Properties

Label 756.2.be.d.431.13
Level $756$
Weight $2$
Character 756.431
Analytic conductor $6.037$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(107,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-4,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.13
Character \(\chi\) \(=\) 756.431
Dual form 756.2.be.d.107.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33158 + 0.476336i) q^{2} +(1.54621 + 1.26856i) q^{4} +(-2.47695 + 1.43007i) q^{5} +(-2.52686 + 0.784194i) q^{7} +(1.45464 + 2.42570i) q^{8} +(-3.97945 + 0.724388i) q^{10} +(0.887062 - 1.53644i) q^{11} -4.70960 q^{13} +(-3.73826 - 0.159419i) q^{14} +(0.781518 + 3.92291i) q^{16} +(6.08556 + 3.51350i) q^{17} +(-6.93224 + 4.00233i) q^{19} +(-5.64401 - 0.930975i) q^{20} +(1.91305 - 1.62335i) q^{22} +(-2.46180 - 4.26396i) q^{23} +(1.59019 - 2.75429i) q^{25} +(-6.27121 - 2.24335i) q^{26} +(-4.90185 - 1.99295i) q^{28} +7.21461i q^{29} +(-1.31172 - 0.757322i) q^{31} +(-0.827971 + 5.59593i) q^{32} +(6.42980 + 7.57728i) q^{34} +(5.13747 - 5.55600i) q^{35} +(1.38862 + 2.40515i) q^{37} +(-11.1373 + 2.02734i) q^{38} +(-7.07199 - 3.92811i) q^{40} -4.94219i q^{41} -7.39300i q^{43} +(3.32064 - 1.25036i) q^{44} +(-1.24700 - 6.85044i) q^{46} +(2.78654 + 4.82642i) q^{47} +(5.77008 - 3.96310i) q^{49} +(3.42943 - 2.91009i) q^{50} +(-7.28202 - 5.97440i) q^{52} +(2.87828 + 1.66178i) q^{53} +5.07423i q^{55} +(-5.57789 - 4.98870i) q^{56} +(-3.43658 + 9.60683i) q^{58} +(-0.717330 + 1.24245i) q^{59} +(7.30221 + 12.6478i) q^{61} +(-1.38592 - 1.63325i) q^{62} +(-3.76805 + 7.05704i) q^{64} +(11.6654 - 6.73505i) q^{65} +(2.58315 + 1.49138i) q^{67} +(4.95246 + 13.1525i) q^{68} +(9.48747 - 4.95109i) q^{70} +11.4553 q^{71} +(0.0244370 - 0.0423261i) q^{73} +(0.703391 + 3.86410i) q^{74} +(-15.7959 - 2.60552i) q^{76} +(-1.03662 + 4.57799i) q^{77} +(-1.15816 + 0.668665i) q^{79} +(-7.54581 - 8.59923i) q^{80} +(2.35414 - 6.58092i) q^{82} +9.02165 q^{83} -20.0982 q^{85} +(3.52155 - 9.84437i) q^{86} +(5.01729 - 0.0832119i) q^{88} +(5.61463 - 3.24161i) q^{89} +(11.9005 - 3.69324i) q^{91} +(1.60263 - 9.71589i) q^{92} +(1.41149 + 7.75409i) q^{94} +(11.4472 - 19.8271i) q^{95} -1.07208 q^{97} +(9.57109 - 2.52869i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{4} + 2 q^{7} + 4 q^{10} + 8 q^{13} + 12 q^{16} - 42 q^{19} + 4 q^{22} + 6 q^{25} + 24 q^{28} + 30 q^{31} + 24 q^{34} + 12 q^{37} + 24 q^{46} - 14 q^{49} - 24 q^{52} - 44 q^{58} + 6 q^{61} + 8 q^{64}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33158 + 0.476336i 0.941569 + 0.336820i
\(3\) 0 0
\(4\) 1.54621 + 1.26856i 0.773104 + 0.634279i
\(5\) −2.47695 + 1.43007i −1.10773 + 0.639546i −0.938239 0.345987i \(-0.887544\pi\)
−0.169487 + 0.985532i \(0.554211\pi\)
\(6\) 0 0
\(7\) −2.52686 + 0.784194i −0.955065 + 0.296398i
\(8\) 1.45464 + 2.42570i 0.514292 + 0.857615i
\(9\) 0 0
\(10\) −3.97945 + 0.724388i −1.25841 + 0.229072i
\(11\) 0.887062 1.53644i 0.267459 0.463253i −0.700746 0.713411i \(-0.747149\pi\)
0.968205 + 0.250158i \(0.0804826\pi\)
\(12\) 0 0
\(13\) −4.70960 −1.30621 −0.653104 0.757268i \(-0.726534\pi\)
−0.653104 + 0.757268i \(0.726534\pi\)
\(14\) −3.73826 0.159419i −0.999092 0.0426066i
\(15\) 0 0
\(16\) 0.781518 + 3.92291i 0.195379 + 0.980728i
\(17\) 6.08556 + 3.51350i 1.47597 + 0.852149i 0.999632 0.0271159i \(-0.00863232\pi\)
0.476333 + 0.879265i \(0.341966\pi\)
\(18\) 0 0
\(19\) −6.93224 + 4.00233i −1.59036 + 0.918197i −0.597121 + 0.802152i \(0.703689\pi\)
−0.993244 + 0.116046i \(0.962978\pi\)
\(20\) −5.64401 0.930975i −1.26204 0.208172i
\(21\) 0 0
\(22\) 1.91305 1.62335i 0.407864 0.346099i
\(23\) −2.46180 4.26396i −0.513320 0.889096i −0.999881 0.0154494i \(-0.995082\pi\)
0.486561 0.873647i \(-0.338251\pi\)
\(24\) 0 0
\(25\) 1.59019 2.75429i 0.318038 0.550858i
\(26\) −6.27121 2.24335i −1.22988 0.439958i
\(27\) 0 0
\(28\) −4.90185 1.99295i −0.926363 0.376632i
\(29\) 7.21461i 1.33972i 0.742487 + 0.669860i \(0.233646\pi\)
−0.742487 + 0.669860i \(0.766354\pi\)
\(30\) 0 0
\(31\) −1.31172 0.757322i −0.235592 0.136019i 0.377557 0.925986i \(-0.376764\pi\)
−0.613149 + 0.789967i \(0.710097\pi\)
\(32\) −0.827971 + 5.59593i −0.146366 + 0.989231i
\(33\) 0 0
\(34\) 6.42980 + 7.57728i 1.10270 + 1.29949i
\(35\) 5.13747 5.55600i 0.868390 0.939135i
\(36\) 0 0
\(37\) 1.38862 + 2.40515i 0.228287 + 0.395405i 0.957301 0.289095i \(-0.0933542\pi\)
−0.729013 + 0.684499i \(0.760021\pi\)
\(38\) −11.1373 + 2.02734i −1.80671 + 0.328879i
\(39\) 0 0
\(40\) −7.07199 3.92811i −1.11818 0.621089i
\(41\) 4.94219i 0.771840i −0.922532 0.385920i \(-0.873884\pi\)
0.922532 0.385920i \(-0.126116\pi\)
\(42\) 0 0
\(43\) 7.39300i 1.12742i −0.825972 0.563711i \(-0.809373\pi\)
0.825972 0.563711i \(-0.190627\pi\)
\(44\) 3.32064 1.25036i 0.500605 0.188499i
\(45\) 0 0
\(46\) −1.24700 6.85044i −0.183860 1.01004i
\(47\) 2.78654 + 4.82642i 0.406458 + 0.704006i 0.994490 0.104832i \(-0.0334304\pi\)
−0.588032 + 0.808838i \(0.700097\pi\)
\(48\) 0 0
\(49\) 5.77008 3.96310i 0.824297 0.566158i
\(50\) 3.42943 2.91009i 0.484995 0.411549i
\(51\) 0 0
\(52\) −7.28202 5.97440i −1.00983 0.828501i
\(53\) 2.87828 + 1.66178i 0.395362 + 0.228262i 0.684481 0.729031i \(-0.260029\pi\)
−0.289119 + 0.957293i \(0.593362\pi\)
\(54\) 0 0
\(55\) 5.07423i 0.684210i
\(56\) −5.57789 4.98870i −0.745377 0.666643i
\(57\) 0 0
\(58\) −3.43658 + 9.60683i −0.451245 + 1.26144i
\(59\) −0.717330 + 1.24245i −0.0933884 + 0.161753i −0.908935 0.416938i \(-0.863103\pi\)
0.815546 + 0.578692i \(0.196436\pi\)
\(60\) 0 0
\(61\) 7.30221 + 12.6478i 0.934952 + 1.61938i 0.774719 + 0.632306i \(0.217891\pi\)
0.160233 + 0.987079i \(0.448775\pi\)
\(62\) −1.38592 1.63325i −0.176012 0.207423i
\(63\) 0 0
\(64\) −3.76805 + 7.05704i −0.471007 + 0.882130i
\(65\) 11.6654 6.73505i 1.44692 0.835380i
\(66\) 0 0
\(67\) 2.58315 + 1.49138i 0.315582 + 0.182201i 0.649422 0.760428i \(-0.275011\pi\)
−0.333840 + 0.942630i \(0.608344\pi\)
\(68\) 4.95246 + 13.1525i 0.600574 + 1.59497i
\(69\) 0 0
\(70\) 9.48747 4.95109i 1.13397 0.591769i
\(71\) 11.4553 1.35949 0.679747 0.733447i \(-0.262090\pi\)
0.679747 + 0.733447i \(0.262090\pi\)
\(72\) 0 0
\(73\) 0.0244370 0.0423261i 0.00286014 0.00495390i −0.864592 0.502475i \(-0.832423\pi\)
