(542\) −1.69646 + 8.69444i −0.0728693 + 0.373458i
\(543\) 0 0
\(544\) 4.59740 + 6.61583i 0.197112 + 0.283651i
\(545\) −24.2497 + 14.0006i −1.03874 + 0.599719i
\(546\) 0 0
\(547\) 22.7649 + 13.1433i 0.973356 + 0.561967i 0.900258 0.435357i \(-0.143378\pi\)
0.0730983 + 0.997325i \(0.476711\pi\)
\(548\) −8.18812 + 6.37849i −0.349779 + 0.272475i
\(549\) 0 0
\(550\) −1.46080 4.25232i −0.0622888 0.181320i
\(551\) −2.51132 −0.106986
\(552\) 0 0
\(553\) 28.3734 + 13.2452i 1.20656 + 0.563244i
\(554\) −5.42638 + 27.8104i −0.230545 + 1.18155i
\(555\) 0 0
\(556\) 16.6427 12.9645i 0.705808 0.549819i
\(557\) 0.740402 1.28241i 0.0313719 0.0543377i −0.849913 0.526923i \(-0.823346\pi\)
0.881285 + 0.472585i \(0.156679\pi\)
\(558\) 0 0
\(559\) −19.5991 −0.828952
\(560\) 18.0046 22.0857i 0.760832 0.933293i
\(561\) 0 0
\(562\) −26.2492 + 9.01739i −1.10725 + 0.380376i
\(563\) 0.200896 0.00846677 0.00423339 0.999991i \(-0.498652\pi\)
0.00423339 + 0.999991i \(0.498652\pi\)
\(564\) 0 0
\(565\) 23.5663i 0.991440i
\(566\) 1.79006 + 1.55832i 0.0752420 + 0.0655011i
\(567\) 0 0
\(568\) −4.62613 3.01833i −0.194108 0.126646i
\(569\) −43.8164 −1.83688 −0.918441 0.395559i \(-0.870551\pi\)
−0.918441 + 0.395559i \(0.870551\pi\)
\(570\) 0 0
\(571\) 13.2983i 0.556516i 0.960506 + 0.278258i \(0.0897570\pi\)
−0.960506 + 0.278258i \(0.910243\pi\)
\(572\) 7.44940 + 3.02211i 0.311475 + 0.126361i
\(573\) 0 0
\(574\) −15.2512 + 20.9416i −0.636572 + 0.874085i
\(575\) 4.35373i 0.181563i
\(576\) 0 0
\(577\) 7.21473 + 4.16543i 0.300353 + 0.173409i 0.642602 0.766201i \(-0.277855\pi\)
−0.342248 + 0.939610i \(0.611188\pi\)
\(578\) −4.05485 + 20.7813i −0.168660 + 0.864388i
\(579\) 0 0
\(580\) 2.80475 + 3.60049i 0.116461 + 0.149502i
\(581\) 8.65644 + 12.3737i 0.359130 + 0.513348i
\(582\) 0 0
\(583\) 18.6171i 0.771040i
\(584\) 20.8652 10.5752i 0.863408 0.437605i
\(585\) 0 0
\(586\) −14.5335 2.83578i −0.600373 0.117145i
\(587\) −4.37925 + 7.58509i −0.180751 + 0.313070i −0.942137 0.335229i \(-0.891186\pi\)
0.761385 + 0.648299i \(0.224520\pi\)
\(588\) 0 0
\(589\) −14.6280 25.3364i −0.602736 1.04397i
\(590\) −1.75908 5.12059i −0.0724201 0.210811i
\(591\) 0 0
\(592\) 31.5204 + 30.6130i 1.29548 + 1.25819i
\(593\) 10.4931 6.05820i 0.430900 0.248780i −0.268830 0.963188i \(-0.586637\pi\)
0.699730 + 0.714407i \(0.253304\pi\)
\(594\) 0 0
\(595\) −10.1071 + 0.879996i −0.414352 + 0.0360763i
\(596\) 34.0390 + 13.8091i 1.39429 + 0.565644i
\(597\) 0 0
\(598\) 5.87121 + 5.11112i 0.240092 + 0.209009i
\(599\) 39.4741i 1.61287i −0.591323 0.806434i \(-0.701394\pi\)
0.591323 0.806434i \(-0.298606\pi\)
\(600\) 0 0
\(601\) −3.43670 1.98418i −0.140186 0.0809363i 0.428267 0.903652i \(-0.359124\pi\)
−0.568453 + 0.822716i \(0.692458\pi\)
