Properties

Label 756.2.be.c.431.3
Level $756$
Weight $2$
Character 756.431
Analytic conductor $6.037$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(107,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-4,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.3
Character \(\chi\) \(=\) 756.431
Dual form 756.2.be.c.107.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04864 - 0.948869i) q^{2} +(0.199295 + 1.99005i) q^{4} +(-0.479813 + 0.277020i) q^{5} +(2.45883 + 0.976797i) q^{7} +(1.67930 - 2.27595i) q^{8} +(0.766008 + 0.164785i) q^{10} +(-2.96884 + 5.14218i) q^{11} +3.20224 q^{13} +(-1.65158 - 3.35742i) q^{14} +(-3.92056 + 0.793213i) q^{16} +(-2.48564 - 1.43509i) q^{17} +(-3.43890 + 1.98545i) q^{19} +(-0.646908 - 0.899641i) q^{20} +(7.99249 - 2.57526i) q^{22} +(0.145485 + 0.251987i) q^{23} +(-2.34652 + 4.06429i) q^{25} +(-3.35800 - 3.03851i) q^{26} +(-1.45384 + 5.08786i) q^{28} -4.13555i q^{29} +(-5.96048 - 3.44128i) q^{31} +(4.86392 + 2.88830i) q^{32} +(1.24484 + 3.86344i) q^{34} +(-1.45037 + 0.212467i) q^{35} +(1.20253 + 2.08285i) q^{37} +(5.49011 + 1.18104i) q^{38} +(-0.175268 + 1.55723i) q^{40} +2.27815i q^{41} +8.31569i q^{43} +(-10.8248 - 4.88331i) q^{44} +(0.0865415 - 0.402290i) q^{46} +(6.19284 + 10.7263i) q^{47} +(5.09174 + 4.80356i) q^{49} +(6.31714 - 2.03544i) q^{50} +(0.638192 + 6.37261i) q^{52} +(-4.21439 - 2.43318i) q^{53} -3.28971i q^{55} +(6.35227 - 3.95584i) q^{56} +(-3.92410 + 4.33671i) q^{58} +(-6.24666 + 10.8195i) q^{59} +(-0.305765 - 0.529601i) q^{61} +(2.98507 + 9.26438i) q^{62} +(-2.35988 - 7.64402i) q^{64} +(-1.53648 + 0.887087i) q^{65} +(3.70186 + 2.13727i) q^{67} +(2.36051 - 5.23254i) q^{68} +(1.72253 + 1.15341i) q^{70} +7.00902 q^{71} +(6.28996 - 10.8945i) q^{73} +(0.715324 - 3.32520i) q^{74} +(-4.63650 - 6.44788i) q^{76} +(-12.3227 + 9.74381i) q^{77} +(-5.20851 + 3.00714i) q^{79} +(1.66140 - 1.46667i) q^{80} +(2.16166 - 2.38896i) q^{82} -0.675423 q^{83} +1.59019 q^{85} +(7.89050 - 8.72017i) q^{86} +(6.71775 + 15.3922i) q^{88} +(11.1545 - 6.44005i) q^{89} +(7.87379 + 3.12794i) q^{91} +(-0.472472 + 0.339741i) q^{92} +(3.68380 - 17.1242i) q^{94} +(1.10002 - 1.90529i) q^{95} -3.00803 q^{97} +(-0.781450 - 9.86860i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{4} - 2 q^{7} - 20 q^{10} + 8 q^{13} + 12 q^{16} + 42 q^{19} + 4 q^{22} + 6 q^{25} - 28 q^{28} - 30 q^{31} + 24 q^{34} + 12 q^{37} + 36 q^{40} - 12 q^{46} - 14 q^{49} + 84 q^{52} + 28 q^{58}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04864 0.948869i −0.741501 0.670952i
\(3\) 0 0
\(4\) 0.199295 + 1.99005i 0.0996476 + 0.995023i
\(5\) −0.479813 + 0.277020i −0.214579 + 0.123887i −0.603438 0.797410i \(-0.706203\pi\)
0.388859 + 0.921297i \(0.372869\pi\)
\(6\) 0 0
\(7\) 2.45883 + 0.976797i 0.929352 + 0.369194i
\(8\) 1.67930 2.27595i 0.593723 0.804669i
\(9\) 0 0
\(10\) 0.766008 + 0.164785i 0.242233 + 0.0521096i
\(11\) −2.96884 + 5.14218i −0.895138 + 1.55042i −0.0615040 + 0.998107i \(0.519590\pi\)
−0.833634 + 0.552317i \(0.813744\pi\)
\(12\) 0 0
\(13\) 3.20224 0.888143 0.444071 0.895991i \(-0.353534\pi\)
0.444071 + 0.895991i \(0.353534\pi\)
\(14\) −1.65158 3.35742i −0.441404 0.897308i
\(15\) 0 0
\(16\) −3.92056 + 0.793213i −0.980141 + 0.198303i
\(17\) −2.48564 1.43509i −0.602856 0.348059i 0.167308 0.985905i \(-0.446493\pi\)
−0.770164 + 0.637845i \(0.779826\pi\)
\(18\) 0 0
\(19\) −3.43890 + 1.98545i −0.788938 + 0.455494i −0.839589 0.543223i \(-0.817204\pi\)
0.0506503 + 0.998716i \(0.483871\pi\)
\(20\) −0.646908 0.899641i −0.144653 0.201166i
\(21\) 0 0
\(22\) 7.99249 2.57526i 1.70401 0.549047i
\(23\) 0.145485 + 0.251987i 0.0303357 + 0.0525430i 0.880795 0.473498i \(-0.157009\pi\)
−0.850459 + 0.526041i \(0.823676\pi\)
\(24\) 0 0
\(25\) −2.34652 + 4.06429i −0.469304 + 0.812858i
\(26\) −3.35800 3.03851i −0.658559 0.595901i
\(27\) 0 0
\(28\) −1.45384 + 5.08786i −0.274749 + 0.961516i
\(29\) 4.13555i 0.767953i −0.923343 0.383976i \(-0.874554\pi\)
0.923343 0.383976i \(-0.125446\pi\)
\(30\) 0 0
\(31\) −5.96048 3.44128i −1.07053 0.618073i −0.142206 0.989837i \(-0.545420\pi\)
−0.928327 + 0.371764i \(0.878753\pi\)
\(32\) 4.86392 + 2.88830i 0.859827 + 0.510585i
\(33\) 0 0
\(34\) 1.24484 + 3.86344i 0.213488 + 0.662574i
\(35\) −1.45037 + 0.212467i −0.245158 + 0.0359135i
\(36\) 0 0
\(37\) 1.20253 + 2.08285i 0.197695 + 0.342418i 0.947781 0.318923i \(-0.103321\pi\)
−0.750086 + 0.661341i \(0.769988\pi\)
\(38\) 5.49011 + 1.18104i 0.890613 + 0.191590i
\(39\) 0 0
\(40\) −0.175268 + 1.55723i −0.0277123 + 0.246220i
\(41\) 2.27815i 0.355787i 0.984050 + 0.177893i \(0.0569282\pi\)
−0.984050 + 0.177893i \(0.943072\pi\)
\(42\) 0 0
\(43\) 8.31569i 1.26813i 0.773280 + 0.634065i \(0.218615\pi\)
−0.773280 + 0.634065i \(0.781385\pi\)
\(44\) −10.8248 4.88331i −1.63191 0.736186i
\(45\) 0 0
\(46\) 0.0865415 0.402290i 0.0127598 0.0593145i
\(47\) 6.19284 + 10.7263i 0.903318 + 1.56459i 0.823159 + 0.567811i \(0.192210\pi\)
0.0801597 + 0.996782i \(0.474457\pi\)
\(48\) 0 0
\(49\) 5.09174 + 4.80356i 0.727391 + 0.686223i
\(50\) 6.31714 2.03544i 0.893378 0.287855i
\(51\) 0 0
\(52\) 0.638192 + 6.37261i 0.0885013 + 0.883722i
\(53\) −4.21439 2.43318i −0.578892 0.334223i 0.181801 0.983335i \(-0.441807\pi\)
−0.760693 + 0.649112i \(0.775141\pi\)
\(54\) 0 0
\(55\) 3.28971i 0.443585i
\(56\) 6.35227 3.95584i 0.848858 0.528622i
\(57\) 0 0
\(58\) −3.92410 + 4.33671i −0.515259 + 0.569438i
\(59\) −6.24666 + 10.8195i −0.813246 + 1.40858i 0.0973349 + 0.995252i \(0.468968\pi\)
−0.910581 + 0.413331i \(0.864365\pi\)
\(60\) 0 0
\(61\) −0.305765 0.529601i −0.0391492 0.0678085i 0.845787 0.533521i \(-0.179131\pi\)
−0.884936 + 0.465712i \(0.845798\pi\)
\(62\) 2.98507 + 9.26438i 0.379105 + 1.17658i
\(63\) 0 0
\(64\) −2.35988 7.64402i −0.294985 0.955502i
\(65\) −1.53648 + 0.887087i −0.190577 + 0.110030i
\(66\) 0 0
\(67\) 3.70186 + 2.13727i 0.452254 + 0.261109i 0.708782 0.705428i \(-0.249245\pi\)
−0.256528 + 0.966537i \(0.582578\pi\)
\(68\) 2.36051 5.23254i 0.286254 0.634539i
\(69\) 0 0
\(70\) 1.72253 + 1.15341i 0.205881 + 0.137859i
\(71\) 7.00902 0.831818 0.415909 0.909406i \(-0.363464\pi\)
0.415909 + 0.909406i \(0.363464\pi\)
\(72\) 0 0