0.867452 + 0.497521i \(0.165756\pi\)
\(74\) 0.703391 + 3.86410i 0.0817676 + 0.449193i
\(75\) 0 0
\(76\) −15.7959 2.60552i −1.81191 0.298873i
\(77\) −1.03662 + 4.57799i −0.118134 + 0.521711i
\(78\) 0 0
\(79\) −1.15816 + 0.668665i −0.130303 + 0.0752307i −0.563735 0.825956i \(-0.690636\pi\)
0.433431 + 0.901187i \(0.357303\pi\)
\(80\) −7.54581 8.59923i −0.843647 0.961424i
\(81\) 0 0
\(82\) 2.35414 6.58092i 0.259972 0.726741i
\(83\) 9.02165 0.990255 0.495128 0.868820i \(-0.335121\pi\)
0.495128 + 0.868820i \(0.335121\pi\)
\(84\) 0 0
\(85\) −20.0982 −2.17995
\(86\) 3.52155 9.84437i 0.379739 1.06155i
\(87\) 0 0
\(88\) 5.01729 0.0832119i 0.534845 0.00887042i
\(89\) 5.61463 3.24161i 0.595149 0.343610i −0.171982 0.985100i \(-0.555017\pi\)
0.767131 + 0.641491i \(0.221684\pi\)
\(90\) 0 0
\(91\) 11.9005 3.69324i 1.24751 0.387157i
\(92\) 1.60263 9.71589i 0.167086 1.01295i
\(93\) 0 0
\(94\) 1.41149 + 7.75409i 0.145585 + 0.799773i
\(95\) 11.4472 19.8271i 1.17446 2.03422i
\(96\) 0 0
\(97\) −1.07208 −0.108853 −0.0544267 0.998518i \(-0.517333\pi\)
−0.0544267 + 0.998518i \(0.517333\pi\)
\(98\) 9.57109 2.52869i 0.966826 0.255436i
\(99\) 0 0
\(100\) 5.95274 2.24146i 0.595274 0.224146i
\(101\) −5.30278 3.06156i −0.527646 0.304637i 0.212411 0.977180i \(-0.431868\pi\)
−0.740058 + 0.672544i \(0.765202\pi\)
\(102\) 0 0
\(103\) −6.18578 + 3.57136i −0.609503 + 0.351897i −0.772771 0.634685i \(-0.781130\pi\)
0.163268 + 0.986582i \(0.447796\pi\)
\(104\) −6.85077 11.4241i −0.671773 1.12022i
\(105\) 0 0
\(106\) 3.04109 + 3.58382i 0.295377 + 0.348091i
\(107\) −1.29481 2.24267i −0.125174 0.216807i 0.796627 0.604471i \(-0.206615\pi\)
−0.921801 + 0.387664i \(0.873282\pi\)
\(108\) 0 0
\(109\) −1.37701 + 2.38505i −0.131894 + 0.228447i −0.924407 0.381409i \(-0.875439\pi\)
0.792513 + 0.609855i \(0.208772\pi\)
\(110\) −2.41704 + 6.75675i −0.230456 + 0.644231i
\(111\) 0 0
\(112\) −5.05111 9.29980i −0.477285 0.878748i
\(113\) 18.3520i 1.72641i 0.504854 + 0.863205i \(0.331546\pi\)
−0.504854 + 0.863205i \(0.668454\pi\)
\(114\) 0 0
\(115\) 12.1955 + 7.04107i 1.13724 + 0.656583i
\(116\) −9.15216 + 11.1553i −0.849757 + 1.03574i
\(117\) 0 0
\(118\) −1.54701 + 1.31273i −0.142413 + 0.120847i
\(119\) −18.1326 4.10587i −1.66222 0.376385i
\(120\) 0 0
\(121\) 3.92624 + 6.80045i 0.356931 + 0.618223i
\(122\) 3.69887 + 20.3199i 0.334880 + 1.83967i
\(123\) 0 0
\(124\) −1.06748 2.83497i −0.0958629 0.254588i
\(125\) 5.20436i 0.465492i
\(126\) 0 0
\(127\) 8.18873i 0.726632i −0.931666 0.363316i \(-0.881645\pi\)
0.931666 0.363316i \(-0.118355\pi\)
\(128\) −8.37898 + 7.60215i −0.740605 + 0.671941i
\(129\) 0 0
\(130\) 18.7416 3.41158i 1.64375 0.299215i
\(131\) −0.153906 0.266573i −0.0134469 0.0232906i 0.859224 0.511600i \(-0.170947\pi\)
−0.872671 + 0.488309i \(0.837614\pi\)
\(132\) 0 0
\(133\) 14.3782 15.5496i 1.24675 1.34832i
\(134\) 2.72927 + 3.21634i 0.235773 + 0.277850i
\(135\) 0 0
\(136\) 0.329588 + 19.8726i 0.0282620 + 1.70406i
\(137\) −3.64686 2.10552i −0.311573 0.179887i 0.336057 0.941842i \(-0.390906\pi\)
−0.647630 + 0.761955i \(0.724240\pi\)
\(138\) 0 0
\(139\) 10.5488i 0.894736i −0.894350 0.447368i \(-0.852361\pi\)
0.894350 0.447368i \(-0.147639\pi\)
\(140\) 14.9917 2.07355i 1.26703 0.175247i
\(141\) 0 0
\(142\) 15.2536 + 5.45657i 1.28006 + 0.457905i
\(143\) −4.17771 + 7.23600i −0.349357 + 0.605105i
\(144\) 0 0
\(145\) −10.3174 17.8702i −0.856813 1.48404i
\(146\) 0.0527013 0.0447204i 0.00436159 0.00370109i
\(147\) 0 0
\(148\) −0.903989 + 5.48041i −0.0743075 + 0.450487i
\(149\) −14.8380 + 8.56672i −1.21558 + 0.701813i −0.963969 0.266016i \(-0.914293\pi\)
−0.251607 + 0.967829i \(0.580959\pi\)
\(150\) 0 0
\(151\) −6.08270 3.51185i −0.495003 0.285790i 0.231645 0.972800i \(-0.425589\pi\)
−0.726648 + 0.687010i \(0.758923\pi\)
\(152\) −19.7924 10.9936i −1.60537 0.891698i
\(153\) 0 0
\(154\) −3.56100 + 5.60218i −0.286954 + 0.451437i
\(155\) 4.33209 0.347962
\(156\) 0 0
\(157\) −1.01600 + 1.75976i −0.0810853 + 0.140444i −0.903716 0.428132i \(-0.859172\pi\)
0.822631 + 0.568576i \(0.192505\pi\)
\(158\) −1.86069 + 0.338707i −0.148029 + 0.0269460i
\(159\) 0 0
\(160\) −5.95172 15.0449i −0.470525 1.18940i
\(161\) 9.56439 + 8.84391i 0.753780 + 0.696997i
\(162\) 0 0
\(163\) 4.79027 2.76566i 0.375203 0.216623i −0.300526 0.953774i \(-0.597162\pi\)
0.675729 + 0.737150i \(0.263829\pi\)
\(164\) 6.26946 7.64165i 0.489562 0.596713i
\(165\) 0 0
\(166\) 12.0130 + 4.29734i 0.932393 + 0.333538i
\(167\) −6.37142 −0.493035 −0.246518 0.969138i \(-0.579286\pi\)
−0.246518 + 0.969138i \(0.579286\pi\)
\(168\) 0 0
\(169\) 9.18033 0.706180
\(170\) −26.7623 9.57349i −2.05258 0.734253i
\(171\) 0 0
\(172\) 9.37845 11.4311i 0.715100 0.871614i
\(173\) 18.3863 10.6153i 1.39788 0.807069i 0.403714 0.914885i \(-0.367719\pi\)
0.994171 + 0.107816i \(0.0343859\pi\)
\(174\) 0 0
\(175\) −1.85829 + 8.20673i −0.140474 + 0.620371i
\(176\) 6.72056 + 2.27911i 0.506581 + 0.171795i
\(177\) 0 0
\(178\) 9.02042 1.64201i 0.676109 0.123074i
\(179\) −10.2453 + 17.7453i −0.765768 + 1.32635i 0.174072 + 0.984733i \(0.444307\pi\)
−0.939840 + 0.341616i \(0.889026\pi\)
\(180\) 0 0
\(181\) −16.5989 −1.23379 −0.616894 0.787046i \(-0.711609\pi\)
−0.616894 + 0.787046i \(0.711609\pi\)
\(182\) 17.6057 + 0.750800i 1.30502 + 0.0556530i
\(183\) 0 0
\(184\) 6.76206 12.1741i 0.498506 0.897486i
\(185\) −6.87907 3.97163i −0.505759 0.292000i
\(186\) 0 0
\(187\) 10.7965 6.23338i 0.789521 0.455830i
\(188\) −1.81404 + 10.9975i −0.132302 + 0.802078i
\(189\) 0 0
\(190\) 24.6873 20.9487i 1.79100 1.51978i
\(191\) 3.51133 + 6.08181i 0.254071 + 0.440064i 0.964643 0.263561i \(-0.0848969\pi\)
−0.710572 + 0.703625i \(0.751564\pi\)
\(192\) 0 0
\(193\) 8.66227 15.0035i 0.623524 1.07997i −0.365301 0.930890i \(-0.619034\pi\)
0.988824 0.149085i \(-0.0476329\pi\)
\(194\) −1.42756 0.510672i −0.102493 0.0366641i
\(195\) 0 0
\(196\) 13.9492 + 1.19190i 0.996369 + 0.0851357i
\(197\) 4.41987i 0.314902i −0.987527 0.157451i \(-0.949672\pi\)
0.987527 0.157451i \(-0.0503277\pi\)
\(198\) 0 0
\(199\) 0.539285 + 0.311356i 0.0382289 + 0.0220715i 0.518993 0.854779i \(-0.326307\pi\)
