Properties

Label 756.2.be.c.107.13
Level $756$
Weight $2$
Character 756.107
Analytic conductor $6.037$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(107,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-4,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.13
Character \(\chi\) \(=\) 756.107
Dual form 756.2.be.c.431.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38410 + 0.290278i) q^{2} +(1.83148 + 0.803549i) q^{4} +(-2.75822 - 1.59246i) q^{5} +(-0.944233 + 2.47152i) q^{7} +(2.30170 + 1.64383i) q^{8} +(-3.35540 - 3.00478i) q^{10} +(1.24831 + 2.16213i) q^{11} +6.61093 q^{13} +(-2.02434 + 3.14675i) q^{14} +(2.70862 + 2.94336i) q^{16} +(2.67612 - 1.54506i) q^{17} +(4.40292 + 2.54203i) q^{19} +(-3.77200 - 5.13292i) q^{20} +(1.10017 + 3.35497i) q^{22} +(-2.53877 + 4.39728i) q^{23} +(2.57186 + 4.45459i) q^{25} +(9.15020 + 1.91901i) q^{26} +(-3.71533 + 3.76780i) q^{28} +1.59554i q^{29} +(-7.31098 + 4.22099i) q^{31} +(2.89461 + 4.86017i) q^{32} +(4.15252 - 1.36170i) q^{34} +(6.54021 - 5.31335i) q^{35} +(-0.357491 + 0.619192i) q^{37} +(5.35619 + 4.79649i) q^{38} +(-3.73086 - 8.19942i) q^{40} -12.2607i q^{41} -3.72407i q^{43} +(0.548869 + 4.96297i) q^{44} +(-4.79036 + 5.34934i) q^{46} +(2.51371 - 4.35388i) q^{47} +(-5.21685 - 4.66739i) q^{49} +(2.26665 + 6.91216i) q^{50} +(12.1078 + 5.31220i) q^{52} +(-7.21991 + 4.16842i) q^{53} -7.95152i q^{55} +(-6.23611 + 4.13654i) q^{56} +(-0.463151 + 2.20840i) q^{58} +(-5.36835 - 9.29825i) q^{59} +(0.997571 - 1.72784i) q^{61} +(-11.3444 + 3.72007i) q^{62} +(2.59564 + 7.56721i) q^{64} +(-18.2344 - 10.5276i) q^{65} +(-0.00277185 + 0.00160033i) q^{67} +(6.14278 - 0.679346i) q^{68} +(10.5947 - 5.45575i) q^{70} +12.4088 q^{71} +(0.957657 + 1.65871i) q^{73} +(-0.674541 + 0.753253i) q^{74} +(6.02120 + 8.19362i) q^{76} +(-6.52245 + 1.04366i) q^{77} +(6.11304 + 3.52937i) q^{79} +(-2.78378 - 12.4318i) q^{80} +(3.55901 - 16.9701i) q^{82} -7.93317 q^{83} -9.84177 q^{85} +(1.08102 - 5.15449i) q^{86} +(-0.680951 + 7.02859i) q^{88} +(-0.482940 - 0.278825i) q^{89} +(-6.24226 + 16.3391i) q^{91} +(-8.18314 + 6.01350i) q^{92} +(4.74307 - 5.29653i) q^{94} +(-8.09615 - 14.0229i) q^{95} +0.127151 q^{97} +(-5.86581 - 7.97448i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{4} - 2 q^{7} - 20 q^{10} + 8 q^{13} + 12 q^{16} + 42 q^{19} + 4 q^{22} + 6 q^{25} - 28 q^{28} - 30 q^{31} + 24 q^{34} + 12 q^{37} + 36 q^{40} - 12 q^{46} - 14 q^{49} + 84 q^{52} + 28 q^{58}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38410 + 0.290278i 0.978708 + 0.205258i
\(3\) 0 0
\(4\) 1.83148 + 0.803549i 0.915739 + 0.401774i
\(5\) −2.75822 1.59246i −1.23351 0.712170i −0.265754 0.964041i \(-0.585621\pi\)
−0.967761 + 0.251871i \(0.918954\pi\)
\(6\) 0 0
\(7\) −0.944233 + 2.47152i −0.356887 + 0.934148i
\(8\) 2.30170 + 1.64383i 0.813774 + 0.581182i
\(9\) 0 0
\(10\) −3.35540 3.00478i −1.06107 0.950194i
\(11\) 1.24831 + 2.16213i 0.376379 + 0.651907i 0.990532 0.137279i \(-0.0438357\pi\)
−0.614153 + 0.789187i \(0.710502\pi\)
\(12\) 0 0
\(13\) 6.61093 1.83354 0.916771 0.399414i \(-0.130786\pi\)
0.916771 + 0.399414i \(0.130786\pi\)
\(14\) −2.02434 + 3.14675i −0.541029 + 0.841004i
\(15\) 0 0
\(16\) 2.70862 + 2.94336i 0.677155 + 0.735841i
\(17\) 2.67612 1.54506i 0.649054 0.374731i −0.139040 0.990287i \(-0.544402\pi\)
0.788094 + 0.615555i \(0.211068\pi\)
\(18\) 0 0
\(19\) 4.40292 + 2.54203i 1.01010 + 0.583181i 0.911220 0.411919i \(-0.135141\pi\)
0.0988779 + 0.995100i \(0.468475\pi\)
\(20\) −3.77200 5.13292i −0.843445 1.14776i
\(21\) 0 0
\(22\) 1.10017 + 3.35497i 0.234556 + 0.715282i
\(23\) −2.53877 + 4.39728i −0.529371 + 0.916897i 0.470042 + 0.882644i \(0.344239\pi\)
−0.999413 + 0.0342533i \(0.989095\pi\)
\(24\) 0 0
\(25\) 2.57186 + 4.45459i 0.514372 + 0.890918i
\(26\) 9.15020 + 1.91901i 1.79450 + 0.376348i
\(27\) 0 0
\(28\) −3.71533 + 3.76780i −0.702131 + 0.712047i
\(29\) 1.59554i 0.296285i 0.988966 + 0.148143i \(0.0473294\pi\)
−0.988966 + 0.148143i \(0.952671\pi\)
\(30\) 0 0
\(31\) −7.31098 + 4.22099i −1.31309 + 0.758113i −0.982607 0.185699i \(-0.940545\pi\)
−0.330483 + 0.943812i \(0.607212\pi\)
\(32\) 2.89461 + 4.86017i 0.511700 + 0.859164i
\(33\) 0 0
\(34\) 4.15252 1.36170i 0.712151 0.233529i
\(35\) 6.54021 5.31335i 1.10550 0.898121i
\(36\) 0 0
\(37\) −0.357491 + 0.619192i −0.0587711 + 0.101795i −0.893914 0.448238i \(-0.852052\pi\)
0.835143 + 0.550033i \(0.185385\pi\)
\(38\) 5.35619 + 4.79649i 0.868889 + 0.778094i
\(39\) 0 0
\(40\) −3.73086 8.19942i −0.589901 1.29644i
\(41\) 12.2607i 1.91480i −0.288763 0.957401i \(-0.593244\pi\)
0.288763 0.957401i \(-0.406756\pi\)
\(42\) 0 0
\(43\) 3.72407i 0.567915i −0.958837 0.283958i \(-0.908352\pi\)
0.958837 0.283958i \(-0.0916475\pi\)
\(44\) 0.548869 + 4.96297i 0.0827451 + 0.748196i
\(45\) 0 0
\(46\) −4.79036 + 5.34934i −0.706300 + 0.788717i
\(47\) 2.51371 4.35388i 0.366663 0.635078i −0.622379 0.782716i \(-0.713834\pi\)
0.989041 + 0.147638i \(0.0471670\pi\)
\(48\) 0 0
\(49\) −5.21685 4.66739i −0.745264 0.666770i
\(50\) 2.26665 + 6.91216i 0.320552 + 0.977527i
\(51\) 0 0
\(52\) 12.1078 + 5.31220i 1.67904 + 0.736670i
\(53\) −7.21991 + 4.16842i −0.991732 + 0.572576i −0.905791 0.423724i \(-0.860723\pi\)
−0.0859401 + 0.996300i \(0.527389\pi\)
\(54\) 0 0
\(55\) 7.95152i 1.07218i
\(56\) −6.23611 + 4.13654i −0.833335 + 0.552769i
\(57\) 0 0
\(58\) −0.463151 + 2.20840i −0.0608147 + 0.289977i
\(59\) −5.36835 9.29825i −0.698899 1.21053i −0.968848 0.247654i \(-0.920340\pi\)
0.269949 0.962875i \(-0.412993\pi\)
\(60\) 0 0
\(61\) 0.997571 1.72784i 0.127726 0.221228i −0.795069 0.606519i \(-0.792566\pi\)
0.922795 + 0.385291i \(0.125899\pi\)
\(62\) −11.3444 + 3.72007i −1.44074 + 0.472450i
\(63\) 0 0
\(64\) 2.59564 + 7.56721i 0.324455 + 0.945901i
\(65\) −18.2344 10.5276i −2.26170 1.30579i
\(66\) 0 0
\(67\) −0.00277185 + 0.00160033i −0.000338635 + 0.000195511i −0.500169 0.865928i \(-0.666729\pi\)
0.499831 + 0.866123i \(0.333396\pi\)
\(68\) 6.14278 0.679346i 0.744921 0.0823828i
\(69\) 0 0
\(70\) 10.5947 5.45575i 1.26630 0.652086i
\(71\) 12.4088 1.47265 0.736324 0.676629i \(-0.236560\pi\)
0.736324 + 0.676629i \(0.236560\pi\)
\(72\) 0 0