\(602\) 25.6409 + 2.72431i 1.04505 + 0.111035i
\(603\) 0 0
\(604\) 6.24470 + 8.01638i 0.254093 + 0.326182i
\(605\) 20.9916 12.1195i 0.853431 0.492728i
\(606\) 0 0
\(607\) −14.3423 + 24.8416i −0.582136 + 1.00829i 0.413089 + 0.910690i \(0.364450\pi\)
−0.995226 + 0.0975993i \(0.968884\pi\)
\(608\) 1.40135 + 16.7029i 0.0568321 + 0.677393i
\(609\) 0 0
\(610\) −7.32012 + 2.51468i −0.296383 + 0.101817i
\(611\) −26.3163 + 15.1937i −1.06464 + 0.614672i
\(612\) 0 0
\(613\) −1.55941 + 2.70099i −0.0629842 + 0.109092i −0.895798 0.444461i \(-0.853395\pi\)
0.832814 + 0.553553i \(0.186728\pi\)
\(614\) −0.687542 0.598532i −0.0277469 0.0241548i
\(615\) 0 0
\(616\) −9.32577 4.98923i −0.375746 0.201022i
\(617\) −1.30847 2.26634i −0.0526770 0.0912393i 0.838485 0.544925i \(-0.183442\pi\)
−0.891162 + 0.453686i \(0.850109\pi\)
\(618\) 0 0
\(619\) 12.3184 + 21.3361i 0.495119 + 0.857571i 0.999984 0.00562710i \(-0.00179117\pi\)
−0.504865 + 0.863198i \(0.668458\pi\)
\(620\) −19.9877 + 49.2690i −0.802725 + 1.97869i
\(621\) 0 0
\(622\) 19.2972 + 16.7990i 0.773748 + 0.673578i
\(623\) 1.52580 + 17.5245i 0.0611300 + 0.702105i
\(624\) 0 0
\(625\) 15.5936 27.0090i 0.623745 1.08036i
\(626\) 0.0579040 0.0665151i 0.00231431 0.00265848i
\(627\) 0 0
\(628\) 4.78793 0.665940i 0.191059 0.0265739i
\(629\) 15.6445i 0.623787i
\(630\) 0 0
\(631\) 8.86244i 0.352808i −0.984318 0.176404i \(-0.943553\pi\)
0.984318 0.176404i \(-0.0564466\pi\)
\(632\) 28.0352 + 18.2916i 1.11518 + 0.727602i
\(633\) 0 0
\(634\) −9.00826 7.84204i −0.357764 0.311447i
\(635\) 20.5361 35.5696i 0.814951 1.41154i
\(636\) 0 0
\(637\) −18.7016 6.82457i −0.740985 0.270399i
\(638\) 1.11230 1.27772i 0.0440366 0.0505854i
\(639\) 0 0
\(640\) 22.3819 20.6636i 0.884723 0.816802i
\(641\) −18.3397 31.7654i −0.724376 1.25466i −0.959230 0.282626i \(-0.908795\pi\)
0.234854 0.972031i \(-0.424539\pi\)
\(642\) 0 0
\(643\) −10.9509 18.9675i −0.431860 0.748004i 0.565173 0.824972i \(-0.308809\pi\)
−0.997034 + 0.0769685i \(0.975476\pi\)
\(644\) −6.97070 7.50286i −0.274684 0.295654i
\(645\) 0 0
\(646\) 3.91850 4.50123i 0.154171 0.177098i
\(647\) −15.1436 + 26.2296i −0.595358 + 1.03119i 0.398138 + 0.917326i \(0.369657\pi\)
−0.993496 + 0.113865i \(0.963677\pi\)
\(648\) 0 0
\(649\) −1.74042 + 1.00483i −0.0683173 + 0.0394430i
\(650\) −2.93949 8.55670i −0.115296 0.335621i
\(651\) 0 0
\(652\) 19.6307 + 25.2002i 0.768799 + 0.986914i
\(653\) 4.36506 7.56050i 0.170818 0.295865i −0.767888 0.640584i \(-0.778692\pi\)
0.938706 + 0.344719i \(0.112026\pi\)
\(654\) 0 0
\(655\) −0.158372 + 0.0914362i −0.00618811 + 0.00357271i
\(656\) −19.2955 + 19.8674i −0.753361 + 0.775690i
\(657\) 0 0
\(658\) 36.5409 16.2195i 1.42451 0.632303i