−0.480764 + 0.876850i \(0.659641\pi\)
\(200\) 8.99424 0.149170i 0.635989 0.0105479i
\(201\) 0 0
\(202\) −5.60274 6.60262i −0.394208 0.464559i
\(203\) −5.65766 18.2303i −0.397090 1.27952i
\(204\) 0 0
\(205\) 7.06767 + 12.2416i 0.493627 + 0.854988i
\(206\) −9.93802 + 1.80904i −0.692415 + 0.126042i
\(207\) 0 0
\(208\) −3.68064 18.4753i −0.255206 1.28103i
\(209\) 14.2013i 0.982321i
\(210\) 0 0
\(211\) 19.0072i 1.30851i 0.756275 + 0.654253i \(0.227017\pi\)
−0.756275 + 0.654253i \(0.772983\pi\)
\(212\) 2.34236 + 6.22072i 0.160874 + 0.427241i
\(213\) 0 0
\(214\) −0.655873 3.60306i −0.0448346 0.246300i
\(215\) 10.5725 + 18.3121i 0.721038 + 1.24887i
\(216\) 0 0
\(217\) 3.90842 + 0.885005i 0.265321 + 0.0600781i
\(218\) −2.96969 + 2.51997i −0.201133 + 0.170674i
\(219\) 0 0
\(220\) −6.43696 + 7.84582i −0.433980 + 0.528965i
\(221\) −28.6606 16.5472i −1.92792 1.11308i
\(222\) 0 0
\(223\) 13.3599i 0.894643i 0.894373 + 0.447321i \(0.147622\pi\)
−0.894373 + 0.447321i \(0.852378\pi\)
\(224\) −2.29613 14.7894i −0.153417 0.988162i
\(225\) 0 0
\(226\) −8.74171 + 24.4371i −0.581490 + 1.62553i
\(227\) −1.96956 + 3.41138i −0.130724 + 0.226421i −0.923956 0.382499i \(-0.875064\pi\)
0.793232 + 0.608920i \(0.208397\pi\)
\(228\) 0 0
\(229\) −1.44488 2.50261i −0.0954804 0.165377i 0.814329 0.580404i \(-0.197105\pi\)
−0.909809 + 0.415027i \(0.863772\pi\)
\(230\) 12.8854 + 15.1849i 0.849635 + 1.00126i
\(231\) 0 0
\(232\) −17.5005 + 10.4947i −1.14896 + 0.689008i
\(233\) 12.9746 7.49088i 0.849993 0.490744i −0.0106555 0.999943i \(-0.503392\pi\)
0.860648 + 0.509200i \(0.170058\pi\)
\(234\) 0 0
\(235\) −13.8042 7.96987i −0.900488 0.519897i
\(236\) −2.68526 + 1.01111i −0.174796 + 0.0658179i
\(237\) 0 0
\(238\) −22.1893 14.1045i −1.43832 0.914261i
\(239\) −9.74049 −0.630060 −0.315030 0.949082i \(-0.602015\pi\)
−0.315030 + 0.949082i \(0.602015\pi\)
\(240\) 0 0
\(241\) −3.01158 + 5.21621i −0.193993 + 0.336006i −0.946570 0.322499i \(-0.895477\pi\)
0.752577 + 0.658504i \(0.228811\pi\)
\(242\) 1.98880 + 10.9256i 0.127845 + 0.702321i
\(243\) 0 0
\(244\) −4.75374 + 28.8194i −0.304327 + 1.84497i
\(245\) −8.62469 + 18.0680i −0.551011 + 1.15432i
\(246\) 0 0
\(247\) 32.6481 18.8494i 2.07735 1.19936i
\(248\) −0.0710415 4.28347i −0.00451114 0.272001i
\(249\) 0 0
\(250\) 2.47902 6.93002i 0.156787 0.438293i
\(251\) −2.95805 −0.186710 −0.0933551 0.995633i \(-0.529759\pi\)
−0.0933551 + 0.995633i \(0.529759\pi\)
\(252\) 0 0
\(253\) −8.73506 −0.549168
\(254\) 3.90059 10.9039i 0.244745 0.684174i
\(255\) 0 0
\(256\) −14.7785 + 6.13165i −0.923654 + 0.383228i
\(257\) 1.04960 0.605984i 0.0654719 0.0378002i −0.466907 0.884307i \(-0.654632\pi\)
0.532379 + 0.846506i \(0.321298\pi\)
\(258\) 0 0
\(259\) −5.39495 4.98855i −0.335226 0.309973i
\(260\) 26.5810 + 4.38452i 1.64848 + 0.271916i
\(261\) 0 0
\(262\) −0.0779598 0.428275i −0.00481638 0.0264589i
\(263\) 5.43216 9.40878i 0.334962 0.580171i −0.648516 0.761201i \(-0.724610\pi\)
0.983477 + 0.181031i \(0.0579433\pi\)
\(264\) 0 0
\(265\) −9.50581 −0.583937
\(266\) 26.5526 13.8566i 1.62804 0.849604i
\(267\) 0 0
\(268\) 2.10218 + 5.58287i 0.128411 + 0.341028i
\(269\) 6.63128 + 3.82857i 0.404316 + 0.233432i 0.688345 0.725384i \(-0.258338\pi\)
−0.284028 + 0.958816i \(0.591671\pi\)
\(270\) 0 0
\(271\) 17.2222 9.94322i 1.04617 0.604008i 0.124597 0.992207i \(-0.460236\pi\)
0.921575 + 0.388200i \(0.126903\pi\)
\(272\) −9.02718 + 26.6190i −0.547353 + 1.61401i
\(273\) 0 0
\(274\) −3.85316 4.54080i −0.232778 0.274320i
\(275\) −2.82119 4.88645i −0.170124 0.294664i
\(276\) 0 0
\(277\) −3.33158 + 5.77046i −0.200175 + 0.346713i −0.948585 0.316523i \(-0.897484\pi\)
0.748410 + 0.663237i \(0.230818\pi\)
\(278\) 5.02476 14.0465i 0.301365 0.842455i
\(279\) 0 0
\(280\) 20.9503 + 4.37999i 1.25202 + 0.261754i
\(281\) 9.71892i 0.579782i −0.957060 0.289891i \(-0.906381\pi\)
0.957060 0.289891i \(-0.0936190\pi\)
\(282\) 0 0
\(283\) −6.55255 3.78312i −0.389509 0.224883i 0.292439 0.956284i \(-0.405533\pi\)
−0.681947 + 0.731401i \(0.738867\pi\)
\(284\) 17.7123 + 14.5317i 1.05103 + 0.862299i
\(285\) 0 0
\(286\) −9.00971 + 7.64532i −0.532756 + 0.452077i
\(287\) 3.87564 + 12.4882i 0.228772 + 0.737157i
\(288\) 0 0
\(289\) 16.1894 + 28.0408i 0.952316 + 1.64946i
\(290\) −5.22618 28.7102i −0.306892 1.68592i
\(291\) 0 0
\(292\) 0.0914779 0.0344452i 0.00535334 0.00201575i
\(293\) 5.44847i 0.318303i −0.987254 0.159151i \(-0.949124\pi\)
0.987254 0.159151i \(-0.0508758\pi\)
\(294\) 0 0
\(295\) 4.10332i 0.238905i
\(296\) −3.81425 + 6.86700i −0.221699 + 0.399136i
\(297\) 0 0
\(298\) −23.8386 + 4.33940i −1.38093 + 0.251375i
\(299\) 11.5941 + 20.0815i 0.670503 + 1.16134i
\(300\) 0 0
\(301\) 5.79755 + 18.6811i 0.334165 + 1.07676i
\(302\) −6.42678 7.57371i −0.369819 0.435818i
\(303\) 0 0
\(304\) −21.1184 24.0667i −1.21123 1.38032i
\(305\) −36.1744 20.8853i −2.07134 1.19589i
\(306\) 0 0
\(307\) 1.58786i 0.0906240i 0.998973 + 0.0453120i \(0.0144282\pi\)
−0.998973 + 0.0453120i \(0.985572\pi\)
\(308\) −7.41028 + 5.76352i −0.422240 + 0.328407i
\(309\) 0 0
\(310\) 5.76852 + 2.06353i 0.327630 + 0.117201i
\(311\) −9.92410 + 17.1891i −0.562744 + 0.974702i 0.434511 + 0.900666i \(0.356921\pi\)
−0.997256 + 0.0740353i \(0.976412\pi\)
\(312\) 0 0
\(313\) −5.26944 9.12693i −0.297846 0.515885i 0.677797 0.735249i \(-0.262935\pi\)
−0.975643 + 0.219365i \(0.929602\pi\)
\(314\) −2.19112 + 1.85930i −0.123652 + 0.104926i
\(315\) 0 0
\(316\) −2.63900 0.435301i −0.148455 0.0244876i
\(317\) 11.5912 6.69221i 0.651029 0.375872i −0.137821 0.990457i \(-0.544010\pi\)
0.788850 + 0.614585i \(0.210677\pi\)
\(318\) 0 0
\(319\) 11.0848 + 6.39981i 0.620629 + 0.358320i
\(320\) −0.758759 22.8685i −0.0424159 1.27839i
\(321\) 0 0
\(322\) 8.52308 + 16.3322i 0.474972 + 0.910160i
\(323\) −56.2487 −3.12976
\(324\) 0 0
\(325\) −7.48916 + 12.9716i −0.415424 + 0.719535i
\(326\) 7.69600 1.40092i 0.426242 0.0775899i
\(327\) 0 0
\(328\) 11.9883 7.18910i 0.661942 0.396952i
\(329\) −10.8260 10.0105i −0.596859 0.551898i
\(330\) 0 0
\(331\) −24.0106 + 13.8625i −1.31974 + 0.761952i −0.983687 0.179891i \(-0.942426\pi\)
−0.336053 + 0.941843i \(0.609092\pi\)
\(332\) 13.9494 + 11.4445i 0.765570 + 0.628098i