\(73\) 0.957657 + 1.65871i 0.112085 + 0.194137i 0.916611 0.399781i \(-0.130914\pi\)
−0.804526 + 0.593918i \(0.797580\pi\)
\(74\) −0.674541 + 0.753253i −0.0784139 + 0.0875639i
\(75\) 0 0
\(76\) 6.02120 + 8.19362i 0.690679 + 0.939873i
\(77\) −6.52245 + 1.04366i −0.743302 + 0.118936i
\(78\) 0 0
\(79\) 6.11304 + 3.52937i 0.687771 + 0.397085i 0.802776 0.596280i \(-0.203355\pi\)
−0.115005 + 0.993365i \(0.536689\pi\)
\(80\) −2.78378 12.4318i −0.311237 1.38992i
\(81\) 0 0
\(82\) 3.55901 16.9701i 0.393027 1.87403i
\(83\) −7.93317 −0.870778 −0.435389 0.900242i \(-0.643389\pi\)
−0.435389 + 0.900242i \(0.643389\pi\)
\(84\) 0 0
\(85\) −9.84177 −1.06749
\(86\) 1.08102 5.15449i 0.116569 0.555823i
\(87\) 0 0
\(88\) −0.680951 + 7.02859i −0.0725897 + 0.749250i
\(89\) −0.482940 0.278825i −0.0511915 0.0295554i 0.474186 0.880425i \(-0.342742\pi\)
−0.525377 + 0.850869i \(0.676076\pi\)
\(90\) 0 0
\(91\) −6.24226 + 16.3391i −0.654366 + 1.71280i
\(92\) −8.18314 + 6.01350i −0.853151 + 0.626951i
\(93\) 0 0
\(94\) 4.74307 5.29653i 0.489210 0.546296i
\(95\) −8.09615 14.0229i −0.830647 1.43872i
\(96\) 0 0
\(97\) 0.127151 0.0129103 0.00645513 0.999979i \(-0.497945\pi\)
0.00645513 + 0.999979i \(0.497945\pi\)
\(98\) −5.86581 7.97448i −0.592536 0.805544i
\(99\) 0 0
\(100\) 1.13082 + 10.2251i 0.113082 + 1.02251i
\(101\) −2.78771 + 1.60949i −0.277388 + 0.160150i −0.632240 0.774772i \(-0.717864\pi\)
0.354852 + 0.934922i \(0.384531\pi\)
\(102\) 0 0
\(103\) −1.60433 0.926260i −0.158079 0.0912671i 0.418874 0.908045i \(-0.362425\pi\)
−0.576953 + 0.816777i \(0.695758\pi\)
\(104\) 15.2164 + 10.8672i 1.49209 + 1.06562i
\(105\) 0 0
\(106\) −11.2031 + 3.67374i −1.08814 + 0.356825i
\(107\) −1.34472 + 2.32912i −0.129999 + 0.225165i −0.923676 0.383175i \(-0.874831\pi\)
0.793677 + 0.608340i \(0.208164\pi\)
\(108\) 0 0
\(109\) −1.16374 2.01566i −0.111466 0.193065i 0.804895 0.593417i \(-0.202221\pi\)
−0.916362 + 0.400352i \(0.868888\pi\)
\(110\) 2.30815 11.0057i 0.220074 1.04935i
\(111\) 0 0
\(112\) −9.83216 + 3.91519i −0.929051 + 0.369951i
\(113\) 3.19262i 0.300336i 0.988660 + 0.150168i \(0.0479815\pi\)
−0.988660 + 0.150168i \(0.952019\pi\)
\(114\) 0 0
\(115\) 14.0050 8.08579i 1.30597 0.754004i
\(116\) −1.28210 + 2.92220i −0.119040 + 0.271320i
\(117\) 0 0
\(118\) −4.73126 14.4280i −0.435548 1.32821i
\(119\) 1.29176 + 8.07298i 0.118416 + 0.740049i
\(120\) 0 0
\(121\) 2.38346 4.12827i 0.216678 0.375297i
\(122\) 1.88230 2.10194i 0.170415 0.190301i
\(123\) 0 0
\(124\) −16.7817 + 1.85593i −1.50704 + 0.166667i
\(125\) 0.457730i 0.0409406i
\(126\) 0 0
\(127\) 16.3682i 1.45244i −0.687463 0.726220i \(-0.741275\pi\)
0.687463 0.726220i \(-0.258725\pi\)
\(128\) 1.39604 + 11.2272i 0.123393 + 0.992358i
\(129\) 0 0
\(130\) −22.1823 19.8644i −1.94552 1.74222i
\(131\) −6.73046 + 11.6575i −0.588043 + 1.01852i 0.406445 + 0.913675i \(0.366768\pi\)
−0.994489 + 0.104845i \(0.966565\pi\)
\(132\) 0 0
\(133\) −10.4401 + 8.48164i −0.905267 + 0.735452i
\(134\) −0.00430106 + 0.00141041i −0.000371555 + 0.000121841i
\(135\) 0 0
\(136\) 8.69943 + 0.842828i 0.745970 + 0.0722719i
\(137\) 17.8601 10.3115i 1.52589 0.880974i 0.526363 0.850260i \(-0.323555\pi\)
0.999528 0.0307143i \(-0.00977821\pi\)
\(138\) 0 0
\(139\) 1.68786i 0.143163i −0.997435 0.0715813i \(-0.977195\pi\)
0.997435 0.0715813i \(-0.0228045\pi\)
\(140\) 16.2478 4.47591i 1.37319 0.378284i
\(141\) 0 0
\(142\) 17.1750 + 3.60199i 1.44129 + 0.302272i
\(143\) 8.25247 + 14.2937i 0.690106 + 1.19530i
\(144\) 0 0
\(145\) 2.54084 4.40086i 0.211005 0.365472i
\(146\) 0.844008 + 2.57381i 0.0698506 + 0.213010i
\(147\) 0 0
\(148\) −1.15229 + 0.846775i −0.0947174 + 0.0696045i
\(149\) 1.78690 + 1.03167i 0.146389 + 0.0845175i 0.571405 0.820668i \(-0.306398\pi\)
−0.425017 + 0.905186i \(0.639732\pi\)
\(150\) 0 0
\(151\) 3.42476 1.97728i 0.278703 0.160909i −0.354133 0.935195i \(-0.615224\pi\)
0.632836 + 0.774286i \(0.281891\pi\)
\(152\) 5.95553 + 13.0886i 0.483057 + 1.06163i
\(153\) 0 0
\(154\) −9.33069 0.448788i −0.751889 0.0361643i
\(155\) 26.8871 2.15962
\(156\) 0 0
\(157\) 0.964497 + 1.67056i 0.0769753 + 0.133325i 0.901944 0.431854i \(-0.142140\pi\)
−0.824968 + 0.565179i \(0.808807\pi\)
\(158\) 7.43658 + 6.65949i 0.591622 + 0.529800i
\(159\) 0 0
\(160\) −0.244360 18.0150i −0.0193183 1.42421i
\(161\) −8.47079 10.4267i −0.667592 0.821739i
\(162\) 0 0
\(163\) −3.87357 2.23640i −0.303401 0.175169i 0.340569 0.940220i \(-0.389380\pi\)
−0.643970 + 0.765051i \(0.722714\pi\)
\(164\) 9.85208 22.4552i 0.769318 1.75346i
\(165\) 0 0
\(166\) −10.9803 2.30282i −0.852237 0.178734i
\(167\) −10.5654 −0.817573 −0.408787 0.912630i \(-0.634048\pi\)
−0.408787 + 0.912630i \(0.634048\pi\)
\(168\) 0 0
\(169\) 30.7044 2.36187
\(170\) −13.6220 2.85685i −1.04476 0.219110i
\(171\) 0 0
\(172\) 2.99247 6.82055i 0.228174 0.520062i
\(173\) 0.942299 + 0.544036i 0.0716417 + 0.0413623i 0.535393 0.844603i \(-0.320164\pi\)
−0.463751 + 0.885965i \(0.653497\pi\)
\(174\) 0 0
\(175\) −13.4381 + 2.15023i −1.01582 + 0.162542i
\(176\) −2.98275 + 9.53061i −0.224833 + 0.718397i
\(177\) 0 0
\(178\) −0.587501 0.526109i −0.0440350 0.0394336i
\(179\) −7.75422 13.4307i −0.579578 1.00386i −0.995528 0.0944707i \(-0.969884\pi\)
0.415950 0.909388i \(-0.363449\pi\)
\(180\) 0 0
\(181\) −6.30027 −0.468295 −0.234148 0.972201i \(-0.575230\pi\)
−0.234148 + 0.972201i \(0.575230\pi\)
\(182\) −13.3828 + 20.8029i −0.991998 + 1.54202i
\(183\) 0 0
\(184\) −13.0719 + 5.94791i −0.963672 + 0.438486i
\(185\) 1.97208 1.13858i 0.144990 0.0837100i
\(186\) 0 0
\(187\) 6.68124 + 3.85741i 0.488580 + 0.282082i
\(188\) 8.10236 5.95414i 0.590925 0.434250i
\(189\) 0 0
\(190\) −7.13535 21.7593i −0.517652 1.57859i
\(191\) 7.84498 13.5879i 0.567643 0.983186i −0.429156 0.903231i \(-0.641189\pi\)
0.996798 0.0799556i \(-0.0254779\pi\)
\(192\) 0 0
\(193\) −9.09152 15.7470i −0.654422 1.13349i −0.982038 0.188681i \(-0.939579\pi\)
0.327617 0.944811i \(-0.393755\pi\)
\(194\) 0.175990 + 0.0369092i 0.0126354 + 0.00264993i
\(195\) 0 0
\(196\) −5.80406 12.7402i −0.414576 0.910015i
\(197\) 15.1305i 1.07801i 0.842304 + 0.539003i \(0.181199\pi\)
−0.842304 + 0.539003i \(0.818801\pi\)
\(198\) 0 0