\(73\) 6.28996 10.8945i 0.736184 1.27511i −0.218017 0.975945i \(-0.569959\pi\)
0.954202 0.299164i \(-0.0967078\pi\)
\(74\) 0.715324 3.32520i 0.0831547 0.386547i
\(75\) 0 0
\(76\) −4.63650 6.44788i −0.531843 0.739623i
\(77\) −12.3227 + 9.74381i −1.40431 + 1.11041i
\(78\) 0 0
\(79\) −5.20851 + 3.00714i −0.586003 + 0.338329i −0.763516 0.645789i \(-0.776528\pi\)
0.177512 + 0.984119i \(0.443195\pi\)
\(80\) 1.66140 1.46667i 0.185750 0.163979i
\(81\) 0 0
\(82\) 2.16166 2.38896i 0.238716 0.263816i
\(83\) −0.675423 −0.0741373 −0.0370686 0.999313i \(-0.511802\pi\)
−0.0370686 + 0.999313i \(0.511802\pi\)
\(84\) 0 0
\(85\) 1.59019 0.172480
\(86\) 7.89050 8.72017i 0.850854 0.940320i
\(87\) 0 0
\(88\) 6.71775 + 15.3922i 0.716114 + 1.64081i
\(89\) 11.1545 6.44005i 1.18237 0.682644i 0.225811 0.974171i \(-0.427497\pi\)
0.956562 + 0.291527i \(0.0941635\pi\)
\(90\) 0 0
\(91\) 7.87379 + 3.12794i 0.825397 + 0.327897i
\(92\) −0.472472 + 0.339741i −0.0492586 + 0.0354205i
\(93\) 0 0
\(94\) 3.68380 17.1242i 0.379955 1.76623i
\(95\) 1.10002 1.90529i 0.112860 0.195479i
\(96\) 0 0
\(97\) −3.00803 −0.305420 −0.152710 0.988271i \(-0.548800\pi\)
−0.152710 + 0.988271i \(0.548800\pi\)
\(98\) −0.781450 9.86860i −0.0789384 0.996879i
\(99\) 0 0
\(100\) −8.55577 3.85969i −0.855577 0.385969i
\(101\) 15.3276 + 8.84940i 1.52515 + 0.880548i 0.999555 + 0.0298150i \(0.00949180\pi\)
0.525598 + 0.850733i \(0.323842\pi\)
\(102\) 0 0
\(103\) 4.01639 2.31886i 0.395746 0.228484i −0.288901 0.957359i \(-0.593290\pi\)
0.684647 + 0.728875i \(0.259956\pi\)
\(104\) 5.37754 7.28814i 0.527311 0.714661i
\(105\) 0 0
\(106\) 2.11062 + 6.55044i 0.205001 + 0.636235i
\(107\) 3.39483 + 5.88002i 0.328191 + 0.568443i 0.982153 0.188084i \(-0.0602279\pi\)
−0.653962 + 0.756527i \(0.726895\pi\)
\(108\) 0 0
\(109\) −6.48848 + 11.2384i −0.621483 + 1.07644i 0.367726 + 0.929934i \(0.380136\pi\)
−0.989210 + 0.146507i \(0.953197\pi\)
\(110\) −3.12151 + 3.44973i −0.297624 + 0.328919i
\(111\) 0 0
\(112\) −10.4148 1.87921i −0.984108 0.177569i
\(113\) 12.0732i 1.13575i 0.823115 + 0.567875i \(0.192234\pi\)
−0.823115 + 0.567875i \(0.807766\pi\)
\(114\) 0 0
\(115\) −0.139611 0.0806045i −0.0130188 0.00751641i
\(116\) 8.22994 0.824196i 0.764130 0.0765247i
\(117\) 0 0
\(118\) 16.8168 5.41854i 1.54811 0.498817i
\(119\) −4.70999 5.95660i −0.431764 0.546041i
\(120\) 0 0
\(121\) −12.1280 21.0063i −1.10254 1.90966i
\(122\) −0.181884 + 0.845493i −0.0164670 + 0.0765473i
\(123\) 0 0
\(124\) 5.66042 12.5475i 0.508320 1.12679i
\(125\) 5.37034i 0.480338i
\(126\) 0 0
\(127\) 19.0672i 1.69194i −0.533233 0.845968i \(-0.679023\pi\)
0.533233 0.845968i \(-0.320977\pi\)
\(128\) −4.77850 + 10.2550i −0.422364 + 0.906426i
\(129\) 0 0
\(130\) 2.45294 + 0.527682i 0.215137 + 0.0462808i
\(131\) 0.945219 + 1.63717i 0.0825842 + 0.143040i 0.904359 0.426772i \(-0.140349\pi\)
−0.821775 + 0.569812i \(0.807016\pi\)
\(132\) 0 0
\(133\) −10.3951 + 1.52279i −0.901367 + 0.132042i
\(134\) −1.85393 5.75381i −0.160155 0.497053i
\(135\) 0 0
\(136\) −7.44032 + 3.24725i −0.638002 + 0.278449i
\(137\) −16.9097 9.76280i −1.44469 0.834092i −0.446533 0.894767i \(-0.647341\pi\)
−0.998158 + 0.0606749i \(0.980675\pi\)
\(138\) 0 0
\(139\) 16.3163i 1.38393i −0.721931 0.691965i \(-0.756745\pi\)
0.721931 0.691965i \(-0.243255\pi\)
\(140\) −0.711872 2.84397i −0.0601642 0.240359i
\(141\) 0 0
\(142\) −7.34995 6.65064i −0.616794 0.558110i
\(143\) −9.50694 + 16.4665i −0.795010 + 1.37700i
\(144\) 0 0
\(145\) 1.14563 + 1.98429i 0.0951395 + 0.164787i
\(146\) −16.9334 + 5.45610i −1.40142 + 0.451550i
\(147\) 0 0
\(148\) −3.90530 + 2.80819i −0.321014 + 0.230832i
\(149\) −11.3984 + 6.58089i −0.933797 + 0.539128i −0.888010 0.459823i \(-0.847913\pi\)
−0.0457864 + 0.998951i \(0.514579\pi\)
\(150\) 0 0
\(151\) 11.8095 + 6.81819i 0.961040 + 0.554856i 0.896493 0.443058i \(-0.146106\pi\)
0.0645468 + 0.997915i \(0.479440\pi\)
\(152\) −1.25618 + 11.1609i −0.101889 + 0.905272i
\(153\) 0 0
\(154\) 22.1677 + 1.47491i 1.78633 + 0.118851i
\(155\) 3.81322 0.306285
\(156\) 0 0
\(157\) −5.63724 + 9.76398i −0.449900 + 0.779250i −0.998379 0.0569142i \(-0.981874\pi\)
0.548479 + 0.836165i \(0.315207\pi\)
\(158\) 8.31524 + 1.78879i 0.661525 + 0.142308i
\(159\) 0 0
\(160\) −3.13389 0.0384429i −0.247756 0.00303918i
\(161\) 0.111583 + 0.761704i 0.00879397 + 0.0600307i
\(162\) 0 0
\(163\) −12.4495 + 7.18771i −0.975118 + 0.562985i −0.900793 0.434249i \(-0.857014\pi\)
−0.0743256 + 0.997234i \(0.523680\pi\)
\(164\) −4.53362 + 0.454024i −0.354016 + 0.0354533i
\(165\) 0 0
\(166\) 0.708276 + 0.640888i 0.0549729 + 0.0497425i
\(167\) −7.45155 −0.576618 −0.288309 0.957537i \(-0.593093\pi\)
−0.288309 + 0.957537i \(0.593093\pi\)
\(168\) 0 0
\(169\) −2.74563 −0.211203
\(170\) −1.66754 1.50888i −0.127894 0.115726i
\(171\) 0 0
\(172\) −16.5486 + 1.65728i −1.26182 + 0.126366i
\(173\) 12.9948 7.50257i 0.987978 0.570410i 0.0833090 0.996524i \(-0.473451\pi\)
0.904669 + 0.426114i \(0.140118\pi\)
\(174\) 0 0
\(175\) −9.73969 + 7.70135i −0.736251 + 0.582167i
\(176\) 7.56067 22.5151i 0.569907 1.69714i
\(177\) 0 0
\(178\) −17.8078 3.83085i −1.33475 0.287135i
\(179\) 3.35522 5.81141i 0.250781 0.434365i −0.712960 0.701205i \(-0.752646\pi\)
0.963741 + 0.266839i \(0.0859793\pi\)
\(180\) 0 0
\(181\) 5.69773 0.423509 0.211755 0.977323i \(-0.432082\pi\)
0.211755 + 0.977323i \(0.432082\pi\)
\(182\) −5.28877 10.7513i −0.392030 0.796938i
\(183\) 0 0
\(184\) 0.817823 + 0.0920469i 0.0602907 + 0.00678579i
\(185\) −1.15398 0.666251i −0.0848424 0.0489838i
\(186\) 0 0
\(187\) 14.7589 8.52107i 1.07928 0.623122i
\(188\) −20.1116 + 14.4617i −1.46679 + 1.05473i
\(189\) 0 0
\(190\) −2.96140 + 0.954191i −0.214842 + 0.0692243i
\(191\) −2.01847 3.49609i −0.146051 0.252968i 0.783713 0.621123i \(-0.213323\pi\)
−0.929765 + 0.368154i \(0.879990\pi\)
\(192\) 0 0
\(193\) 9.24035 16.0047i 0.665135 1.15205i −0.314114 0.949385i \(-0.601707\pi\)
0.979249 0.202662i \(-0.0649592\pi\)
\(194\) 3.15435 + 2.85423i 0.226469 + 0.204922i
\(195\) 0 0
\(196\) −8.54455 + 11.0901i −0.610325 + 0.792151i
\(197\) 8.91601i 0.635239i −0.948218 0.317620i \(-0.897117\pi\)
0.948218 0.317620i \(-0.102883\pi\)
\(198\) 0 0
\(199\) 6.08418 + 3.51270i 0.431296 + 0.249009i 0.699898 0.714242i \(-0.253229\pi\)