\(333\) 0 0
\(334\) −8.48405 3.03494i −0.464227 0.166064i
\(335\) −8.53112 −0.466105
\(336\) 0 0
\(337\) 19.2739 1.04992 0.524959 0.851128i \(-0.324081\pi\)
0.524959 + 0.851128i \(0.324081\pi\)
\(338\) 12.2243 + 4.37292i 0.664917 + 0.237856i
\(339\) 0 0
\(340\) −31.0760 25.4957i −1.68533 1.38270i
\(341\) −2.32715 + 1.34358i −0.126022 + 0.0727590i
\(342\) 0 0
\(343\) −11.4724 + 14.5391i −0.619449 + 0.785037i
\(344\) 17.9332 10.7541i 0.966894 0.579824i
\(345\) 0 0
\(346\) 29.5393 5.37710i 1.58804 0.289075i
\(347\) 0.676069 1.17099i 0.0362933 0.0628618i −0.847308 0.531102i \(-0.821778\pi\)
0.883602 + 0.468240i \(0.155112\pi\)
\(348\) 0 0
\(349\) −34.3047 −1.83629 −0.918145 0.396245i \(-0.870313\pi\)
−0.918145 + 0.396245i \(0.870313\pi\)
\(350\) −6.38363 + 10.0427i −0.341219 + 0.536807i
\(351\) 0 0
\(352\) 7.86333 + 6.23606i 0.419117 + 0.332383i
\(353\) −10.7257 6.19247i −0.570870 0.329592i 0.186627 0.982431i \(-0.440244\pi\)
−0.757497 + 0.652839i \(0.773578\pi\)
\(354\) 0 0
\(355\) −28.3742 + 16.3819i −1.50595 + 0.869458i
\(356\) 12.7935 + 2.11029i 0.678057 + 0.111845i
\(357\) 0 0
\(358\) −22.0951 + 18.7491i −1.16776 + 0.990922i
\(359\) 6.36683 + 11.0277i 0.336028 + 0.582018i 0.983682 0.179917i \(-0.0575829\pi\)
−0.647653 + 0.761935i \(0.724250\pi\)
\(360\) 0 0
\(361\) 22.5373 39.0357i 1.18617 2.05451i
\(362\) −22.1028 7.90666i −1.16170 0.415565i
\(363\) 0 0
\(364\) 23.0858 + 9.38598i 1.21002 + 0.491959i
\(365\) 0.139786i 0.00731675i
\(366\) 0 0
\(367\) −11.2735 6.50873i −0.588469 0.339753i 0.176023 0.984386i \(-0.443677\pi\)
−0.764492 + 0.644633i \(0.777010\pi\)
\(368\) 14.8032 12.9898i 0.771669 0.677138i
\(369\) 0 0
\(370\) −7.26819 8.56529i −0.377855 0.445288i
\(371\) −8.57618 1.94195i −0.445253 0.100821i
\(372\) 0 0
\(373\) 2.92708 + 5.06985i 0.151558 + 0.262507i 0.931801 0.362971i \(-0.118238\pi\)
−0.780242 + 0.625477i \(0.784904\pi\)
\(374\) 17.3456 3.15747i 0.896921 0.163269i
\(375\) 0 0
\(376\) −7.65405 + 13.7800i −0.394728 + 0.710649i
\(377\) 33.9779i 1.74995i
\(378\) 0 0
\(379\) 23.7003i 1.21740i 0.793399 + 0.608701i \(0.208309\pi\)
−0.793399 + 0.608701i \(0.791691\pi\)
\(380\) 42.8517 16.1354i 2.19824 0.827730i
\(381\) 0 0
\(382\) 1.77864 + 9.77099i 0.0910029 + 0.499927i
\(383\) −8.19122 14.1876i −0.418552 0.724953i 0.577242 0.816573i \(-0.304129\pi\)
−0.995794 + 0.0916198i \(0.970796\pi\)
\(384\) 0 0
\(385\) −3.97919 12.8219i −0.202798 0.653464i
\(386\) 18.6812 15.8522i 0.950848 0.806855i
\(387\) 0 0
\(388\) −1.65766 1.36000i −0.0841550 0.0690435i
\(389\) −6.59701 3.80878i −0.334482 0.193113i 0.323348 0.946280i \(-0.395192\pi\)
−0.657829 + 0.753167i \(0.728525\pi\)
\(390\) 0 0
\(391\) 34.5981i 1.74970i
\(392\) 18.0067 + 8.23160i 0.909475 + 0.415759i
\(393\) 0 0
\(394\) 2.10534 5.88540i 0.106066 0.296502i
\(395\) 1.91247 3.31250i 0.0962270 0.166670i
\(396\) 0 0
\(397\) 4.18986 + 7.25706i 0.210283 + 0.364221i 0.951803 0.306710i \(-0.0992281\pi\)
−0.741520 + 0.670931i \(0.765895\pi\)
\(398\) 0.569791 + 0.671477i 0.0285610 + 0.0336581i
\(399\) 0 0
\(400\) 12.0476 + 4.08565i 0.602380 + 0.204282i
\(401\) −19.2770 + 11.1296i −0.962648 + 0.555785i −0.896987 0.442057i \(-0.854249\pi\)
−0.0656611 + 0.997842i \(0.520916\pi\)
\(402\) 0 0
\(403\) 6.17767 + 3.56668i 0.307732 + 0.177669i
\(404\) −4.31543 11.4607i −0.214701 0.570191i
\(405\) 0 0
\(406\) 1.15015 26.9701i 0.0570808 1.33850i
\(407\) 4.92715 0.244230
\(408\) 0 0
\(409\) 9.60372 16.6341i 0.474873 0.822505i −0.524713 0.851279i \(-0.675827\pi\)
0.999586 + 0.0287748i \(0.00916058\pi\)
\(410\) 3.58006 + 19.6672i 0.176807 + 0.971293i
\(411\) 0 0
\(412\) −14.0950 2.32496i −0.694410 0.114542i
\(413\) 0.838271 3.70203i 0.0412486 0.182165i
\(414\) 0 0
\(415\) −22.3462 + 12.9016i −1.09693 + 0.633314i
\(416\) 3.89941 26.3546i 0.191184 1.29214i
\(417\) 0 0
\(418\) −6.76457 + 18.9101i −0.330866 + 0.924923i
\(419\) 37.1132 1.81310 0.906550 0.422098i \(-0.138706\pi\)
0.906550 + 0.422098i \(0.138706\pi\)
\(420\) 0 0
\(421\) −1.14540 −0.0558236 −0.0279118 0.999610i \(-0.508886\pi\)
−0.0279118 + 0.999610i \(0.508886\pi\)
\(422\) −9.05380 + 25.3095i −0.440732 + 1.23205i
\(423\) 0 0
\(424\) 0.155885 + 9.39913i 0.00757044 + 0.456462i
\(425\) 19.3544 11.1743i 0.938826 0.542032i
\(426\) 0 0
\(427\) −28.3700 26.2329i −1.37292 1.26950i
\(428\) 0.842920 5.11018i 0.0407441 0.247010i
\(429\) 0 0
\(430\) 5.35540 + 29.4201i 0.258261 + 1.41876i
\(431\) 16.4788 28.5421i 0.793756 1.37483i −0.129870 0.991531i \(-0.541456\pi\)
0.923626 0.383295i \(-0.125211\pi\)
\(432\) 0 0
\(433\) 28.0131 1.34623 0.673113 0.739540i \(-0.264957\pi\)
0.673113 + 0.739540i \(0.264957\pi\)
\(434\) 4.78282 + 3.04018i 0.229583 + 0.145933i
\(435\) 0 0
\(436\) −5.15473 + 1.94097i −0.246867 + 0.0929556i
\(437\) 34.1315 + 19.7058i 1.63273 + 0.942658i
\(438\) 0 0
\(439\) 13.1619 7.59904i 0.628184 0.362682i −0.151864 0.988401i \(-0.548528\pi\)
0.780048 + 0.625719i \(0.215194\pi\)
\(440\) −12.3086 + 7.38118i −0.586788 + 0.351884i
\(441\) 0 0
\(442\) −30.2818 35.6859i −1.44036 1.69741i
\(443\) 15.4210 + 26.7099i 0.732673 + 1.26903i 0.955737 + 0.294223i \(0.0950608\pi\)
−0.223064 + 0.974804i \(0.571606\pi\)
\(444\) 0 0
\(445\) −9.27144 + 16.0586i −0.439508 + 0.761251i
\(446\) −6.36378 + 17.7897i −0.301334 + 0.842368i
\(447\) 0 0
\(448\) 3.98727 20.7871i 0.188381 0.982096i
\(449\) 24.0119i 1.13319i 0.823995 + 0.566596i \(0.191740\pi\)
−0.823995 + 0.566596i \(0.808260\pi\)
\(450\) 0 0
\(451\) −7.59336 4.38403i −0.357557 0.206436i
\(452\) −23.2806 + 28.3760i −1.09503 + 1.33469i
\(453\) 0 0
\(454\) −4.24759 + 3.60435i −0.199349 + 0.169160i
\(455\) −24.1954 + 26.1665i −1.13430 + 1.22671i
\(456\) 0 0
\(457\) −17.3211 30.0010i −0.810246 1.40339i −0.912692 0.408649i \(-0.866000\pi\)
0.102446 0.994739i \(-0.467333\pi\)
\(458\) −0.731891 4.02067i −0.0341990 0.187873i
\(459\) 0 0
\(460\) 9.92476 + 26.3577i 0.462744 + 1.22893i
\(461\) 25.4518i 1.18541i −0.805421 0.592704i \(-0.798061\pi\)
0.805421 0.592704i \(-0.201939\pi\)
\(462\) 0 0
\(463\) 27.9163i 1.29738i 0.761053 + 0.648690i \(0.224683\pi\)
−0.761053 + 0.648690i \(0.775317\pi\)
\(464\) −28.3023 + 5.63835i −1.31390 + 0.261754i