\(659\) 38.1510 + 22.0265i 1.48615 + 0.858030i 0.999876 0.0157758i \(-0.00502180\pi\)
0.486276 + 0.873806i \(0.338355\pi\)
\(660\) 0 0
\(661\) 38.9747i 1.51594i −0.652289 0.757971i \(-0.726191\pi\)
0.652289 0.757971i \(-0.273809\pi\)
\(662\) −14.3649 + 16.5012i −0.558308 + 0.641336i
\(663\) 0 0
\(664\) 7.29832 + 14.3998i 0.283230 + 0.558821i
\(665\) −19.1265 8.92856i −0.741692 0.346235i
\(666\) 0 0
\(667\) 1.42058 0.820175i 0.0550053 0.0317573i
\(668\) −22.0713 + 17.1934i −0.853966 + 0.665233i
\(669\) 0 0
\(670\) 31.4872 10.8168i 1.21646 0.417890i
\(671\) 1.43645 + 2.48800i 0.0554535 + 0.0960483i
\(672\) 0 0
\(673\) 6.18407 10.7111i 0.238379 0.412884i −0.721871 0.692028i \(-0.756717\pi\)
0.960249 + 0.279144i \(0.0900508\pi\)
\(674\) 0.812289 4.16302i 0.0312882 0.160353i
\(675\) 0 0
\(676\) −9.10290 3.69291i −0.350111 0.142035i
\(677\) 13.4525i 0.517022i 0.966008 + 0.258511i \(0.0832317\pi\)
−0.966008 + 0.258511i \(0.916768\pi\)
\(678\) 0 0
\(679\) 32.8340 22.9702i 1.26005 0.881514i
\(680\) −10.8298 0.590790i −0.415303 0.0226558i
\(681\) 0 0
\(682\) 19.3697 + 3.77942i 0.741705 + 0.144722i
\(683\) −13.0760 7.54945i −0.500340 0.288872i 0.228514 0.973541i \(-0.426613\pi\)
−0.728854 + 0.684669i \(0.759947\pi\)
\(684\) 0 0
\(685\) 13.9731i 0.533886i
\(686\) 23.5182 + 11.5280i 0.897929 + 0.440140i
\(687\) 0 0
\(688\) 26.7276 + 6.74496i 1.01898 + 0.257149i
\(689\) 37.4620i 1.42719i
\(690\) 0 0
\(691\) 26.4012 1.00435 0.502175 0.864766i \(-0.332533\pi\)
0.502175 + 0.864766i \(0.332533\pi\)
\(692\) 49.4377 6.87616i 1.87934 0.261392i
\(693\) 0 0
\(694\) 27.8833 32.0299i 1.05843 1.21584i
\(695\) 28.4010i 1.07731i
\(696\) 0 0
\(697\) 9.86076 0.373503
\(698\) −8.49917 24.7407i −0.321698 0.936448i
\(699\) 0 0
\(700\) 2.65625 + 11.6031i 0.100397 + 0.438556i
\(701\) 9.14551 0.345421 0.172711 0.984973i \(-0.444747\pi\)
0.172711 + 0.984973i \(0.444747\pi\)
\(702\) 0 0
\(703\) 16.2745 28.1882i 0.613803 1.06314i
\(704\) −9.11885 6.68501i −0.343680 0.251951i
\(705\) 0 0
\(706\) −10.9170 2.13013i −0.410868 0.0801686i
\(707\) 3.84745 + 44.1896i 0.144698 + 1.66192i
\(708\) 0 0
\(709\) −19.1952 −0.720890 −0.360445 0.932781i \(-0.617375\pi\)
−0.360445 + 0.932781i \(0.617375\pi\)
\(710\) 7.03286 2.41600i 0.263938 0.0906709i
\(711\) 0 0
\(712\) −1.02436 + 18.7775i −0.0383893 + 0.703715i
\(713\) 16.5493 + 9.55473i 0.619776 + 0.357828i
\(714\) 0 0
\(715\) −9.37261 + 5.41128i −0.350516 + 0.202370i
\(716\) 0.536964 1.32360i 0.0200673 0.0494651i
\(717\) 0 0
\(718\) −24.0796 4.69842i −0.898643 0.175343i
\(719\) −2.31150 4.00364i −0.0862046 0.149311i 0.819699 0.572794i \(-0.194141\pi\)
−0.905904 + 0.423483i \(0.860807\pi\)
\(720\) 0 0
\(721\) −3.99829 5.71524i −0.148904 0.212847i
\(722\) −13.6695 + 4.69591i −0.508728 + 0.174764i
