Properties

Label 756.2.b.d.55.7
Level $756$
Weight $2$
Character 756.55
Analytic conductor $6.037$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(55,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,8,0,0,2,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.60771337450861625344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 11x^{8} - 26x^{6} + 44x^{4} - 64x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 55.7
Root \(-0.840028 + 1.13770i\) of defining polynomial
Character \(\chi\) \(=\) 756.55
Dual form 756.2.b.d.55.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.840028 - 1.13770i) q^{2} +(-0.588705 - 1.91139i) q^{4} +2.67907i q^{5} +(0.370556 + 2.61967i) q^{7} +(-2.66911 - 0.935858i) q^{8} +(3.04797 + 2.25049i) q^{10} -1.39642i q^{11} +3.08443i q^{13} +(3.29167 + 1.77902i) q^{14} +(-3.30685 + 2.25049i) q^{16} +5.83343i q^{17} +1.91852 q^{19} +(5.12076 - 1.57718i) q^{20} +(-1.58870 - 1.17303i) q^{22} +1.39642i q^{23} -2.17741 q^{25} +(3.50914 + 2.59101i) q^{26} +(4.78908 - 2.25049i) q^{28} -4.90328 q^{29} +9.53223 q^{31} +(-0.217472 + 5.65267i) q^{32} +(6.63667 + 4.90025i) q^{34} +(-7.01828 + 0.992746i) q^{35} +6.83705 q^{37} +(1.61161 - 2.18270i) q^{38} +(2.50723 - 7.15074i) q^{40} +0.693576i q^{41} +0.678200i q^{43} +(-2.66911 + 0.822081i) q^{44} +(1.58870 + 1.17303i) q^{46} -8.26340 q^{47} +(-6.72538 + 1.94147i) q^{49} +(-1.82909 + 2.47723i) q^{50} +(5.89556 - 1.81582i) q^{52} +10.6765 q^{53} +3.74111 q^{55} +(1.46258 - 7.33899i) q^{56} +(-4.11890 + 5.57845i) q^{58} -12.2196 q^{59} -12.8849i q^{61} +(8.00734 - 10.8448i) q^{62} +(6.24834 + 4.99582i) q^{64} -8.26340 q^{65} -3.08443i q^{67} +(11.1500 - 3.43417i) q^{68} +(-4.76611 + 8.81861i) q^{70} -9.79515i q^{71} +5.91755i q^{73} +(5.74331 - 7.77848i) q^{74} +(-1.12944 - 3.66705i) q^{76} +(3.65817 - 0.517454i) q^{77} -12.0864i q^{79} +(-6.02923 - 8.85929i) q^{80} +(0.789079 + 0.582624i) q^{82} +5.77317 q^{83} -15.6282 q^{85} +(0.771585 + 0.569707i) q^{86} +(-1.30685 + 3.72721i) q^{88} -6.65005i q^{89} +(-8.08020 + 1.14295i) q^{91} +(2.66911 - 0.822081i) q^{92} +(-6.94149 + 9.40123i) q^{94} +5.13985i q^{95} +12.8849i q^{97} +(-3.44070 + 9.28233i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} + 2 q^{7} + 4 q^{10} - 12 q^{16} - 12 q^{19} - 4 q^{22} + 4 q^{25} + 20 q^{28} + 24 q^{31} + 32 q^{34} + 12 q^{37} - 20 q^{40} + 4 q^{46} - 18 q^{49} + 28 q^{52} + 40 q^{55} + 8 q^{58} + 20 q^{64}+ \cdots - 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.840028 1.13770i 0.593990 0.804473i
\(3\) 0 0
\(4\) −0.588705 1.91139i −0.294352 0.955697i
\(5\) 2.67907i 1.19812i 0.800706 + 0.599058i \(0.204458\pi\)
−0.800706 + 0.599058i \(0.795542\pi\)
\(6\) 0 0
\(7\) 0.370556 + 2.61967i 0.140057 + 0.990143i
\(8\) −2.66911 0.935858i −0.943674 0.330876i
\(9\) 0 0
\(10\) 3.04797 + 2.25049i 0.963852 + 0.711669i
\(11\) 1.39642i 0.421037i −0.977590 0.210519i \(-0.932485\pi\)
0.977590 0.210519i \(-0.0675153\pi\)
\(12\) 0 0
\(13\) 3.08443i 0.855467i 0.903905 + 0.427733i \(0.140688\pi\)
−0.903905 + 0.427733i \(0.859312\pi\)
\(14\) 3.29167 + 1.77902i 0.879736 + 0.475463i
\(15\) 0 0
\(16\) −3.30685 + 2.25049i −0.826713 + 0.562623i
\(17\) 5.83343i 1.41481i 0.706806 + 0.707407i \(0.250135\pi\)
−0.706806 + 0.707407i \(0.749865\pi\)
\(18\) 0 0
\(19\) 1.91852 0.440139 0.220070 0.975484i \(-0.429372\pi\)
0.220070 + 0.975484i \(0.429372\pi\)
\(20\) 5.12076 1.57718i 1.14504 0.352668i
\(21\) 0 0
\(22\) −1.58870 1.17303i −0.338713 0.250092i
\(23\) 1.39642i 0.291174i 0.989345 + 0.145587i \(0.0465071\pi\)
−0.989345 + 0.145587i \(0.953493\pi\)
\(24\) 0 0
\(25\) −2.17741 −0.435482
\(26\) 3.50914 + 2.59101i 0.688199 + 0.508138i
\(27\) 0 0
\(28\) 4.78908 2.25049i 0.905051 0.425303i
\(29\) −4.90328 −0.910517 −0.455258 0.890359i \(-0.650453\pi\)
−0.455258 + 0.890359i \(0.650453\pi\)
\(30\) 0 0
\(31\) 9.53223 1.71204 0.856019 0.516944i \(-0.172930\pi\)
0.856019 + 0.516944i \(0.172930\pi\)
\(32\) −0.217472 + 5.65267i −0.0384441 + 0.999261i
\(33\) 0 0
\(34\) 6.63667 + 4.90025i 1.13818 + 0.840385i
\(35\) −7.01828 + 0.992746i −1.18631 + 0.167805i
\(36\) 0 0
\(37\) 6.83705 1.12400 0.562002 0.827136i \(-0.310031\pi\)
0.562002 + 0.827136i \(0.310031\pi\)
\(38\) 1.61161 2.18270i 0.261438 0.354080i
\(39\) 0 0
\(40\) 2.50723 7.15074i 0.396427 1.13063i
\(41\) 0.693576i 0.108318i 0.998532 + 0.0541592i \(0.0172479\pi\)
−0.998532 + 0.0541592i \(0.982752\pi\)
\(42\) 0 0
\(43\) 0.678200i 0.103424i 0.998662 + 0.0517122i \(0.0164679\pi\)
−0.998662 + 0.0517122i \(0.983532\pi\)
\(44\) −2.66911 + 0.822081i −0.402384 + 0.123933i
\(45\) 0 0
\(46\) 1.58870 + 1.17303i 0.234242 + 0.172955i
\(47\) −8.26340 −1.20534 −0.602670 0.797990i \(-0.705897\pi\)
−0.602670 + 0.797990i \(0.705897\pi\)
\(48\) 0 0
\(49\) −6.72538 + 1.94147i −0.960768 + 0.277353i
\(50\) −1.82909 + 2.47723i −0.258672 + 0.350333i
\(51\) 0 0
\(52\) 5.89556 1.81582i 0.817567 0.251809i
\(53\) 10.6765 1.46652 0.733262 0.679946i \(-0.237997\pi\)
0.733262 + 0.679946i \(0.237997\pi\)
\(54\) 0 0
\(55\) 3.74111 0.504452
\(56\) 1.46258 7.33899i 0.195446 0.980714i
\(57\) 0 0
\(58\) −4.11890 + 5.57845i −0.540838 + 0.732486i
\(59\) −12.2196 −1.59086 −0.795430 0.606046i \(-0.792755\pi\)
−0.795430 + 0.606046i \(0.792755\pi\)
\(60\) 0 0
\(61\) 12.8849i 1.64975i −0.565319 0.824873i \(-0.691247\pi\)
0.565319 0.824873i \(-0.308753\pi\)
\(62\) 8.00734 10.8448i 1.01693 1.37729i
\(63\) 0 0
\(64\) 6.24834 + 4.99582i 0.781043 + 0.624478i
\(65\) −8.26340 −1.02495
\(66\) 0 0
\(67\) 3.08443i 0.376823i −0.982090 0.188411i \(-0.939666\pi\)
0.982090 0.188411i \(-0.0603339\pi\)
\(68\) 11.1500 3.43417i 1.35213 0.416454i
\(69\) 0 0