\(465\) 0 0
\(466\) 20.8449 3.79444i 0.965619 0.175774i
\(467\) 19.5636 + 33.8852i 0.905297 + 1.56802i 0.820518 + 0.571621i \(0.193685\pi\)
0.0847796 + 0.996400i \(0.472981\pi\)
\(468\) 0 0
\(469\) −7.69680 1.74283i −0.355405 0.0804763i
\(470\) −14.5851 17.1880i −0.672760 0.792822i
\(471\) 0 0
\(472\) −4.05727 + 0.0672900i −0.186751 + 0.00309727i
\(473\) −11.3589 6.55805i −0.522281 0.301539i
\(474\) 0 0
\(475\) 25.4579i 1.16809i
\(476\) −22.8283 29.3509i −1.04633 1.34529i
\(477\) 0 0
\(478\) −12.9702 4.63974i −0.593245 0.212217i
\(479\) −14.2074 + 24.6080i −0.649155 + 1.12437i 0.334170 + 0.942513i \(0.391544\pi\)
−0.983325 + 0.181857i \(0.941789\pi\)
\(480\) 0 0
\(481\) −6.53983 11.3273i −0.298190 0.516481i
\(482\) −6.49483 + 5.51127i −0.295831 + 0.251032i
\(483\) 0 0
\(484\) −2.55599 + 15.4956i −0.116181 + 0.704345i
\(485\) 2.65550 1.53315i 0.120580 0.0696168i
\(486\) 0 0
\(487\) −28.0663 16.2041i −1.27180 0.734276i −0.296476 0.955040i \(-0.595812\pi\)
−0.975327 + 0.220764i \(0.929145\pi\)
\(488\) −20.0577 + 36.1110i −0.907970 + 1.63467i
\(489\) 0 0
\(490\) −20.0909 + 19.9508i −0.907615 + 0.901283i
\(491\) −19.3004 −0.871017 −0.435508 0.900185i \(-0.643431\pi\)
−0.435508 + 0.900185i \(0.643431\pi\)
\(492\) 0 0
\(493\) −25.3485 + 43.9050i −1.14164 + 1.97738i
\(494\) 52.4521 9.54798i 2.35993 0.429584i
\(495\) 0 0
\(496\) 1.94577 5.73762i 0.0873678 0.257627i
\(497\) −28.9460 + 8.98318i −1.29840 + 0.402951i
\(498\) 0 0
\(499\) −22.5026 + 12.9919i −1.00735 + 0.581596i −0.910416 0.413694i \(-0.864238\pi\)
−0.0969381 + 0.995290i \(0.530905\pi\)
\(500\) 6.60204 8.04702i 0.295252 0.359874i
\(501\) 0 0
\(502\) −3.93887 1.40902i −0.175801 0.0628878i
\(503\) 17.7613 0.791939 0.395969 0.918264i \(-0.370409\pi\)
0.395969 + 0.918264i \(0.370409\pi\)
\(504\) 0 0
\(505\) 17.5130 0.779317
\(506\) −11.6314 4.16082i −0.517080 0.184971i
\(507\) 0 0
\(508\) 10.3879 12.6615i 0.460888 0.561762i
\(509\) 22.5593 13.0246i 0.999923 0.577306i 0.0916978 0.995787i \(-0.470771\pi\)
0.908226 + 0.418481i \(0.137437\pi\)
\(510\) 0 0
\(511\) −0.0285571 + 0.126116i −0.00126329 + 0.00557903i
\(512\) −22.5994 + 1.12526i −0.998763 + 0.0497300i
\(513\) 0 0
\(514\) 1.68627 0.306956i 0.0743782 0.0135392i
\(515\) 10.2146 17.6922i 0.450108 0.779610i
\(516\) 0 0
\(517\) 9.88731 0.434844
\(518\) −4.80758 9.21246i −0.211233 0.404772i
\(519\) 0 0
\(520\) 33.3062 + 18.4998i 1.46057 + 0.811271i
\(521\) 29.2252 + 16.8732i 1.28038 + 0.739228i 0.976918 0.213615i \(-0.0685238\pi\)
0.303463 + 0.952843i \(0.401857\pi\)
\(522\) 0 0
\(523\) 17.2979 9.98697i 0.756386 0.436700i −0.0716106 0.997433i \(-0.522814\pi\)
0.827997 + 0.560733i \(0.189481\pi\)
\(524\) 0.100193 0.607417i 0.00437695 0.0265351i
\(525\) 0 0
\(526\) 11.7151 9.94101i 0.510803 0.433449i
\(527\) −5.32170 9.21745i −0.231817 0.401519i
\(528\) 0 0
\(529\) −0.620877 + 1.07539i −0.0269946 + 0.0467561i
\(530\) −12.6577 4.52796i −0.549817 0.196682i
\(531\) 0 0
\(532\) 41.9572 5.80325i 1.81908 0.251603i
\(533\) 23.2757i 1.00818i
\(534\) 0 0
\(535\) 6.41435 + 3.70333i 0.277316 + 0.160109i
\(536\) 0.139901 + 8.43538i 0.00604281 + 0.364353i
\(537\) 0 0
\(538\) 7.00639 + 8.25676i 0.302067 + 0.355974i
\(539\) −0.970640 12.3809i −0.0418084 0.533282i
\(540\) 0 0
\(541\) 3.91821 + 6.78654i 0.168457 + 0.291776i 0.937878 0.346966i \(-0.112788\pi\)
−0.769421 + 0.638743i \(0.779455\pi\)
\(542\) 27.6690 5.03665i 1.18849 0.216343i
\(543\) 0 0
\(544\) −24.7000 + 31.1453i −1.05900 + 1.33534i
\(545\) 7.87688i 0.337409i
\(546\) 0 0
\(547\) 42.3065i 1.80890i −0.426584 0.904448i \(-0.640283\pi\)
0.426584 0.904448i \(-0.359717\pi\)
\(548\) −2.96784 7.88183i −0.126780 0.336695i
\(549\) 0 0
\(550\) −1.42905 7.85053i −0.0609349 0.334748i
\(551\) −28.8753 50.0134i −1.23013 2.13064i
\(552\) 0 0
\(553\) 2.40215 2.59785i 0.102150 0.110472i
\(554\) −7.18493 + 6.09687i −0.305259 + 0.259031i
\(555\) 0 0
\(556\) 13.3817 16.3106i 0.567512 0.691724i
\(557\) 9.26900 + 5.35146i 0.392740 + 0.226749i 0.683347 0.730094i \(-0.260524\pi\)
−0.290607 + 0.956843i \(0.593857\pi\)
\(558\) 0 0
\(559\) 34.8181i 1.47265i
\(560\) 25.8107 + 15.8117i 1.09070 + 0.668167i
\(561\) 0 0
\(562\) 4.62947 12.9415i 0.195282 0.545905i
\(563\) 4.57187 7.91870i 0.192681 0.333734i −0.753457 0.657497i \(-0.771615\pi\)
0.946138 + 0.323764i \(0.104948\pi\)
\(564\) 0 0
\(565\) −26.2446 45.4570i −1.10412 1.91239i
\(566\) −6.92320 8.15873i −0.291004 0.342937i
\(567\) 0 0
\(568\) 16.6633 + 27.7871i 0.699177 + 1.16592i
\(569\) −25.5092 + 14.7277i −1.06940 + 0.617419i −0.928018 0.372536i \(-0.878488\pi\)
−0.141384 + 0.989955i \(0.545155\pi\)
\(570\) 0 0
\(571\) 28.0410 + 16.1895i 1.17348 + 0.677508i 0.954497 0.298221i \(-0.0963931\pi\)
0.218982 + 0.975729i \(0.429726\pi\)
\(572\) −15.6389 + 5.88869i −0.653895 + 0.246219i
\(573\) 0 0
\(574\) −0.787879 + 18.4752i −0.0328854 + 0.771139i
\(575\) −15.6589 −0.653021
\(576\) 0 0
\(577\) −2.89208 + 5.00923i −0.120399 + 0.208537i −0.919925 0.392094i \(-0.871751\pi\)
0.799526 + 0.600631i \(0.205084\pi\)
\(578\) 8.20058 + 45.0501i 0.341099 + 1.87384i
\(579\) 0 0
\(580\) 6.71662 40.7193i 0.278893 1.69078i
\(581\) −22.7965 + 7.07473i −0.945758 + 0.293509i
\(582\) 0 0
\(583\) 5.10642 2.94820i 0.211486 0.122102i
\(584\) 0.138218 0.00229234i 0.00571949 9.48579e-5i
\(585\) 0 0
\(586\) 2.59530 7.25507i 0.107211 0.299704i
\(587\) −30.3210 −1.25148 −0.625740 0.780032i \(-0.715203\pi\)
−0.625740 + 0.780032i \(0.715203\pi\)
\(588\) 0 0
\(589\) 12.1242 0.499569
\(590\) 1.95456 5.46390i 0.0804680 0.224945i
\(591\) 0 0
\(592\) −8.34997 + 7.32709i −0.343182 + 0.301141i
\(593\) −15.6450 + 9.03263i −0.642462 + 0.370926i −0.785562 0.618782i \(-0.787626\pi\)
0.143100 + 0.989708i \(0.454293\pi\)
\(594\) 0 0
\(595\) 50.7854 15.7609i 2.08200 0.646133i
\(596\) −33.8100 5.57694i −1.38491 0.228440i
\(597\) 0 0
\(598\) 5.87288 + 32.2628i 0.240160 + 1.31932i
\(599\) −1.36569 + 2.36544i −0.0558006 + 0.0966494i −0.892576 0.450896i \(-0.851104\pi\)
0.836776 + 0.547546i \(0.184438\pi\)
\(600\) 0 0
\(601\) 12.7951 0.521925 0.260962 0.965349i \(-0.415960\pi\)
0.260962 + 0.965349i \(0.415960\pi\)
\(602\) −1.17859 + 27.6370i −0.0480356 + 1.12640i