−0.268603 + 0.963251i \(0.586562\pi\)
\(200\) 5.30960 + 12.1657i 0.375445 + 0.860247i
\(201\) 0 0
\(202\) −7.67623 23.8237i −0.540098 1.67623i
\(203\) 4.03959 10.1686i 0.283524 0.713698i
\(204\) 0 0
\(205\) −0.631093 1.09309i −0.0440775 0.0763444i
\(206\) −6.41205 1.37937i −0.446748 0.0961054i
\(207\) 0 0
\(208\) −12.5546 + 2.54006i −0.870505 + 0.176122i
\(209\) 23.5779i 1.63092i
\(210\) 0 0
\(211\) 10.6524i 0.733339i −0.930351 0.366669i \(-0.880498\pi\)
0.930351 0.366669i \(-0.119502\pi\)
\(212\) 4.00223 8.87176i 0.274875 0.609315i
\(213\) 0 0
\(214\) 2.01941 9.38727i 0.138044 0.641701i
\(215\) −2.30361 3.98998i −0.157105 0.272114i
\(216\) 0 0
\(217\) −11.2944 14.2837i −0.766714 0.969642i
\(218\) 17.4678 5.62830i 1.18307 0.381197i
\(219\) 0 0
\(220\) 6.54668 0.655624i 0.441377 0.0442022i
\(221\) −7.95963 4.59549i −0.535422 0.309126i
\(222\) 0 0
\(223\) 0.485215i 0.0324924i 0.999868 + 0.0162462i \(0.00517155\pi\)
−0.999868 + 0.0162462i \(0.994828\pi\)
\(224\) 9.13828 + 11.8529i 0.610577 + 0.791957i
\(225\) 0 0
\(226\) 11.4559 12.6604i 0.762033 0.842159i
\(227\) 8.05240 13.9472i 0.534456 0.925705i −0.464733 0.885451i \(-0.653850\pi\)
0.999189 0.0402546i \(-0.0128169\pi\)
\(228\) 0 0
\(229\) 6.98446 + 12.0974i 0.461546 + 0.799421i 0.999038 0.0438475i \(-0.0139616\pi\)
−0.537492 + 0.843269i \(0.680628\pi\)
\(230\) 0.0699188 + 0.216998i 0.00461031 + 0.0143084i
\(231\) 0 0
\(232\) −9.41230 6.94485i −0.617948 0.455951i
\(233\) 18.4130 10.6308i 1.20628 0.696445i 0.244333 0.969691i \(-0.421431\pi\)
0.961944 + 0.273247i \(0.0880975\pi\)
\(234\) 0 0
\(235\) −5.94281 3.43108i −0.387666 0.223819i
\(236\) −22.7763 10.2749i −1.48261 0.668836i
\(237\) 0 0
\(238\) −0.712945 + 10.7155i −0.0462134 + 0.694583i
\(239\) −13.8556 −0.896247 −0.448123 0.893972i \(-0.647907\pi\)
−0.448123 + 0.893972i \(0.647907\pi\)
\(240\) 0 0
\(241\) 4.31224 7.46902i 0.277776 0.481122i −0.693056 0.720884i \(-0.743736\pi\)
0.970832 + 0.239762i \(0.0770694\pi\)
\(242\) −7.21431 + 33.5359i −0.463753 + 2.15577i
\(243\) 0 0
\(244\) 0.992993 0.714034i 0.0635698 0.0457113i
\(245\) −3.77377 0.894299i −0.241097 0.0571347i
\(246\) 0 0
\(247\) −11.0122 + 6.35790i −0.700690 + 0.404543i
\(248\) −17.8416 + 7.78678i −1.13294 + 0.494461i
\(249\) 0 0
\(250\) −5.09575 + 5.63156i −0.322283 + 0.356171i
\(251\) 10.0174 0.632293 0.316147 0.948710i \(-0.397611\pi\)
0.316147 + 0.948710i \(0.397611\pi\)
\(252\) 0 0
\(253\) −1.72768 −0.108619
\(254\) −18.0922 + 19.9946i −1.13521 + 1.25457i
\(255\) 0 0
\(256\) 14.7416 6.21968i 0.921352 0.388730i
\(257\) −8.40598 + 4.85319i −0.524351 + 0.302734i −0.738713 0.674020i \(-0.764566\pi\)
0.214362 + 0.976754i \(0.431233\pi\)
\(258\) 0 0
\(259\) 0.922309 + 6.29600i 0.0573095 + 0.391215i
\(260\) −2.07156 2.88087i −0.128472 0.178664i
\(261\) 0 0
\(262\) 0.562262 2.61369i 0.0347367 0.161474i
\(263\) 5.83530 10.1070i 0.359820 0.623226i −0.628111 0.778124i \(-0.716171\pi\)
0.987931 + 0.154898i \(0.0495048\pi\)
\(264\) 0 0
\(265\) 2.69616 0.165624
\(266\) 12.3456 + 8.26671i 0.756959 + 0.506864i
\(267\) 0 0
\(268\) −3.51550 + 7.79281i −0.214743 + 0.476022i
\(269\) 12.2044 + 7.04622i 0.744116 + 0.429616i 0.823564 0.567223i \(-0.191982\pi\)
−0.0794480 + 0.996839i \(0.525316\pi\)
\(270\) 0 0
\(271\) 4.52302 2.61137i 0.274754 0.158629i −0.356292 0.934375i \(-0.615959\pi\)
0.631046 + 0.775745i \(0.282626\pi\)
\(272\) 10.8834 + 3.65470i 0.659905 + 0.221599i
\(273\) 0 0
\(274\) 8.46855 + 26.2827i 0.511604 + 1.58780i
\(275\) −13.9329 24.1324i −0.840183 1.45524i
\(276\) 0 0
\(277\) −5.09716 + 8.82854i −0.306259 + 0.530456i −0.977541 0.210746i \(-0.932411\pi\)
0.671282 + 0.741202i \(0.265744\pi\)
\(278\) −15.4820 + 17.1099i −0.928550 + 1.02619i
\(279\) 0 0
\(280\) −1.95205 + 3.65777i −0.116658 + 0.218594i
\(281\) 28.3097i 1.68881i 0.535702 + 0.844407i \(0.320047\pi\)
−0.535702 + 0.844407i \(0.679953\pi\)
\(282\) 0 0
\(283\) 7.18829 + 4.15016i 0.427300 + 0.246702i 0.698196 0.715907i \(-0.253987\pi\)
−0.270896 + 0.962609i \(0.587320\pi\)
\(284\) 1.39686 + 13.9483i 0.0828887 + 0.827678i
\(285\) 0 0
\(286\) 25.5939 8.24661i 1.51340 0.487632i
\(287\) −2.22529 + 5.60159i −0.131355 + 0.330651i
\(288\) 0 0
\(289\) −4.38106 7.58822i −0.257710 0.446366i
\(290\) 0.681477 3.16786i 0.0400177 0.186023i
\(291\) 0 0
\(292\) 22.9342 + 10.3461i 1.34212 + 0.605459i
\(293\) 18.3982i 1.07483i 0.843317 + 0.537416i \(0.180599\pi\)
−0.843317 + 0.537416i \(0.819401\pi\)
\(294\) 0 0
\(295\) 6.92181i 0.403003i
\(296\) 6.75986 + 0.760830i 0.392909 + 0.0442224i
\(297\) 0 0
\(298\) 18.1973 + 3.91463i 1.05414 + 0.226769i
\(299\) 0.465878 + 0.806925i 0.0269424 + 0.0466657i
\(300\) 0 0
\(301\) −8.12274 + 20.4469i −0.468187 + 1.17854i
\(302\) −5.91430 18.3555i −0.340330 1.05624i
\(303\) 0 0
\(304\) 11.9075 10.5119i 0.682945 0.602897i
\(305\) 0.293421 + 0.169406i 0.0168012 + 0.00970018i
\(306\) 0 0
\(307\) 5.96914i 0.340677i −0.985386 0.170338i \(-0.945514\pi\)
0.985386 0.170338i \(-0.0544861\pi\)
\(308\) −21.8465 22.5809i −1.24482 1.28667i
\(309\) 0 0
\(310\) −3.99870 3.61825i −0.227111 0.205503i
\(311\) 14.9380 25.8734i 0.847058 1.46715i −0.0367643 0.999324i \(-0.511705\pi\)
0.883822 0.467823i \(-0.154962\pi\)
\(312\) 0 0
\(313\) −0.862490 1.49388i −0.0487508 0.0844389i 0.840620 0.541625i \(-0.182191\pi\)
−0.889371 + 0.457186i \(0.848857\pi\)
\(314\) 15.1762 4.88991i 0.856441 0.275954i
\(315\) 0 0
\(316\) −7.02237 9.76587i −0.395039 0.549373i
\(317\) −1.24055 + 0.716235i −0.0696765 + 0.0402277i −0.534434 0.845211i \(-0.679475\pi\)
0.464757 + 0.885438i \(0.346142\pi\)
\(318\) 0 0
\(319\) 21.2657 + 12.2778i 1.19065 + 0.687423i
\(320\) 3.24985 + 3.01397i 0.181672 + 0.168486i
\(321\) 0 0
\(322\) 0.605747 0.904632i 0.0337570 0.0504132i
\(323\) 11.3972 0.634155
\(324\) 0 0
\(325\) −7.51413 + 13.0149i −0.416809 + 0.721934i
\(326\) 19.8752 + 4.27560i 1.10079 + 0.236803i
\(327\) 0 0
\(328\) 5.18495 + 3.82570i 0.286291 + 0.211239i
\(329\) 4.74974 + 32.4234i 0.261862 + 1.78756i
\(330\) 0 0
\(331\) −17.0867 + 9.86503i −0.939172 + 0.542231i −0.889701 0.456545i \(-0.849087\pi\)
−0.0494711 + 0.998776i \(0.515754\pi\)
\(332\) −0.134609 1.34412i −0.00738760 0.0737683i