\(70\) −4.76611 + 8.81861i −0.569660 + 1.05403i
\(71\) 9.79515i 1.16247i −0.813736 0.581235i \(-0.802570\pi\)
0.813736 0.581235i \(-0.197430\pi\)
\(72\) 0 0
\(73\) 5.91755i 0.692596i 0.938124 + 0.346298i \(0.112561\pi\)
−0.938124 + 0.346298i \(0.887439\pi\)
\(74\) 5.74331 7.77848i 0.667646 0.904230i
\(75\) 0 0
\(76\) −1.12944 3.66705i −0.129556 0.420640i
\(77\) 3.65817 0.517454i 0.416887 0.0589693i
\(78\) 0 0
\(79\) 12.0864i 1.35983i −0.733293 0.679913i \(-0.762017\pi\)
0.733293 0.679913i \(-0.237983\pi\)
\(80\) −6.02923 8.85929i −0.674088 0.990498i
\(81\) 0 0
\(82\) 0.789079 + 0.582624i 0.0871392 + 0.0643400i
\(83\) 5.77317 0.633688 0.316844 0.948478i \(-0.397377\pi\)
0.316844 + 0.948478i \(0.397377\pi\)
\(84\) 0 0
\(85\) −15.6282 −1.69511
\(86\) 0.771585 + 0.569707i 0.0832021 + 0.0614331i
\(87\) 0 0
\(88\) −1.30685 + 3.72721i −0.139311 + 0.397322i
\(89\) 6.65005i 0.704904i −0.935830 0.352452i \(-0.885348\pi\)
0.935830 0.352452i \(-0.114652\pi\)
\(90\) 0 0
\(91\) −8.08020 + 1.14295i −0.847035 + 0.119814i
\(92\) 2.66911 0.822081i 0.278274 0.0857079i
\(93\) 0 0
\(94\) −6.94149 + 9.40123i −0.715960 + 0.969663i
\(95\) 5.13985i 0.527338i
\(96\) 0 0
\(97\) 12.8849i 1.30827i 0.756380 + 0.654133i \(0.226966\pi\)
−0.756380 + 0.654133i \(0.773034\pi\)
\(98\) −3.44070 + 9.28233i −0.347563 + 0.937657i
\(99\) 0 0
\(100\) 1.28185 + 4.16189i 0.128185 + 0.416189i
\(101\) 14.1276i 1.40575i 0.711312 + 0.702877i \(0.248101\pi\)
−0.711312 + 0.702877i \(0.751899\pi\)
\(102\) 0 0
\(103\) −5.56370 −0.548208 −0.274104 0.961700i \(-0.588381\pi\)
−0.274104 + 0.961700i \(0.588381\pi\)
\(104\) 2.88659 8.23269i 0.283053 0.807282i
\(105\) 0 0
\(106\) 8.96853 12.1466i 0.871100 1.17978i
\(107\) 7.44814i 0.720039i −0.932945 0.360019i \(-0.882770\pi\)
0.932945 0.360019i \(-0.117230\pi\)
\(108\) 0 0
\(109\) 13.3693 1.28054 0.640272 0.768148i \(-0.278822\pi\)
0.640272 + 0.768148i \(0.278822\pi\)
\(110\) 3.14264 4.25625i 0.299639 0.405817i
\(111\) 0 0
\(112\) −7.12093 7.82894i −0.672865 0.739765i
\(113\) −3.36011 −0.316093 −0.158046 0.987432i \(-0.550520\pi\)
−0.158046 + 0.987432i \(0.550520\pi\)
\(114\) 0 0
\(115\) −3.74111 −0.348861
\(116\) 2.88659 + 9.37211i 0.268013 + 0.870178i
\(117\) 0 0
\(118\) −10.2648 + 13.9022i −0.944954 + 1.27980i
\(119\) −15.2817 + 2.16162i −1.40087 + 0.198155i
\(120\) 0 0
\(121\) 9.05000 0.822728
\(122\) −14.6591 10.8237i −1.32717 0.979932i
\(123\) 0 0
\(124\) −5.61167 18.2198i −0.503943 1.63619i
\(125\) 7.56191i 0.676358i
\(126\) 0 0
\(127\) 15.9694i 1.41705i 0.705685 + 0.708525i \(0.250639\pi\)
−0.705685 + 0.708525i \(0.749361\pi\)
\(128\) 10.9325 2.91208i 0.966307 0.257394i
\(129\) 0 0
\(130\) −6.94149 + 9.40123i −0.608809 + 0.824543i
\(131\) −1.81694 −0.158747 −0.0793735 0.996845i \(-0.525292\pi\)
−0.0793735 + 0.996845i \(0.525292\pi\)
\(132\) 0 0
\(133\) 0.710921 + 5.02590i 0.0616447 + 0.435801i
\(134\) −3.50914 2.59101i −0.303144 0.223829i
\(135\) 0 0
\(136\) 5.45926 15.5701i 0.468128 1.33512i
\(137\) −18.9399 −1.61814 −0.809070 0.587712i \(-0.800029\pi\)
−0.809070 + 0.587712i \(0.800029\pi\)
\(138\) 0 0
\(139\) −15.2878 −1.29669 −0.648347 0.761345i \(-0.724539\pi\)
−0.648347 + 0.761345i \(0.724539\pi\)
\(140\) 6.02923 + 12.8303i 0.509563 + 1.08436i
\(141\) 0 0
\(142\) −11.1439 8.22820i −0.935175 0.690495i
\(143\) 4.30717 0.360183
\(144\) 0 0
\(145\) 13.1362i 1.09090i
\(146\) 6.73237 + 4.97091i 0.557175 + 0.411395i
\(147\) 0 0
\(148\) −4.02500 13.0683i −0.330853 1.07421i
\(149\) 17.3967 1.42519 0.712596 0.701575i \(-0.247519\pi\)
0.712596 + 0.701575i \(0.247519\pi\)
\(150\) 0 0
\(151\) 8.57509i 0.697831i 0.937154 + 0.348915i \(0.113450\pi\)
−0.937154 + 0.348915i \(0.886550\pi\)
\(152\) −5.12076 1.79546i −0.415348 0.145631i
\(153\) 0 0
\(154\) 2.48426 4.59656i 0.200188 0.370402i
\(155\) 25.5375i 2.05122i
\(156\) 0 0
\(157\) 18.8025i 1.50060i −0.661097 0.750300i \(-0.729909\pi\)
0.661097 0.750300i \(-0.270091\pi\)
\(158\) −13.7507 10.1529i −1.09394 0.807723i
\(159\) 0 0
\(160\) −15.1439 0.582624i −1.19723 0.0460605i
\(161\) −3.65817 + 0.517454i −0.288304 + 0.0407810i
\(162\) 0 0
\(163\) 0.251311i 0.0196842i 0.999952 + 0.00984211i \(0.00313289\pi\)
−0.999952 + 0.00984211i \(0.996867\pi\)
\(164\) 1.32570 0.408312i 0.103520 0.0318838i
\(165\) 0 0
\(166\) 4.84963 6.56812i 0.376404 0.509785i
\(167\) 14.0366 1.08618 0.543091 0.839674i \(-0.317254\pi\)
0.543091 + 0.839674i \(0.317254\pi\)
\(168\) 0 0
\(169\) 3.48630 0.268177
\(170\) −13.1281 + 17.7801i −1.00688 + 1.36367i
\(171\) 0 0
\(172\) 1.29631 0.399259i 0.0988424 0.0304432i
\(173\) 14.8212i 1.12684i −0.826172 0.563418i \(-0.809486\pi\)
0.826172 0.563418i \(-0.190514\pi\)
\(174\) 0 0
\(175\) −0.806853 5.70410i −0.0609924 0.431190i
\(176\) 3.14264 + 4.61777i 0.236885 + 0.348077i
\(177\) 0 0
\(178\) −7.56574 5.58623i −0.567076 0.418706i
\(179\) 13.9001i 1.03894i −0.854488 0.519471i \(-0.826129\pi\)
0.854488 0.519471i \(-0.173871\pi\)
\(180\) 0 0
\(181\) 5.11903i 0.380494i −0.981736 0.190247i \(-0.939071\pi\)
0.981736 0.190247i \(-0.0609289\pi\)
\(182\) −5.48726 + 10.1529i −0.406743 + 0.752585i
\(183\) 0 0
\(184\) 1.30685 3.72721i 0.0963425 0.274774i
\(185\) 18.3169i 1.34669i
\(186\) 0 0
\(187\) 8.14594 0.595690
\(188\) 4.86470 + 15.7946i 0.354795 + 1.15194i
\(189\) 0 0
\(190\) 5.84759 + 4.31762i 0.424229 + 0.313233i
\(191\) 5.34887i 0.387030i 0.981097 + 0.193515i \(0.0619889\pi\)
−0.981097 + 0.193515i \(0.938011\pi\)
\(192\) 0 0
\(193\) −2.22334 −0.160039 −0.0800197 0.996793i \(-0.525498\pi\)
−0.0800197 + 0.996793i \(0.525498\pi\)
\(194\) 14.6591 + 10.8237i 1.05246 + 0.777096i
\(195\) 0 0
\(196\) 7.67018 + 11.7119i 0.547870 + 0.836563i