\(199\) −12.7163 + 7.34175i −0.901434 + 0.520443i −0.877665 0.479275i \(-0.840900\pi\)
−0.0237685 + 0.999717i \(0.507566\pi\)
\(200\) −1.40295 + 14.4808i −0.0992034 + 1.02395i
\(201\) 0 0
\(202\) −4.32568 + 1.41848i −0.304354 + 0.0998041i
\(203\) −3.94342 1.50657i −0.276774 0.105740i
\(204\) 0 0
\(205\) −19.5247 + 33.8178i −1.36366 + 2.36193i
\(206\) −1.95168 1.74774i −0.135980 0.121771i
\(207\) 0 0
\(208\) 17.9065 + 19.4584i 1.24159 + 1.34919i
\(209\) 12.6929i 0.877988i
\(210\) 0 0
\(211\) 12.6913i 0.873707i −0.899533 0.436853i \(-0.856093\pi\)
0.899533 0.436853i \(-0.143907\pi\)
\(212\) −16.5726 + 1.83281i −1.13821 + 0.125878i
\(213\) 0 0
\(214\) −2.53732 + 2.83340i −0.173448 + 0.193687i
\(215\) −5.93043 + 10.2718i −0.404452 + 0.700532i
\(216\) 0 0
\(217\) −3.52901 22.0548i −0.239565 1.49718i
\(218\) −1.02564 3.12769i −0.0694648 0.211834i
\(219\) 0 0
\(220\) 6.38943 14.5630i 0.430776 0.981839i
\(221\) 17.6916 10.2143i 1.19007 0.687086i
\(222\) 0 0
\(223\) 26.9731i 1.80625i −0.429377 0.903125i \(-0.641267\pi\)
0.429377 0.903125i \(-0.358733\pi\)
\(224\) −14.7452 + 2.56497i −0.985205 + 0.171379i
\(225\) 0 0
\(226\) −0.926747 + 4.41891i −0.0616463 + 0.293941i
\(227\) 10.4418 + 18.0857i 0.693045 + 1.20039i 0.970835 + 0.239748i \(0.0770648\pi\)
−0.277790 + 0.960642i \(0.589602\pi\)
\(228\) 0 0
\(229\) −10.3698 + 17.9611i −0.685258 + 1.18690i 0.288097 + 0.957601i \(0.406977\pi\)
−0.973356 + 0.229301i \(0.926356\pi\)
\(230\) 21.7315 7.12622i 1.43293 0.469889i
\(231\) 0 0
\(232\) −2.62280 + 3.67246i −0.172196 + 0.241109i
\(233\) 14.4007 + 8.31426i 0.943422 + 0.544685i 0.891031 0.453942i \(-0.149983\pi\)
0.0523907 + 0.998627i \(0.483316\pi\)
\(234\) 0 0
\(235\) −13.8668 + 8.00597i −0.904567 + 0.522252i
\(236\) −2.36041 21.3433i −0.153650 1.38933i
\(237\) 0 0
\(238\) −0.555474 + 11.5488i −0.0360060 + 0.748597i
\(239\) −20.5645 −1.33021 −0.665104 0.746751i \(-0.731613\pi\)
−0.665104 + 0.746751i \(0.731613\pi\)
\(240\) 0 0
\(241\) −11.2591 19.5013i −0.725262 1.25619i −0.958866 0.283859i \(-0.908385\pi\)
0.233604 0.972332i \(-0.424948\pi\)
\(242\) 4.49729 5.02208i 0.289097 0.322831i
\(243\) 0 0
\(244\) 3.21544 2.36291i 0.205847 0.151270i
\(245\) 6.95659 + 21.1813i 0.444440 + 1.35322i
\(246\) 0 0
\(247\) 29.1074 + 16.8051i 1.85206 + 1.06929i
\(248\) −23.7663 2.30255i −1.50916 0.146212i
\(249\) 0 0
\(250\) 0.132869 0.633545i 0.00840336 0.0400689i
\(251\) 5.03762 0.317972 0.158986 0.987281i \(-0.449178\pi\)
0.158986 + 0.987281i \(0.449178\pi\)
\(252\) 0 0
\(253\) −12.6767 −0.796976
\(254\) 4.75132 22.6552i 0.298124 1.42151i
\(255\) 0 0
\(256\) −1.32677 + 15.9449i −0.0829230 + 0.996556i
\(257\) 2.41622 + 1.39501i 0.150720 + 0.0870182i 0.573463 0.819231i \(-0.305600\pi\)
−0.422743 + 0.906249i \(0.638933\pi\)
\(258\) 0 0
\(259\) −1.19279 1.46821i −0.0741165 0.0912300i
\(260\) −24.9364 33.9334i −1.54649 2.10446i
\(261\) 0 0
\(262\) −12.6996 + 14.1815i −0.784582 + 0.876134i
\(263\) −14.2092 24.6110i −0.876176 1.51758i −0.855504 0.517796i \(-0.826753\pi\)
−0.0206722 0.999786i \(-0.506581\pi\)
\(264\) 0 0
\(265\) 26.5522 1.63109
\(266\) −16.9121 + 8.70894i −1.03695 + 0.533980i
\(267\) 0 0
\(268\) −0.00636252 0.000703648i −0.000388653 4.29822e-5i
\(269\) 6.30707 3.64139i 0.384549 0.222019i −0.295247 0.955421i \(-0.595402\pi\)
0.679796 + 0.733402i \(0.262068\pi\)
\(270\) 0 0
\(271\) 3.46120 + 1.99832i 0.210253 + 0.121390i 0.601429 0.798926i \(-0.294598\pi\)
−0.391176 + 0.920316i \(0.627932\pi\)
\(272\) 11.7962 + 3.69181i 0.715252 + 0.223849i
\(273\) 0 0
\(274\) 27.7134 9.08782i 1.67423 0.549016i
\(275\) −6.42094 + 11.1214i −0.387197 + 0.670646i
\(276\) 0 0
\(277\) −9.96864 17.2662i −0.598958 1.03743i −0.992975 0.118322i \(-0.962248\pi\)
0.394018 0.919103i \(-0.371085\pi\)
\(278\) 0.489949 2.33617i 0.0293852 0.140114i
\(279\) 0 0
\(280\) 23.7878 1.47875i 1.42160 0.0883721i
\(281\) 13.3615i 0.797082i 0.917150 + 0.398541i \(0.130483\pi\)
−0.917150 + 0.398541i \(0.869517\pi\)
\(282\) 0 0
\(283\) 18.4457 10.6496i 1.09648 0.633054i 0.161187 0.986924i \(-0.448468\pi\)
0.935295 + 0.353870i \(0.115134\pi\)
\(284\) 22.7264 + 9.97104i 1.34856 + 0.591673i
\(285\) 0 0
\(286\) 7.27312 + 22.1795i 0.430068 + 1.31150i
\(287\) 30.3026 + 11.5770i 1.78871 + 0.683367i
\(288\) 0 0
\(289\) −3.72560 + 6.45293i −0.219153 + 0.379584i
\(290\) 4.79426 5.35370i 0.281528 0.314380i
\(291\) 0 0
\(292\) 0.421072 + 3.80741i 0.0246414 + 0.222812i
\(293\) 0.551006i 0.0321901i −0.999870 0.0160951i \(-0.994877\pi\)
0.999870 0.0160951i \(-0.00512344\pi\)
\(294\) 0 0
\(295\) 34.1955i 1.99094i
\(296\) −1.84068 + 0.837540i −0.106988 + 0.0486810i
\(297\) 0 0
\(298\) 2.17378 + 1.94663i 0.125924 + 0.112765i
\(299\) −16.7836 + 29.0701i −0.970623 + 1.68117i
\(300\) 0 0
\(301\) 9.20412 + 3.51639i 0.530517 + 0.202681i
\(302\) 5.31417 1.74263i 0.305796 0.100277i
\(303\) 0 0
\(304\) 4.44372 + 19.8448i 0.254865 + 1.13817i
\(305\) −5.50305 + 3.17719i −0.315104 + 0.181925i
\(306\) 0 0
\(307\) 3.49188i 0.199292i −0.995023 0.0996460i \(-0.968229\pi\)
0.995023 0.0996460i \(-0.0317710\pi\)
\(308\) −12.7844 3.32966i −0.728456 0.189725i
\(309\) 0 0
\(310\) 37.2144 + 7.80472i 2.11364 + 0.443278i
\(311\) −6.52568 11.3028i −0.370037 0.640924i 0.619533 0.784970i \(-0.287322\pi\)
−0.989571 + 0.144047i \(0.953988\pi\)
\(312\) 0 0
\(313\) 10.0472 17.4022i 0.567899 0.983630i −0.428875 0.903364i \(-0.641090\pi\)
0.996774 0.0802656i \(-0.0255768\pi\)
\(314\) 0.850036 + 2.59220i 0.0479703 + 0.146286i
\(315\) 0 0
\(316\) 8.35988 + 11.3761i 0.470280 + 0.639955i
\(317\) 18.4393 + 10.6459i 1.03565 + 0.597935i 0.918599 0.395190i \(-0.129321\pi\)
0.117055 + 0.993125i \(0.462655\pi\)
\(318\) 0 0
\(319\) −3.44978 + 1.99173i −0.193150 + 0.111515i
\(320\) 4.89113 25.0055i 0.273423 1.39785i
\(321\) 0 0
\(322\) −8.69780 16.8905i −0.484710 0.941271i
\(323\) 15.7103 0.874144
\(324\) 0 0
\(325\) 17.0024 + 29.4490i 0.943122 + 1.63354i
\(326\) −4.71223 4.21982i −0.260986 0.233714i
\(327\) 0 0
\(328\) 20.1545 28.2205i 1.11285 1.55821i
\(329\) 8.38717 + 10.3238i 0.462400 + 0.569168i
\(330\) 0 0
\(331\) −4.03493 2.32957i −0.221780 0.128045i 0.384994 0.922919i \(-0.374203\pi\)
−0.606774 + 0.794874i \(0.707537\pi\)