\(723\) 0 0
\(724\) 26.7692 3.72326i 0.994870 0.138374i
\(725\) −1.90655 −0.0708076
\(726\) 0 0
\(727\) 4.10913 7.11723i 0.152399 0.263963i −0.779710 0.626141i \(-0.784633\pi\)
0.932109 + 0.362178i \(0.117967\pi\)
\(728\) −18.7657 10.0395i −0.695503 0.372090i
\(729\) 0 0
\(730\) −6.03090 + 30.9086i −0.223214 + 1.14398i
\(731\) −4.90730 8.49969i −0.181503 0.314372i
\(732\) 0 0
\(733\) 18.9227 + 10.9250i 0.698927 + 0.403526i 0.806948 0.590623i \(-0.201118\pi\)
−0.108021 + 0.994149i \(0.534451\pi\)
\(734\) 0.276289 1.41599i 0.0101980 0.0522652i
\(735\) 0 0
\(736\) −6.24772 8.99071i −0.230294 0.331402i
\(737\) −6.17883 10.7020i −0.227600 0.394215i
\(738\) 0 0
\(739\) −16.9483 9.78511i −0.623454 0.359951i 0.154759 0.987952i \(-0.450540\pi\)
−0.778212 + 0.628001i \(0.783873\pi\)
\(740\) −58.5895 + 8.14905i −2.15379 + 0.299565i
\(741\) 0 0
\(742\) −5.20730 + 49.0106i −0.191166 + 1.79923i
\(743\) 7.26557 4.19478i 0.266548 0.153892i −0.360770 0.932655i \(-0.617486\pi\)
0.627318 + 0.778763i \(0.284153\pi\)
\(744\) 0 0
\(745\) −42.8269 + 24.7261i −1.56905 + 0.905894i
\(746\) −0.100802 + 0.0346285i −0.00369062 + 0.00126784i
\(747\) 0 0
\(748\) 0.554587 + 3.98733i 0.0202777 + 0.145791i
\(749\) 0.186038 + 2.13673i 0.00679769 + 0.0780744i
\(750\) 0 0
\(751\) 11.8250 + 6.82717i 0.431501 + 0.249127i 0.699986 0.714157i \(-0.253190\pi\)
−0.268485 + 0.963284i \(0.586523\pi\)
\(752\) 41.1170 11.6633i 1.49938 0.425318i
\(753\) 0 0
\(754\) 2.23822 2.57108i 0.0815113 0.0936331i
\(755\) −13.6800 −0.497868
\(756\) 0 0
\(757\) 22.0851 0.802697 0.401348 0.915925i \(-0.368542\pi\)
0.401348 + 0.915925i \(0.368542\pi\)
\(758\) 27.4304 31.5097i 0.996318 1.14448i
\(759\) 0 0
\(760\) −18.8985 12.3303i −0.685519 0.447269i
\(761\) 22.6153 + 13.0569i 0.819804 + 0.473314i 0.850349 0.526220i \(-0.176391\pi\)
−0.0305452 + 0.999533i \(0.509724\pi\)
\(762\) 0 0
\(763\) −15.7726 22.5456i −0.571005 0.816207i
\(764\) 30.2330 4.20503i 1.09379 0.152133i
\(765\) 0 0
\(766\) −38.0803 + 13.0817i −1.37590 + 0.472662i
\(767\) −3.50213 + 2.02196i −0.126455 + 0.0730087i
\(768\) 0 0
\(769\) 14.6518 8.45923i 0.528358 0.305048i −0.211989 0.977272i \(-0.567994\pi\)
0.740348 + 0.672224i \(0.234661\pi\)
\(770\) 13.0141 5.77662i 0.468996 0.208175i
\(771\) 0 0
\(772\) 2.46055 + 17.6907i 0.0885570 + 0.636701i
\(773\) −18.8030 10.8559i −0.676298 0.390461i 0.122161 0.992510i \(-0.461018\pi\)
−0.798459 + 0.602049i \(0.794351\pi\)
\(774\) 0 0
\(775\) −11.1053 19.2350i −0.398915 0.690940i
\(776\) 38.2104 19.3663i 1.37167 0.695211i
\(777\) 0 0
\(778\) 5.89757 30.2253i 0.211438 1.08363i
\(779\) 17.7671 + 10.2578i 0.636572 + 0.367525i
\(780\) 0 0
\(781\) −1.38008 2.39037i −0.0493831 0.0855341i