\(197\) 23.8431 1.69875 0.849377 0.527787i \(-0.176978\pi\)
0.849377 + 0.527787i \(0.176978\pi\)
\(198\) 0 0
\(199\) −17.5467 −1.24385 −0.621926 0.783076i \(-0.713649\pi\)
−0.621926 + 0.783076i \(0.713649\pi\)
\(200\) 5.81175 + 2.03775i 0.410953 + 0.144090i
\(201\) 0 0
\(202\) 16.0730 + 11.8676i 1.13089 + 0.835003i
\(203\) −1.81694 12.8450i −0.127524 0.901542i
\(204\) 0 0
\(205\) −1.85814 −0.129778
\(206\) −4.67367 + 6.32980i −0.325630 + 0.441018i
\(207\) 0 0
\(208\) −6.94149 10.1998i −0.481306 0.707226i
\(209\) 2.67907i 0.185315i
\(210\) 0 0
\(211\) 3.76263i 0.259030i −0.991577 0.129515i \(-0.958658\pi\)
0.991577 0.129515i \(-0.0413420\pi\)
\(212\) −6.28528 20.4069i −0.431675 1.40155i
\(213\) 0 0
\(214\) −8.47372 6.25665i −0.579251 0.427696i
\(215\) −1.81694 −0.123915
\(216\) 0 0
\(217\) 3.53223 + 24.9713i 0.239783 + 1.69516i
\(218\) 11.2306 15.2102i 0.760630 1.03016i
\(219\) 0 0
\(220\) −2.20241 7.15074i −0.148487 0.482103i
\(221\) −17.9928 −1.21033
\(222\) 0 0
\(223\) −10.8056 −0.723595 −0.361797 0.932257i \(-0.617837\pi\)
−0.361797 + 0.932257i \(0.617837\pi\)
\(224\) −14.8887 + 1.52493i −0.994796 + 0.101889i
\(225\) 0 0
\(226\) −2.82259 + 3.82279i −0.187756 + 0.254288i
\(227\) 24.1169 1.60070 0.800348 0.599536i \(-0.204648\pi\)
0.800348 + 0.599536i \(0.204648\pi\)
\(228\) 0 0
\(229\) 22.9367i 1.51570i −0.652428 0.757851i \(-0.726249\pi\)
0.652428 0.757851i \(-0.273751\pi\)
\(230\) −3.14264 + 4.25625i −0.207220 + 0.280649i
\(231\) 0 0
\(232\) 13.0874 + 4.58878i 0.859231 + 0.301268i
\(233\) −0.869890 −0.0569884 −0.0284942 0.999594i \(-0.509071\pi\)
−0.0284942 + 0.999594i \(0.509071\pi\)
\(234\) 0 0
\(235\) 22.1382i 1.44414i
\(236\) 7.19375 + 23.3565i 0.468273 + 1.52038i
\(237\) 0 0
\(238\) −10.3778 + 19.2017i −0.672692 + 1.24466i
\(239\) 21.1005i 1.36488i −0.730943 0.682439i \(-0.760919\pi\)
0.730943 0.682439i \(-0.239081\pi\)
\(240\) 0 0
\(241\) 3.08443i 0.198686i −0.995053 0.0993428i \(-0.968326\pi\)
0.995053 0.0993428i \(-0.0316740\pi\)
\(242\) 7.60226 10.2962i 0.488692 0.661862i
\(243\) 0 0
\(244\) −24.6282 + 7.58542i −1.57666 + 0.485606i
\(245\) −5.20134 18.0177i −0.332302 1.15111i
\(246\) 0 0
\(247\) 5.91755i 0.376524i
\(248\) −25.4426 8.92081i −1.61561 0.566472i
\(249\) 0 0
\(250\) 8.60316 + 6.35222i 0.544112 + 0.401750i
\(251\) 16.5268 1.04316 0.521581 0.853202i \(-0.325342\pi\)
0.521581 + 0.853202i \(0.325342\pi\)
\(252\) 0 0
\(253\) 1.95000 0.122595
\(254\) 18.1683 + 13.4147i 1.13998 + 0.841714i
\(255\) 0 0
\(256\) 5.87056 14.8841i 0.366910 0.930257i
\(257\) 20.1794i 1.25875i −0.777100 0.629377i \(-0.783310\pi\)
0.777100 0.629377i \(-0.216690\pi\)
\(258\) 0 0
\(259\) 2.53351 + 17.9108i 0.157425 + 1.11292i
\(260\) 4.86470 + 15.7946i 0.301696 + 0.979540i
\(261\) 0 0
\(262\) −1.52628 + 2.06713i −0.0942941 + 0.127708i
\(263\) 21.7941i 1.34388i 0.740606 + 0.671940i \(0.234539\pi\)
−0.740606 + 0.671940i \(0.765461\pi\)
\(264\) 0 0
\(265\) 28.6030i 1.75707i
\(266\) 6.31514 + 3.41309i 0.387206 + 0.209270i
\(267\) 0 0
\(268\) −5.89556 + 1.81582i −0.360129 + 0.110919i
\(269\) 11.4486i 0.698032i 0.937117 + 0.349016i \(0.113484\pi\)
−0.937117 + 0.349016i \(0.886516\pi\)
\(270\) 0 0
\(271\) 14.6782 0.891635 0.445817 0.895124i \(-0.352913\pi\)
0.445817 + 0.895124i \(0.352913\pi\)
\(272\) −13.1281 19.2903i −0.796008 1.16965i
\(273\) 0 0
\(274\) −15.9100 + 21.5478i −0.961159 + 1.30175i
\(275\) 3.04058i 0.183354i
\(276\) 0 0
\(277\) −15.6782 −0.942010 −0.471005 0.882131i \(-0.656109\pi\)
−0.471005 + 0.882131i \(0.656109\pi\)
\(278\) −12.8422 + 17.3929i −0.770223 + 1.04315i
\(279\) 0 0
\(280\) 19.6617 + 3.91836i 1.17501 + 0.234167i
\(281\) 0.947053 0.0564965 0.0282482 0.999601i \(-0.491007\pi\)
0.0282482 + 0.999601i \(0.491007\pi\)
\(282\) 0 0
\(283\) −9.03555 −0.537108 −0.268554 0.963265i \(-0.586546\pi\)
−0.268554 + 0.963265i \(0.586546\pi\)
\(284\) −18.7224 + 5.76645i −1.11097 + 0.342176i
\(285\) 0 0
\(286\) 3.61814 4.90025i 0.213945 0.289758i
\(287\) −1.81694 + 0.257009i −0.107251 + 0.0151708i
\(288\) 0 0
\(289\) −17.0289 −1.00170
\(290\) −14.9450 11.0348i −0.877603 0.647986i
\(291\) 0 0
\(292\) 11.3108 3.48369i 0.661912 0.203867i
\(293\) 7.22058i 0.421831i −0.977504 0.210915i \(-0.932356\pi\)
0.977504 0.210915i \(-0.0676445\pi\)
\(294\) 0 0
\(295\) 32.7372i 1.90603i
\(296\) −18.2489 6.39850i −1.06069 0.371905i
\(297\) 0 0
\(298\) 14.6137 19.7921i 0.846549 1.14653i
\(299\) −4.30717 −0.249090
\(300\) 0 0
\(301\) −1.77666 + 0.251311i −0.102405 + 0.0144853i
\(302\) 9.75584 + 7.20332i 0.561386 + 0.414504i
\(303\) 0 0
\(304\) −6.34427 + 4.31762i −0.363869 + 0.247633i
\(305\) 34.5196 1.97659
\(306\) 0 0
\(307\) 24.6885 1.40905 0.704525 0.709679i \(-0.251160\pi\)
0.704525 + 0.709679i \(0.251160\pi\)
\(308\) −3.14264 6.68758i −0.179069 0.381060i
\(309\) 0 0
\(310\) 29.0539 + 21.4522i 1.65015 + 1.21840i
\(311\) 32.3803 1.83612 0.918059 0.396443i \(-0.129756\pi\)
0.918059 + 0.396443i \(0.129756\pi\)
\(312\) 0 0
\(313\) 8.75066i 0.494617i 0.968937 + 0.247308i \(0.0795461\pi\)
−0.968937 + 0.247308i \(0.920454\pi\)
\(314\) −21.3915 15.7946i −1.20719 0.891341i
\(315\) 0 0
\(316\) −23.1019 + 7.11532i −1.29958 + 0.400268i
\(317\) −19.2136 −1.07914 −0.539572 0.841939i \(-0.681414\pi\)
−0.539572 + 0.841939i \(0.681414\pi\)
\(318\) 0 0
\(319\) 6.84706i 0.383362i
\(320\) −13.3842 + 16.7397i −0.748197 + 0.935780i
\(321\) 0 0
\(322\) −2.48426 + 4.59656i −0.138443 + 0.256156i
\(323\) 11.1916i 0.622715i
\(324\) 0 0
\(325\) 6.71606i 0.372540i
\(326\) 0.285916 + 0.211109i 0.0158354 + 0.0116922i
\(327\) 0 0
\(328\) 0.649089 1.85123i 0.0358399 0.102217i
\(329\) −3.06205 21.6474i −0.168817 1.19346i
\(330\) 0 0