\(332\) −14.5294 6.37469i −0.797405 0.349856i
\(333\) 0 0
\(334\) −14.6236 3.06690i −0.800165 0.167813i
\(335\) 0.0101938 0.000556948
\(336\) 0 0
\(337\) −7.41763 −0.404064 −0.202032 0.979379i \(-0.564754\pi\)
−0.202032 + 0.979379i \(0.564754\pi\)
\(338\) 42.4980 + 8.91280i 2.31159 + 0.484793i
\(339\) 0 0
\(340\) −18.0250 7.90834i −0.977541 0.428890i
\(341\) −18.2527 10.5382i −0.988439 0.570675i
\(342\) 0 0
\(343\) 16.4615 8.48645i 0.888836 0.458225i
\(344\) 6.12174 8.57169i 0.330062 0.462154i
\(345\) 0 0
\(346\) 1.14632 + 1.02653i 0.0616263 + 0.0551866i
\(347\) −6.28113 10.8792i −0.337188 0.584028i 0.646714 0.762732i \(-0.276143\pi\)
−0.983903 + 0.178705i \(0.942809\pi\)
\(348\) 0 0
\(349\) −16.6865 −0.893208 −0.446604 0.894732i \(-0.647367\pi\)
−0.446604 + 0.894732i \(0.647367\pi\)
\(350\) −19.2238 0.924626i −1.02756 0.0494234i
\(351\) 0 0
\(352\) −6.89496 + 12.3255i −0.367502 + 0.656952i
\(353\) 9.31826 5.37990i 0.495961 0.286343i −0.231083 0.972934i \(-0.574227\pi\)
0.727044 + 0.686591i \(0.240894\pi\)
\(354\) 0 0
\(355\) −34.2261 19.7605i −1.81653 1.04878i
\(356\) −0.660443 0.898728i −0.0350034 0.0476325i
\(357\) 0 0
\(358\) −6.83400 20.8404i −0.361188 1.10145i
\(359\) −13.8374 + 23.9670i −0.730309 + 1.26493i 0.226442 + 0.974025i \(0.427291\pi\)
−0.956751 + 0.290908i \(0.906043\pi\)
\(360\) 0 0
\(361\) 3.42378 + 5.93017i 0.180199 + 0.312114i
\(362\) −8.72022 1.82883i −0.458324 0.0961212i
\(363\) 0 0
\(364\) −24.5618 + 24.9087i −1.28739 + 1.30557i
\(365\) 6.10012i 0.319295i
\(366\) 0 0
\(367\) 2.00186 1.15577i 0.104496 0.0603308i −0.446841 0.894613i \(-0.647451\pi\)
0.551337 + 0.834282i \(0.314118\pi\)
\(368\) −19.8194 + 4.43804i −1.03316 + 0.231349i
\(369\) 0 0
\(370\) 3.06006 1.00346i 0.159085 0.0521674i
\(371\) −3.48506 21.7801i −0.180935 1.13077i
\(372\) 0 0
\(373\) 4.61557 7.99441i 0.238985 0.413935i −0.721438 0.692479i \(-0.756519\pi\)
0.960423 + 0.278544i \(0.0898519\pi\)
\(374\) 8.12779 + 7.27847i 0.420278 + 0.376361i
\(375\) 0 0
\(376\) 12.9428 5.88920i 0.667476 0.303712i
\(377\) 10.5480i 0.543251i
\(378\) 0 0
\(379\) 9.38441i 0.482045i 0.970520 + 0.241022i \(0.0774827\pi\)
−0.970520 + 0.241022i \(0.922517\pi\)
\(380\) −3.55980 32.1883i −0.182614 1.65123i
\(381\) 0 0
\(382\) 14.8025 16.5298i 0.757363 0.845739i
\(383\) −5.31186 + 9.20042i −0.271424 + 0.470119i −0.969227 0.246170i \(-0.920828\pi\)
0.697803 + 0.716290i \(0.254161\pi\)
\(384\) 0 0
\(385\) 19.6524 + 7.50809i 1.00158 + 0.382648i
\(386\) −8.01259 24.4345i −0.407830 1.24368i
\(387\) 0 0
\(388\) 0.232875 + 0.102172i 0.0118224 + 0.00518701i
\(389\) −15.4666 + 8.92965i −0.784188 + 0.452751i −0.837912 0.545805i \(-0.816224\pi\)
0.0537245 + 0.998556i \(0.482891\pi\)
\(390\) 0 0
\(391\) 15.6902i 0.793487i
\(392\) −4.33522 19.3185i −0.218962 0.975733i
\(393\) 0 0
\(394\) −4.39206 + 20.9422i −0.221269 + 1.05505i
\(395\) −11.2408 19.4696i −0.565584 0.979620i
\(396\) 0 0
\(397\) 3.96912 6.87472i 0.199204 0.345032i −0.749066 0.662495i \(-0.769498\pi\)
0.948271 + 0.317463i \(0.102831\pi\)
\(398\) −19.7318 + 6.47047i −0.989065 + 0.324336i
\(399\) 0 0
\(400\) −6.14529 + 19.6357i −0.307264 + 0.981785i
\(401\) 5.23636 + 3.02322i 0.261491 + 0.150972i 0.625015 0.780613i \(-0.285093\pi\)
−0.363523 + 0.931585i \(0.618426\pi\)
\(402\) 0 0
\(403\) −48.3323 + 27.9047i −2.40761 + 1.39003i
\(404\) −6.39893 + 0.707675i −0.318359 + 0.0352082i
\(405\) 0 0
\(406\) −5.02078 3.22993i −0.249177 0.160299i
\(407\) −1.78503 −0.0884808
\(408\) 0 0
\(409\) 14.4850 + 25.0887i 0.716237 + 1.24056i 0.962481 + 0.271351i \(0.0874703\pi\)
−0.246244 + 0.969208i \(0.579196\pi\)
\(410\) −36.8407 + 41.1396i −1.81943 + 2.03174i
\(411\) 0 0
\(412\) −2.19400 2.98558i −0.108091 0.147089i
\(413\) 28.0498 4.48827i 1.38024 0.220854i
\(414\) 0 0
\(415\) 21.8814 + 12.6333i 1.07412 + 0.620142i
\(416\) 19.1361 + 32.1302i 0.938223 + 1.57531i
\(417\) 0 0
\(418\) −3.68447 + 17.5683i −0.180214 + 0.859293i
\(419\) −23.3784 −1.14211 −0.571054 0.820913i \(-0.693465\pi\)
−0.571054 + 0.820913i \(0.693465\pi\)
\(420\) 0 0
\(421\) 19.0596 0.928910 0.464455 0.885597i \(-0.346250\pi\)
0.464455 + 0.885597i \(0.346250\pi\)
\(422\) 3.68401 17.5661i 0.179335 0.855104i
\(423\) 0 0
\(424\) −23.4702 2.27387i −1.13982 0.110429i
\(425\) 13.7652 + 7.94734i 0.667710 + 0.385502i
\(426\) 0 0
\(427\) 3.32847 + 4.09701i 0.161076 + 0.198268i
\(428\) −4.33439 + 3.18519i −0.209511 + 0.153962i
\(429\) 0 0
\(430\) −11.1900 + 12.4958i −0.539630 + 0.602599i
\(431\) −6.24488 10.8164i −0.300805 0.521010i 0.675513 0.737348i \(-0.263922\pi\)
−0.976319 + 0.216338i \(0.930589\pi\)
\(432\) 0 0
\(433\) 21.0419 1.01121 0.505604 0.862766i \(-0.331270\pi\)
0.505604 + 0.862766i \(0.331270\pi\)
\(434\) 1.51752 31.5506i 0.0728432 1.51447i
\(435\) 0 0
\(436\) −0.511686 4.62676i −0.0245053 0.221582i
\(437\) −22.3560 + 12.9073i −1.06943 + 0.617438i
\(438\) 0 0
\(439\) −27.9142 16.1163i −1.33227 0.769189i −0.346626 0.938003i \(-0.612673\pi\)
−0.985648 + 0.168815i \(0.946006\pi\)
\(440\) 13.0710 18.3020i 0.623133 0.872514i
\(441\) 0 0
\(442\) 27.4520 9.00209i 1.30576 0.428186i
\(443\) 1.90658 3.30230i 0.0905844 0.156897i −0.817173 0.576393i \(-0.804460\pi\)
0.907757 + 0.419496i \(0.137793\pi\)
\(444\) 0 0
\(445\) 0.888036 + 1.53812i 0.0420970 + 0.0729141i
\(446\) 7.82969 37.3335i 0.370746 1.76779i
\(447\) 0 0
\(448\) −21.1534 0.730030i −0.999405 0.0344907i
\(449\) 33.6975i 1.59028i 0.606425 + 0.795141i \(0.292603\pi\)
−0.606425 + 0.795141i \(0.707397\pi\)
\(450\) 0 0
\(451\) 26.5093 15.3051i 1.24827 0.720691i
\(452\) −2.56542 + 5.84721i −0.120667 + 0.275030i
\(453\) 0 0
\(454\) 9.20261 + 28.0635i 0.431900 + 1.31708i
\(455\) 43.2368 35.1262i 2.02697 1.64674i
\(456\) 0 0
\(457\) 12.8270 22.2171i 0.600023 1.03927i −0.392794 0.919626i \(-0.628491\pi\)
0.992817 0.119644i \(-0.0381752\pi\)
\(458\) −19.5666 + 21.8498i −0.914289 + 1.02098i
\(459\) 0 0
\(460\) 32.1472 3.55524i 1.49887 0.165764i
\(461\) 12.8586i 0.598884i −0.954115 0.299442i \(-0.903200\pi\)
0.954115 0.299442i \(-0.0968005\pi\)
\(462\) 0 0
\(463\) 15.0540i 0.699619i 0.936821 + 0.349809i \(0.113754\pi\)
−0.936821 + 0.349809i \(0.886246\pi\)
\(464\) −4.69626 + 4.32172i −0.218019 + 0.200631i