\(603\) 0 0
\(604\) −4.95013 13.1463i −0.201418 0.534915i
\(605\) −19.4502 11.2296i −0.790764 0.456548i
\(606\) 0 0
\(607\) 21.6019 12.4718i 0.876792 0.506216i 0.00719299 0.999974i \(-0.497710\pi\)
0.869599 + 0.493758i \(0.164377\pi\)
\(608\) −16.6571 42.1062i −0.675534 1.70763i
\(609\) 0 0
\(610\) −38.2207 45.0416i −1.54751 1.82368i
\(611\) −13.1235 22.7305i −0.530919 0.919578i
\(612\) 0 0
\(613\) −14.8231 + 25.6744i −0.598699 + 1.03698i 0.394314 + 0.918976i \(0.370982\pi\)
−0.993013 + 0.118002i \(0.962351\pi\)
\(614\) −0.756355 + 2.11436i −0.0305240 + 0.0853287i
\(615\) 0 0
\(616\) −12.6127 + 4.14479i −0.508182 + 0.166999i
\(617\) 26.3663i 1.06147i 0.847539 + 0.530734i \(0.178083\pi\)
−0.847539 + 0.530734i \(0.821917\pi\)
\(618\) 0 0
\(619\) 17.3094 + 9.99359i 0.695724 + 0.401676i 0.805753 0.592252i \(-0.201761\pi\)
−0.110029 + 0.993928i \(0.535094\pi\)
\(620\) 6.69831 + 5.49551i 0.269010 + 0.220705i
\(621\) 0 0
\(622\) −21.4025 + 18.1614i −0.858162 + 0.728205i
\(623\) −11.6453 + 12.5941i −0.466561 + 0.504570i
\(624\) 0 0
\(625\) 15.3935 + 26.6624i 0.615742 + 1.06650i
\(626\) −2.66919 14.6633i −0.106682 0.586062i
\(627\) 0 0
\(628\) −3.80330 + 1.43210i −0.151768 + 0.0571470i
\(629\) 19.5156i 0.778138i
\(630\) 0 0
\(631\) 7.91131i 0.314944i −0.987523 0.157472i \(-0.949666\pi\)
0.987523 0.157472i \(-0.0503344\pi\)
\(632\) −3.30669 1.83669i −0.131533 0.0730596i
\(633\) 0 0
\(634\) 18.6224 3.38988i 0.739590 0.134629i
\(635\) 11.7104 + 20.2831i 0.464715 + 0.804909i
\(636\) 0 0
\(637\) −27.1748 + 18.6646i −1.07670 + 0.739520i
\(638\) 11.7118 + 13.8019i 0.463675 + 0.546424i
\(639\) 0 0
\(640\) 9.88275 30.8127i 0.390650 1.21798i
\(641\) 30.8675 + 17.8214i 1.21919 + 0.703902i 0.964746 0.263185i \(-0.0847728\pi\)
0.254448 + 0.967086i \(0.418106\pi\)
\(642\) 0 0
\(643\) 7.96178i 0.313982i −0.987600 0.156991i \(-0.949821\pi\)
0.987600 0.156991i \(-0.0501794\pi\)
\(644\) 3.56952 + 25.8075i 0.140659 + 1.01696i
\(645\) 0 0
\(646\) −74.8997 26.7933i −2.94689 1.05417i
\(647\) 24.0551 41.6647i 0.945704 1.63801i 0.191368 0.981518i \(-0.438708\pi\)
0.754336 0.656489i \(-0.227959\pi\)
\(648\) 0 0
\(649\) 1.27263 + 2.20426i 0.0499552 + 0.0865249i
\(650\) −16.1513 + 13.7054i −0.633504 + 0.537569i
\(651\) 0 0
\(652\) 10.9152 + 1.80045i 0.427470 + 0.0705109i
\(653\) 29.0569 16.7760i 1.13708 0.656495i 0.191376 0.981517i \(-0.438705\pi\)
0.945706 + 0.325022i \(0.105372\pi\)
\(654\) 0 0
\(655\) 0.762436 + 0.440193i 0.0297909 + 0.0171998i
\(656\) 19.3878 3.86241i 0.756965 0.150802i
\(657\) 0 0
\(658\) −9.64737 18.4866i −0.376094 0.720684i
\(659\) −9.10230 −0.354575 −0.177288 0.984159i \(-0.556732\pi\)
−0.177288 + 0.984159i \(0.556732\pi\)
\(660\) 0 0
\(661\) −7.12959 + 12.3488i −0.277309 + 0.480313i −0.970715 0.240234i \(-0.922776\pi\)
0.693406 + 0.720547i \(0.256109\pi\)
\(662\) −38.5752 + 7.02193i −1.49927 + 0.272915i
\(663\) 0 0
\(664\) 13.1232 + 21.8838i 0.509281 + 0.849258i
\(665\) −13.3772 + 59.0773i −0.518745 + 2.29092i
\(666\) 0 0
\(667\) 30.7628 17.7609i 1.19114 0.687705i
\(668\) −9.85154 8.08252i −0.381167 0.312722i
\(669\) 0 0
\(670\) −11.3599 4.06368i −0.438870 0.156994i
\(671\) 25.9100 1.00025
\(672\) 0 0
\(673\) 1.00872 0.0388833 0.0194417 0.999811i \(-0.493811\pi\)
0.0194417 + 0.999811i \(0.493811\pi\)
\(674\) 25.6648 + 9.18087i 0.988570 + 0.353634i
\(675\) 0 0
\(676\) 14.1947 + 11.6458i 0.545950 + 0.447915i
\(677\) 30.2292 17.4528i 1.16180 0.670766i 0.210066 0.977687i \(-0.432632\pi\)
0.951735 + 0.306921i \(0.0992988\pi\)
\(678\) 0 0
\(679\) 2.70901 0.840721i 0.103962 0.0322639i
\(680\) −29.2356 48.7522i −1.12113 1.86956i
\(681\) 0 0
\(682\) −3.73878 + 0.680580i −0.143165 + 0.0260607i
\(683\) 22.7839 39.4629i 0.871803 1.51001i 0.0116726 0.999932i \(-0.496284\pi\)
0.860130 0.510075i \(-0.170382\pi\)
\(684\) 0 0
\(685\) 12.0441 0.460183
\(686\) −22.2018 + 13.8953i −0.847670 + 0.530523i
\(687\) 0 0
\(688\) 29.0021 5.77776i 1.10569 0.220275i
\(689\) −13.5555 7.82630i −0.516425 0.298158i
\(690\) 0 0
\(691\) −6.57653 + 3.79696i −0.250183 + 0.144443i −0.619848 0.784722i \(-0.712806\pi\)
0.369665 + 0.929165i \(0.379472\pi\)
\(692\) 41.8952 + 6.91059i 1.59262 + 0.262701i
\(693\) 0 0
\(694\) 1.45802 1.23723i 0.0553458 0.0469644i
\(695\) 15.0855 + 26.1288i 0.572225 + 0.991122i
\(696\) 0 0
\(697\) 17.3644 30.0760i 0.657723 1.13921i
\(698\) −45.6795 16.3406i −1.72899 0.618500i
\(699\) 0 0
\(700\) −13.2840 + 10.3320i −0.502089 + 0.390511i
\(701\) 44.3539i 1.67522i −0.546267 0.837611i \(-0.683951\pi\)
0.546267 0.837611i \(-0.316049\pi\)
\(702\) 0 0
\(703\) −19.2524 11.1154i −0.726119 0.419225i
\(704\) 7.50019 + 12.0494i 0.282674 + 0.454129i
\(705\) 0 0
\(706\) −11.3324 13.3548i −0.426500 0.502614i
\(707\) 15.8003 + 3.57774i 0.594230 + 0.134555i
\(708\) 0 0
\(709\) 12.1387 + 21.0249i 0.455879 + 0.789605i 0.998738 0.0502185i \(-0.0159918\pi\)
−0.542860 + 0.839823i \(0.682658\pi\)
\(710\) −45.5858 + 8.29808i −1.71080 + 0.311422i
\(711\) 0 0
\(712\) 16.0304 + 8.90404i 0.600765 + 0.333693i
\(713\) 7.45748i 0.279285i
\(714\) 0 0
\(715\) 23.8976i 0.893720i
\(716\) −38.3523 + 14.4412i −1.43329 + 0.539695i
\(717\) 0 0
\(718\) 3.22506 + 17.7170i 0.120358 + 0.661192i
\(719\) 13.9425 + 24.1491i 0.519967 + 0.900610i 0.999731 + 0.0232120i \(0.00738927\pi\)
−0.479763 + 0.877398i \(0.659277\pi\)
\(720\) 0 0
\(721\) 12.8300 13.8752i 0.477813 0.516739i
\(722\) 48.6043 41.2438i 1.80886 1.53494i
\(723\) 0 0
\(724\) −25.6654 21.0567i −0.953846 0.782566i
\(725\) 19.8711 + 11.4726i 0.737996 + 0.426082i
\(726\) 0 0
\(727\) 0.853452i 0.0316528i −0.999875 0.0158264i \(-0.994962\pi\)
0.999875 0.0158264i \(-0.00503791\pi\)
\(728\) 26.2697 + 23.4948i 0.973618 + 0.870774i
\(729\) 0 0
\(730\) −0.0665853 + 0.186137i −0.00246443 + 0.00688923i
\(731\) 25.9753 44.9906i 0.960731 1.66404i
\(732\) 0 0
\(733\) 12.7372 + 22.0614i 0.470458 + 0.814857i 0.999429 0.0337825i \(-0.0107553\pi\)
−0.528971 + 0.848640i \(0.677422\pi\)
\(734\) −11.9112 14.0368i −0.439649 0.518109i
\(735\) 0 0
\(736\) 25.8991 10.2456i 0.954654 0.377658i
\(737\) 4.58283 2.64590i 0.168811 0.0974629i
\(738\) 0 0