\(331\) 6.59575i 0.362535i 0.983434 + 0.181267i \(0.0580200\pi\)
−0.983434 + 0.181267i \(0.941980\pi\)
\(332\) −3.39870 11.0348i −0.186528 0.605614i
\(333\) 0 0
\(334\) 11.7911 15.9694i 0.645181 0.873804i
\(335\) 8.26340 0.451478
\(336\) 0 0
\(337\) 16.6741 0.908296 0.454148 0.890926i \(-0.349944\pi\)
0.454148 + 0.890926i \(0.349944\pi\)
\(338\) 2.92859 3.96635i 0.159294 0.215741i
\(339\) 0 0
\(340\) 9.20037 + 29.8716i 0.498960 + 1.62001i
\(341\) 13.3110i 0.720832i
\(342\) 0 0
\(343\) −7.57816 16.8989i −0.409182 0.912453i
\(344\) 0.634698 1.81019i 0.0342206 0.0975990i
\(345\) 0 0
\(346\) −16.8620 12.4502i −0.906509 0.669329i
\(347\) 2.53584i 0.136131i −0.997681 0.0680654i \(-0.978317\pi\)
0.997681 0.0680654i \(-0.0216827\pi\)
\(348\) 0 0
\(349\) 9.54918i 0.511156i −0.966788 0.255578i \(-0.917734\pi\)
0.966788 0.255578i \(-0.0822658\pi\)
\(350\) −7.16731 3.87365i −0.383109 0.207055i
\(351\) 0 0
\(352\) 7.89352 + 0.303684i 0.420726 + 0.0161864i
\(353\) 3.27741i 0.174439i 0.996189 + 0.0872194i \(0.0277981\pi\)
−0.996189 + 0.0872194i \(0.972202\pi\)
\(354\) 0 0
\(355\) 26.2419 1.39277
\(356\) −12.7109 + 3.91492i −0.673675 + 0.207490i
\(357\) 0 0
\(358\) −15.8141 11.6765i −0.835800 0.617121i
\(359\) 11.6467i 0.614688i 0.951598 + 0.307344i \(0.0994402\pi\)
−0.951598 + 0.307344i \(0.900560\pi\)
\(360\) 0 0
\(361\) −15.3193 −0.806277
\(362\) −5.82390 4.30013i −0.306097 0.226010i
\(363\) 0 0
\(364\) 6.94149 + 14.7716i 0.363833 + 0.774241i
\(365\) −15.8535 −0.829811
\(366\) 0 0
\(367\) 26.5111 1.38387 0.691935 0.721960i \(-0.256758\pi\)
0.691935 + 0.721960i \(0.256758\pi\)
\(368\) −3.14264 4.61777i −0.163821 0.240718i
\(369\) 0 0
\(370\) 20.8391 + 15.3867i 1.08337 + 0.799918i
\(371\) 3.95623 + 27.9688i 0.205397 + 1.45207i
\(372\) 0 0
\(373\) 3.56370 0.184522 0.0922608 0.995735i \(-0.470591\pi\)
0.0922608 + 0.995735i \(0.470591\pi\)
\(374\) 6.84282 9.26760i 0.353834 0.479216i
\(375\) 0 0
\(376\) 22.0559 + 7.73336i 1.13745 + 0.398818i
\(377\) 15.1238i 0.778917i
\(378\) 0 0
\(379\) 9.37361i 0.481490i 0.970588 + 0.240745i \(0.0773917\pi\)
−0.970588 + 0.240745i \(0.922608\pi\)
\(380\) 9.82429 3.02586i 0.503975 0.155223i
\(381\) 0 0
\(382\) 6.08539 + 4.49320i 0.311355 + 0.229892i
\(383\) 3.95623 0.202154 0.101077 0.994879i \(-0.467771\pi\)
0.101077 + 0.994879i \(0.467771\pi\)
\(384\) 0 0
\(385\) 1.38629 + 9.80049i 0.0706521 + 0.499479i
\(386\) −1.86767 + 2.52948i −0.0950618 + 0.128747i
\(387\) 0 0
\(388\) 24.6282 7.58542i 1.25031 0.385091i
\(389\) −3.36011 −0.170365 −0.0851823 0.996365i \(-0.527147\pi\)
−0.0851823 + 0.996365i \(0.527147\pi\)
\(390\) 0 0
\(391\) −8.14594 −0.411958
\(392\) 19.7677 + 1.11198i 0.998422 + 0.0561635i
\(393\) 0 0
\(394\) 20.0289 27.1262i 1.00904 1.36660i
\(395\) 32.3803 1.62923
\(396\) 0 0
\(397\) 25.2672i 1.26813i −0.773282 0.634063i \(-0.781386\pi\)
0.773282 0.634063i \(-0.218614\pi\)
\(398\) −14.7397 + 19.9628i −0.738835 + 1.00064i
\(399\) 0 0
\(400\) 7.20037 4.90025i 0.360019 0.245012i
\(401\) 35.7404 1.78479 0.892396 0.451254i \(-0.149023\pi\)
0.892396 + 0.451254i \(0.149023\pi\)
\(402\) 0 0
\(403\) 29.4015i 1.46459i
\(404\) 27.0035 8.31701i 1.34347 0.413787i
\(405\) 0 0
\(406\) −16.1400 8.72303i −0.801014 0.432917i
\(407\) 9.54741i 0.473247i
\(408\) 0 0
\(409\) 16.5166i 0.816691i 0.912827 + 0.408346i \(0.133894\pi\)
−0.912827 + 0.408346i \(0.866106\pi\)
\(410\) −1.56089 + 2.11400i −0.0770868 + 0.104403i
\(411\) 0 0
\(412\) 3.27538 + 10.6344i 0.161366 + 0.523921i
\(413\) −4.52806 32.0114i −0.222811 1.57518i
\(414\) 0 0
\(415\) 15.4667i 0.759232i
\(416\) −17.4353 0.670778i −0.854834 0.0328876i
\(417\) 0 0
\(418\) −3.04797 2.25049i −0.149081 0.110075i
\(419\) −17.9928 −0.879006 −0.439503 0.898241i \(-0.644845\pi\)
−0.439503 + 0.898241i \(0.644845\pi\)
\(420\) 0 0
\(421\) 33.9304 1.65367 0.826834 0.562447i \(-0.190140\pi\)
0.826834 + 0.562447i \(0.190140\pi\)
\(422\) −4.28073 3.16071i −0.208383 0.153861i
\(423\) 0 0
\(424\) −28.4967 9.99165i −1.38392 0.485237i
\(425\) 12.7018i 0.616126i
\(426\) 0 0
\(427\) 33.7543 4.77459i 1.63348 0.231059i
\(428\) −14.2363 + 4.38475i −0.688139 + 0.211945i
\(429\) 0 0
\(430\) −1.52628 + 2.06713i −0.0736039 + 0.0996858i
\(431\) 21.0053i 1.01179i −0.862596 0.505894i \(-0.831163\pi\)
0.862596 0.505894i \(-0.168837\pi\)
\(432\) 0 0
\(433\) 13.1362i 0.631287i 0.948878 + 0.315644i \(0.102220\pi\)
−0.948878 + 0.315644i \(0.897780\pi\)
\(434\) 31.3770 + 16.9580i 1.50614 + 0.814011i
\(435\) 0 0
\(436\) −7.87056 25.5539i −0.376931 1.22381i
\(437\) 2.67907i 0.128157i
\(438\) 0 0
\(439\) −6.68073 −0.318854 −0.159427 0.987210i \(-0.550965\pi\)
−0.159427 + 0.987210i \(0.550965\pi\)
\(440\) −9.98546 3.50115i −0.476038 0.166911i
\(441\) 0 0
\(442\) −15.1145 + 20.4703i −0.718922 + 0.973675i
\(443\) 34.6391i 1.64575i −0.568221 0.822876i \(-0.692368\pi\)
0.568221 0.822876i \(-0.307632\pi\)
\(444\) 0 0
\(445\) 17.8160 0.844557
\(446\) −9.07699 + 12.2935i −0.429808 + 0.582112i
\(447\) 0 0
\(448\) −10.7721 + 18.2198i −0.508932 + 0.860807i
\(449\) 4.23000 0.199626 0.0998131 0.995006i \(-0.468176\pi\)
0.0998131 + 0.995006i \(0.468176\pi\)
\(450\) 0 0
\(451\) 0.968526 0.0456061
\(452\) 1.97811 + 6.42250i 0.0930427 + 0.302089i
\(453\) 0 0
\(454\) 20.2589 27.4377i 0.950797 1.28772i
\(455\) −3.06205 21.6474i −0.143551 1.01485i
\(456\) 0 0
\(457\) −15.2522 −0.713470 −0.356735 0.934206i \(-0.616110\pi\)
−0.356735 + 0.934206i \(0.616110\pi\)
\(458\) −26.0950 19.2675i −1.21934 0.900311i
\(459\) 0 0
\(460\) 2.20241 + 7.15074i 0.102688 + 0.333405i
\(461\) 14.4690i 0.673887i 0.941525 + 0.336944i \(0.109393\pi\)
−0.941525 + 0.336944i \(0.890607\pi\)
\(462\) 0 0