\(465\) 0 0
\(466\) 17.5186 + 15.6880i 0.811534 + 0.726732i
\(467\) −5.85210 + 10.1361i −0.270803 + 0.469044i −0.969068 0.246795i \(-0.920622\pi\)
0.698265 + 0.715840i \(0.253956\pi\)
\(468\) 0 0
\(469\) −0.00133797 0.00836177i −6.17819e−5 0.000386111i
\(470\) −21.5170 + 7.05587i −0.992503 + 0.325463i
\(471\) 0 0
\(472\) 2.92843 30.2264i 0.134792 1.39128i
\(473\) 8.05193 4.64878i 0.370228 0.213751i
\(474\) 0 0
\(475\) 26.1509i 1.19989i
\(476\) −4.12119 + 15.8235i −0.188895 + 0.725268i
\(477\) 0 0
\(478\) −28.4634 5.96943i −1.30189 0.273035i
\(479\) 15.5454 + 26.9254i 0.710287 + 1.23025i 0.964749 + 0.263170i \(0.0847682\pi\)
−0.254462 + 0.967083i \(0.581898\pi\)
\(480\) 0 0
\(481\) −2.36335 + 4.09343i −0.107759 + 0.186645i
\(482\) −9.92293 30.2601i −0.451977 1.37831i
\(483\) 0 0
\(484\) 7.68251 5.64560i 0.349205 0.256618i
\(485\) −0.350712 0.202483i −0.0159250 0.00919430i
\(486\) 0 0
\(487\) 4.79848 2.77040i 0.217440 0.125539i −0.387324 0.921943i \(-0.626601\pi\)
0.604764 + 0.796405i \(0.293267\pi\)
\(488\) 5.13639 2.33714i 0.232514 0.105797i
\(489\) 0 0
\(490\) 3.48017 + 31.3364i 0.157218 + 1.41564i
\(491\) 30.3204 1.36834 0.684171 0.729321i \(-0.260164\pi\)
0.684171 + 0.729321i \(0.260164\pi\)
\(492\) 0 0
\(493\) 2.46521 + 4.26986i 0.111027 + 0.192305i
\(494\) 35.4094 + 31.7093i 1.59314 + 1.42667i
\(495\) 0 0
\(496\) −32.2266 10.0858i −1.44702 0.452865i
\(497\) −11.7168 + 30.6685i −0.525569 + 1.37567i
\(498\) 0 0
\(499\) 11.9203 + 6.88217i 0.533624 + 0.308088i 0.742491 0.669856i \(-0.233644\pi\)
−0.208867 + 0.977944i \(0.566978\pi\)
\(500\) 0.367808 0.838321i 0.0164489 0.0374909i
\(501\) 0 0
\(502\) 6.97258 + 1.46231i 0.311201 + 0.0652661i
\(503\) −5.66994 −0.252810 −0.126405 0.991979i \(-0.540344\pi\)
−0.126405 + 0.991979i \(0.540344\pi\)
\(504\) 0 0
\(505\) 10.2522 0.456216
\(506\) −17.5458 3.67976i −0.780007 0.163585i
\(507\) 0 0
\(508\) 13.1526 29.9779i 0.583553 1.33006i
\(509\) 23.9698 + 13.8390i 1.06244 + 0.613401i 0.926107 0.377262i \(-0.123134\pi\)
0.136335 + 0.990663i \(0.456468\pi\)
\(510\) 0 0
\(511\) −5.00379 + 0.800661i −0.221355 + 0.0354192i
\(512\) −6.46483 + 21.6842i −0.285708 + 0.958317i
\(513\) 0 0
\(514\) 2.93936 + 2.63221i 0.129650 + 0.116102i
\(515\) 2.95006 + 5.10966i 0.129995 + 0.225159i
\(516\) 0 0
\(517\) 12.5515 0.552016
\(518\) −1.22476 2.37839i −0.0538128 0.104501i
\(519\) 0 0
\(520\) −24.6645 54.2057i −1.08161 2.37708i
\(521\) −4.14916 + 2.39552i −0.181778 + 0.104950i −0.588128 0.808768i \(-0.700135\pi\)
0.406350 + 0.913718i \(0.366801\pi\)
\(522\) 0 0
\(523\) 6.54438 + 3.77840i 0.286166 + 0.165218i 0.636211 0.771515i \(-0.280501\pi\)
−0.350046 + 0.936733i \(0.613834\pi\)
\(524\) −21.6941 + 15.9422i −0.947709 + 0.696438i
\(525\) 0 0
\(526\) −12.5229 38.1888i −0.546026 1.66511i
\(527\) −13.0434 + 22.5917i −0.568177 + 0.984112i
\(528\) 0 0
\(529\) −1.39074 2.40883i −0.0604670 0.104732i
\(530\) 36.7509 + 7.70751i 1.59636 + 0.334793i
\(531\) 0 0
\(532\) −25.9361 + 7.14485i −1.12447 + 0.309768i
\(533\) 81.0547i 3.51087i
\(534\) 0 0
\(535\) 7.41808 4.28283i 0.320711 0.185163i
\(536\) −0.00901063 0.000872978i −0.000389200 3.77069e-5i
\(537\) 0 0
\(538\) 9.78665 3.20925i 0.421932 0.138361i
\(539\) 3.57928 17.1058i 0.154170 0.736801i
\(540\) 0 0
\(541\) −10.7589 + 18.6349i −0.462560 + 0.801177i −0.999088 0.0427053i \(-0.986402\pi\)
0.536528 + 0.843883i \(0.319736\pi\)
\(542\) 4.21058 + 3.77059i 0.180860 + 0.161961i
\(543\) 0 0
\(544\) 15.2556 + 8.53404i 0.654077 + 0.365894i
\(545\) 7.41285i 0.317532i
\(546\) 0 0
\(547\) 10.1856i 0.435505i −0.976004 0.217752i \(-0.930128\pi\)
0.976004 0.217752i \(-0.0698725\pi\)
\(548\) 40.9962 4.53388i 1.75127 0.193678i
\(549\) 0 0
\(550\) −12.1155 + 13.5293i −0.516608 + 0.576891i
\(551\) −4.05591 + 7.02505i −0.172788 + 0.299277i
\(552\) 0 0
\(553\) −14.4950 + 11.7760i −0.616392 + 0.500765i
\(554\) −8.78562 26.7919i −0.373265 1.13828i
\(555\) 0 0
\(556\) 1.35628 3.09128i 0.0575191 0.131100i
\(557\) 32.7379 18.9012i 1.38715 0.800871i 0.394156 0.919044i \(-0.371037\pi\)
0.992993 + 0.118173i \(0.0377038\pi\)
\(558\) 0 0
\(559\) 24.6196i 1.04130i
\(560\) 33.3541 + 4.85835i 1.40947 + 0.205303i
\(561\) 0 0
\(562\) −3.87856 + 18.4937i −0.163607 + 0.780111i
\(563\) 10.9769 + 19.0126i 0.462623 + 0.801286i 0.999091 0.0426347i \(-0.0135752\pi\)
−0.536468 + 0.843921i \(0.680242\pi\)
\(564\) 0 0
\(565\) 5.08412 8.80595i 0.213890 0.370469i
\(566\) 28.6221 9.38579i 1.20307 0.394514i
\(567\) 0 0
\(568\) 28.5612 + 20.3979i 1.19840 + 0.855877i
\(569\) −11.2711 6.50737i −0.472509 0.272803i 0.244781 0.969578i \(-0.421284\pi\)
−0.717289 + 0.696775i \(0.754617\pi\)
\(570\) 0 0
\(571\) 24.3678 14.0688i 1.01976 0.588760i 0.105727 0.994395i \(-0.466283\pi\)
0.914035 + 0.405635i \(0.132950\pi\)
\(572\) 3.62853 + 32.8099i 0.151717 + 1.37185i
\(573\) 0 0
\(574\) 38.5814 + 24.8199i 1.61036 + 1.03596i
\(575\) −26.1175 −1.08917
\(576\) 0 0
\(577\) −9.72878 16.8507i −0.405014 0.701505i 0.589309 0.807908i \(-0.299400\pi\)
−0.994323 + 0.106403i \(0.966067\pi\)
\(578\) −7.02975 + 7.85005i −0.292399 + 0.326519i
\(579\) 0 0
\(580\) 8.18980 6.01840i 0.340063 0.249900i
\(581\) 7.49076 19.6070i 0.310769 0.813435i
\(582\) 0 0
\(583\) −18.0253 10.4069i −0.746534 0.431011i
\(584\) −0.522401 + 5.39208i −0.0216171 + 0.223126i
\(585\) 0 0
\(586\) 0.159945 0.762649i 0.00660727 0.0315047i
\(587\) −17.0416 −0.703384 −0.351692 0.936116i \(-0.614393\pi\)
−0.351692 + 0.936116i \(0.614393\pi\)
\(588\) 0 0
\(589\) −42.9195 −1.76847
\(590\) −9.92620 + 47.3301i −0.408655 + 1.94855i
\(591\) 0 0
\(592\) −2.79081 + 0.624931i −0.114702 + 0.0256845i
\(593\) −34.0062 19.6335i −1.39647 0.806251i −0.402448 0.915443i \(-0.631840\pi\)
−0.994021 + 0.109192i \(0.965174\pi\)
\(594\) 0 0
\(595\) 9.29292 24.3241i 0.380973 0.997193i
\(596\) 2.44367 + 3.32534i 0.100097 + 0.136211i
\(597\) 0 0
\(598\) −31.6687 + 35.3641i −1.29503 + 1.44615i
\(599\) 2.41297 + 4.17938i 0.0985912 + 0.170765i 0.911102 0.412182i \(-0.135233\pi\)
−0.812511 + 0.582946i \(0.801900\pi\)
\(600\) 0 0
\(601\) −17.5618 −0.716363 −0.358181 0.933652i \(-0.616603\pi\)
−0.358181 + 0.933652i \(0.616603\pi\)