\(782\) −0.746523 + 3.82596i −0.0266956 + 0.136816i
\(783\) 0 0
\(784\) 23.1551 + 15.7429i 0.826969 + 0.562247i
\(785\) −3.25389 + 5.63590i −0.116136 + 0.201154i
\(786\) 0 0
\(787\) 19.5188 0.695769 0.347884 0.937537i \(-0.386900\pi\)
0.347884 + 0.937537i \(0.386900\pi\)
\(788\) 0.985184 + 7.08321i 0.0350957 + 0.252329i
\(789\) 0 0
\(790\) −42.6204 + 14.6414i −1.51637 + 0.520918i
\(791\) −23.0699 + 2.00862i −0.820271 + 0.0714183i
\(792\) 0 0
\(793\) 2.89048 + 5.00646i 0.102644 + 0.177785i
\(794\) 2.05315 + 0.400610i 0.0728634 + 0.0142171i
\(795\) 0 0
\(796\) 26.9569 + 10.9360i 0.955463 + 0.387618i
\(797\) 23.1795 13.3827i 0.821059 0.474039i −0.0297223 0.999558i \(-0.509462\pi\)
0.850782 + 0.525519i \(0.176129\pi\)
\(798\) 0 0
\(799\) −13.1784 7.60854i −0.466218 0.269171i
\(800\) 1.06388 + 12.6806i 0.0376138 + 0.448326i
\(801\) 0 0
\(802\) 33.1707 11.3951i 1.17130 0.402376i
\(803\) 11.6889 0.412491
\(804\) 0 0
\(805\) 13.7353 1.19589i 0.484105 0.0421495i
\(806\) 38.9765 + 7.60511i 1.37289 + 0.267878i
\(807\) 0 0
\(808\) −2.58300 + 47.3490i −0.0908697 + 1.66573i
\(809\) −13.9813 + 24.2164i −0.491557 + 0.851402i −0.999953 0.00972146i \(-0.996906\pi\)
0.508395 + 0.861124i \(0.330239\pi\)
\(810\) 0 0
\(811\) −44.1723 −1.55110 −0.775550 0.631286i \(-0.782527\pi\)
−0.775550 + 0.631286i \(0.782527\pi\)
\(812\) −3.28559 + 3.05256i −0.115302 + 0.107124i
\(813\) 0 0
\(814\) 7.13347 + 20.7652i 0.250028 + 0.727819i
\(815\) −43.0043 −1.50638
\(816\) 0 0
\(817\) 20.4196i 0.714392i
\(818\) 8.69362 9.98648i 0.303965 0.349169i
\(819\) 0 0
\(820\) −5.13637 36.9291i −0.179370 1.28962i
\(821\) 10.5891 0.369562 0.184781 0.982780i \(-0.440842\pi\)
0.184781 + 0.982780i \(0.440842\pi\)
\(822\) 0 0
\(823\) 1.56546i 0.0545685i −0.999628 0.0272843i \(-0.991314\pi\)
0.999628 0.0272843i \(-0.00868593\pi\)
\(824\) −3.37099 6.65107i −0.117434 0.231701i
\(825\) 0 0
\(826\) 4.86281 2.15847i 0.169199 0.0751028i
\(827\) 1.44507i 0.0502499i 0.999684 + 0.0251249i \(0.00799836\pi\)
−0.999684 + 0.0251249i \(0.992002\pi\)
\(828\) 0 0
\(829\) −33.2429 19.1928i −1.15457 0.666594i −0.204577 0.978851i \(-0.565582\pi\)
−0.949998 + 0.312257i \(0.898915\pi\)
\(830\) −21.3312 4.16214i −0.740415 0.144470i
\(831\) 0 0
\(832\) −18.3493 13.4518i −0.636148 0.466359i
\(833\) −1.72292 9.81926i −0.0596957 0.340217i
\(834\) 0 0
\(835\) 37.6650i 1.30345i
\(836\) −3.14864 + 7.76129i −0.108898 + 0.268430i
\(837\) 0 0
\(838\) −2.82334 + 14.4697i −0.0975306 + 0.499849i
\(839\) −8.96149 + 15.5217i −0.309385 + 0.535870i −0.978228 0.207533i \(-0.933456\pi\)
0.668843 + 0.743404i \(0.266790\pi\)
\(840\) 0 0
\(841\) 14.1408 + 24.4926i 0.487615 + 0.844574i
\(842\) 9.23441 3.17230i 0.318239 0.109325i
\(843\) 0 0
\(844\) 16.1695 + 20.7570i 0.556578 + 0.714484i