\(463\) 10.0518i 0.467147i 0.972339 + 0.233573i \(0.0750419\pi\)
−0.972339 + 0.233573i \(0.924958\pi\)
\(464\) 16.2144 11.0348i 0.752736 0.512278i
\(465\) 0 0
\(466\) −0.730732 + 0.989670i −0.0338505 + 0.0458456i
\(467\) −15.8535 −0.733613 −0.366807 0.930297i \(-0.619549\pi\)
−0.366807 + 0.930297i \(0.619549\pi\)
\(468\) 0 0
\(469\) 8.08020 1.14295i 0.373109 0.0527768i
\(470\) −25.1866 18.5967i −1.16177 0.857803i
\(471\) 0 0
\(472\) 32.6156 + 11.4358i 1.50125 + 0.526377i
\(473\) 0.947053 0.0435456
\(474\) 0 0
\(475\) −4.17741 −0.191673
\(476\) 13.1281 + 27.9368i 0.601725 + 1.28048i
\(477\) 0 0
\(478\) −24.0059 17.7250i −1.09801 0.810723i
\(479\) 3.63389 0.166037 0.0830183 0.996548i \(-0.473544\pi\)
0.0830183 + 0.996548i \(0.473544\pi\)
\(480\) 0 0
\(481\) 21.0884i 0.961547i
\(482\) −3.50914 2.59101i −0.159837 0.118017i
\(483\) 0 0
\(484\) −5.32778 17.2981i −0.242172 0.786278i
\(485\) −34.5196 −1.56745
\(486\) 0 0
\(487\) 5.79723i 0.262697i 0.991336 + 0.131349i \(0.0419308\pi\)
−0.991336 + 0.131349i \(0.958069\pi\)
\(488\) −12.0585 + 34.3913i −0.545861 + 1.55682i
\(489\) 0 0
\(490\) −24.8680 9.21787i −1.12342 0.416421i
\(491\) 11.2666i 0.508455i 0.967144 + 0.254228i \(0.0818213\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(492\) 0 0
\(493\) 28.6030i 1.28821i
\(494\) 6.73237 + 4.97091i 0.302904 + 0.223652i
\(495\) 0 0
\(496\) −31.5217 + 21.4522i −1.41537 + 0.963233i
\(497\) 25.6601 3.62965i 1.15101 0.162812i
\(498\) 0 0
\(499\) 20.6615i 0.924935i 0.886636 + 0.462468i \(0.153036\pi\)
−0.886636 + 0.462468i \(0.846964\pi\)
\(500\) 14.4538 4.45174i 0.646393 0.199088i
\(501\) 0 0
\(502\) 13.8830 18.8025i 0.619627 0.839195i
\(503\) −12.2196 −0.544846 −0.272423 0.962178i \(-0.587825\pi\)
−0.272423 + 0.962178i \(0.587825\pi\)
\(504\) 0 0
\(505\) −37.8489 −1.68426
\(506\) 1.63805 2.21850i 0.0728203 0.0986245i
\(507\) 0 0
\(508\) 30.5237 9.40123i 1.35427 0.417112i
\(509\) 12.8248i 0.568450i −0.958758 0.284225i \(-0.908264\pi\)
0.958758 0.284225i \(-0.0917363\pi\)
\(510\) 0 0
\(511\) −15.5020 + 2.19278i −0.685770 + 0.0970031i
\(512\) −12.0022 19.1820i −0.530425 0.847732i
\(513\) 0 0
\(514\) −22.9580 16.9512i −1.01263 0.747687i
\(515\) 14.9055i 0.656817i
\(516\) 0 0
\(517\) 11.5392i 0.507493i
\(518\) 22.5053 + 12.1632i 0.988826 + 0.534422i
\(519\) 0 0
\(520\) 22.0559 + 7.73336i 0.967217 + 0.339130i
\(521\) 34.9509i 1.53123i 0.643300 + 0.765614i \(0.277565\pi\)
−0.643300 + 0.765614i \(0.722435\pi\)
\(522\) 0 0
\(523\) −7.70964 −0.337119 −0.168559 0.985691i \(-0.553912\pi\)
−0.168559 + 0.985691i \(0.553912\pi\)
\(524\) 1.06964 + 3.47289i 0.0467276 + 0.151714i
\(525\) 0 0
\(526\) 24.7950 + 18.3076i 1.08111 + 0.798251i
\(527\) 55.6056i 2.42222i
\(528\) 0 0
\(529\) 21.0500 0.915218
\(530\) 32.5415 + 24.0273i 1.41351 + 1.04368i
\(531\) 0 0
\(532\) 9.18796 4.31762i 0.398348 0.187193i
\(533\) −2.13929 −0.0926628
\(534\) 0 0
\(535\) 19.9541 0.862690
\(536\) −2.88659 + 8.23269i −0.124682 + 0.355598i
\(537\) 0 0
\(538\) 13.0250 + 9.61713i 0.561548 + 0.414624i
\(539\) 2.71112 + 9.39147i 0.116776 + 0.404519i
\(540\) 0 0
\(541\) −24.7741 −1.06512 −0.532561 0.846392i \(-0.678770\pi\)
−0.532561 + 0.846392i \(0.678770\pi\)
\(542\) 12.3301 16.6993i 0.529622 0.717296i
\(543\) 0 0
\(544\) −32.9745 1.26861i −1.41377 0.0543912i
\(545\) 35.8172i 1.53424i
\(546\) 0 0
\(547\) 28.5584i 1.22107i −0.791990 0.610534i \(-0.790955\pi\)
0.791990 0.610534i \(-0.209045\pi\)
\(548\) 11.1500 + 36.2015i 0.476304 + 1.54645i
\(549\) 0 0
\(550\) 3.45926 + 2.55418i 0.147503 + 0.108910i
\(551\) −9.40706 −0.400754
\(552\) 0 0
\(553\) 31.6624 4.47869i 1.34642 0.190453i
\(554\) −13.1701 + 17.8370i −0.559544 + 0.757821i
\(555\) 0 0
\(556\) 9.00000 + 29.2210i 0.381685 + 1.23925i
\(557\) 7.31634 0.310003 0.155002 0.987914i \(-0.450462\pi\)
0.155002 + 0.987914i \(0.450462\pi\)
\(558\) 0 0
\(559\) −2.09186 −0.0884762
\(560\) 20.9743 19.0775i 0.886325 0.806170i
\(561\) 0 0
\(562\) 0.795552 1.07746i 0.0335583 0.0454499i
\(563\) 38.8268 1.63635 0.818176 0.574967i \(-0.194985\pi\)
0.818176 + 0.574967i \(0.194985\pi\)
\(564\) 0 0
\(565\) 9.00197i 0.378716i
\(566\) −7.59012 + 10.2797i −0.319036 + 0.432088i
\(567\) 0 0
\(568\) −9.16686 + 26.1444i −0.384633 + 1.09699i
\(569\) −15.9307 −0.667849 −0.333924 0.942600i \(-0.608373\pi\)
−0.333924 + 0.942600i \(0.608373\pi\)
\(570\) 0 0
\(571\) 12.8849i 0.539217i −0.962970 0.269609i \(-0.913106\pi\)
0.962970 0.269609i \(-0.0868943\pi\)
\(572\) −2.53565 8.23269i −0.106021 0.344226i
\(573\) 0 0
\(574\) −1.23389 + 2.28302i −0.0515014 + 0.0952916i
\(575\) 3.04058i 0.126801i
\(576\) 0 0
\(577\) 15.7180i 0.654351i 0.944964 + 0.327175i \(0.106097\pi\)
−0.944964 + 0.327175i \(0.893903\pi\)
\(578\) −14.3048 + 19.3737i −0.595000 + 0.805841i
\(579\) 0 0
\(580\) −25.1085 + 7.73336i −1.04257 + 0.321110i
\(581\) 2.13929 + 15.1238i 0.0887526 + 0.627442i
\(582\) 0 0
\(583\) 14.9088i 0.617461i
\(584\) 5.53798 15.7946i 0.229163 0.653585i
\(585\) 0 0
\(586\) −8.21483 6.06549i −0.339351 0.250563i
\(587\) −17.9928 −0.742642 −0.371321 0.928504i \(-0.621095\pi\)
−0.371321 + 0.928504i \(0.621095\pi\)
\(588\) 0 0
\(589\) 18.2878 0.753536
\(590\) −37.2450 27.5002i −1.53335 1.13216i
\(591\) 0 0
\(592\) −22.6091 + 15.3867i −0.929228 + 0.632391i
\(593\) 5.49210i 0.225534i −0.993621 0.112767i \(-0.964029\pi\)
0.993621 0.112767i \(-0.0359713\pi\)
\(594\) 0 0
\(595\) −5.79112 40.9407i −0.237413 1.67840i
\(596\) −10.2415 33.2519i −0.419509 1.36205i
\(597\) 0 0
\(598\) −3.61814 + 4.90025i −0.147957 + 0.200386i
\(599\) 38.6101i 1.57756i 0.614673 + 0.788782i \(0.289288\pi\)
−0.614673 + 0.788782i \(0.710712\pi\)
\(600\) 0 0