\(602\) 11.7187 + 7.53880i 0.477619 + 0.307258i
\(603\) 0 0
\(604\) 7.86121 0.869392i 0.319868 0.0353751i
\(605\) −13.1482 + 7.59112i −0.534550 + 0.308623i
\(606\) 0 0
\(607\) 0.967882 + 0.558807i 0.0392851 + 0.0226813i 0.519514 0.854462i \(-0.326113\pi\)
−0.480229 + 0.877143i \(0.659446\pi\)
\(608\) 0.390068 + 28.7571i 0.0158194 + 1.16625i
\(609\) 0 0
\(610\) −8.53905 + 2.80014i −0.345736 + 0.113374i
\(611\) 16.6180 28.7832i 0.672291 1.16444i
\(612\) 0 0
\(613\) 21.2827 + 36.8627i 0.859599 + 1.48887i 0.872312 + 0.488950i \(0.162620\pi\)
−0.0127126 + 0.999919i \(0.504047\pi\)
\(614\) 1.01362 4.83312i 0.0409062 0.195049i
\(615\) 0 0
\(616\) −16.7283 8.31961i −0.674004 0.335207i
\(617\) 13.9753i 0.562625i −0.959616 0.281313i \(-0.909230\pi\)
0.959616 0.281313i \(-0.0907698\pi\)
\(618\) 0 0
\(619\) −26.7181 + 15.4257i −1.07389 + 0.620012i −0.929242 0.369470i \(-0.879539\pi\)
−0.144650 + 0.989483i \(0.546206\pi\)
\(620\) 49.2430 + 21.6051i 1.97765 + 0.867680i
\(621\) 0 0
\(622\) −5.75125 17.5385i −0.230604 0.703230i
\(623\) 1.14513 0.930320i 0.0458787 0.0372725i
\(624\) 0 0
\(625\) 12.1304 21.0104i 0.485215 0.840417i
\(626\) 18.9578 21.1699i 0.757704 0.846121i
\(627\) 0 0
\(628\) 0.424080 + 3.83461i 0.0169226 + 0.153018i
\(629\) 2.20937i 0.0880935i
\(630\) 0 0
\(631\) 27.5528i 1.09686i 0.836197 + 0.548429i \(0.184774\pi\)
−0.836197 + 0.548429i \(0.815226\pi\)
\(632\) 8.26870 + 18.1724i 0.328911 + 0.722857i
\(633\) 0 0
\(634\) 22.4316 + 20.0876i 0.890873 + 0.797780i
\(635\) −26.0656 + 45.1470i −1.03438 + 1.79161i
\(636\) 0 0
\(637\) −34.4882 30.8558i −1.36647 1.22255i
\(638\) −5.35300 + 1.75536i −0.211927 + 0.0694955i
\(639\) 0 0
\(640\) 14.0284 33.1904i 0.554520 1.31196i
\(641\) −15.1145 + 8.72634i −0.596986 + 0.344670i −0.767855 0.640624i \(-0.778676\pi\)
0.170869 + 0.985294i \(0.445342\pi\)
\(642\) 0 0
\(643\) 18.1663i 0.716409i 0.933643 + 0.358205i \(0.116611\pi\)
−0.933643 + 0.358205i \(0.883389\pi\)
\(644\) −7.13571 25.9030i −0.281186 1.02072i
\(645\) 0 0
\(646\) 21.7447 + 4.56035i 0.855532 + 0.179425i
\(647\) 23.0188 + 39.8697i 0.904961 + 1.56744i 0.820969 + 0.570973i \(0.193434\pi\)
0.0839921 + 0.996466i \(0.473233\pi\)
\(648\) 0 0
\(649\) 13.4027 23.2142i 0.526102 0.911235i
\(650\) 14.9846 + 45.6958i 0.587746 + 1.79234i
\(651\) 0 0
\(652\) −5.29729 7.20852i −0.207458 0.282308i
\(653\) −26.5274 15.3156i −1.03810 0.599345i −0.118803 0.992918i \(-0.537906\pi\)
−0.919293 + 0.393573i \(0.871239\pi\)
\(654\) 0 0
\(655\) 37.1282 21.4360i 1.45072 0.837573i
\(656\) 36.0877 33.2096i 1.40899 1.29662i
\(657\) 0 0
\(658\) 8.61194 + 16.7238i 0.335728 + 0.651960i
\(659\) 23.5790 0.918508 0.459254 0.888305i \(-0.348117\pi\)
0.459254 + 0.888305i \(0.348117\pi\)
\(660\) 0 0
\(661\) −8.01914 13.8896i −0.311908 0.540241i 0.666867 0.745177i \(-0.267635\pi\)
−0.978775 + 0.204936i \(0.934302\pi\)
\(662\) −4.90854 4.39562i −0.190776 0.170840i
\(663\) 0 0
\(664\) −18.2598 13.0408i −0.708616 0.506081i
\(665\) 42.3027 6.76889i 1.64043 0.262486i
\(666\) 0 0
\(667\) −7.01606 4.05072i −0.271663 0.156845i
\(668\) −19.3502 8.48979i −0.748683 0.328480i
\(669\) 0 0
\(670\) 0.0141093 + 0.00295904i 0.000545090 + 0.000114318i
\(671\) 4.98110 0.192293
\(672\) 0 0
\(673\) −44.4724 −1.71429 −0.857143 0.515079i \(-0.827763\pi\)
−0.857143 + 0.515079i \(0.827763\pi\)
\(674\) −10.2668 2.15317i −0.395461 0.0829372i
\(675\) 0 0
\(676\) 56.2344 + 24.6725i 2.16286 + 0.948941i
\(677\) −9.48306 5.47505i −0.364464 0.210423i 0.306573 0.951847i \(-0.400818\pi\)
−0.671037 + 0.741424i \(0.734151\pi\)
\(678\) 0 0
\(679\) −0.120061 + 0.314257i −0.00460750 + 0.0120601i
\(680\) −22.6528 16.1782i −0.868695 0.620406i
\(681\) 0 0
\(682\) −22.2046 19.8843i −0.850258 0.761409i
\(683\) −4.06412 7.03927i −0.155509 0.269350i 0.777735 0.628592i \(-0.216369\pi\)
−0.933244 + 0.359242i \(0.883035\pi\)
\(684\) 0 0
\(685\) −65.6828 −2.50961
\(686\) 25.2478 6.96771i 0.963965 0.266029i
\(687\) 0 0
\(688\) 10.9613 10.0871i 0.417895 0.384567i
\(689\) −47.7303 + 27.5571i −1.81838 + 1.04984i
\(690\) 0 0
\(691\) 8.95759 + 5.17166i 0.340763 + 0.196739i 0.660609 0.750730i \(-0.270298\pi\)
−0.319847 + 0.947469i \(0.603631\pi\)
\(692\) 1.28864 + 1.75357i 0.0489867 + 0.0666609i
\(693\) 0 0
\(694\) −5.53572 16.8812i −0.210133 0.640803i
\(695\) −2.68785 + 4.65550i −0.101956 + 0.176593i
\(696\) 0 0
\(697\) −18.9435 32.8111i −0.717536 1.24281i
\(698\) −23.0958 4.84373i −0.874190 0.183338i
\(699\) 0 0
\(700\) −26.3393 6.86002i −0.995532 0.259285i
\(701\) 36.9229i 1.39456i 0.716800 + 0.697279i \(0.245606\pi\)
−0.716800 + 0.697279i \(0.754394\pi\)
\(702\) 0 0
\(703\) −3.14800 + 1.81750i −0.118729 + 0.0685483i
\(704\) −13.1212 + 15.0583i −0.494522 + 0.567532i
\(705\) 0 0
\(706\) 14.4591 4.74145i 0.544175 0.178447i
\(707\) −1.34563 8.40963i −0.0506077 0.316277i
\(708\) 0 0
\(709\) −15.4835 + 26.8182i −0.581494 + 1.00718i 0.413808 + 0.910364i \(0.364198\pi\)
−0.995303 + 0.0968137i \(0.969135\pi\)
\(710\) −41.6364 37.2856i −1.56259 1.39930i
\(711\) 0 0
\(712\) −0.653240 1.43564i −0.0244812 0.0538030i
\(713\) 42.8646i 1.60529i
\(714\) 0 0
\(715\) 52.5669i 1.96589i
\(716\) −3.40946 30.8289i −0.127417 1.15213i
\(717\) 0 0
\(718\) −26.1095 + 29.1562i −0.974396 + 1.08810i
\(719\) 23.5411 40.7744i 0.877936 1.52063i 0.0243332 0.999704i \(-0.492254\pi\)
0.853602 0.520925i \(-0.174413\pi\)
\(720\) 0 0
\(721\) 3.80413 3.09053i 0.141673 0.115097i
\(722\) 3.01747 + 9.20181i 0.112299 + 0.342456i
\(723\) 0 0
\(724\) −11.5388 5.06257i −0.428836 0.188149i
\(725\) −7.10750 + 4.10351i −0.263966 + 0.152401i
\(726\) 0 0
\(727\) 23.8977i 0.886317i −0.896443 0.443158i \(-0.853858\pi\)
0.896443 0.443158i \(-0.146142\pi\)
\(728\) −41.2265 + 27.3464i −1.52795 + 1.01352i
\(729\) 0 0
\(730\) 1.77073 8.44319i 0.0655377 0.312496i
\(731\) −5.75390 9.96605i −0.212816 0.368608i
\(732\) 0 0
\(733\) −19.4989 + 33.7731i −0.720210 + 1.24744i 0.240706 + 0.970598i \(0.422621\pi\)
−0.960916 + 0.276842i \(0.910712\pi\)
\(734\) 3.10627 1.01861i 0.114654 0.0375977i
\(735\) 0 0
\(736\) −28.7203 + 0.389569i −1.05864 + 0.0143597i
\(737\) −0.00692024 0.00399540i −0.000254910 0.000147173i
\(738\) 0 0