\(845\) 11.4530 6.61239i 0.393995 0.227473i
\(846\) 0 0
\(847\) 13.6534 + 19.5165i 0.469137 + 0.670595i
\(848\) −12.8924 + 51.0877i −0.442728 + 1.75436i
\(849\) 0 0
\(850\) 2.97485 3.41726i 0.102037 0.117211i
\(851\) 21.2604i 0.728796i
\(852\) 0 0
\(853\) 13.3860 + 7.72843i 0.458329 + 0.264616i 0.711341 0.702847i \(-0.248088\pi\)
−0.253013 + 0.967463i \(0.581421\pi\)
\(854\) −3.08563 6.95160i −0.105588 0.237879i
\(855\) 0 0
\(856\) −0.124898 + 2.28950i −0.00426892 + 0.0782535i
\(857\) −19.7121 + 11.3808i −0.673352 + 0.388760i −0.797346 0.603523i \(-0.793763\pi\)
0.123993 + 0.992283i \(0.460430\pi\)
\(858\) 0 0
\(859\) −0.444083 + 0.769174i −0.0151519 + 0.0262439i −0.873502 0.486821i \(-0.838157\pi\)
0.858350 + 0.513065i \(0.171490\pi\)
\(860\) −29.2757 + 22.8055i −0.998292 + 0.777661i
\(861\) 0 0
\(862\) −6.59726 19.2043i −0.224703 0.654101i
\(863\) −39.6368 + 22.8843i −1.34925 + 0.778992i −0.988144 0.153531i \(-0.950935\pi\)
−0.361110 + 0.932523i \(0.617602\pi\)
\(864\) 0 0
\(865\) −33.5980 + 58.1934i −1.14237 + 1.97864i
\(866\) 23.9996 27.5687i 0.815539 0.936821i
\(867\) 0 0
\(868\) −49.9348 15.3674i −1.69490 0.521603i
\(869\) 8.36353 + 14.4861i 0.283713 + 0.491406i
\(870\) 0 0
\(871\) −12.4333 21.5351i −0.421286 0.729689i
\(872\) −13.2980 26.2373i −0.450327 0.888508i
\(873\) 0 0
\(874\) −5.32511 + 6.11703i −0.180125 + 0.206912i
\(875\) 17.7544 + 8.28805i 0.600207 + 0.280187i
\(876\) 0 0
\(877\) 15.7434 27.2683i 0.531616 0.920786i −0.467703 0.883886i \(-0.654918\pi\)
0.999319 0.0369000i \(-0.0117483\pi\)
\(878\) −15.5592 13.5449i −0.525099 0.457119i
\(879\) 0 0
\(880\) 14.6439 4.15392i 0.493646 0.140029i
\(881\) 12.0700i 0.406649i 0.979111 + 0.203324i \(0.0651746\pi\)
−0.979111 + 0.203324i \(0.934825\pi\)
\(882\) 0 0
\(883\) 26.0164i 0.875522i −0.899091 0.437761i \(-0.855772\pi\)
0.899091 0.437761i \(-0.144228\pi\)
\(884\) 1.11596 + 8.02347i 0.0375339 + 0.269859i
\(885\) 0 0
\(886\) −32.8546 + 37.7405i −1.10377 + 1.26792i
\(887\) −12.7190 + 22.0300i −0.427063 + 0.739694i −0.996611 0.0822640i \(-0.973785\pi\)
0.569548 + 0.821958i \(0.307118\pi\)
\(888\) 0 0
\(889\) 36.5707 + 17.0719i 1.22654 + 0.572572i
\(890\) −19.0949 16.6228i −0.640061 0.557198i
\(891\) 0 0
\(892\) −29.2097 11.8500i −0.978014 0.396766i
\(893\) −15.8299 27.4181i −0.529726 0.917512i
\(894\) 0 0
\(895\) 0.961467 + 1.66531i 0.0321383 + 0.0556652i
\(896\) 22.1361 + 20.1493i 0.739515 + 0.673140i
\(897\) 0 0
\(898\) −0.351720 0.306186i −0.0117371 0.0102176i
\(899\) 4.18414 7.24714i 0.139549 0.241706i
\(900\) 0 0
\(901\) 16.2465 9.37990i 0.541248 0.312490i
\(902\) −13.0883 + 4.49625i −0.435794 + 0.149709i
\(903\) 0 0
\(904\) −24.7193 1.34850i −0.822152 0.0448504i