\(601\) 15.4667i 0.630901i 0.948942 + 0.315451i \(0.102156\pi\)
−0.948942 + 0.315451i \(0.897844\pi\)
\(602\) −1.20653 + 2.23241i −0.0491745 + 0.0909862i
\(603\) 0 0
\(604\) 16.3904 5.04819i 0.666915 0.205408i
\(605\) 24.2456i 0.985723i
\(606\) 0 0
\(607\) −25.1959 −1.02267 −0.511336 0.859381i \(-0.670849\pi\)
−0.511336 + 0.859381i \(0.670849\pi\)
\(608\) −0.417226 + 10.8448i −0.0169207 + 0.439814i
\(609\) 0 0
\(610\) 28.9974 39.2728i 1.17407 1.59011i
\(611\) 25.4879i 1.03113i
\(612\) 0 0
\(613\) −21.7556 −0.878699 −0.439350 0.898316i \(-0.644791\pi\)
−0.439350 + 0.898316i \(0.644791\pi\)
\(614\) 20.7391 28.0881i 0.836961 1.13354i
\(615\) 0 0
\(616\) −10.2483 2.04239i −0.412917 0.0822901i
\(617\) −21.7038 −0.873764 −0.436882 0.899519i \(-0.643917\pi\)
−0.436882 + 0.899519i \(0.643917\pi\)
\(618\) 0 0
\(619\) −25.6385 −1.03050 −0.515250 0.857040i \(-0.672301\pi\)
−0.515250 + 0.857040i \(0.672301\pi\)
\(620\) 48.8122 15.0340i 1.96035 0.603782i
\(621\) 0 0
\(622\) 27.2004 36.8389i 1.09064 1.47711i
\(623\) 17.4210 2.46422i 0.697956 0.0987269i
\(624\) 0 0
\(625\) −31.1459 −1.24584
\(626\) 9.95560 + 7.35081i 0.397906 + 0.293797i
\(627\) 0 0
\(628\) −35.9389 + 11.0691i −1.43412 + 0.441705i
\(629\) 39.8834i 1.59026i
\(630\) 0 0
\(631\) 30.4513i 1.21225i 0.795370 + 0.606124i \(0.207276\pi\)
−0.795370 + 0.606124i \(0.792724\pi\)
\(632\) −11.3112 + 32.2600i −0.449934 + 1.28323i
\(633\) 0 0
\(634\) −16.1400 + 21.8593i −0.641001 + 0.868142i
\(635\) −42.7830 −1.69779
\(636\) 0 0
\(637\) −5.98834 20.7439i −0.237267 0.821905i
\(638\) 7.78987 + 5.75172i 0.308404 + 0.227713i
\(639\) 0 0
\(640\) 7.80166 + 29.2889i 0.308388 + 1.15775i
\(641\) 10.6765 0.421695 0.210847 0.977519i \(-0.432378\pi\)
0.210847 + 0.977519i \(0.432378\pi\)
\(642\) 0 0
\(643\) −19.3693 −0.763850 −0.381925 0.924193i \(-0.624739\pi\)
−0.381925 + 0.924193i \(0.624739\pi\)
\(644\) 3.14264 + 6.68758i 0.123837 + 0.263528i
\(645\) 0 0
\(646\) 12.7326 + 9.40123i 0.500958 + 0.369887i
\(647\) 13.3633 0.525365 0.262683 0.964882i \(-0.415393\pi\)
0.262683 + 0.964882i \(0.415393\pi\)
\(648\) 0 0
\(649\) 17.0638i 0.669811i
\(650\) −7.64084 5.64168i −0.299698 0.221285i
\(651\) 0 0
\(652\) 0.480355 0.147948i 0.0188121 0.00579410i
\(653\) 15.2574 0.597068 0.298534 0.954399i \(-0.403502\pi\)
0.298534 + 0.954399i \(0.403502\pi\)
\(654\) 0 0
\(655\) 4.86772i 0.190197i
\(656\) −1.56089 2.29356i −0.0609425 0.0895483i
\(657\) 0 0
\(658\) −27.2004 14.7007i −1.06038 0.573095i
\(659\) 3.36337i 0.131018i −0.997852 0.0655092i \(-0.979133\pi\)
0.997852 0.0655092i \(-0.0208672\pi\)
\(660\) 0 0
\(661\) 0.251311i 0.00977487i −0.999988 0.00488744i \(-0.998444\pi\)
0.999988 0.00488744i \(-0.00155573\pi\)
\(662\) 7.50395 + 5.54061i 0.291649 + 0.215342i
\(663\) 0 0
\(664\) −15.4093 5.40287i −0.597995 0.209672i
\(665\) −13.4647 + 1.90461i −0.522140 + 0.0738575i
\(666\) 0 0
\(667\) 6.84706i 0.265119i
\(668\) −8.26340 26.8294i −0.319720 1.03806i
\(669\) 0 0
\(670\) 6.94149 9.40123i 0.268173 0.363201i
\(671\) −17.9928 −0.694604
\(672\) 0 0
\(673\) −11.6767 −0.450102 −0.225051 0.974347i \(-0.572255\pi\)
−0.225051 + 0.974347i \(0.572255\pi\)
\(674\) 14.0067 18.9700i 0.539518 0.730699i
\(675\) 0 0
\(676\) −2.05240 6.66369i −0.0789385 0.256296i
\(677\) 12.0082i 0.461512i −0.973012 0.230756i \(-0.925880\pi\)
0.973012 0.230756i \(-0.0741200\pi\)
\(678\) 0 0
\(679\) −33.7543 + 4.77459i −1.29537 + 0.183232i
\(680\) 41.7133 + 14.6257i 1.59963 + 0.560871i
\(681\) 0 0
\(682\) −15.1439 11.1816i −0.579890 0.428167i
\(683\) 20.6345i 0.789556i 0.918777 + 0.394778i \(0.129178\pi\)
−0.918777 + 0.394778i \(0.870822\pi\)
\(684\) 0 0
\(685\) 50.7412i 1.93872i
\(686\) −25.5916 5.57388i −0.977093 0.212812i
\(687\) 0 0
\(688\) −1.52628 2.24271i −0.0581890 0.0855024i
\(689\) 32.9308i 1.25456i
\(690\) 0 0
\(691\) −12.5756 −0.478398 −0.239199 0.970971i \(-0.576885\pi\)
−0.239199 + 0.970971i \(0.576885\pi\)
\(692\) −28.3292 + 8.72533i −1.07691 + 0.331687i
\(693\) 0 0
\(694\) −2.88501 2.13017i −0.109514 0.0808603i
\(695\) 40.9571i 1.55359i
\(696\) 0 0
\(697\) −4.04593 −0.153250
\(698\) −10.8641 8.02158i −0.411211 0.303621i
\(699\) 0 0
\(700\) −10.4278 + 4.90025i −0.394133 + 0.185212i
\(701\) −39.4229 −1.48898 −0.744491 0.667633i \(-0.767308\pi\)
−0.744491 + 0.667633i \(0.767308\pi\)
\(702\) 0 0
\(703\) 13.1170 0.494718
\(704\) 6.97628 8.72533i 0.262928 0.328848i
\(705\) 0 0
\(706\) 3.72870 + 2.75312i 0.140331 + 0.103615i
\(707\) −37.0098 + 5.23509i −1.39190 + 0.196886i
\(708\) 0 0
\(709\) 14.3733 0.539802 0.269901 0.962888i \(-0.413009\pi\)
0.269901 + 0.962888i \(0.413009\pi\)
\(710\) 22.0439 29.8553i 0.827293 1.12045i
\(711\) 0 0
\(712\) −6.22350 + 17.7498i −0.233236 + 0.665200i
\(713\) 13.3110i 0.498502i
\(714\) 0 0
\(715\) 11.5392i 0.431541i
\(716\) −26.5686 + 8.18305i −0.992913 + 0.305815i
\(717\) 0 0
\(718\) 13.2504 + 9.78354i 0.494500 + 0.365118i
\(719\) −38.8268 −1.44799 −0.723997 0.689803i \(-0.757697\pi\)
−0.723997 + 0.689803i \(0.757697\pi\)
\(720\) 0 0
\(721\) −2.06167 14.5751i −0.0767805 0.542805i
\(722\) −12.8686 + 17.4287i −0.478921 + 0.648628i
\(723\) 0 0
\(724\) −9.78448 + 3.01360i −0.363637 + 0.111999i
\(725\) 10.6765 0.396514
\(726\) 0 0
\(727\) 28.9015 1.07190 0.535949 0.844251i \(-0.319954\pi\)
0.535949 + 0.844251i \(0.319954\pi\)
\(728\) 22.6366 + 4.51124i 0.838968 + 0.167198i
\(729\) 0 0
\(730\) −13.3174 + 18.0365i −0.492899 + 0.667560i
\(731\) −3.95623 −0.146326
\(732\) 0 0
\(733\) 26.2074i 0.967993i −0.875070 0.483996i \(-0.839185\pi\)
0.875070 0.483996i \(-0.160815\pi\)
\(734\) 22.2701 30.1616i 0.822005 1.11329i
\(735\) 0 0
\(736\) −7.89352 0.303684i −0.290959 0.0111939i
\(737\) −4.30717 −0.158657