\(739\) −19.5445 + 11.2840i −0.718957 + 0.415090i −0.814369 0.580348i \(-0.802917\pi\)
0.0954118 + 0.995438i \(0.469583\pi\)
\(740\) 4.52672 0.500622i 0.166406 0.0184032i
\(741\) 0 0
\(742\) 1.49862 31.1576i 0.0550160 1.14383i
\(743\) 25.8493 0.948319 0.474159 0.880439i \(-0.342752\pi\)
0.474159 + 0.880439i \(0.342752\pi\)
\(744\) 0 0
\(745\) −3.28578 5.69114i −0.120382 0.208507i
\(746\) 8.70903 9.72528i 0.318860 0.356068i
\(747\) 0 0
\(748\) 9.13691 + 12.4335i 0.334079 + 0.454612i
\(749\) −4.48675 5.52274i −0.163942 0.201797i
\(750\) 0 0
\(751\) −37.3627 21.5714i −1.36339 0.787151i −0.373313 0.927706i \(-0.621778\pi\)
−0.990073 + 0.140555i \(0.955111\pi\)
\(752\) 19.6237 4.39423i 0.715604 0.160241i
\(753\) 0 0
\(754\) −3.06186 + 14.5995i −0.111506 + 0.531684i
\(755\) −12.5950 −0.458378
\(756\) 0 0
\(757\) 0.176821 0.00642668 0.00321334 0.999995i \(-0.498977\pi\)
0.00321334 + 0.999995i \(0.498977\pi\)
\(758\) −2.72409 + 12.9890i −0.0989433 + 0.471781i
\(759\) 0 0
\(760\) 4.41645 45.5853i 0.160201 1.65355i
\(761\) −26.2278 15.1426i −0.950758 0.548920i −0.0574416 0.998349i \(-0.518294\pi\)
−0.893316 + 0.449429i \(0.851628\pi\)
\(762\) 0 0
\(763\) 6.08059 0.972961i 0.220132 0.0352235i
\(764\) 25.2864 18.5821i 0.914832 0.672277i
\(765\) 0 0
\(766\) −10.0228 + 11.1924i −0.362140 + 0.404398i
\(767\) −35.4898 61.4701i −1.28146 2.21956i
\(768\) 0 0
\(769\) 48.5276 1.74995 0.874974 0.484169i \(-0.160878\pi\)
0.874974 + 0.484169i \(0.160878\pi\)
\(770\) 25.0214 + 16.0966i 0.901710 + 0.580082i
\(771\) 0 0
\(772\) −3.99745 36.1457i −0.143871 1.30091i
\(773\) 3.70357 2.13826i 0.133208 0.0769078i −0.431915 0.901914i \(-0.642162\pi\)
0.565123 + 0.825007i \(0.308829\pi\)
\(774\) 0 0
\(775\) −37.6056 21.7116i −1.35083 0.779904i
\(776\) 0.292664 + 0.209015i 0.0105060 + 0.00750321i
\(777\) 0 0
\(778\) −23.9994 + 7.86993i −0.860422 + 0.282151i
\(779\) 31.1670 53.9829i 1.11667 1.93414i
\(780\) 0 0
\(781\) 15.4900 + 26.8294i 0.554274 + 0.960031i
\(782\) −4.55452 + 21.7168i −0.162869 + 0.776592i
\(783\) 0 0
\(784\) −0.392637 27.9972i −0.0140228 0.999902i
\(785\) 6.14369i 0.219278i
\(786\) 0 0
\(787\) 11.2769 6.51073i 0.401979 0.232083i −0.285359 0.958421i \(-0.592113\pi\)
0.687337 + 0.726338i \(0.258779\pi\)
\(788\) −12.1581 + 27.7112i −0.433115 + 0.987171i
\(789\) 0 0
\(790\) −9.90677 30.2108i −0.352467 1.07485i
\(791\) −7.89063 3.01458i −0.280558 0.107186i
\(792\) 0 0
\(793\) 6.59487 11.4227i 0.234191 0.405630i
\(794\) 7.48924 8.36316i 0.265783 0.296797i
\(795\) 0 0
\(796\) −29.1890 + 3.22810i −1.03458 + 0.114417i
\(797\) 14.3145i 0.507044i −0.967330 0.253522i \(-0.918411\pi\)
0.967330 0.253522i \(-0.0815891\pi\)
\(798\) 0 0
\(799\) 15.5353i 0.549600i
\(800\) −14.2055 + 25.3940i −0.502241 + 0.897813i
\(801\) 0 0
\(802\) 6.37009 + 5.70444i 0.224936 + 0.201431i
\(803\) −2.39090 + 4.14116i −0.0843730 + 0.146138i
\(804\) 0 0
\(805\) 6.76023 + 42.2485i 0.238267 + 1.48907i
\(806\) −74.9970 + 24.5931i −2.64166 + 0.866256i
\(807\) 0 0
\(808\) −9.06220 0.877974i −0.318807 0.0308870i
\(809\) −27.1605 + 15.6811i −0.954911 + 0.551318i −0.894603 0.446862i \(-0.852542\pi\)
−0.0603080 + 0.998180i \(0.519208\pi\)
\(810\) 0 0
\(811\) 6.06315i 0.212906i −0.994318 0.106453i \(-0.966051\pi\)
0.994318 0.106453i \(-0.0339493\pi\)
\(812\) −6.01169 5.92797i −0.210969 0.208031i
\(813\) 0 0
\(814\) −2.47067 0.518156i −0.0865969 0.0181614i
\(815\) 7.12277 + 12.3370i 0.249500 + 0.432146i
\(816\) 0 0
\(817\) 9.46668 16.3968i 0.331197 0.573650i
\(818\) 12.7660 + 38.9301i 0.446353 + 1.36116i
\(819\) 0 0
\(820\) −62.9333 + 46.2474i −2.19772 + 1.61503i
\(821\) −14.9421 8.62681i −0.521482 0.301078i 0.216059 0.976380i \(-0.430680\pi\)
−0.737541 + 0.675303i \(0.764013\pi\)
\(822\) 0 0
\(823\) 15.6910 9.05923i 0.546955 0.315785i −0.200938 0.979604i \(-0.564399\pi\)
0.747893 + 0.663819i \(0.231066\pi\)
\(824\) −2.17007 4.76922i −0.0755979 0.166144i
\(825\) 0 0
\(826\) 40.1266 + 1.93001i 1.39618 + 0.0671537i
\(827\) −30.9864 −1.07750 −0.538751 0.842465i \(-0.681104\pi\)
−0.538751 + 0.842465i \(0.681104\pi\)
\(828\) 0 0
\(829\) −21.8585 37.8601i −0.759178 1.31493i −0.943270 0.332026i \(-0.892268\pi\)
0.184092 0.982909i \(-0.441065\pi\)
\(830\) 26.6190 + 23.8374i 0.923958 + 0.827408i
\(831\) 0 0
\(832\) 17.1596 + 50.0263i 0.594901 + 1.73435i
\(833\) −21.1723 4.43015i −0.733576 0.153496i
\(834\) 0 0
\(835\) 29.1416 + 16.8249i 1.00849 + 0.582251i
\(836\) −10.1994 + 23.2468i −0.352753 + 0.804007i
\(837\) 0 0
\(838\) −32.3580 6.78622i −1.11779 0.234426i
\(839\) −35.4628 −1.22431 −0.612156 0.790737i \(-0.709698\pi\)
−0.612156 + 0.790737i \(0.709698\pi\)
\(840\) 0 0
\(841\) 26.4542 0.912215
\(842\) 26.3805 + 5.53259i 0.909131 + 0.190666i
\(843\) 0 0
\(844\) 10.1981 23.2439i 0.351033 0.800087i
\(845\) −84.6895 48.8955i −2.91341 1.68206i
\(846\) 0 0
\(847\) 7.95257 + 9.78881i 0.273253 + 0.336348i
\(848\) −31.8252 9.96017i −1.09288 0.342034i
\(849\) 0 0
\(850\) 16.7455 + 14.9957i 0.574366 + 0.514347i
\(851\) −1.81518 3.14398i −0.0622234 0.107774i
\(852\) 0 0
\(853\) 31.1730 1.06734 0.533672 0.845692i \(-0.320812\pi\)
0.533672 + 0.845692i \(0.320812\pi\)
\(854\) 3.41767 + 6.63686i 0.116950 + 0.227109i
\(855\) 0 0
\(856\) −6.92383 + 3.15045i −0.236652 + 0.107680i
\(857\) −6.55908 + 3.78689i −0.224054 + 0.129358i −0.607826 0.794070i \(-0.707958\pi\)
0.383772 + 0.923428i \(0.374625\pi\)
\(858\) 0 0
\(859\) 35.8209 + 20.6812i 1.22219 + 0.705633i 0.965385 0.260830i \(-0.0839962\pi\)
0.256807 + 0.966463i \(0.417330\pi\)
\(860\) −19.1154 + 14.0472i −0.651828 + 0.479005i
\(861\) 0 0
\(862\) −5.50377 16.7838i −0.187459 0.571659i
\(863\) 5.01544 8.68700i 0.170728 0.295709i −0.767947 0.640514i \(-0.778721\pi\)
0.938674 + 0.344805i \(0.112055\pi\)
\(864\) 0 0
\(865\) −1.73271 3.00115i −0.0589140 0.102042i
\(866\) 29.1241 + 6.10799i 0.989677 + 0.207558i
\(867\) 0 0
\(868\) 11.2588 43.2287i 0.382150 1.46728i
\(869\) 17.6229i 0.597817i
\(870\) 0 0
\(871\) −0.0183245 + 0.0105796i −0.000620902 + 0.000358478i
\(872\) 0.634821 6.55244i 0.0214977 0.221894i
\(873\) 0 0
\(874\) −34.6897 + 11.3755i −1.17340 + 0.384782i
\(875\) 1.13129 + 0.432204i 0.0382446 + 0.0146111i
\(876\) 0 0