\(333\) 0 0
\(334\) 7.81400 + 7.07054i 0.427563 + 0.386883i
\(335\) −2.36827 −0.129392
\(336\) 0 0
\(337\) 3.45266 0.188079 0.0940393 0.995568i \(-0.470022\pi\)
0.0940393 + 0.995568i \(0.470022\pi\)
\(338\) 2.87918 + 2.60525i 0.156607 + 0.141707i
\(339\) 0 0
\(340\) 0.316917 + 3.16455i 0.0171873 + 0.171622i
\(341\) 35.3914 20.4332i 1.91655 1.10652i
\(342\) 0 0
\(343\) 7.82763 + 16.7848i 0.422652 + 0.906292i
\(344\) 18.9261 + 13.9646i 1.02043 + 0.752919i
\(345\) 0 0
\(346\) −20.7459 4.46289i −1.11530 0.239926i
\(347\) 7.69485 13.3279i 0.413081 0.715478i −0.582144 0.813086i \(-0.697786\pi\)
0.995225 + 0.0976081i \(0.0311192\pi\)
\(348\) 0 0
\(349\) 35.4402 1.89707 0.948534 0.316676i \(-0.102567\pi\)
0.948534 + 0.316676i \(0.102567\pi\)
\(350\) 17.5210 + 1.16574i 0.936537 + 0.0623115i
\(351\) 0 0
\(352\) −29.2923 + 16.4362i −1.56129 + 0.876053i
\(353\) 9.96600 + 5.75387i 0.530436 + 0.306248i 0.741194 0.671291i \(-0.234260\pi\)
−0.210758 + 0.977538i \(0.567593\pi\)
\(354\) 0 0
\(355\) −3.36302 + 1.94164i −0.178491 + 0.103052i
\(356\) 15.0390 + 20.9145i 0.797067 + 1.10846i
\(357\) 0 0
\(358\) −9.03269 + 2.91042i −0.477392 + 0.153820i
\(359\) −7.16808 12.4155i −0.378317 0.655264i 0.612501 0.790470i \(-0.290164\pi\)
−0.990817 + 0.135206i \(0.956830\pi\)
\(360\) 0 0
\(361\) −1.61596 + 2.79893i −0.0850508 + 0.147312i
\(362\) −5.97488 5.40640i −0.314033 0.284154i
\(363\) 0 0
\(364\) −4.65554 + 16.2926i −0.244016 + 0.853963i
\(365\) 6.96979i 0.364815i
\(366\) 0 0
\(367\) −26.6088 15.3626i −1.38897 0.801921i −0.395770 0.918350i \(-0.629522\pi\)
−0.993199 + 0.116428i \(0.962855\pi\)
\(368\) −0.770262 0.872531i −0.0401527 0.0454838i
\(369\) 0 0
\(370\) 0.577927 + 1.79364i 0.0300450 + 0.0932467i
\(371\) −7.98577 10.0994i −0.414601 0.524335i
\(372\) 0 0
\(373\) 7.94955 + 13.7690i 0.411612 + 0.712933i 0.995066 0.0992132i \(-0.0316326\pi\)
−0.583454 + 0.812146i \(0.698299\pi\)
\(374\) −23.5622 5.06874i −1.21837 0.262098i
\(375\) 0 0
\(376\) 34.8122 + 3.91815i 1.79530 + 0.202063i
\(377\) 13.2430i 0.682051i
\(378\) 0 0
\(379\) 23.8379i 1.22447i 0.790675 + 0.612236i \(0.209730\pi\)
−0.790675 + 0.612236i \(0.790270\pi\)
\(380\) 4.01085 + 1.80938i 0.205752 + 0.0928190i
\(381\) 0 0
\(382\) −1.20068 + 5.58141i −0.0614323 + 0.285570i
\(383\) 3.63573 + 6.29726i 0.185777 + 0.321775i 0.943838 0.330408i \(-0.107186\pi\)
−0.758061 + 0.652184i \(0.773853\pi\)
\(384\) 0 0
\(385\) 3.21338 8.08886i 0.163769 0.412246i
\(386\) −24.8762 + 8.01536i −1.26617 + 0.407971i
\(387\) 0 0
\(388\) −0.599487 5.98613i −0.0304343 0.303900i
\(389\) −13.6345 7.87187i −0.691295 0.399120i 0.112802 0.993618i \(-0.464017\pi\)
−0.804097 + 0.594498i \(0.797351\pi\)
\(390\) 0 0
\(391\) 0.835133i 0.0422345i
\(392\) 19.4832 3.52189i 0.984052 0.177882i
\(393\) 0 0
\(394\) −8.46012 + 9.34969i −0.426215 + 0.471031i
\(395\) 1.66608 2.88573i 0.0838293 0.145197i
\(396\) 0 0
\(397\) 4.93160 + 8.54177i 0.247510 + 0.428699i 0.962834 0.270093i \(-0.0870545\pi\)
−0.715325 + 0.698792i \(0.753721\pi\)
\(398\) −3.04702 9.45665i −0.152733 0.474019i
\(399\) 0 0
\(400\) 5.97583 17.7956i 0.298791 0.889780i
\(401\) 22.7516 13.1357i 1.13616 0.655964i 0.190685 0.981651i \(-0.438929\pi\)
0.945477 + 0.325688i \(0.105596\pi\)
\(402\) 0 0
\(403\) −19.0869 11.0198i −0.950786 0.548937i
\(404\) −14.5560 + 32.2663i −0.724187 + 1.60531i
\(405\) 0 0
\(406\) −13.8848 + 6.83020i −0.689090 + 0.338977i
\(407\) −14.2805 −0.707857
\(408\) 0 0
\(409\) 12.3008 21.3056i 0.608234 1.05349i −0.383298 0.923625i \(-0.625212\pi\)
0.991531 0.129867i \(-0.0414551\pi\)
\(410\) −0.375405 + 1.74508i −0.0185399 + 0.0861833i
\(411\) 0 0
\(412\) 5.41509 + 7.53066i 0.266782 + 0.371009i
\(413\) −25.9280 + 20.5017i −1.27583 + 1.00882i
\(414\) 0 0
\(415\) 0.324077 0.187106i 0.0159083 0.00918466i
\(416\) 15.5755 + 9.24906i 0.763649 + 0.453472i
\(417\) 0 0
\(418\) −22.3724 + 24.7248i −1.09427 + 1.20933i
\(419\) 22.1374 1.08148 0.540742 0.841189i \(-0.318144\pi\)
0.540742 + 0.841189i \(0.318144\pi\)
\(420\) 0 0
\(421\) 6.42567 0.313168 0.156584 0.987665i \(-0.449952\pi\)
0.156584 + 0.987665i \(0.449952\pi\)
\(422\) −10.1077 + 11.1705i −0.492035 + 0.543772i
\(423\) 0 0
\(424\) −12.6150 + 5.50569i −0.612641 + 0.267380i
\(425\) 11.6652 6.73491i 0.565846 0.326691i
\(426\) 0 0
\(427\) −0.234514 1.60087i −0.0113489 0.0774716i
\(428\) −11.0249 + 7.92772i −0.532910 + 0.383201i
\(429\) 0 0
\(430\) −1.37030 + 6.36988i −0.0660818 + 0.307183i
\(431\) 14.9953 25.9727i 0.722299 1.25106i −0.237777 0.971320i \(-0.576419\pi\)
0.960076 0.279739i \(-0.0902479\pi\)
\(432\) 0 0
\(433\) 33.6049 1.61495 0.807475 0.589902i \(-0.200833\pi\)
0.807475 + 0.589902i \(0.200833\pi\)
\(434\) −1.70962 + 25.6954i −0.0820643 + 1.23342i
\(435\) 0 0
\(436\) −23.6580 10.6726i −1.13301 0.511125i
\(437\) −1.00062 0.577706i −0.0478660 0.0276354i
\(438\) 0 0
\(439\) −9.83511 + 5.67831i −0.469404 + 0.271011i −0.715990 0.698110i \(-0.754025\pi\)
0.246586 + 0.969121i \(0.420691\pi\)
\(440\) −7.48721 5.52442i −0.356939 0.263367i
\(441\) 0 0
\(442\) 3.98627 + 12.3717i 0.189607 + 0.588460i
\(443\) 14.1468 + 24.5029i 0.672132 + 1.16417i 0.977298 + 0.211868i \(0.0679548\pi\)
−0.305166 + 0.952299i \(0.598712\pi\)
\(444\) 0 0
\(445\) −3.56805 + 6.18004i −0.169142 + 0.292962i
\(446\) 0.460406 0.508816i 0.0218008 0.0240932i
\(447\) 0 0
\(448\) 1.66409 21.1005i 0.0786210 0.996905i
\(449\) 29.4996i 1.39217i 0.717959 + 0.696086i \(0.245077\pi\)
−0.717959 + 0.696086i \(0.754923\pi\)
\(450\) 0 0
\(451\) −11.7146 6.76345i −0.551621 0.318478i
\(452\) −24.0262 + 2.40613i −1.13010 + 0.113175i
\(453\) 0 0
\(454\) −21.6781 + 6.98489i −1.01740 + 0.327817i
\(455\) −4.64445 + 0.680372i −0.217735 + 0.0318963i
\(456\) 0 0
\(457\) 1.43214 + 2.48054i 0.0669926 + 0.116035i 0.897576 0.440859i \(-0.145326\pi\)
−0.830584 + 0.556894i \(0.811993\pi\)
\(458\) 4.15470 19.3132i 0.194136 0.902447i
\(459\) 0 0
\(460\) 0.132583 0.293897i 0.00618171 0.0137030i
\(461\) 21.1377i 0.984482i −0.870459 0.492241i \(-0.836178\pi\)
0.870459 0.492241i \(-0.163822\pi\)
\(462\) 0 0
\(463\) 39.2453i 1.82389i 0.410317 + 0.911943i \(0.365418\pi\)
−0.410317 + 0.911943i \(0.634582\pi\)