\(738\) 0 0
\(739\) 42.0351i 1.54629i −0.634232 0.773143i \(-0.718684\pi\)
0.634232 0.773143i \(-0.281316\pi\)
\(740\) 35.0108 10.7833i 1.28702 0.396400i
\(741\) 0 0
\(742\) 35.1434 + 18.9936i 1.29015 + 0.697278i
\(743\) 41.3642i 1.51750i −0.651379 0.758752i \(-0.725809\pi\)
0.651379 0.758752i \(-0.274191\pi\)
\(744\) 0 0
\(745\) 46.6069i 1.70755i
\(746\) 2.99361 4.05441i 0.109604 0.148443i
\(747\) 0 0
\(748\) −4.79555 15.5701i −0.175343 0.569299i
\(749\) 19.5117 2.75996i 0.712941 0.100847i
\(750\) 0 0
\(751\) 19.6117i 0.715640i −0.933791 0.357820i \(-0.883520\pi\)
0.933791 0.357820i \(-0.116480\pi\)
\(752\) 27.3258 18.5967i 0.996471 0.678153i
\(753\) 0 0
\(754\) −17.2063 12.7044i −0.626617 0.462669i
\(755\) −22.9732 −0.836082
\(756\) 0 0
\(757\) 5.86852 0.213295 0.106647 0.994297i \(-0.465988\pi\)
0.106647 + 0.994297i \(0.465988\pi\)
\(758\) 10.6643 + 7.87409i 0.387345 + 0.286000i
\(759\) 0 0
\(760\) 4.81017 13.7189i 0.174483 0.497635i
\(761\) 16.1131i 0.584101i −0.956403 0.292050i \(-0.905662\pi\)
0.956403 0.292050i \(-0.0943375\pi\)
\(762\) 0 0
\(763\) 4.95407 + 35.0231i 0.179349 + 1.26792i
\(764\) 10.2238 3.14890i 0.369884 0.113923i
\(765\) 0 0
\(766\) 3.32335 4.50099i 0.120077 0.162627i
\(767\) 37.6906i 1.36093i
\(768\) 0 0
\(769\) 38.3589i 1.38326i −0.722254 0.691628i \(-0.756894\pi\)
0.722254 0.691628i \(-0.243106\pi\)
\(770\) 12.3145 + 6.65551i 0.443784 + 0.239848i
\(771\) 0 0
\(772\) 1.30889 + 4.24968i 0.0471080 + 0.152949i
\(773\) 8.12153i 0.292111i −0.989276 0.146056i \(-0.953342\pi\)
0.989276 0.146056i \(-0.0466578\pi\)
\(774\) 0 0
\(775\) −20.7556 −0.745562
\(776\) 12.0585 34.3913i 0.432873 1.23458i
\(777\) 0 0
\(778\) −2.82259 + 3.82279i −0.101195 + 0.137054i
\(779\) 1.33064i 0.0476752i
\(780\) 0 0
\(781\) −13.6782 −0.489443
\(782\) −6.84282 + 9.26760i −0.244699 + 0.331409i
\(783\) 0 0
\(784\) 17.8706 21.5556i 0.638234 0.769842i
\(785\) 50.3731 1.79789
\(786\) 0 0
\(787\) −6.54925 −0.233455 −0.116728 0.993164i \(-0.537240\pi\)
−0.116728 + 0.993164i \(0.537240\pi\)
\(788\) −14.0366 45.5736i −0.500032 1.62349i
\(789\) 0 0
\(790\) 27.2004 36.8389i 0.967746 1.31067i
\(791\) −1.24511 8.80240i −0.0442711 0.312977i
\(792\) 0 0
\(793\) 39.7426 1.41130
\(794\) −28.7464 21.2252i −1.02017 0.753254i
\(795\) 0 0
\(796\) 10.3298 + 33.5386i 0.366131 + 1.18875i
\(797\) 10.0227i 0.355022i −0.984119 0.177511i \(-0.943195\pi\)
0.984119 0.177511i \(-0.0568046\pi\)
\(798\) 0 0
\(799\) 48.2039i 1.70533i
\(800\) 0.473527 12.3082i 0.0167417 0.435160i
\(801\) 0 0
\(802\) 30.0230 40.6617i 1.06015 1.43582i
\(803\) 8.26340 0.291609
\(804\) 0 0
\(805\) −1.38629 9.80049i −0.0488604 0.345422i
\(806\) 33.4499 + 24.6981i 1.17822 + 0.869953i
\(807\) 0 0
\(808\) 13.2215 37.7083i 0.465130 1.32657i
\(809\) −37.9569 −1.33449 −0.667246 0.744837i \(-0.732527\pi\)
−0.667246 + 0.744837i \(0.732527\pi\)
\(810\) 0 0
\(811\) −22.8056 −0.800812 −0.400406 0.916338i \(-0.631131\pi\)
−0.400406 + 0.916338i \(0.631131\pi\)
\(812\) −23.4822 + 11.0348i −0.824064 + 0.387246i
\(813\) 0 0
\(814\) −10.8620 8.02009i −0.380715 0.281104i
\(815\) −0.673280 −0.0235840
\(816\) 0 0
\(817\) 1.30114i 0.0455212i
\(818\) 18.7908 + 13.8744i 0.657006 + 0.485106i
\(819\) 0 0
\(820\) 1.09390 + 3.55163i 0.0382005 + 0.124028i
\(821\) 29.9387 1.04487 0.522433 0.852680i \(-0.325024\pi\)
0.522433 + 0.852680i \(0.325024\pi\)
\(822\) 0 0
\(823\) 2.28591i 0.0796818i −0.999206 0.0398409i \(-0.987315\pi\)
0.999206 0.0398409i \(-0.0126851\pi\)
\(824\) 14.8502 + 5.20684i 0.517330 + 0.181389i
\(825\) 0 0
\(826\) −40.2230 21.7389i −1.39954 0.756395i
\(827\) 21.3188i 0.741326i 0.928767 + 0.370663i \(0.120870\pi\)
−0.928767 + 0.370663i \(0.879130\pi\)
\(828\) 0 0
\(829\) 2.58181i 0.0896698i −0.998994 0.0448349i \(-0.985724\pi\)
0.998994 0.0448349i \(-0.0142762\pi\)
\(830\) 17.5964 + 12.9925i 0.610781 + 0.450976i
\(831\) 0 0
\(832\) −15.4093 + 19.2726i −0.534220 + 0.668156i
\(833\) −11.3255 39.2320i −0.392404 1.35931i
\(834\) 0 0
\(835\) 37.6049i 1.30137i
\(836\) −5.12076 + 1.57718i −0.177105 + 0.0545479i
\(837\) 0 0
\(838\) −15.1145 + 20.4703i −0.522120 + 0.707136i
\(839\) −46.7392 −1.61362 −0.806809 0.590813i \(-0.798807\pi\)
−0.806809 + 0.590813i \(0.798807\pi\)
\(840\) 0 0
\(841\) −4.95781 −0.170959
\(842\) 28.5025 38.6025i 0.982261 1.33033i
\(843\) 0 0
\(844\) −7.19186 + 2.21508i −0.247554 + 0.0762461i
\(845\) 9.34004i 0.321307i
\(846\) 0 0
\(847\) 3.35354 + 23.7081i 0.115229 + 0.814618i
\(848\) −35.3055 + 24.0273i −1.21239 + 0.825101i
\(849\) 0 0
\(850\) −14.4508 10.6698i −0.495657 0.365973i
\(851\) 9.54741i 0.327281i
\(852\) 0 0
\(853\) 0.547208i 0.0187360i 0.999956 + 0.00936801i \(0.00298198\pi\)
−0.999956 + 0.00936801i \(0.997018\pi\)
\(854\) 22.9225 42.4129i 0.784393 1.45134i
\(855\) 0 0
\(856\) −6.97040 + 19.8799i −0.238243 + 0.679482i
\(857\) 1.20759i 0.0412506i −0.999787 0.0206253i \(-0.993434\pi\)
0.999787 0.0206253i \(-0.00656571\pi\)
\(858\) 0 0
\(859\) −28.0474 −0.956966 −0.478483 0.878097i \(-0.658813\pi\)
−0.478483 + 0.878097i \(0.658813\pi\)
\(860\) 1.06964 + 3.47289i 0.0364745 + 0.118425i
\(861\) 0 0
\(862\) −23.8976 17.6450i −0.813955 0.600991i
\(863\) 42.8853i 1.45983i 0.683537 + 0.729916i \(0.260441\pi\)
−0.683537 + 0.729916i \(0.739559\pi\)
\(864\) 0 0
\(865\) 39.7071 1.35008
\(866\) 14.9450 + 11.0348i 0.507853 + 0.374978i
\(867\) 0 0
\(868\) 45.6506 21.4522i 1.54948 0.728136i
\(869\) −16.8777 −0.572538
\(870\) 0 0
\(871\) 9.51370 0.322359
\(872\) −35.6841 12.5117i −1.20842 0.423701i
\(873\) 0 0
\(874\) 3.04797 + 2.25049i 0.103099 + 0.0761241i
\(875\) −19.8097 + 2.80212i −0.669692 + 0.0947288i
\(876\) 0 0