\(905\) −18.1924 + 31.5102i −0.604736 + 1.04743i
\(906\) 0 0
\(907\) 25.3966 14.6627i 0.843281 0.486868i −0.0150974 0.999886i \(-0.504806\pi\)
0.858378 + 0.513018i \(0.171472\pi\)
\(908\) −2.99119 + 2.33011i −0.0992660 + 0.0773274i
\(909\) 0 0
\(910\) 26.1875 11.6240i 0.868108 0.385330i
\(911\) 12.1668 + 7.02448i 0.403103 + 0.232731i 0.687822 0.725880i \(-0.258567\pi\)
−0.284719 + 0.958611i \(0.591900\pi\)
\(912\) 0 0
\(913\) 8.06690i 0.266976i
\(914\) −27.6097 24.0353i −0.913247 0.795017i
\(915\) 0 0
\(916\) −6.41856 + 15.8215i −0.212075 + 0.522758i
\(917\) −0.103009 0.147243i −0.00340165 0.00486239i
\(918\) 0 0
\(919\) −43.1553 + 24.9157i −1.42356 + 0.821894i −0.996601 0.0823755i \(-0.973749\pi\)
−0.426961 + 0.904270i \(0.640416\pi\)
\(920\) 14.7173 + 0.802865i 0.485215 + 0.0264697i
\(921\) 0 0
\(922\) −12.9208 37.6117i −0.425522 1.23867i
\(923\) −2.77705 4.80999i −0.0914078 0.158323i
\(924\) 0 0
\(925\) 12.3553 21.4000i 0.406240 0.703628i
\(926\) 27.2489 + 5.31682i 0.895456 + 0.174722i
\(927\) 0 0
\(928\) −3.93714 + 2.73596i −0.129243 + 0.0898122i
\(929\) 27.6268i 0.906406i 0.891407 + 0.453203i \(0.149719\pi\)
−0.891407 + 0.453203i \(0.850281\pi\)
\(930\) 0 0
\(931\) 7.11030 19.4846i 0.233031 0.638582i
\(932\) −25.8133 + 20.1084i −0.845543 + 0.658671i
\(933\) 0 0
\(934\) 5.90968 30.2874i 0.193371 0.991034i
\(935\) −4.69351 2.70980i −0.153494 0.0886199i
\(936\) 0 0
\(937\) 5.47306i 0.178797i 0.995996 + 0.0893986i \(0.0284945\pi\)
−0.995996 + 0.0893986i \(0.971505\pi\)
\(938\) 13.2727 + 29.9020i 0.433370 + 0.976336i
\(939\) 0 0
\(940\) −21.6299 + 53.3170i −0.705491 + 1.73901i
\(941\) 14.4602i 0.471388i −0.971827 0.235694i \(-0.924264\pi\)
0.971827 0.235694i \(-0.0757363\pi\)
\(942\) 0 0
\(943\) −13.4005 −0.436379
\(944\) 5.47178 1.55214i 0.178091 0.0505178i
\(945\) 0 0
\(946\) 10.3892 + 9.04418i 0.337781 + 0.294052i
\(947\) 42.3981i 1.37775i −0.724879 0.688877i \(-0.758104\pi\)
0.724879 0.688877i \(-0.241896\pi\)
\(948\) 0 0
\(949\) 23.5208 0.763518
\(950\) 8.91495 3.06256i 0.289239 0.0993624i
\(951\) 0 0
\(952\) −0.344706 10.6520i −0.0111720 0.345234i
\(953\) 11.7969 0.382138 0.191069 0.981577i \(-0.438804\pi\)
0.191069 + 0.981577i \(0.438804\pi\)
\(954\) 0 0
\(955\) −20.5464 + 35.5875i −0.664867 + 1.15158i
\(956\) 8.44905 + 10.8461i 0.273262 + 0.350789i
\(957\) 0 0
\(958\) 7.96418 40.8168i 0.257311 1.31873i
\(959\) 13.6788 1.19097i 0.441712 0.0384584i
\(960\) 0 0
\(961\) 66.4873 2.14475
\(962\) 14.3543 + 41.7845i 0.462800 + 1.34719i
\(963\) 0 0
\(964\) 12.2607 + 15.7392i 0.394891 + 0.506926i
\(965\) −20.8238 12.0226i −0.670341 0.387022i
\(966\) 0 0
\(967\) −9.83637 + 5.67903i −0.316316 + 0.182625i −0.649749 0.760148i \(-0.725126\pi\)