\(739\) 30.3461 + 17.5203i 1.11630 + 0.644496i 0.940454 0.339921i \(-0.110401\pi\)
0.175846 + 0.984418i \(0.443734\pi\)
\(740\) −5.59822 14.8675i −0.205795 0.546539i
\(741\) 0 0
\(742\) −10.4948 6.67100i −0.385278 0.244900i
\(743\) 28.8253 1.05750 0.528750 0.848778i \(-0.322661\pi\)
0.528750 + 0.848778i \(0.322661\pi\)
\(744\) 0 0
\(745\) 24.5020 42.4387i 0.897684 1.55483i
\(746\) 1.48268 + 8.14517i 0.0542850 + 0.298216i
\(747\) 0 0
\(748\) 24.6011 + 4.05793i 0.899505 + 0.148373i
\(749\) 5.03049 + 4.65154i 0.183810 + 0.169964i
\(750\) 0 0
\(751\) 24.7734 14.3029i 0.903994 0.521921i 0.0255004 0.999675i \(-0.491882\pi\)
0.878494 + 0.477753i \(0.158549\pi\)
\(752\) −16.7559 + 14.7033i −0.611024 + 0.536173i
\(753\) 0 0
\(754\) 16.1849 45.2443i 0.589420 1.64770i
\(755\) 20.0887 0.731103
\(756\) 0 0
\(757\) −27.4539 −0.997830 −0.498915 0.866651i \(-0.666268\pi\)
−0.498915 + 0.866651i \(0.666268\pi\)
\(758\) −11.2893 + 31.5588i −0.410046 + 1.14627i
\(759\) 0 0
\(760\) 64.7463 1.07382i 2.34859 0.0389515i
\(761\) 24.7788 14.3060i 0.898231 0.518594i 0.0216049 0.999767i \(-0.493122\pi\)
0.876626 + 0.481173i \(0.159789\pi\)
\(762\) 0 0
\(763\) 1.60917 7.10655i 0.0582560 0.257274i
\(764\) −2.28588 + 13.8581i −0.0827002 + 0.501368i
\(765\) 0 0
\(766\) −4.14919 22.7937i −0.149916 0.823570i
\(767\) 3.37834 5.85145i 0.121985 0.211284i
\(768\) 0 0
\(769\) 4.97212 0.179299 0.0896496 0.995973i \(-0.471425\pi\)
0.0896496 + 0.995973i \(0.471425\pi\)
\(770\) 0.808930 18.9688i 0.0291518 0.683588i
\(771\) 0 0
\(772\) 32.4265 12.2099i 1.16705 0.439445i
\(773\) 36.9413 + 21.3281i 1.32869 + 0.767117i 0.985096 0.172003i \(-0.0550240\pi\)
0.343589 + 0.939120i \(0.388357\pi\)
\(774\) 0 0
\(775\) −4.17177 + 2.40857i −0.149854 + 0.0865184i
\(776\) −1.55949 2.60055i −0.0559825 0.0933544i
\(777\) 0 0
\(778\) −6.97018 8.21409i −0.249893 0.294489i
\(779\) 19.7803 + 34.2604i 0.708702 + 1.22751i
\(780\) 0 0
\(781\) 10.1616 17.6003i 0.363609 0.629789i
\(782\) 16.4803 46.0701i 0.589335 1.64746i
\(783\) 0 0
\(784\) 20.0563 + 19.5383i 0.716297 + 0.697795i
\(785\) 5.81177i 0.207431i
\(786\) 0 0
\(787\) 3.83610 + 2.21477i 0.136742 + 0.0789481i 0.566810 0.823848i \(-0.308177\pi\)
−0.430068 + 0.902796i \(0.641511\pi\)
\(788\) 5.60686 6.83403i 0.199736 0.243452i
\(789\) 0 0
\(790\) 4.12448 3.49988i 0.146742 0.124520i
\(791\) −14.3915 46.3730i −0.511704 1.64883i
\(792\) 0 0
\(793\) −34.3905 59.5661i −1.22124 2.11525i
\(794\) 2.12234 + 11.6591i 0.0753190 + 0.413767i
\(795\) 0 0
\(796\) 0.438873 + 1.16554i 0.0155554 + 0.0413114i
\(797\) 1.10654i 0.0391957i −0.999808 0.0195979i \(-0.993761\pi\)
0.999808 0.0195979i \(-0.00623859\pi\)
\(798\) 0 0
\(799\) 39.1620i 1.38545i
\(800\) 14.0962 + 11.1791i 0.498376 + 0.395240i
\(801\) 0 0
\(802\) −30.9703 + 5.63760i −1.09360 + 0.199070i
\(803\) −0.0433543 0.0750918i −0.00152994 0.00264993i
\(804\) 0 0
\(805\) −36.3379 8.22819i −1.28074 0.290006i
\(806\) 6.52713 + 7.69197i 0.229908 + 0.270938i
\(807\) 0 0
\(808\) −0.287194 17.3164i −0.0101034 0.609190i
\(809\) −40.2345 23.2294i −1.41457 0.816702i −0.418755 0.908099i \(-0.637533\pi\)
−0.995815 + 0.0913970i \(0.970867\pi\)
\(810\) 0 0
\(811\) 12.2358i 0.429657i 0.976652 + 0.214829i \(0.0689193\pi\)
−0.976652 + 0.214829i \(0.931081\pi\)
\(812\) 14.3783 35.3650i 0.504581 1.24107i
\(813\) 0 0
\(814\) 6.56089 + 2.34698i 0.229959 + 0.0822616i
\(815\) −7.91017 + 13.7008i −0.277081 + 0.479919i
\(816\) 0 0
\(817\) 29.5892 + 51.2500i 1.03520 + 1.79301i
\(818\) 20.7115 17.5751i 0.724162 0.614498i
\(819\) 0 0
\(820\) −4.60105 + 27.8937i −0.160676 + 0.974092i
\(821\) 10.1503 5.86030i 0.354249 0.204526i −0.312306 0.949982i \(-0.601101\pi\)
0.666555 + 0.745456i \(0.267768\pi\)
\(822\) 0 0
\(823\) 29.5545 + 17.0633i 1.03021 + 0.594790i 0.917044 0.398787i \(-0.130569\pi\)
0.113162 + 0.993577i \(0.463902\pi\)
\(824\) −17.6611 9.80981i −0.615255 0.341741i
\(825\) 0 0
\(826\) 2.87964 4.53025i 0.100195 0.157628i
\(827\) −29.7930 −1.03600 −0.518001 0.855380i \(-0.673324\pi\)
−0.518001 + 0.855380i \(0.673324\pi\)
\(828\) 0 0
\(829\) 21.6981 37.5822i 0.753605 1.30528i −0.192459 0.981305i \(-0.561646\pi\)
0.946065 0.323978i \(-0.105020\pi\)
\(830\) −35.9012 + 6.53518i −1.24615 + 0.226839i
\(831\) 0 0
\(832\) 17.7460 33.2358i 0.615233 1.15224i
\(833\) 49.0385 3.84454i 1.69908 0.133205i
\(834\) 0 0
\(835\) 15.7817 9.11156i 0.546148 0.315319i
\(836\) −18.0151 + 21.9581i −0.623066 + 0.759436i
\(837\) 0 0
\(838\) 49.4192 + 17.6784i 1.70716 + 0.610689i
\(839\) 52.4272 1.80999 0.904995 0.425423i \(-0.139875\pi\)
0.904995 + 0.425423i \(0.139875\pi\)
\(840\) 0 0
\(841\) −23.0506 −0.794850
\(842\) −1.52520 0.545598i −0.0525618 0.0188025i
\(843\) 0 0
\(844\) −24.1117 + 29.3890i −0.829959 + 1.01161i
\(845\) −22.7392 + 13.1285i −0.782253 + 0.451634i
\(846\) 0 0
\(847\) −15.2540 14.1049i −0.524132 0.484649i
\(848\) −4.26957 + 12.5899i −0.146618 + 0.432340i
\(849\) 0 0
\(850\) 31.0946 5.66023i 1.06654 0.194144i
\(851\) 6.83698 11.8420i 0.234369 0.405938i
\(852\) 0 0
\(853\) 12.6354 0.432628 0.216314 0.976324i \(-0.430597\pi\)
0.216314 + 0.976324i \(0.430597\pi\)
\(854\) −25.2813 48.4449i −0.865107 1.65775i
\(855\) 0 0
\(856\) 3.55658 6.40309i 0.121561 0.218853i
\(857\) 10.6106 + 6.12603i 0.362451 + 0.209261i 0.670155 0.742221i \(-0.266227\pi\)
−0.307704 + 0.951482i \(0.599561\pi\)
\(858\) 0 0
\(859\) −45.0377 + 26.0026i −1.53667 + 0.887196i −0.537637 + 0.843176i \(0.680683\pi\)
−0.999031 + 0.0440193i \(0.985984\pi\)
\(860\) −6.88270 + 41.7261i −0.234698 + 1.42285i
\(861\) 0 0
\(862\) 35.5385 30.1567i 1.21045 1.02714i
\(863\) −6.94583 12.0305i −0.236439 0.409524i 0.723251 0.690585i \(-0.242647\pi\)
−0.959690 + 0.281061i \(0.909314\pi\)
\(864\) 0 0
\(865\) −30.3613 + 52.5873i −1.03232 + 1.78802i
\(866\) 37.3017 + 13.3437i 1.26756 + 0.453436i
\(867\) 0 0
\(868\) 4.92055 + 6.32647i 0.167014 + 0.214734i
\(869\) 2.37259i 0.0804846i
\(870\) 0 0
\(871\) −12.1656 7.02382i −0.412216 0.237993i
\(872\) −7.78848 + 0.129172i −0.263751 + 0.00437433i
\(873\) 0 0
\(874\) 36.0622 + 42.4980i 1.21982 + 1.43751i
\(875\) 4.08123 + 13.1507i 0.137971 + 0.444575i
\(876\) 0 0
\(877\) −19.2703 33.3771i −0.650711 1.12706i −0.982951 0.183870i \(-0.941138\pi\)