\(877\) 18.8330 0.635944 0.317972 0.948100i \(-0.396998\pi\)
0.317972 + 0.948100i \(0.396998\pi\)
\(878\) −5.61200 + 7.60064i −0.189396 + 0.256509i
\(879\) 0 0
\(880\) −12.3713 + 8.41935i −0.417037 + 0.283816i
\(881\) 24.1116i 0.812341i −0.913797 0.406171i \(-0.866864\pi\)
0.913797 0.406171i \(-0.133136\pi\)
\(882\) 0 0
\(883\) 4.26525i 0.143537i 0.997421 + 0.0717686i \(0.0228643\pi\)
−0.997421 + 0.0717686i \(0.977136\pi\)
\(884\) 10.5924 + 34.3913i 0.356263 + 1.15671i
\(885\) 0 0
\(886\) −39.4087 29.0978i −1.32396 0.977560i
\(887\) −22.3000 −0.748760 −0.374380 0.927275i \(-0.622144\pi\)
−0.374380 + 0.927275i \(0.622144\pi\)
\(888\) 0 0
\(889\) −41.8345 + 5.91755i −1.40308 + 0.198468i
\(890\) 14.9659 20.2691i 0.501658 0.679423i
\(891\) 0 0
\(892\) 6.36129 + 20.6537i 0.212992 + 0.691537i
\(893\) −15.8535 −0.530518
\(894\) 0 0
\(895\) 37.2393 1.24477
\(896\) 11.6798 + 27.5605i 0.390195 + 0.920732i
\(897\) 0 0
\(898\) 3.55332 4.81246i 0.118576 0.160594i
\(899\) −46.7392 −1.55884
\(900\) 0 0
\(901\) 62.2804i 2.07486i
\(902\) 0.813589 1.10189i 0.0270896 0.0366889i
\(903\) 0 0
\(904\) 8.96853 + 3.14459i 0.298289 + 0.104587i
\(905\) 13.7142 0.455876
\(906\) 0 0
\(907\) 58.1354i 1.93036i 0.261595 + 0.965178i \(0.415751\pi\)
−0.261595 + 0.965178i \(0.584249\pi\)
\(908\) −14.1977 46.0969i −0.471169 1.52978i
\(909\) 0 0
\(910\) −27.2004 14.7007i −0.901684 0.487325i
\(911\) 50.9890i 1.68934i 0.535286 + 0.844671i \(0.320204\pi\)
−0.535286 + 0.844671i \(0.679796\pi\)
\(912\) 0 0
\(913\) 8.06179i 0.266806i
\(914\) −12.8123 + 17.3524i −0.423794 + 0.573967i
\(915\) 0 0
\(916\) −43.8411 + 13.5030i −1.44855 + 0.446150i
\(917\) −0.673280 4.75980i −0.0222337 0.157182i
\(918\) 0 0
\(919\) 27.7492i 0.915361i 0.889117 + 0.457681i \(0.151320\pi\)
−0.889117 + 0.457681i \(0.848680\pi\)
\(920\) 9.98546 + 3.50115i 0.329211 + 0.115429i
\(921\) 0 0
\(922\) 16.4613 + 12.1544i 0.542124 + 0.400282i
\(923\) 30.2124 0.994454
\(924\) 0 0
\(925\) −14.8870 −0.489483
\(926\) 11.4359 + 8.44380i 0.375807 + 0.277481i
\(927\) 0 0
\(928\) 1.06633 27.7167i 0.0350040 0.909844i
\(929\) 47.6636i 1.56379i 0.623408 + 0.781896i \(0.285747\pi\)
−0.623408 + 0.781896i \(0.714253\pi\)
\(930\) 0 0
\(931\) −12.9028 + 3.72476i −0.422872 + 0.122074i
\(932\) 0.512108 + 1.66270i 0.0167747 + 0.0544636i
\(933\) 0 0
\(934\) −13.3174 + 18.0365i −0.435759 + 0.590172i
\(935\) 21.8235i 0.713705i
\(936\) 0 0
\(937\) 42.7240i 1.39573i 0.716229 + 0.697866i \(0.245867\pi\)
−0.716229 + 0.697866i \(0.754133\pi\)
\(938\) 5.48726 10.1529i 0.179165 0.331505i
\(939\) 0 0
\(940\) −42.3148 + 13.0329i −1.38016 + 0.425085i
\(941\) 25.7449i 0.839259i 0.907696 + 0.419629i \(0.137840\pi\)
−0.907696 + 0.419629i \(0.862160\pi\)
\(942\) 0 0
\(943\) −0.968526 −0.0315395
\(944\) 40.4085 27.5002i 1.31519 0.895055i
\(945\) 0 0
\(946\) 0.795552 1.07746i 0.0258656 0.0350312i
\(947\) 36.2740i 1.17875i −0.807861 0.589373i \(-0.799375\pi\)
0.807861 0.589373i \(-0.200625\pi\)
\(948\) 0 0
\(949\) −18.2522 −0.592493
\(950\) −3.50914 + 4.75262i −0.113852 + 0.154195i
\(951\) 0 0
\(952\) 42.8115 + 8.53188i 1.38753 + 0.276520i
\(953\) 18.0700 0.585344 0.292672 0.956213i \(-0.405456\pi\)
0.292672 + 0.956213i \(0.405456\pi\)
\(954\) 0 0
\(955\) −14.3300 −0.463707
\(956\) −40.3313 + 12.4220i −1.30441 + 0.401755i
\(957\) 0 0
\(958\) 3.05257 4.13426i 0.0986240 0.133572i
\(959\) −7.01828 49.6162i −0.226632 1.60219i
\(960\) 0 0
\(961\) 59.8634 1.93108
\(962\) 23.9922 + 17.7148i 0.773538 + 0.571149i
\(963\) 0 0
\(964\) −5.89556 + 1.81582i −0.189883 + 0.0584836i
\(965\) 5.95648i 0.191746i
\(966\) 0 0
\(967\) 21.3843i 0.687672i 0.939030 + 0.343836i \(0.111726\pi\)
−0.939030 + 0.343836i \(0.888274\pi\)
\(968\) −24.1555 8.46952i −0.776387 0.272221i
\(969\) 0 0
\(970\) −28.9974 + 39.2728i −0.931052 + 1.26097i
\(971\) 7.23918 0.232316 0.116158 0.993231i \(-0.462942\pi\)
0.116158 + 0.993231i \(0.462942\pi\)
\(972\) 0 0
\(973\) −5.66499 40.0490i −0.181611 1.28391i
\(974\) 6.59548 + 4.86983i 0.211333 + 0.156040i
\(975\) 0 0
\(976\) 28.9974 + 42.6085i 0.928185 + 1.36387i
\(977\) −34.2458 −1.09562 −0.547810 0.836603i \(-0.684538\pi\)
−0.547810 + 0.836603i \(0.684538\pi\)
\(978\) 0 0
\(979\) −9.28629 −0.296791
\(980\) −31.3770 + 20.5489i −1.00230 + 0.656412i
\(981\) 0 0
\(982\) 12.8180 + 9.46428i 0.409038 + 0.302017i
\(983\) −7.23918 −0.230894 −0.115447 0.993314i \(-0.536830\pi\)
−0.115447 + 0.993314i \(0.536830\pi\)
\(984\) 0 0
\(985\) 63.8774i 2.03530i
\(986\) −32.5415 24.0273i −1.03633 0.765185i
\(987\) 0 0
\(988\) 11.3108 3.48369i 0.359843 0.110831i
\(989\) −0.947053 −0.0301145
\(990\) 0 0
\(991\) 0.633615i 0.0201274i −0.999949 0.0100637i \(-0.996797\pi\)
0.999949 0.0100637i \(-0.00320343\pi\)
\(992\) −2.07300 + 53.8826i −0.0658177 + 1.71077i
\(993\) 0 0
\(994\) 17.4258 32.2424i 0.552711 1.02267i
\(995\) 47.0088i 1.49028i
\(996\) 0 0
\(997\) 13.9348i 0.441318i 0.975351 + 0.220659i \(0.0708208\pi\)
−0.975351 + 0.220659i \(0.929179\pi\)
\(998\) 23.5065 + 17.3562i 0.744085 + 0.549402i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.b.d.55.7 yes 12
3.2 odd 2 inner 756.2.b.d.55.6 yes 12
4.3 odd 2 756.2.b.c.55.8 yes 12
7.6 odd 2 756.2.b.c.55.7 yes 12
12.11 even 2 756.2.b.c.55.5 12
21.20 even 2 756.2.b.c.55.6 yes 12
28.27 even 2 inner 756.2.b.d.55.8 yes 12
84.83 odd 2 inner 756.2.b.d.55.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.b.c.55.5 12 12.11 even 2
756.2.b.c.55.6 yes 12 21.20 even 2
756.2.b.c.55.7 yes 12 7.6 odd 2
756.2.b.c.55.8 yes 12 4.3 odd 2
756.2.b.d.55.5 yes 12 84.83 odd 2 inner
756.2.b.d.55.6 yes 12 3.2 odd 2 inner
756.2.b.d.55.7 yes 12 1.1 even 1 trivial
756.2.b.d.55.8 yes 12 28.27 even 2 inner