\(464\) 3.28037 + 16.2137i 0.152288 + 0.752702i
\(465\) 0 0
\(466\) −29.3959 6.32369i −1.36174 0.292940i
\(467\) −14.6992 25.4597i −0.680196 1.17813i −0.974921 0.222552i \(-0.928561\pi\)
0.294725 0.955582i \(-0.404772\pi\)
\(468\) 0 0
\(469\) 7.01458 + 8.87115i 0.323903 + 0.409632i
\(470\) 2.97623 + 9.23693i 0.137283 + 0.426068i
\(471\) 0 0
\(472\) 14.1347 + 32.3863i 0.650600 + 1.49070i
\(473\) −42.7607 24.6879i −1.96614 1.13515i
\(474\) 0 0
\(475\) 18.6356i 0.855060i
\(476\) 10.9152 10.5602i 0.500299 0.484027i
\(477\) 0 0
\(478\) 14.5296 + 13.1472i 0.664568 + 0.601338i
\(479\) 9.81732 17.0041i 0.448565 0.776937i −0.549728 0.835344i \(-0.685269\pi\)
0.998293 + 0.0584067i \(0.0186020\pi\)
\(480\) 0 0
\(481\) 3.85080 + 6.66978i 0.175581 + 0.304116i
\(482\) −11.6091 + 3.74057i −0.528781 + 0.170378i
\(483\) 0 0
\(484\) 39.3864 28.3217i 1.79029 1.28735i
\(485\) 1.44330 0.833287i 0.0655367 0.0378376i
\(486\) 0 0
\(487\) −0.798307 0.460903i −0.0361748 0.0208855i 0.481804 0.876279i \(-0.339982\pi\)
−0.517978 + 0.855394i \(0.673315\pi\)
\(488\) −1.71882 0.193455i −0.0778072 0.00875729i
\(489\) 0 0
\(490\) 3.10875 + 4.51861i 0.140439 + 0.204130i
\(491\) −31.2381 −1.40976 −0.704878 0.709329i \(-0.748998\pi\)
−0.704878 + 0.709329i \(0.748998\pi\)
\(492\) 0 0
\(493\) −5.93487 + 10.2795i −0.267293 + 0.462965i
\(494\) 17.5807 + 3.78199i 0.790991 + 0.170160i
\(495\) 0 0
\(496\) 26.0981 + 8.76384i 1.17184 + 0.393508i
\(497\) 17.2340 + 6.84639i 0.773052 + 0.307103i
\(498\) 0 0
\(499\) 12.1999 7.04359i 0.546141 0.315314i −0.201423 0.979504i \(-0.564557\pi\)
0.747564 + 0.664190i \(0.231223\pi\)
\(500\) 10.6872 1.07028i 0.477947 0.0478645i
\(501\) 0 0
\(502\) −10.5047 9.50521i −0.468846 0.424238i
\(503\) 21.4391 0.955922 0.477961 0.878381i \(-0.341376\pi\)
0.477961 + 0.878381i \(0.341376\pi\)
\(504\) 0 0
\(505\) −9.80585 −0.436355
\(506\) 1.81172 + 1.63935i 0.0805408 + 0.0728778i
\(507\) 0 0
\(508\) 37.9445 3.79999i 1.68352 0.168597i
\(509\) 32.8654 18.9749i 1.45673 0.841046i 0.457885 0.889011i \(-0.348607\pi\)
0.998849 + 0.0479657i \(0.0152738\pi\)
\(510\) 0 0
\(511\) 26.1077 20.6438i 1.15494 0.913230i
\(512\) −21.3603 7.46566i −0.944002 0.329938i
\(513\) 0 0
\(514\) 13.4199 + 2.88691i 0.591926 + 0.127336i
\(515\) −1.28474 + 2.22524i −0.0566126 + 0.0980559i
\(516\) 0 0
\(517\) −73.5421 −3.23438
\(518\) 5.00691 7.47740i 0.219991 0.328538i
\(519\) 0 0
\(520\) −0.561251 + 4.98663i −0.0246125 + 0.218678i
\(521\) −24.5753 14.1886i −1.07666 0.621613i −0.146670 0.989185i \(-0.546856\pi\)
−0.929995 + 0.367573i \(0.880189\pi\)
\(522\) 0 0
\(523\) 13.2425 7.64559i 0.579056 0.334318i −0.181702 0.983354i \(-0.558161\pi\)
0.760758 + 0.649035i \(0.224827\pi\)
\(524\) −3.06966 + 2.20731i −0.134099 + 0.0964267i
\(525\) 0 0
\(526\) −15.7094 + 5.06171i −0.684961 + 0.220701i
\(527\) 9.87707 + 17.1076i 0.430252 + 0.745218i
\(528\) 0 0
\(529\) 11.4577 19.8453i 0.498159 0.862838i
\(530\) −2.82731 2.55831i −0.122810 0.111126i
\(531\) 0 0
\(532\) −5.10211 20.3832i −0.221204 0.883723i
\(533\) 7.29518i 0.315990i
\(534\) 0 0
\(535\) −3.25777 1.88087i −0.140846 0.0813172i
\(536\) 11.0809 4.83611i 0.478620 0.208888i
\(537\) 0 0
\(538\) −6.11210 18.9693i −0.263511 0.817826i
\(539\) −39.8173 + 11.9216i −1.71505 + 0.513500i
\(540\) 0 0
\(541\) 4.90969 + 8.50383i 0.211084 + 0.365608i 0.952054 0.305930i \(-0.0989673\pi\)
−0.740970 + 0.671538i \(0.765634\pi\)
\(542\) −7.22087 1.55337i −0.310163 0.0667228i
\(543\) 0 0
\(544\) −7.94499 14.1594i −0.340638 0.607080i
\(545\) 7.18976i 0.307975i
\(546\) 0 0
\(547\) 2.27148i 0.0971213i −0.998820 0.0485606i \(-0.984537\pi\)
0.998820 0.0485606i \(-0.0154634\pi\)
\(548\) 16.0584 35.5967i 0.685981 1.52062i
\(549\) 0 0
\(550\) −8.28794 + 38.5267i −0.353399 + 1.64278i
\(551\) 8.21094 + 14.2218i 0.349798 + 0.605867i
\(552\) 0 0
\(553\) −15.7442 + 2.30639i −0.669513 + 0.0980778i
\(554\) 13.7222 4.42143i 0.583001 0.187849i
\(555\) 0 0
\(556\) 32.4702 3.25176i 1.37704 0.137905i
\(557\) −24.7675 14.2995i −1.04943 0.605890i −0.126942 0.991910i \(-0.540516\pi\)
−0.922490 + 0.386020i \(0.873849\pi\)
\(558\) 0 0
\(559\) 26.6289i 1.12628i
\(560\) 5.51775 1.98345i 0.233168 0.0838159i
\(561\) 0 0
\(562\) 26.8622 29.6867i 1.13311 1.25226i
\(563\) −16.7025 + 28.9296i −0.703926 + 1.21924i 0.263152 + 0.964754i \(0.415238\pi\)
−0.967078 + 0.254481i \(0.918095\pi\)
\(564\) 0 0
\(565\) −3.34452 5.79287i −0.140705 0.243708i
\(566\) −3.59998 11.1728i −0.151318 0.469627i
\(567\) 0 0
\(568\) 11.7703 15.9522i 0.493870 0.669338i
\(569\) 2.83434 1.63641i 0.118822 0.0686018i −0.439411 0.898286i \(-0.644813\pi\)
0.558233 + 0.829684i \(0.311480\pi\)
\(570\) 0 0
\(571\) 14.4191 + 8.32487i 0.603420 + 0.348385i 0.770386 0.637578i \(-0.220064\pi\)
−0.166966 + 0.985963i \(0.553397\pi\)
\(572\) −34.6638 15.6375i −1.44937 0.653839i
\(573\) 0 0
\(574\) 7.64870 3.76255i 0.319251 0.157046i
\(575\) −1.36553 −0.0569466
\(576\) 0 0
\(577\) −3.61179 + 6.25581i −0.150361 + 0.260433i −0.931360 0.364099i \(-0.881377\pi\)
0.780999 + 0.624532i \(0.214710\pi\)
\(578\) −2.60607 + 12.1144i −0.108398 + 0.503891i
\(579\) 0 0
\(580\) −3.72051 + 2.67532i −0.154486 + 0.111087i
\(581\) −1.66075 0.659751i −0.0688996 0.0273711i
\(582\) 0 0
\(583\) 25.0237 14.4474i 1.03638 0.598352i
\(584\) −14.2326 32.6109i −0.588951 1.34945i
\(585\) 0 0
\(586\) 17.4574 19.2931i 0.721160 0.796989i
\(587\) −25.0736 −1.03490 −0.517448 0.855714i \(-0.673118\pi\)
−0.517448 + 0.855714i \(0.673118\pi\)
\(588\) 0 0
\(589\) 27.3300 1.12611
\(590\) −6.56789 + 7.25849i −0.270396 + 0.298827i
\(591\) 0 0
\(592\) −6.36674 7.21206i −0.261671 0.296414i
\(593\) −10.8437 + 6.26064i −0.445299 + 0.257094i −0.705843 0.708368i \(-0.749432\pi\)
0.260544 + 0.965462i \(0.416098\pi\)
\(594\) 0 0
\(595\) 3.91002 + 1.55329i 0.160295 + 0.0636788i
\(596\) −15.3679 21.3719i −0.629495 0.875426i
\(597\) 0 0
\(598\) 0.277127 1.28823i 0.0113326 0.0526797i
\(599\) −9.23709 + 15.9991i −0.377417 + 0.653706i −0.990686 0.136169i \(-0.956521\pi\)
0.613268 + 0.789875i \(0.289854\pi\)
\(600\) 0 0
\(601\) 1.51523 0.0618074 0.0309037 0.999522i \(-0.490161\pi\)
0.0309037 + 0.999522i \(0.490161\pi\)
\(602\) 27.9193 13.7340i 1.13790 0.559758i