0.333433 + 0.942774i \(0.391793\pi\)
\(968\) 11.5113 + 22.7122i 0.369988 + 0.729997i
\(969\) 0 0
\(970\) −11.0444 + 56.6029i −0.354614 + 1.81741i
\(971\) −9.77591 16.9324i −0.313724 0.543386i 0.665442 0.746450i \(-0.268243\pi\)
−0.979165 + 0.203064i \(0.934910\pi\)
\(972\) 0 0
\(973\) −27.8028 + 2.42070i −0.891316 + 0.0776040i
\(974\) −2.03727 5.93038i −0.0652782 0.190022i
\(975\) 0 0
\(976\) −2.21885 7.82217i −0.0710237 0.250381i
\(977\) 4.26325 0.136393 0.0681967 0.997672i \(-0.478275\pi\)
0.0681967 + 0.997672i \(0.478275\pi\)
\(978\) 0 0
\(979\) −4.69845 + 8.13796i −0.150163 + 0.260090i
\(980\) −35.8762 + 11.5672i −1.14602 + 0.369500i
\(981\) 0 0
\(982\) −0.788600 0.153872i −0.0251652 0.00491025i
\(983\) −17.8283 30.8795i −0.568633 0.984902i −0.996701 0.0811554i \(-0.974139\pi\)
0.428068 0.903746i \(-0.359194\pi\)
\(984\) 0 0
\(985\) −8.33768 4.81376i −0.265661 0.153379i
\(986\) 1.67544 + 0.326912i 0.0533568 + 0.0104110i
\(987\) 0 0
\(988\) −6.33582 + 15.6176i −0.201569 + 0.496861i
\(989\) 6.66886 + 11.5508i 0.212058 + 0.367294i
\(990\) 0 0
\(991\) 21.9593 + 12.6782i 0.697561 + 0.402737i 0.806438 0.591318i \(-0.201392\pi\)
−0.108877 + 0.994055i \(0.534726\pi\)
\(992\) −50.5358 23.7849i −1.60451 0.755171i
\(993\) 0 0
\(994\) 2.96454 + 6.67880i 0.0940296 + 0.211839i
\(995\) −33.9164 + 19.5817i −1.07522 + 0.620780i
\(996\) 0 0
\(997\) −23.4164 + 13.5195i −0.741606 + 0.428166i −0.822653 0.568544i \(-0.807507\pi\)
0.0810469 + 0.996710i \(0.474174\pi\)
\(998\) 3.77208 + 10.9803i 0.119403 + 0.347576i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bj.b.451.9 84
3.2 odd 2 252.2.bj.b.115.34 yes 84
4.3 odd 2 inner 756.2.bj.b.451.10 84
7.5 odd 6 756.2.n.b.19.19 84
9.4 even 3 756.2.n.b.199.38 84
9.5 odd 6 252.2.n.b.31.5 84
12.11 even 2 252.2.bj.b.115.33 yes 84
21.5 even 6 252.2.n.b.187.24 yes 84
28.19 even 6 756.2.n.b.19.38 84
36.23 even 6 252.2.n.b.31.24 yes 84
36.31 odd 6 756.2.n.b.199.19 84
63.5 even 6 252.2.bj.b.103.34 yes 84
63.40 odd 6 inner 756.2.bj.b.523.9 84
84.47 odd 6 252.2.n.b.187.5 yes 84
252.103 even 6 inner 756.2.bj.b.523.10 84
252.131 odd 6 252.2.bj.b.103.33 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.n.b.31.5 84 9.5 odd 6
252.2.n.b.31.24 yes 84 36.23 even 6
252.2.n.b.187.5 yes 84 84.47 odd 6
252.2.n.b.187.24 yes 84 21.5 even 6
252.2.bj.b.103.33 yes 84 252.131 odd 6
252.2.bj.b.103.34 yes 84 63.5 even 6
252.2.bj.b.115.33 yes 84 12.11 even 2
252.2.bj.b.115.34 yes 84 3.2 odd 2
756.2.n.b.19.19 84 7.5 odd 6
756.2.n.b.19.38 84 28.19 even 6
756.2.n.b.199.19 84 36.31 odd 6
756.2.n.b.199.38 84 9.4 even 3
756.2.bj.b.451.9 84 1.1 even 1 trivial
756.2.bj.b.451.10 84 4.3 odd 2 inner
756.2.bj.b.523.9 84 63.40 odd 6 inner
756.2.bj.b.523.10 84 252.103 even 6 inner