0.332240 0.943195i \(-0.392196\pi\)
\(878\) 21.1458 3.84923i 0.713637 0.129905i
\(879\) 0 0
\(880\) −19.9058 + 3.96560i −0.671023 + 0.133680i
\(881\) 2.21967i 0.0747826i −0.999301 0.0373913i \(-0.988095\pi\)
0.999301 0.0373913i \(-0.0119048\pi\)
\(882\) 0 0
\(883\) 43.9289i 1.47833i −0.673527 0.739163i \(-0.735221\pi\)
0.673527 0.739163i \(-0.264779\pi\)
\(884\) −23.3241 61.9430i −0.784475 2.08337i
\(885\) 0 0
\(886\) 7.81136 + 42.9120i 0.262428 + 1.44166i
\(887\) −7.80639 13.5211i −0.262113 0.453993i 0.704690 0.709515i \(-0.251086\pi\)
−0.966803 + 0.255522i \(0.917753\pi\)
\(888\) 0 0
\(889\) 6.42155 + 20.6918i 0.215372 + 0.693981i
\(890\) −19.9949 + 16.9670i −0.670232 + 0.568735i
\(891\) 0 0
\(892\) −16.9478 + 20.6571i −0.567453 + 0.691652i
\(893\) −38.6338 22.3053i −1.29283 0.746417i
\(894\) 0 0
\(895\) 58.6058i 1.95897i
\(896\) 15.2110 25.7803i 0.508164 0.861261i
\(897\) 0 0
\(898\) −11.4377 + 31.9738i −0.381683 + 1.06698i
\(899\) 5.46378 9.46355i 0.182227 0.315627i
\(900\) 0 0
\(901\) 11.6773 + 20.2257i 0.389027 + 0.673815i
\(902\) −8.02289 9.45467i −0.267133 0.314806i
\(903\) 0 0
\(904\) −44.5164 + 26.6955i −1.48059 + 0.887879i
\(905\) 41.1147 23.7376i 1.36670 0.789064i
\(906\) 0 0
\(907\) −0.925872 0.534552i −0.0307431 0.0177495i 0.484550 0.874764i \(-0.338983\pi\)
−0.515293 + 0.857014i \(0.672317\pi\)
\(908\) −7.37288 + 2.77620i −0.244678 + 0.0921313i
\(909\) 0 0
\(910\) −44.6822 + 23.3177i −1.48120 + 0.772973i
\(911\) 35.4745 1.17532 0.587661 0.809107i \(-0.300049\pi\)
0.587661 + 0.809107i \(0.300049\pi\)
\(912\) 0 0
\(913\) 8.00276 13.8612i 0.264853 0.458739i
\(914\) −8.77384 48.1994i −0.290213 1.59429i
\(915\) 0 0
\(916\) 0.940617 5.70246i 0.0310789 0.188415i
\(917\) 0.597945 + 0.552902i 0.0197459 + 0.0182584i
\(918\) 0 0
\(919\) −37.2941 + 21.5318i −1.23022 + 0.710267i −0.967075 0.254490i \(-0.918092\pi\)
−0.263143 + 0.964757i \(0.584759\pi\)
\(920\) 0.660497 + 39.8248i 0.0217759 + 1.31299i
\(921\) 0 0
\(922\) 12.1236 33.8911i 0.399269 1.11614i
\(923\) −53.9499 −1.77578
\(924\) 0 0
\(925\) 8.83265 0.290416
\(926\) −13.2975 + 37.1728i −0.436984 + 1.22157i
\(927\) 0 0
\(928\) −40.3725 5.97349i −1.32529 0.196089i
\(929\) 1.25933 0.727077i 0.0413174 0.0238546i −0.479199 0.877706i \(-0.659073\pi\)
0.520516 + 0.853852i \(0.325739\pi\)
\(930\) 0 0
\(931\) −24.1379 + 50.5669i −0.791088 + 1.65726i
\(932\) 29.5640 + 4.87656i 0.968401 + 0.159737i
\(933\) 0 0
\(934\) 9.90979 + 54.4397i 0.324258 + 1.78132i
\(935\) −17.8283 + 30.8796i −0.583049 + 1.00987i
\(936\) 0 0
\(937\) −31.7757 −1.03807 −0.519034 0.854754i \(-0.673708\pi\)
−0.519034 + 0.854754i \(0.673708\pi\)
\(938\) −9.41873 5.98698i −0.307533 0.195482i
\(939\) 0 0
\(940\) −11.2339 29.8345i −0.366411 0.973095i
\(941\) 23.5114 + 13.5743i 0.766450 + 0.442510i 0.831607 0.555365i \(-0.187421\pi\)
−0.0651568 + 0.997875i \(0.520755\pi\)
\(942\) 0 0
\(943\) −21.0733 + 12.1667i −0.686240 + 0.396201i
\(944\) −5.43463 1.84302i −0.176882 0.0599853i
\(945\) 0 0
\(946\) −12.0014 14.1432i −0.390199 0.459835i
\(947\) −25.5373 44.2319i −0.829852 1.43735i −0.898154 0.439680i \(-0.855092\pi\)
0.0683027 0.997665i \(-0.478242\pi\)
\(948\) 0 0
\(949\) −0.115089 + 0.199339i −0.00373593 + 0.00647082i
\(950\) −12.1265 + 33.8992i −0.393436 + 1.09983i
\(951\) 0 0
\(952\) −16.4168 49.9570i −0.532072 1.61911i
\(953\) 18.8458i 0.610476i −0.952276 0.305238i \(-0.901264\pi\)
0.952276 0.305238i \(-0.0987361\pi\)
\(954\) 0 0
\(955\) −17.3948 10.0429i −0.562883 0.324980i
\(956\) −15.0608 12.3564i −0.487102 0.399634i
\(957\) 0 0
\(958\) −30.6400 + 26.0000i −0.989935 + 0.840022i
\(959\) 10.8663 + 2.46051i 0.350890 + 0.0794539i
\(960\) 0 0
\(961\) −14.3529 24.8600i −0.462998 0.801936i
\(962\) −3.31269 18.1984i −0.106805 0.586739i
\(963\) 0 0
\(964\) −11.2736 + 4.24498i −0.363098 + 0.136722i
\(965\) 49.5505i 1.59509i
\(966\) 0 0
\(967\) 9.75651i 0.313748i 0.987619 + 0.156874i \(0.0501417\pi\)
−0.987619 + 0.156874i \(0.949858\pi\)
\(968\) −10.7846 + 19.4161i −0.346630 + 0.624057i
\(969\) 0 0
\(970\) 4.26630 0.776604i 0.136983 0.0249353i
\(971\) 27.7505 + 48.0653i 0.890557 + 1.54249i 0.839209 + 0.543809i \(0.183018\pi\)
0.0513476 + 0.998681i \(0.483648\pi\)
\(972\) 0 0
\(973\) 8.27229 + 26.6553i 0.265198 + 0.854531i
\(974\) −29.6539 34.9460i −0.950171 1.11974i
\(975\) 0 0
\(976\) −43.9094 + 38.5304i −1.40551 + 1.23333i
\(977\) 18.5299 + 10.6982i 0.592824 + 0.342267i 0.766213 0.642586i \(-0.222139\pi\)
−0.173389 + 0.984853i \(0.555472\pi\)
\(978\) 0 0
\(979\) 11.5020i 0.367606i
\(980\) −36.2559 + 16.9960i −1.15815 + 0.542917i
\(981\) 0 0
\(982\) −25.7001 9.19349i −0.820122 0.293376i
\(983\) 1.01003 1.74942i 0.0322149 0.0557979i −0.849468 0.527639i \(-0.823077\pi\)
0.881683 + 0.471842i \(0.156411\pi\)
\(984\) 0 0
\(985\) 6.32071 + 10.9478i 0.201395 + 0.348826i
\(986\) −54.6671 + 46.3885i −1.74096 + 1.47731i
\(987\) 0 0
\(988\) 74.3922 + 12.2709i 2.36673 + 0.390391i
\(989\) −31.5234 + 18.2001i −1.00239 + 0.578728i
\(990\) 0 0
\(991\) −26.8179 15.4834i −0.851900 0.491845i 0.00939132 0.999956i \(-0.497011\pi\)
−0.861292 + 0.508111i \(0.830344\pi\)
\(992\) 5.32399 6.71325i 0.169037 0.213146i
\(993\) 0 0
\(994\) −42.8229 1.82619i −1.35826 0.0579233i
\(995\) −1.78104 −0.0564629
\(996\) 0 0
\(997\) 4.71534 8.16720i 0.149336 0.258658i −0.781646 0.623722i \(-0.785620\pi\)
0.930982 + 0.365064i \(0.118953\pi\)
\(998\) −36.1525 + 6.58092i −1.14439 + 0.208315i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.be.d.431.13 yes 28
3.2 odd 2 inner 756.2.be.d.431.2 yes 28
4.3 odd 2 756.2.be.c.431.9 yes 28
7.2 even 3 756.2.be.c.107.6 28
12.11 even 2 756.2.be.c.431.6 yes 28
21.2 odd 6 756.2.be.c.107.9 yes 28
28.23 odd 6 inner 756.2.be.d.107.2 yes 28
84.23 even 6 inner 756.2.be.d.107.13 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.be.c.107.6 28 7.2 even 3
756.2.be.c.107.9 yes 28 21.2 odd 6
756.2.be.c.431.6 yes 28 12.11 even 2
756.2.be.c.431.9 yes 28 4.3 odd 2
756.2.be.d.107.2 yes 28 28.23 odd 6 inner
756.2.be.d.107.13 yes 28 84.23 even 6 inner
756.2.be.d.431.2 yes 28 3.2 odd 2 inner
756.2.be.d.431.13 yes 28 1.1 even 1 trivial