\(603\) 0 0
\(604\) −11.2149 + 24.8602i −0.456330 + 1.01155i
\(605\) 11.6383 + 6.71939i 0.473165 + 0.273182i
\(606\) 0 0
\(607\) −37.1840 + 21.4682i −1.50925 + 0.871366i −0.509309 + 0.860584i \(0.670099\pi\)
−0.999942 + 0.0107826i \(0.996568\pi\)
\(608\) −22.4611 0.275527i −0.910919 0.0111741i
\(609\) 0 0
\(610\) −0.146948 0.456064i −0.00594976 0.0184655i
\(611\) 19.8310 + 34.3483i 0.802276 + 1.38958i
\(612\) 0 0
\(613\) −6.06912 + 10.5120i −0.245130 + 0.424577i −0.962168 0.272457i \(-0.912164\pi\)
0.717039 + 0.697034i \(0.245497\pi\)
\(614\) −5.66393 + 6.25948i −0.228578 + 0.252612i
\(615\) 0 0
\(616\) 1.48279 + 44.4087i 0.0597433 + 1.78928i
\(617\) 16.9417i 0.682049i 0.940054 + 0.341024i \(0.110774\pi\)
−0.940054 + 0.341024i \(0.889226\pi\)
\(618\) 0 0
\(619\) 9.94601 + 5.74233i 0.399764 + 0.230804i 0.686382 0.727241i \(-0.259198\pi\)
−0.286618 + 0.958045i \(0.592531\pi\)
\(620\) 0.759957 + 7.58849i 0.0305206 + 0.304761i
\(621\) 0 0
\(622\) −40.2151 + 12.9577i −1.61248 + 0.519556i
\(623\) 33.7177 4.93934i 1.35087 0.197891i
\(624\) 0 0
\(625\) −10.2449 17.7447i −0.409796 0.709788i
\(626\) −0.513051 + 2.38493i −0.0205056 + 0.0953209i
\(627\) 0 0
\(628\) −20.5542 9.27244i −0.820203 0.370011i
\(629\) 6.90294i 0.275238i
\(630\) 0 0
\(631\) 24.5485i 0.977262i −0.872491 0.488631i \(-0.837497\pi\)
0.872491 0.488631i \(-0.162503\pi\)
\(632\) −1.90259 + 16.9042i −0.0756808 + 0.672413i
\(633\) 0 0
\(634\) 1.98051 + 0.426051i 0.0786561 + 0.0169207i
\(635\) 5.28199 + 9.14868i 0.209609 + 0.363054i
\(636\) 0 0
\(637\) 16.3050 + 15.3822i 0.646027 + 0.609464i
\(638\) −10.6501 33.0534i −0.421642 1.30860i
\(639\) 0 0
\(640\) −0.548067 6.24425i −0.0216642 0.246826i
\(641\) −5.19237 2.99782i −0.205086 0.118407i 0.393939 0.919136i \(-0.371112\pi\)
−0.599026 + 0.800730i \(0.704445\pi\)
\(642\) 0 0
\(643\) 34.2008i 1.34875i −0.738390 0.674374i \(-0.764413\pi\)
0.738390 0.674374i \(-0.235587\pi\)
\(644\) −1.49359 + 0.373859i −0.0588556 + 0.0147321i
\(645\) 0 0
\(646\) −11.9515 10.8144i −0.470227 0.425488i
\(647\) −15.1478 + 26.2367i −0.595520 + 1.03147i 0.397954 + 0.917406i \(0.369721\pi\)
−0.993473 + 0.114065i \(0.963613\pi\)
\(648\) 0 0
\(649\) −37.0906 64.2428i −1.45593 2.52175i
\(650\) 20.2290 6.51798i 0.793447 0.255656i
\(651\) 0 0
\(652\) −16.7850 23.3426i −0.657351 0.914165i
\(653\) 19.9310 11.5072i 0.779959 0.450310i −0.0564565 0.998405i \(-0.517980\pi\)
0.836416 + 0.548095i \(0.184647\pi\)
\(654\) 0 0
\(655\) −0.907057 0.523690i −0.0354417 0.0204623i
\(656\) −1.80706 8.93162i −0.0705537 0.348721i
\(657\) 0 0
\(658\) 25.7848 38.5074i 1.00519 1.50117i
\(659\) −44.6195 −1.73813 −0.869065 0.494698i \(-0.835279\pi\)
−0.869065 + 0.494698i \(0.835279\pi\)
\(660\) 0 0
\(661\) 12.1633 21.0674i 0.473097 0.819428i −0.526429 0.850219i \(-0.676469\pi\)
0.999526 + 0.0307915i \(0.00980277\pi\)
\(662\) 27.2785 + 5.86820i 1.06021 + 0.228074i
\(663\) 0 0
\(664\) −1.13424 + 1.53723i −0.0440170 + 0.0596560i
\(665\) 4.56585 3.61030i 0.177056 0.140001i
\(666\) 0 0
\(667\) 1.04211 0.601660i 0.0403505 0.0232964i
\(668\) −1.48506 14.8289i −0.0574586 0.573748i
\(669\) 0 0
\(670\) 2.48346 + 2.24718i 0.0959445 + 0.0868160i
\(671\) 3.63107 0.140176
\(672\) 0 0
\(673\) −2.06192 −0.0794813 −0.0397406 0.999210i \(-0.512653\pi\)
−0.0397406 + 0.999210i \(0.512653\pi\)
\(674\) −3.62060 3.27612i −0.139460 0.126192i
\(675\) 0 0
\(676\) −0.547192 5.46394i −0.0210458 0.210151i
\(677\) −38.1309 + 22.0149i −1.46549 + 0.846101i −0.999256 0.0385604i \(-0.987723\pi\)
−0.466234 + 0.884662i \(0.654389\pi\)
\(678\) 0 0
\(679\) −7.39626 2.93824i −0.283842 0.112759i
\(680\) 2.67041 3.61919i 0.102406 0.138790i
\(681\) 0 0
\(682\) −56.5013 12.1547i −2.16355 0.465426i
\(683\) 8.85834 15.3431i 0.338955 0.587087i −0.645282 0.763945i \(-0.723260\pi\)
0.984236 + 0.176858i \(0.0565933\pi\)
\(684\) 0 0
\(685\) 10.8180 0.413334
\(686\) 7.71816 25.0286i 0.294681 0.955596i
\(687\) 0 0
\(688\) −6.59611 32.6022i −0.251474 1.24295i
\(689\) −13.4955 7.79164i −0.514138 0.296838i
\(690\) 0 0
\(691\) −6.82540 + 3.94065i −0.259651 + 0.149909i −0.624175 0.781284i \(-0.714565\pi\)
0.364525 + 0.931194i \(0.381232\pi\)
\(692\) 17.5203 + 24.3651i 0.666020 + 0.926221i
\(693\) 0 0
\(694\) −20.7155 + 6.67475i −0.786351 + 0.253370i
\(695\) 4.51995 + 7.82878i 0.171451 + 0.296962i
\(696\) 0 0
\(697\) 3.26934 5.66266i 0.123835 0.214488i
\(698\) −37.1640 33.6281i −1.40668 1.27284i
\(699\) 0 0
\(700\) −17.2671 17.8476i −0.652635 0.674575i
\(701\) 42.2417i 1.59545i 0.603025 + 0.797723i \(0.293962\pi\)
−0.603025 + 0.797723i \(0.706038\pi\)
\(702\) 0 0
\(703\) −8.27078 4.77514i −0.311938 0.180098i
\(704\) 46.3130 + 10.5589i 1.74549 + 0.397954i
\(705\) 0 0
\(706\) −4.99108 15.4902i −0.187842 0.582980i
\(707\) 29.0440 + 36.7312i 1.09231 + 1.38142i
\(708\) 0 0
\(709\) −7.75030 13.4239i −0.291069 0.504146i 0.682994 0.730424i \(-0.260678\pi\)
−0.974063 + 0.226278i \(0.927344\pi\)
\(710\) 5.36896 + 1.15498i 0.201494 + 0.0433457i
\(711\) 0 0
\(712\) 4.07456 36.2018i 0.152701 1.35672i
\(713\) 2.00262i 0.0749987i
\(714\) 0 0
\(715\) 10.5345i 0.393966i
\(716\) 12.2337 + 5.51885i 0.457193 + 0.206249i
\(717\) 0 0
\(718\) −4.26392 + 19.8209i −0.159128 + 0.739711i
\(719\) −19.9952 34.6327i −0.745695 1.29158i −0.949869 0.312647i \(-0.898784\pi\)
0.204174 0.978935i \(-0.434549\pi\)
\(720\) 0 0
\(721\) 12.1407 1.77851i 0.452143 0.0662350i
\(722\) 4.35039 1.40174i 0.161905 0.0521672i
\(723\) 0 0
\(724\) 1.13553 + 11.3388i 0.0422017 + 0.421401i
\(725\) 16.8081 + 9.70415i 0.624237 + 0.360403i
\(726\) 0 0
\(727\) 4.48716i 0.166420i 0.996532 + 0.0832098i \(0.0265172\pi\)
−0.996532 + 0.0832098i \(0.973483\pi\)
\(728\) 20.3415 12.6676i 0.753907 0.469491i
\(729\) 0 0
\(730\) 6.61342 7.30881i 0.244774 0.270511i
\(731\) 11.9337 20.6698i 0.441385 0.764500i
\(732\) 0 0
\(733\) 15.0072 + 25.9933i 0.554305 + 0.960084i 0.997957 + 0.0638849i \(0.0203490\pi\)
−0.443653 + 0.896199i \(0.646318\pi\)
\(734\) 13.3260 + 41.3581i 0.491871 + 1.52656i
\(735\) 0 0
\(736\) −0.0201893 + 1.64585i −0.000744189 + 0.0606668i
\(737\) −21.9804 + 12.6904i −0.809659 + 0.467457i
\(738\) 0 0