\(877\) −2.63052 + 4.55619i −0.0888263 + 0.153852i −0.907015 0.421098i \(-0.861645\pi\)
0.818189 + 0.574949i \(0.194978\pi\)
\(878\) −33.9580 30.4095i −1.14603 1.02627i
\(879\) 0 0
\(880\) 23.4042 21.5376i 0.788956 0.726034i
\(881\) 29.4366i 0.991746i −0.868395 0.495873i \(-0.834848\pi\)
0.868395 0.495873i \(-0.165152\pi\)
\(882\) 0 0
\(883\) 46.4470i 1.56307i 0.623864 + 0.781533i \(0.285562\pi\)
−0.623864 + 0.781533i \(0.714438\pi\)
\(884\) 40.6095 4.49111i 1.36584 0.151052i
\(885\) 0 0
\(886\) 3.59749 4.01728i 0.120860 0.134963i
\(887\) 21.0703 36.4948i 0.707471 1.22538i −0.258322 0.966059i \(-0.583169\pi\)
0.965792 0.259316i \(-0.0834972\pi\)
\(888\) 0 0
\(889\) 40.4543 + 15.4554i 1.35679 + 0.518356i
\(890\) 0.782649 + 2.38670i 0.0262345 + 0.0800023i
\(891\) 0 0
\(892\) 21.6742 49.4006i 0.725705 1.65405i
\(893\) 22.1353 12.7798i 0.740731 0.427661i
\(894\) 0 0
\(895\) 49.3932i 1.65103i
\(896\) −29.0666 7.15081i −0.971046 0.238892i
\(897\) 0 0
\(898\) −9.78163 + 46.6407i −0.326417 + 1.55642i
\(899\) −6.73478 11.6650i −0.224618 0.389049i
\(900\) 0 0
\(901\) −12.8809 + 22.3104i −0.429125 + 0.743266i
\(902\) 41.1343 13.4888i 1.36962 0.449128i
\(903\) 0 0
\(904\) −5.24812 + 7.34845i −0.174550 + 0.244406i
\(905\) 17.3775 + 10.0329i 0.577649 + 0.333506i
\(906\) 0 0
\(907\) 23.5846 13.6166i 0.783115 0.452132i −0.0544183 0.998518i \(-0.517330\pi\)
0.837533 + 0.546387i \(0.183997\pi\)
\(908\) 4.59115 + 41.5140i 0.152363 + 1.37769i
\(909\) 0 0
\(910\) 70.0406 36.0675i 2.32182 1.19563i
\(911\) 34.1346 1.13093 0.565466 0.824772i \(-0.308697\pi\)
0.565466 + 0.824772i \(0.308697\pi\)
\(912\) 0 0
\(913\) −9.90303 17.1526i −0.327743 0.567667i
\(914\) 24.2030 27.0273i 0.800565 0.893983i
\(915\) 0 0
\(916\) −33.4247 + 24.5627i −1.10438 + 0.811573i
\(917\) −22.4567 27.6419i −0.741584 0.912815i
\(918\) 0 0
\(919\) −33.2306 19.1857i −1.09618 0.632878i −0.160962 0.986961i \(-0.551460\pi\)
−0.935214 + 0.354083i \(0.884793\pi\)
\(920\) 45.5270 + 4.41080i 1.50098 + 0.145420i
\(921\) 0 0
\(922\) 3.73256 17.7976i 0.122925 0.586132i
\(923\) 82.0334 2.70016
\(924\) 0 0
\(925\) −3.67766 −0.120921
\(926\) −4.36985 + 20.8363i −0.143602 + 0.684723i
\(927\) 0 0
\(928\) −7.75461 + 4.61848i −0.254558 + 0.151609i
\(929\) 39.0507 + 22.5459i 1.28121 + 0.739708i 0.977070 0.212919i \(-0.0682971\pi\)
0.304142 + 0.952627i \(0.401630\pi\)
\(930\) 0 0
\(931\) −11.1047 33.8115i −0.363943 1.10813i
\(932\) 19.6937 + 26.7990i 0.645088 + 0.877832i
\(933\) 0 0
\(934\) −11.0422 + 12.3307i −0.361312 + 0.403473i
\(935\) −12.2856 21.2792i −0.401781 0.695904i
\(936\) 0 0
\(937\) −14.4277 −0.471333 −0.235667 0.971834i \(-0.575727\pi\)
−0.235667 + 0.971834i \(0.575727\pi\)
\(938\) 0.000575345 0.0119619i 1.87857e−5 0.000390571i
\(939\) 0 0
\(940\) −31.8298 + 3.52015i −1.03817 + 0.114815i
\(941\) 35.1619 20.3007i 1.14624 0.661784i 0.198275 0.980147i \(-0.436466\pi\)
0.947969 + 0.318362i \(0.103133\pi\)
\(942\) 0 0
\(943\) 53.9138 + 31.1272i 1.75568 + 1.01364i
\(944\) 12.8273 40.9864i 0.417494 1.33399i
\(945\) 0 0
\(946\) 12.4941 4.09709i 0.406219 0.133208i
\(947\) −7.38792 + 12.7963i −0.240075 + 0.415822i −0.960735 0.277466i \(-0.910505\pi\)
0.720660 + 0.693288i \(0.243839\pi\)
\(948\) 0 0
\(949\) 6.33100 + 10.9656i 0.205513 + 0.355959i
\(950\) −7.59104 + 36.1955i −0.246286 + 1.17434i
\(951\) 0 0
\(952\) −10.2974 + 20.7050i −0.333739 + 0.671053i
\(953\) 31.2092i 1.01097i −0.862836 0.505483i \(-0.831314\pi\)
0.862836 0.505483i \(-0.168686\pi\)
\(954\) 0 0
\(955\) −43.2764 + 24.9856i −1.40039 + 0.808516i
\(956\) −37.6635 16.5246i −1.21812 0.534444i
\(957\) 0 0
\(958\) 13.7006 + 41.7800i 0.442645 + 1.34985i
\(959\) 8.62109 + 53.8781i 0.278390 + 1.73982i
\(960\) 0 0
\(961\) 20.1336 34.8724i 0.649470 1.12492i
\(962\) −4.45935 + 4.97970i −0.143775 + 0.160552i
\(963\) 0 0
\(964\) −4.95051 44.7635i −0.159445 1.44173i
\(965\) 57.9115i 1.86424i
\(966\) 0 0
\(967\) 39.3749i 1.26621i 0.774065 + 0.633106i \(0.218220\pi\)
−0.774065 + 0.633106i \(0.781780\pi\)
\(968\) 12.2722 5.58403i 0.394443 0.179477i
\(969\) 0 0
\(970\) −0.426644 0.382062i −0.0136987 0.0122673i
\(971\) −30.0829 + 52.1052i −0.965407 + 1.67213i −0.256890 + 0.966441i \(0.582698\pi\)
−0.708517 + 0.705694i \(0.750635\pi\)
\(972\) 0 0
\(973\) 4.17159 + 1.59374i 0.133735 + 0.0510928i
\(974\) 7.44577 2.44163i 0.238578 0.0782348i
\(975\) 0 0
\(976\) 7.78771 1.74386i 0.249279 0.0558195i
\(977\) 12.5257 7.23172i 0.400733 0.231363i −0.286067 0.958209i \(-0.592348\pi\)
0.686800 + 0.726846i \(0.259015\pi\)
\(978\) 0 0
\(979\) 1.39224i 0.0444961i
\(980\) −4.27937 + 44.3831i −0.136700 + 1.41776i
\(981\) 0 0
\(982\) 41.9666 + 8.80136i 1.33921 + 0.280863i
\(983\) −0.291450 0.504806i −0.00929582 0.0161008i 0.861340 0.508029i \(-0.169626\pi\)
−0.870636 + 0.491928i \(0.836292\pi\)
\(984\) 0 0
\(985\) 24.0948 41.7333i 0.767723 1.32973i
\(986\) 2.17265 + 6.62552i 0.0691913 + 0.211000i
\(987\) 0 0
\(988\) 39.8057 + 54.1674i 1.26639 + 1.72330i
\(989\) 16.3758 + 9.45457i 0.520720 + 0.300638i
\(990\) 0 0
\(991\) −6.69703 + 3.86653i −0.212738 + 0.122824i −0.602583 0.798056i \(-0.705862\pi\)
0.389845 + 0.920880i \(0.372529\pi\)
\(992\) −41.6772 23.3144i −1.32325 0.740234i
\(993\) 0 0
\(994\) −25.1196 + 39.0473i −0.796745 + 1.23850i
\(995\) 46.7658 1.48257
\(996\) 0 0
\(997\) 12.6526 + 21.9150i 0.400713 + 0.694055i 0.993812 0.111074i \(-0.0354291\pi\)
−0.593099 + 0.805130i \(0.702096\pi\)
\(998\) 14.5011 + 12.9858i 0.459025 + 0.411059i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.be.c.107.13 yes 28
3.2 odd 2 inner 756.2.be.c.107.2 28
4.3 odd 2 756.2.be.d.107.11 yes 28
7.4 even 3 756.2.be.d.431.4 yes 28
12.11 even 2 756.2.be.d.107.4 yes 28
21.11 odd 6 756.2.be.d.431.11 yes 28
28.11 odd 6 inner 756.2.be.c.431.2 yes 28
84.11 even 6 inner 756.2.be.c.431.13 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.be.c.107.2 28 3.2 odd 2 inner
756.2.be.c.107.13 yes 28 1.1 even 1 trivial
756.2.be.c.431.2 yes 28 28.11 odd 6 inner
756.2.be.c.431.13 yes 28 84.11 even 6 inner
756.2.be.d.107.4 yes 28 12.11 even 2
756.2.be.d.107.11 yes 28 4.3 odd 2
756.2.be.d.431.4 yes 28 7.4 even 3
756.2.be.d.431.11 yes 28 21.11 odd 6