\(739\) −7.53183 4.34850i −0.277063 0.159962i 0.355030 0.934855i \(-0.384471\pi\)
−0.632093 + 0.774893i \(0.717804\pi\)
\(740\) 1.09589 2.42926i 0.0402856 0.0893012i
\(741\) 0 0
\(742\) −1.20880 + 18.1681i −0.0443763 + 0.666972i
\(743\) 9.85512 0.361549 0.180775 0.983525i \(-0.442140\pi\)
0.180775 + 0.983525i \(0.442140\pi\)
\(744\) 0 0
\(745\) 3.64608 6.31520i 0.133582 0.231371i
\(746\) 4.72878 21.9818i 0.173133 0.804812i
\(747\) 0 0
\(748\) 19.8987 + 27.6727i 0.727568 + 1.01181i
\(749\) 2.60374 + 17.7740i 0.0951387 + 0.649450i
\(750\) 0 0
\(751\) 2.10524 1.21546i 0.0768214 0.0443528i −0.461097 0.887350i \(-0.652544\pi\)
0.537919 + 0.842997i \(0.319211\pi\)
\(752\) −32.7877 37.1409i −1.19564 1.35439i
\(753\) 0 0
\(754\) −12.5659 + 13.8872i −0.457624 + 0.505742i
\(755\) −7.55511 −0.274959
\(756\) 0 0
\(757\) −36.0235 −1.30929 −0.654647 0.755934i \(-0.727183\pi\)
−0.654647 + 0.755934i \(0.727183\pi\)
\(758\) 22.6191 24.9974i 0.821562 0.907948i
\(759\) 0 0
\(760\) −2.48908 5.70315i −0.0902883 0.206875i
\(761\) 24.3003 14.0298i 0.880884 0.508578i 0.00993401 0.999951i \(-0.496838\pi\)
0.870950 + 0.491372i \(0.163505\pi\)
\(762\) 0 0
\(763\) −26.9317 + 21.2954i −0.974993 + 0.770944i
\(764\) 6.55511 4.71360i 0.237156 0.170532i
\(765\) 0 0
\(766\) 2.16271 10.0534i 0.0781418 0.363244i
\(767\) −20.0033 + 34.6468i −0.722278 + 1.25102i
\(768\) 0 0
\(769\) −29.3367 −1.05791 −0.528955 0.848650i \(-0.677416\pi\)
−0.528955 + 0.848650i \(0.677416\pi\)
\(770\) −11.0449 + 5.43323i −0.398032 + 0.195800i
\(771\) 0 0
\(772\) 33.6917 + 15.1990i 1.21259 + 0.547025i
\(773\) 2.54413 + 1.46885i 0.0915059 + 0.0528310i 0.545055 0.838400i \(-0.316509\pi\)
−0.453549 + 0.891231i \(0.649842\pi\)
\(774\) 0 0
\(775\) 27.9728 16.1501i 1.00481 0.580128i
\(776\) −5.05140 + 6.84613i −0.181335 + 0.245762i
\(777\) 0 0
\(778\) 6.82830 + 21.1921i 0.244806 + 0.759773i
\(779\) −4.52315 7.83433i −0.162059 0.280694i
\(780\) 0 0
\(781\) −20.8086 + 36.0416i −0.744592 + 1.28967i
\(782\) −0.792432 + 0.875754i −0.0283373 + 0.0313169i
\(783\) 0 0
\(784\) −23.7727 14.7938i −0.849026 0.528351i
\(785\) 6.24652i 0.222948i
\(786\) 0 0
\(787\) 34.7966 + 20.0898i 1.24037 + 0.716125i 0.969169 0.246399i \(-0.0792472\pi\)
0.271197 + 0.962524i \(0.412581\pi\)
\(788\) 17.7433 1.77692i 0.632077 0.0633001i
\(789\) 0 0
\(790\) −4.48529 + 1.44520i −0.159580 + 0.0514181i
\(791\) −11.7930 + 29.6859i −0.419312 + 1.05551i
\(792\) 0 0
\(793\) −0.979135 1.69591i −0.0347701 0.0602236i
\(794\) 2.93355 13.6367i 0.104108 0.483948i
\(795\) 0 0
\(796\) −5.77789 + 12.8079i −0.204792 + 0.453962i
\(797\) 37.9519i 1.34433i −0.740403 0.672164i \(-0.765365\pi\)
0.740403 0.672164i \(-0.234635\pi\)
\(798\) 0 0
\(799\) 35.5490i 1.25763i
\(800\) −23.1522 + 12.9909i −0.818553 + 0.459298i
\(801\) 0 0
\(802\) −36.3223 7.81373i −1.28259 0.275912i
\(803\) 37.3477 + 64.6882i 1.31797 + 2.28280i
\(804\) 0 0
\(805\) −0.264547 0.334565i −0.00932404 0.0117919i
\(806\) 9.55893 + 29.6668i 0.336699 + 1.04497i
\(807\) 0 0
\(808\) 45.8805 20.0240i 1.61407 0.704442i
\(809\) −19.6636 11.3528i −0.691337 0.399144i 0.112776 0.993620i \(-0.464026\pi\)
−0.804113 + 0.594477i \(0.797359\pi\)
\(810\) 0 0
\(811\) 49.7833i 1.74813i 0.485810 + 0.874064i \(0.338525\pi\)
−0.485810 + 0.874064i \(0.661475\pi\)
\(812\) 21.0411 + 6.01241i 0.738399 + 0.210994i
\(813\) 0 0
\(814\) 14.9751 + 13.5503i 0.524877 + 0.474938i
\(815\) 3.98228 6.89752i 0.139493 0.241609i
\(816\) 0 0
\(817\) −16.5104 28.5968i −0.577626 1.00048i
\(818\) −33.1153 + 10.6701i −1.15785 + 0.373070i
\(819\) 0 0
\(820\) 2.04952 1.47375i 0.0715722 0.0514656i
\(821\) −18.0237 + 10.4060i −0.629033 + 0.363172i −0.780377 0.625309i \(-0.784973\pi\)
0.151345 + 0.988481i \(0.451640\pi\)
\(822\) 0 0
\(823\) −6.19964 3.57936i −0.216106 0.124769i 0.388040 0.921643i \(-0.373152\pi\)
−0.604146 + 0.796874i \(0.706486\pi\)
\(824\) 1.46712 13.0352i 0.0511096 0.454102i
\(825\) 0 0
\(826\) 46.6426 + 3.10332i 1.62290 + 0.107978i
\(827\) 41.7124 1.45048 0.725241 0.688495i \(-0.241728\pi\)
0.725241 + 0.688495i \(0.241728\pi\)
\(828\) 0 0
\(829\) −16.5508 + 28.6668i −0.574832 + 0.995638i 0.421228 + 0.906955i \(0.361599\pi\)
−0.996060 + 0.0886830i \(0.971734\pi\)
\(830\) −0.517379 0.111300i −0.0179585 0.00386327i
\(831\) 0 0
\(832\) −7.55691 24.4780i −0.261989 0.848622i
\(833\) −5.76270 19.2470i −0.199666 0.666869i
\(834\) 0 0
\(835\) 3.57535 2.06423i 0.123730 0.0714356i
\(836\) 46.9211 4.69897i 1.62280 0.162517i
\(837\) 0 0
\(838\) −23.2142 21.0055i −0.801921 0.725623i
\(839\) −2.73750 −0.0945091 −0.0472545 0.998883i \(-0.515047\pi\)
−0.0472545 + 0.998883i \(0.515047\pi\)
\(840\) 0 0
\(841\) 11.8972 0.410249
\(842\) −6.73821 6.09711i −0.232214 0.210120i
\(843\) 0 0
\(844\) 21.1987 2.12297i 0.729689 0.0730755i
\(845\) 1.31739 0.760597i 0.0453197 0.0261653i
\(846\) 0 0
\(847\) −9.30184 63.4975i −0.319615 2.18180i
\(848\) 18.4528 + 6.19653i 0.633673 + 0.212790i
\(849\) 0 0
\(850\) −18.6232 4.00625i −0.638769 0.137413i
\(851\) −0.349900 + 0.606045i −0.0119944 + 0.0207750i
\(852\) 0 0
\(853\) −20.9013 −0.715647 −0.357824 0.933789i \(-0.616481\pi\)
−0.357824 + 0.933789i \(0.616481\pi\)
\(854\) −1.27310 + 1.90126i −0.0435645 + 0.0650599i
\(855\) 0 0
\(856\) 19.0836 + 2.14788i 0.652263 + 0.0734129i
\(857\) 29.1110 + 16.8073i 0.994413 + 0.574125i 0.906591 0.422011i \(-0.138676\pi\)
0.0878229 + 0.996136i \(0.472009\pi\)
\(858\) 0 0
\(859\) 38.3404 22.1358i 1.30816 0.755265i 0.326369 0.945243i \(-0.394175\pi\)
0.981788 + 0.189978i \(0.0608416\pi\)
\(860\) 7.48114 5.37948i 0.255105 0.183439i
\(861\) 0 0
\(862\) −40.3693 + 13.0074i −1.37499 + 0.443033i
\(863\) 7.62621 + 13.2090i 0.259599 + 0.449639i 0.966135 0.258039i \(-0.0830763\pi\)
−0.706535 + 0.707678i \(0.749743\pi\)
\(864\) 0 0
\(865\) −4.15673 + 7.19966i −0.141333 + 0.244796i
\(866\) −35.2395 31.8867i −1.19749 1.08355i
\(867\) 0 0
\(868\) 26.1743 25.3230i 0.888415 0.859520i
\(869\) 35.7108i 1.21141i
\(870\) 0 0
\(871\) 11.8543 + 6.84406i 0.401666 + 0.231902i
\(872\) 14.6818 + 33.6401i 0.497189 + 1.13920i
\(873\) 0 0
\(874\) 0.501120 + 1.55526i 0.0169506 + 0.0526075i
\(875\) 5.24573 13.2048i 0.177338 0.446403i
\(876\) 0 0
\(877\) 17.3837 + 30.1095i 0.587006 + 1.01672i 0.994622 + 0.103571i \(0.0330269\pi\)
−0.407616 + 0.913153i \(0.633640\pi\)
\(878\) 15.7015 + 3.37773i 0.529899 + 0.113993i
\(879\) 0 0
\(880\) 2.60944 + 12.8975i 0.0879643 + 0.434775i
\(881\) 32.5275i 1.09588i 0.836518 + 0.547940i \(0.184588\pi\)
−0.836518 + 0.547940i \(0.815412\pi\)
\(882\) 0 0
\(883\) 15.6505i 0.526682i 0.964703 + 0.263341i \(0.0848244\pi\)
−0.964703 + 0.263341i \(0.915176\pi\)
\(884\) 7.55892 16.7559i 0.254234 0.563561i
\(885\) 0 0
\(886\) 8.41517 39.1181i 0.282713 1.31420i
\(887\) 24.5362 + 42.4979i 0.823844 + 1.42694i 0.902800 + 0.430061i \(0.141508\pi\)
−0.0789562 + 0.996878i \(0.525159\pi\)
\(888\) 0 0
\(889\) 18.6247 46.8830i 0.624654 1.57241i
\(890\) 9.60565 3.09503i 0.321982 0.103746i
\(891\) 0 0
\(892\) −0.965600 + 0.0967010i −0.0323307 + 0.00323779i
\(893\) −42.5931 24.5912i −1.42533 0.822912i
\(894\) 0 0
\(895\) 3.71786i 0.124274i
\(896\) −21.7666 + 20.5478i −0.727172 + 0.686455i
\(897\) 0 0
\(898\) 27.9912 30.9345i 0.934080 1.03230i
\(899\) −14.2316 + 24.6499i −0.474651 + 0.822119i
\(900\) 0 0
\(901\) 6.98365 + 12.0960i 0.232659 + 0.402977i
\(902\) 5.86682 + 18.2081i 0.195344 + 0.606263i
\(903\) 0 0
\(904\) 27.4779 + 20.2745i 0.913902 + 0.674321i
\(905\) −2.73385 + 1.57839i −0.0908762 + 0.0524674i
\(906\) 0 0
\(907\) −21.3280 12.3137i −0.708184 0.408870i 0.102204 0.994763i \(-0.467411\pi\)
−0.810388 + 0.585893i \(0.800744\pi\)
\(908\) 29.3603 + 13.2450i 0.974355 + 0.439552i
\(909\) 0 0
\(910\) 5.51595 + 3.69351i 0.182852 + 0.122439i
\(911\) −35.3866 −1.17241 −0.586205 0.810163i \(-0.699379\pi\)
−0.586205 + 0.810163i \(0.699379\pi\)
\(912\) 0 0
\(913\) 2.00522 3.47314i 0.0663631 0.114944i
\(914\) 0.851905 3.96010i 0.0281785 0.130989i
\(915\) 0 0
\(916\) −22.6825 + 16.3104i −0.749450 + 0.538909i
\(917\) 0.724958 + 4.94881i 0.0239402 + 0.163424i
\(918\) 0 0
\(919\) −10.4726 + 6.04637i −0.345460 + 0.199451i −0.662684 0.748899i \(-0.730583\pi\)
0.317224 + 0.948351i \(0.397249\pi\)
\(920\) −0.417901 + 0.182388i −0.0137778 + 0.00601316i
\(921\) 0 0
\(922\) −20.0569 + 22.1659i −0.660540 + 0.729994i
\(923\) 22.4446 0.738773
\(924\) 0 0
\(925\) −11.2871 −0.371116
\(926\) 37.2387 41.1543i 1.22374 1.35241i
\(927\) 0 0
\(928\) 11.9447 20.1150i 0.392105 0.660307i
\(929\) 11.1624 6.44460i 0.366226 0.211441i −0.305583 0.952166i \(-0.598851\pi\)
0.671808 + 0.740725i \(0.265518\pi\)
\(930\) 0 0
\(931\) −27.0472 6.40959i −0.886437 0.210066i
\(932\) 24.8253 + 34.5241i 0.813181 + 1.13087i
\(933\) 0 0
\(934\) −8.74378 + 40.6457i −0.286105 + 1.32997i
\(935\) −4.72102 + 8.17704i −0.154394 + 0.267418i
\(936\) 0 0
\(937\) −9.49179 −0.310083 −0.155042 0.987908i \(-0.549551\pi\)
−0.155042 + 0.987908i \(0.549551\pi\)
\(938\) 1.06179 15.9586i 0.0346686 0.521066i
\(939\) 0 0
\(940\) 5.64364 12.5103i 0.184075 0.408040i
\(941\) 22.6714 + 13.0893i 0.739067 + 0.426700i 0.821730 0.569877i \(-0.193009\pi\)
−0.0826632 + 0.996578i \(0.526343\pi\)
\(942\) 0 0
\(943\) −0.574064 + 0.331436i −0.0186941 + 0.0107930i
\(944\) 15.9082 47.3736i 0.517769 1.54188i
\(945\) 0 0
\(946\) 21.4150 + 66.4631i 0.696263 + 2.16090i
\(947\) −16.4945 28.5693i −0.536000 0.928379i −0.999114 0.0420801i \(-0.986602\pi\)
0.463115 0.886298i \(-0.346732\pi\)
\(948\) 0 0
\(949\) 20.1420 34.8870i 0.653837 1.13248i
\(950\) −17.6827 + 19.5421i −0.573704 + 0.634028i
\(951\) 0 0
\(952\) −21.4664 + 0.716756i −0.695731 + 0.0232302i
\(953\) 35.8953i 1.16276i 0.813631 + 0.581382i \(0.197488\pi\)
−0.813631 + 0.581382i \(0.802512\pi\)
\(954\) 0 0
\(955\) 1.93698 + 1.11831i 0.0626791 + 0.0361878i
\(956\) −2.76136 27.5733i −0.0893088 0.891786i
\(957\) 0 0
\(958\) −26.4295 + 8.51584i −0.853898 + 0.275134i
\(959\) −32.0418 40.5224i −1.03468 1.30854i
\(960\) 0 0
\(961\) 8.18487 + 14.1766i 0.264028 + 0.457310i
\(962\) 2.29064 10.6481i 0.0738533 0.343309i
\(963\) 0 0
\(964\) 15.7231 + 7.09302i 0.506407 + 0.228451i
\(965\) 10.2391i 0.329607i
\(966\) 0 0
\(967\) 16.1841i 0.520444i −0.965549 0.260222i \(-0.916204\pi\)
0.965549 0.260222i \(-0.0837958\pi\)
\(968\) −68.1758 7.67326i −2.19125 0.246628i
\(969\) 0 0
\(970\) −2.30418 0.495679i −0.0739827 0.0159153i
\(971\) −10.2868 17.8172i −0.330118 0.571781i 0.652417 0.757861i \(-0.273755\pi\)
−0.982535 + 0.186079i \(0.940422\pi\)
\(972\) 0 0
\(973\) 15.9377 40.1191i 0.510939 1.28616i
\(974\) 0.399801 + 1.24081i 0.0128105 + 0.0397581i
\(975\) 0 0
\(976\) 1.61886 + 1.83380i 0.0518184 + 0.0586984i
\(977\) 21.0179 + 12.1347i 0.672421 + 0.388222i 0.796993 0.603988i \(-0.206423\pi\)
−0.124572 + 0.992211i \(0.539756\pi\)
\(978\) 0 0
\(979\) 76.4778i 2.44424i
\(980\) 1.02760 7.68820i 0.0328255 0.245591i
\(981\) 0 0
\(982\) 32.7575 + 29.6409i 1.04534 + 0.945878i
\(983\) −7.34094 + 12.7149i −0.234140 + 0.405542i −0.959022 0.283331i \(-0.908561\pi\)
0.724883 + 0.688872i \(0.241894\pi\)
\(984\) 0 0
\(985\) 2.46992 + 4.27802i 0.0786980 + 0.136309i
\(986\) 15.9774 5.14808i 0.508825 0.163948i
\(987\) 0 0
\(988\) −14.8472 20.6477i −0.472352 0.656891i
\(989\) −2.09545 + 1.20981i −0.0666313 + 0.0384696i
\(990\) 0 0
\(991\) 23.6167 + 13.6351i 0.750209 + 0.433133i 0.825769 0.564008i \(-0.190741\pi\)
−0.0755605 + 0.997141i \(0.524075\pi\)
\(992\) −19.0518 33.9538i −0.604895 1.07803i
\(993\) 0 0
\(994\) −11.5760 23.5322i −0.367168 0.746397i
\(995\) −3.89236 −0.123396
\(996\) 0 0
\(997\) −13.4820 + 23.3515i −0.426979 + 0.739550i −0.996603 0.0823557i \(-0.973756\pi\)
0.569624 + 0.821906i \(0.307089\pi\)
\(998\) −19.4767 4.18987i −0.616525 0.132628i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.be.c.431.3 yes 28
3.2 odd 2 inner 756.2.be.c.431.12 yes 28
4.3 odd 2 756.2.be.d.431.8 yes 28
7.2 even 3 756.2.be.d.107.7 yes 28
12.11 even 2 756.2.be.d.431.7 yes 28
21.2 odd 6 756.2.be.d.107.8 yes 28
28.23 odd 6 inner 756.2.be.c.107.12 yes 28
84.23 even 6 inner 756.2.be.c.107.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.be.c.107.3 28 84.23 even 6 inner
756.2.be.c.107.12 yes 28 28.23 odd 6 inner
756.2.be.c.431.3 yes 28 1.1 even 1 trivial
756.2.be.c.431.12 yes 28 3.2 odd 2 inner
756.2.be.d.107.7 yes 28 7.2 even 3
756.2.be.d.107.8 yes 28 21.2 odd 6
756.2.be.d.431.7 yes 28 12.11 even 2
756.2.be.d.431.8 yes 28 4.3 odd 2